the physical structure (nmos) - users.encs.concordia.ca

46
CONCORDIA VLSI DESIGN LAB 1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ n+ Al Al SiO2 SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ n+ (G) Poly contact

Upload: others

Post on 02-Jun-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

1

The Physical Structure (NMOS)

Field Oxide

SiO2

Gate oxide

Field Oxide n+ n+

Al Al SiO2 SiO2

Polysilicon Gate

channel

L

P Substrate

D S

L

W

(D) (S)

Metal

n+ n+

(G)

Poly

contact

Page 2: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

2

Transistor Resistance

:

Two Components:

Drain/ Sources Resistance: RD(S) = Rsh x no. of squares+ contact resistance.

Channel Resistance:

Depends on the region of operation:

L

W

(D) (S) n+ n+

(G)

RS Rch RD

Linear

RCH2

K'W

L----- V

GSV

T– 2

----------------------------------------------------= Saturation

RCH1

K'W

L----- V

GSV

T– VDS–

---------------------------------------------------------------- '=

Page 3: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

3

Transistor Geometry

Page 4: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

4

Transistor Geometry- Detailed

Page 5: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

5

NMOS Operation-Linear

K Cox= Process Transconductance uA/V2 for 0.35u, K’ (Kp)=196uA/ V2

Cox

ox

tox

-------= Gate oxide capacitance per unit area

ox = 3.9 x o = 3.45 x 10-11 F/m

tox Oxide thickness

for 0.35 , tox=100Ao

Quick calculation of Cox: Cox= 0.345/tox (Ao) pf/um2

= mobility of electrons 550 cm2/V-sec for 0.35 process

VDS

IDS

VGS

IDS N KN VGSN VTN– VDSN1

2---VDSN

2–

= KN=K’. W/L

Page 6: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

6

NMOS Operation-Linear

Effect of W/L Effect of temperature

Rds W/L

W

temp

Rds

W

Page 7: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

7

Variations in Width and Length

Weff

Wdrawn WD WD

1. Width Oxide encroachment Weff= Wdrawn-2WD

2. Length Lateral diffusion LD = 0.7Xj Leff= Ldrawn-2LD

Ldrawn

LD Leff LD

polysilicon

polysilicon

Page 8: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

8

Large Transistors

Rchannel decrease with increase of W/L of the transistor

Page 9: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

9

Semiconductor Resistors

R= p(l /A) = (p/t). (l /w) = Rsh. (l /w) For 0.5u process: N+ diffusion : 70 / □ M1: 0.06 P+ diffusion : 140 /□ M2: 0.06 Polysilicon : 12 /□ M3: 0.03 Polycide:2-3 /□ P-well: 2.5K N-well: 1K

w

current

l t

(A)

1

n n q p p q +

------------------------------------------------=

Rsh values for 0.35u CMOS Process: Polysilicon 10 /□ Polycide 2 /□ Metal1 0.07 /□ Metal II 0.07 /□ Metal III 0.05 /□

Contact resistance: PolyI to MetalI 50

Via resistance: Metal I to Metal II 1.5 Via resistance: Metal II to metal III 1.

Page 10: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

10

Modelling: Resistance

1. Resistance: Rint= Rsh [l/w] Rsh values for 0.35u CMOS Process: Polysilicon 10 / Polycide 2 / Metal1 0.07 / Metal II 0.07 / Metal III 0.05 / Contact resistance: PolyI to MetalI 50 Via resistance: Metal I to Metal II 1.5 Via resistance: Metal II to metal III 1.

Page 11: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

11

Semiconductor Resistors

Al Al

n+

Diffusion n+

Field oxide

polysilicon

Polysilicon Resistor Diffusion Resistor

SiO2

Page 12: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

12

Delay Definitions

tpHL

tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

Page 13: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

13

Semiconductor Capacitors

1. Poly Capacitor: a. Poly to substrate b. Poly1 to Poly2 2. Diffusion Capacitor

n+ (ND)

depletion region

substrate (NA)

