the influence of programmed start ballast in t5 fluorescent lamp lifetime

24
Pontifícia Universidade Católica do Rio Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Grande do Sul Laboratório de Eletrônica de Potência - LEPUC Potência - LEPUC 1/24 THE INFLUENCE OF PROGRAMMED START BALLAST THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT IN T5 FLUORESCENT LAMP LIFETIME LAMP LIFETIME A INFLUÊNCIA DO REATOR COM PARTIDA PROGRAMADA NA VIDA ÚTIL DA LÂMPADA FLUORESCENTE T5 A INFLUÊNCIA DO REATOR COM PARTIDA PROGRAMADA NA VIDA ÚTIL DA LÂMPADA FLUORESCENTE T5 Authors: Anderson Soares Fernado S. dos Reis Marcelo Toss Reinaldo Tonkoski

Upload: thaddeus-hays

Post on 01-Jan-2016

27 views

Category:

Documents


1 download

DESCRIPTION

THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT LAMP LIFETIME A INFLUÊNCIA DO REATOR COM PARTIDA PROGRAMADA NA VIDA ÚTIL DA LÂMPADA FLUORESCENTE T5. Authors: Anderson Soares Fernado S. dos Reis Marcelo Toss Reinaldo Tonkoski. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

1/24

THE INFLUENCE OF PROGRAMMED START THE INFLUENCE OF PROGRAMMED START

BALLAST IN T5 FLUORESCENT BALLAST IN T5 FLUORESCENT

LAMP LIFETIMELAMP LIFETIMEA INFLUÊNCIA DO REATOR COM PARTIDA PROGRAMADA NA VIDA ÚTIL DA LÂMPADA A INFLUÊNCIA DO REATOR COM PARTIDA PROGRAMADA NA VIDA ÚTIL DA LÂMPADA

FLUORESCENTE T5FLUORESCENTE T5

Authors: Anderson Soares Fernado S. dos Reis

Marcelo Toss Reinaldo Tonkoski

Page 2: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

2/24

THE INFLUENCE OF PROGRAMMED START BALLAST

IN T5 FLUORESCENT LAMP LIFETIME

1. Introduction2. T5 fluorescent lamps, characteristics3. Proposed topology4. Simulation results5. Experimental results6. Rapid cycle test for T5 fluorescent lamps7. Discussion8. Conclusion9. References

Page 3: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

3/24

1.INTRODUCTION

In the last years, it have had an evolution in use of the more efficient illuminating systems, as example: to substitute fluorescent lamps by incandescent lamps, the use of electronic ballast in place of magnetic ballast, the use of more efficient fixtures and lamps.

Hanover Fair in 1995, great European manufacturers had presented the T5 a new fluorescent lamp with less diameter, shorter, more efficient and developed for to be successor of T8 [Gvén].

This work presents analysis, development of an electronic ballast with voltage preheating for one 28W/T5 fluorescent lamp and rapid cycle test to determine the rated lifetime of lamp with the proposed electronic ballast.

Page 4: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

4/24

1.INTRODUCTION

Page 5: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

5/24

2. T5 FLUORESCENT LAMPS – Characteristics

• Less diameter 16mm (T5) to 26mm (T8), 40%;

• Less lengths 1149mm (28W) to 1200mm (32W);

• Lamp efficacy up to 104 lm/W (10% compared T8);

• Maximum light output at 35°C (25°C T8);

• Low mercury dose;

• Constant lumen level during lamp life (92% at 10.000 hours);

• High frequency operation (no flicker);

• More expensive (approximately 2.5 x T8);

T5 T8 T10 T12

Fig. 01 – Fluorescent lamps, evolution.

Page 6: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

6/24

2. T5 FLUORESCENT LAMPS – Characteristics

For a long lifetime and a stable light output, the electronic ballast should fulfill the strict requirements for preheating and steady state operation, as following [Davis]:

Preheating Operation• The filament should be first heated to an optimum temperature (about

1000K). • During filament preheating, the voltage across the lamp should be

kept as low as possible. • Only after the filament’s optimum temperature is reached, the voltage

of the lamp should rise to the ignition level.

Steady State Operation• Once the lamp is ignited, the ballast should behave as a current

source to ensure stable operation. • The crest factor of the lamp’s current should not exceed 1.7.

Page 7: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

7/24

3. PROPOSED TOPOLOGYSelection of a preheating method depends on the types of filaments

and on time available for ignition lamps [Chin]. Two fundamentally different drivers could be used for filament preheating [Davis][Chin]: a current source or a voltage source.

A.Current Source Filament Preheating

C p

L

Lam

p

S 2

C s

S 1

D r ive

E +

-

Disadvantages:

• The filaments are placed inside the LC resonant filter, resulting in excessive lamp voltage during preheating and excessive filament current during runtime [Davis].

• After lamp ignition, the filament power consumes about 0,5W for each filament.

Advantages:• Simple configuration;• High Efficiency.

Fig. 02 – Circuit diagram of a conventional series-resonant parallel load electronic ballast.

Page 8: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

8/24Fig. 04 – Topology of proposed ballast.

Fig. 05 – Warm up, start up and steady state frequency range.

L A

MP

Drive

L 1

S 2

C 2

C 1

S 1

E +

-

L 2 :1

L 2 :3

L 2 :2

C 3

S 3

3. PROPOSED TOPOLOGYThe drive works in two different frequencies (fPH and fRUN). During

preheating operation, the secondary windings (L2:2; L2:3) supply the filaments and the LC series C parallel filter keeps the low voltage across the lamp. After this period the frequency changes to the RUN frequency and a high voltage is applied to capacitor C2 providing the necessary voltage for lamp ignition.

Page 9: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

9/24

Fig. 03 – Topology of proposed ballast based on a voltage source filament.

L 1

L A

M P

S 2

C 2

C 1

S 1

D R IV E

E +

-

L 2 :1

L 2 :3

L 2 :2

C 3

S 3

3. PROPOSED TOPOLOGY

B.Voltage Source Filament Preheating

An alternative approach for eliminate the disadvantage of this topology, presents an alternative method to achieve a voltage filament preheating.

Advantages:• The two resonant filters provide sufficient decoupling between the preheating and the steady state operation, so that each may be designed for optimum performance.• The lamp may be started up without the adverse effects on the lamp lifetime. • The filaments power is eliminated after the preheating time, increasing system efficiency.

Page 10: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

10/24

5.SIMULATION RESULTS (ORCAD/PSPICE)Some simulations were carried out in order to verify the behavior of the

proposed ballast under preheating, startup and steady state operation.

Fig. 06 – Simulation circuit, Orcad Software.0

0

U5 3m1 2

RFx15

E

400Vdc

R3

0.1

L2

2.4m 3.2u RLAMP

996

S1IRF830

D2

LS

4.41mH

1 2

V2G2

TD = 5.25u

TF = 1uPW = 5.25uPER = 12.5u

V1 = 15

TR = 1u

V2 = -15

U1

3.2m

1

2

R40.1

V2G1

TD = 5.25u

TF = 1uPW = 5.25uPER = 12.5u

V1 = -15

TR = 1u

V2 = 15

U3 3m

1 2

RP

9960

V1G1

TD = 11.5u

TF = 1uPW = 11.5uPER = 25u

V1 = -15

TR = 1u

V2 = 15

CS

100n

R20.1

CP

3.99n

S2

IRF830

C326.4n

U2

3.2m

1

2

V1G2

TD = 11.5u

TF = 1uPW = 11.5uPER = 25u

V1 = 15

TR = 1u

V2 = -15

R50.1

U4 3m

1

2

U6 3m

1

2

U7 3m

1

2

Page 11: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

11/24

Time

2.0ms 2.5ms 3.0ms 3.5ms 4.0msV(L2:3)

-20V

-10V

0V

10V

20V

Time

2.0ms 2.5ms 3.0ms 3.5ms 4.0msV(LS:2)

-2.0KV

0V

2.0KV

Filament Voltage

VRMS= 7,6V

Ignition lamp voltage

VPICO= 1800V

5.SIMULATION RESULTS

Preheating Startup Steady state

Page 12: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

12/24

6. EXPERIMENTAL RESULTS

Fig. 08 – Prototype circuit of the proposed electronic ballast.