bottomwall

capacitance

sidewall

capacitances

Page 14: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

14

Dynamic Behavior of MOS Transistor

DS

G

B

CGDCGS

CSB CDBCGB

Prentice Hall/Rabaey

Page 15: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

15

SPICE Parameters for Parasitics

Prentice Hall/Rabaey

Page 16: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

16

SPICE Transistors Parameters

Prentice Hall/Rabaey

Page 17: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

17

Computing the Capacitances

V DD V DD

V in V out

M 1

M 2

M 3

M 4 C db 2

C db 1

C gd 12

C w

C g 4

C g 3

V out 2

Fanout

Interconnect

V out V in

C L

Simplified

Model

Page 18: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

18

Computing the Capacitances

Page 19: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

19

CMOS Inverter: Steady State Response

V DD V DD

V out V out

V in = V DD V in = 0

R on

R on

V OH = V DD

V OL = 0

Page 20: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

20

Switching Characteristics of Inverters

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Transient Response

Page 21: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

21

Step Response

Fall Delay Time: TPHL

Vin

IDN V in = 5

V in = 4

V in = 3

VDD=5V

Vin

G

S

D

D

G

S

Vo

GND

MP

MN

CL

VDD

VDD Vo VDD-VT

MN OFF Saturation Linear

(VDSAT)

Page 22: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

22

Step Response- Fall time, tf

tr

CL

KPVDD 1 p+( )

---------------------------------------2–( ) 1 p+( )

1 p+( )---------------------------- 19 20p+( )ln+=

DDn

L

V

Ck

.

.

DDp

L

V

Ck

.

.

vin

vo 1-n

td1 td2

1

0.1

0.9

tf

CL

KN

VDD 1 n–( )---------------------------------------

2 n 0.1–( )

1 n–( )------------------------ 19 20n–( )ln+=

tf=~ k is a constant

tr=~ k is a constant

0.1

Page 23: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

23

Step Response-tPHL

Vin

Vo VDD-VTN

Vx

td1 td2

vin

vo 1-n

td1 td2

VDD

1

0.5

VDD/ 2

Assume normalized voltages vin= Vin/ VDD vo= Vo/ VDD n = VTN/ VDD p = VTP/ VDD tPHL=td1+td2

tPHL

CL

KN

VDD 1 n–( )---------------------------------------

2n

1 n–( )---------------- 3 4n–( )ln+=

tPHL

CL

A'N

KN

VDD----------------------=

Page 24: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

24

Step Response Rise Delay tPLH and Rise Time tr

VDD

Vin

G

S

D

D

G

S

Vo

GND

MP

MN

CL

VDD

tPLH

CL

KP

VDD 1 p+( )---------------------------------------

2p–

1 p+( )----------------- 3 4p+( )ln+=

tPLH

CL

A'P

KP

VDD---------------------=

tr

CL

KPVDD 1 p+( )

---------------------------------------2–( ) 1 p+( )

1 p+( )---------------------------- 19 20p+( )ln+=

tr

4CL

A'P

KP

VDD---------------------= (P= - 0.2)

0.1

Page 25: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

25

Factors Influence Delay

Inverter Delay,td = (tPHL+tPLH)/2 The following factors influence the delay of the inverter: • Load Capacitance • Supply Voltage • Transistor Sizes • Junction Temperature • Input Transition Time

Page 26: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

26

Delay as a function of VDD

0

4

8

12

16

20

24

28

2.00 4.001.00 5.003.00

No

rm

ali

zed

Dela

y

VDD (V)

Page 27: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

27

Delay as a function of Transistor Size

tPHL and tf decrease with the increase of W/L of the NMOS tPLH and tr decrease with the increase of W/L of the PMOS

Page 28: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

28

Temperature Effect

Temperature ranges: commercial : 0 to700C industrial: -40 to 850C military: -55 to 1250C Calculation of the junction temperature tj= ta + ja X Pd Effect of temperature on mobility Delay and speed implications

Page 29: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

29

Effect of Input Transition Times

r Vin Vo

The delay of the inverter increases with the increase of the input transition times r and f

tPHL = (tPHL) step + (r /6).(1-2p) tPLH = (tPLH) step + (f/6).(1+2n)

Page 30: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

30

Define = (W/L)p/(W/L)n For Equal Fall and Rise Delay KN=KP

= n/ p For Minimum Delay dtD/d = 0

opt = Sqrt (n/ p)

Transistor Sizing

Page 31: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

31

Power Dissipation in CMOS

Two Components contribute to the power dissipation:

» Static Power Dissipation

– Leakage current

– Sub-threshold current

» Dynamic Power Dissipation

– Short circuit power dissipation

– Charging and discharging power dissipation

Page 32: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

32

Static Power Dissipation

G

S

D

D

G

S

Vo

VDD

GND

B

B

MP

MN

Leakage Current: • P-N junction reverse biased current: io= is(e

qV/kT-1) • Typical value 0.1nA to 0.5nA @room temp. • Total Power dissipation:

Psl= i0.VDD

Sub-threshold Current • Relatively high in low threshold devices

Vin

Page 33: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

33

Analysis of CMOS circuit power dissipation

The power dissipation in a CMOS logic gate can be

expressed as

P = Pstatic + Pdynamic

= (VDD · Ileakage) + (p · f · Edynamic)

Where p is the switching probability or activity factor

at the output node (i.e. the average number of output

switching events per clock cycle).

The dynamic energy consumed per output switching event is defined as

Edynamic = eventswitching

DDDD dtVi__1

Page 34: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

34

Analysis of CMOS circuit power dissipation

SCDDMDDLdynamic EVCVCE 22 2

SCDDgdpgdndbndbpDDload EVCCCCVC 22 )](2[

The first term —— the energy dissipation due to the

Charging/discharging of the effective load capacitance CL.

The second term —— the energy dissipation due to the input-to-

output coupling capacitance. A rising input results in a VDD-

VDD transition of the voltage across CM and so doubles the

charge of CM.

CL = Cload + Cdbp +Cdbn

CM = Cgdn + Cgdp

Page 35: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

35

• distributed,

• voltage-dependent, and

• nonlinear.

So their exact modeling is quite complex.

The MOSFET parasitic capacitances

Even ESC can be modeled, it is also difficult to calculate the

Edynamic.

On the other hand, if the short-circuit current iSC can be Modeled,

the power-supply current iDD may be modeled with the same

method.

So there is a possibility to directly model iDD instead of iSC.

Page 36: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

36

Schematic of the Inverter

Page 37: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

37

Page 38: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

38

The short-circuit energy dissipation ESC is due to the rail-

to-rail current when both the PMOS and NMOS devices

are simultaneously on.

ESC = ESC_C + ESC_n

Where

and

DDVv

nDDcSC dtiVE0

_

0

0

_

0 DDVv

pDDdSC dtiVE

Analysis of short-circuit current

Page 39: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

39

Charging and discharging currents

Discharging Inverter Charging Inverter

Page 40: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

40

Factors that affect the short-circuit current

TVV

VI TDD

DD

mean

3)2(12

1

For a long-channel device, assuming that the inverter is

symmetrical (n = p = and VTn = -VTp = VT) and with zero load

capacitance, and input signal has equal rise and fall times (r = f

= ), the average short-circuit current [Veendrick, 1994] is

From the above equation, some fundamental factors that

affect short-circuit current are:

, VDD, VT, and T. )(L

W

tox

Page 41: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

41

Parameters affecting short cct current

For a short-channel device, and VT are no longer

constants, but affected by a large number of

parameters (i.e. circuit conditions, hspice

parameters and process parameters).

CL also affects short-circuit current.

Imean is a function of the following parameters (tox is process-

dependent):

CL, , T (or /T), VDD, Wn,p, Ln,p (or Wn,p/ Ln,p ), tox, …

The above argument is validated by the means of simulation in

the case of discharging inverter,

Page 42: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

42

The effect of CL on Short CCt Current

Page 43: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

43

Effect of tr on short cct Current

Page 44: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

44

Effect of Wp on Short cct Current

Page 45: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

45

Effect of timestep setting on simulation results

Tr (ps) Timestep (ps) MaxStep (ps) iMax (uA) iaverage_inT/2 (uA)

2 10 802.6 1.258

4 10 413.8 1.264

5 10 336.4 1.24

6 10 284.9 1.234

8 10 221 1.245

0

10 20 183 1.231

2 10 73.09 1.202

4 10 64.4 1.213

5 10 58.69 1.21

6 10 65.64 1.208

8 10 76.13 1.207

100

10 20 63.1 1.217

2 10 50.96 1.311

5 10 49.78 1.295

5 20 50.46 1.313

8 10 50.72 1.311

8 20 52.08 1.311

200

10 20 51.25 1.311

Page 46: The Physical Structure (NMOS) - users.encs.concordia.ca

CONCORDIAVLSI DESIGN LAB

46

Thank you !