175138.1

1

CRfPH

Preheating Frequency

2175138.1

1

CCRfRUN

Run Frequency

( 06 ) ( 07 )

Page 13: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

13/24

EMI Filter

Switch Inductor Preheating

Drive CI

DriveSwitch

Boost CI

BoostInductor

Boost Switch

StartupInductor

Fig. 09 – Prototype board of the proposed electronic ballast.

6. EXPERIMENTAL RESULTS

Page 14: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

14/24

Filament (CH2) and lamp Voltage (CH1)

1) VL: 500 Volt 500 ms 2) VF: 10 Volt 500 ms

1) VL: 100 Volt 10 us 2) VF: 5 Volt 10 us

Measured: Lamp voltage VLAMP= 55VRMS

Specified: Maximum lamp voltage= 240VRMS

Measured: Filament voltage VRF= 7,5VRMS

Specified: Minimum= 6,0V e Maximum= 7,9VRMS

Measured:Lamp voltage during start up VLAMP= 2,04 kVPeak

Specified:Minimum lamp voltage VLAMP= 750VPeakPreheating time 2s

6. EXPERIMENTAL RESULTS

Zoom Preheating

Page 15: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

15/24

Lamp voltage vs. lamp current

ILAMP = 0,175A (nominal value ILAMP = 0,170A)

VLAMP = 178V (nominal value VLAMP = 167V)

1) VL: 100 Volt 5 us 2) IL: 200 mA 5 us

Table I

6. EXPERIMENTAL RESULTS

* Electrical measurements 28W/T5 with Power Analysis System Xitron 2572R .

Page 16: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

16/24

7. RAPID CYCLE TEST FOR T5 FLUORESCENT LAMPS

To determinate the rated average lifetime of fluorescent lamps, the Illuminating Engineering Society of North America (IESNA) specifies a test method using a large sample of lamps.

This method consists of burning cycles, at which the lamps remain ON during 3 hours and OFF during 20 minutes. This method may take up to 3 years to get results for a specific lamp and ballast.

Recently, rapid cycle methods, intended to reduce this testing

time have been published [Ben-Yaakov].

Page 17: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

17/24

Fluorescent lamp lifetime is determined by the loss of the electron-emitting coating on the electrodes. Electrode temperature directly affects the evaporation and erosion of the emitting material, therefore affecting the lamp lifetime. Since electrode temperature is hard to measure directly, electrode resistance may be used as a related parameter [Chin].

A method proposed by [Davis] establishes the OFF time for rapid cycle test for T8 and compact fluorescent lamps, based in the measurement of the electrode resistance change after power extinguishes in the lamp.

The same analysis will be applied in this work to define the appropriate OFF time for rapid cycle test for T5 fluorescent lamp.

7. RAPID CYCLE TEST FOR T5 FLUORESCENT LAMPS

Page 18: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

18/24

From three of the major lamp manufacturers, two 28W/T5 fluorescent lamps were randomly selected and measured from each manufacturer. The results obtained for the three lamp companies were basically the same.

These results demonstrate that, for any rapid test cycles, if the lamp OFF time is less than 5 minutes, the electrode does not cool completely.

This reduces the damage to the electrode during lamp starting, and

will probably result in overestimation of the rated average lifetime [Ben-Yaakov].

Fig. 12 – “A” Manufacturer lamp resistance (%) versus time (min).

7. RAPID CYCLE TEST FOR T5 FLUORESCENT LAMPS

Page 19: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

19/24

8. DISCUSSION

To verify the compatibility between proposed electronic ballast and T5 lamp, two cycle tests were made with three different ballasts:

Cycle tests:• Cycle time used by Brazilians ballast manufacturer (30s ON and 30s OFF);• Cycle time found on the cooled filament (30s ON and 5min OFF); Electronic ballasts:• Electronic ballast with voltage preheat, as proposed;• Electronic ballast without preheating;• Commercial electronic ballast found in Brazilian market, without preheating.

Table II

40580

Page 20: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

20/24

The first rapid cycle test was conclude after 40 days. The rapid cycle test used by ballast manufacturer determines a minimum number of cycles until the lamp failure.

As an example, in the most common commercial application the lamp is turned ON and OFF two times in 12 hours, so the minimum expected number of cycle within this period is 6700. Therefore, only the electronic ballast proposed should be approved.

The second rapid cycle test was concluded after 155 days. The lamp manufacturer specifies a lifetime 20000 cycles to rapid cycle test with 30s ON and 4.5 min. OFF. In this situation, only the electronic ballast proposed should be approved.

8. DISCUSSION

Page 21: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

21/24

9. CONCLUSION

The proposed multifrequency electronic ballast topology provides a highly controlled preheating process. The filaments are fed by a voltage source with tight tolerance, while the lamp voltage during the preheating period is very low.

The circuit was analyzed, simulated and experimentally tested, and the results support the validity of the model developed in this paper.

The filaments’ power is eliminated after the preheating time, increasing system efficiency.

The rapid cycle test point out the importance of the preheating circuit in the T5 lamp lifetime. Therefore, the electronic ballast proposed is an excellent choice for T5 fluorescent lamps.

Page 22: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

22/24

9. CONCLUSION

In November 2004 was published at DIÁRIO DA UNIÃO, number 217, part 188, references to Brazilian electronic ballast standards NBR14417 and NBR14418, specifies to T5 fluorescent lamp.

Electronic ballast for T5 fluorescent lamp without preheating, instant start type, can’t be manufacture, import or market.

Page 23: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência - LEPUCLaboratório de Eletrônica de Potência - LEPUC

23/24

10. REFERENCES

[1] “Ultra-Slim Design With Extraordinary Light Output, SILHOUETTE T5”, Philips Lighting Company, September 2001. [2] Ben-Yaakov, S.; Shvartsas, M.; Ivensky, G., “HF Multiresonant Electronic Ballast for Fluorescent Lamps with Constant Filament Preheat Voltage”, IEEE Transactions on Power Electronics, 2000.[3] T.-F. Wu; C.-C. Chen; J.-N. Wu, “An Electronic Ballast with Inductively Coupled Preheating Circuits,” IEEE Transactions on Power Electronics, 2001.[4] Chin S. Moo; Tsai F. Lin; Hung L. Cheng; Ming J. Soong, “Electronic Ballast for Programmed Rapid-Start Fluorescent Lamps,” IEEE Transactions on Power Electronics, 2001.[5] Do Prado, N. R.; Seidel, R.A.; Bisogno, E. F.; Costa, D. A. M., “Self-Oscillating Electronic Ballast Design”, IV Conferência de Aplicações Industriais – Induscon2000, Porto Alegre, Rio Grande do Sul, Novembro 2000.[6] Davis, R.; Yufen, J.; Weihong, C., “Rapid-cycle testing for fluorescent lamps: What do the results mean?”, Annual Conference of the Illuminating Engineering Society of North America, 1996.[7] Klien D., “A New Concept for Fluorescent Lamp Ballasts,” IEEE Transactions on Power Electronics, 2000.

Page 24: THE INFLUENCE OF PROGRAMMED START BALLAST IN T5 FLUORESCENT  LAMP LIFETIME

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SULPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL