the formation of gas giants and ice giants by pebble accretion · the formation of gas giants and...

16
The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli Observatoire de la côte d’azur Exoplanets in Lund 6-8 May 2015 1

Upload: others

Post on 06-Jun-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

The formation of gas giants and ice giants by pebble accretion

Michiel LambrechtsAnders Johansen / Alessandro Morbidelli

Observatoire de la côte d’azurExoplanets in Lund 6-8 May 2015

1

Page 2: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Planets and pebbles in protoplanetary discs

2

HD100546, 2Msol,~5Myr.- 400 AU wide ppd- potential imaged gas giant planet at 53 AU (Quanz et al 2014)

50AU

Debes et al 2013 ALMA collaboration+, 2015

TW Hya ppd (~5Myr) [left]- 80 AU planet of 6-28 ME- ~180--300 Me in pebbles (Wilner+2005, bergin+2013)

HL tau ppd (~1Myr) [right]- formation of planets in a ~1Myr old disc- large pebble component (Greaves et al 2008)

(1) Planets form in protoplanetary discs (few Myr, in wide circular orbits, and in multiples)(2) Simultaneously, there is a large solid component in pebbles (mm-dm sized particles)

HL tau

2

Page 3: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Pebble accretion dynamics 1

3

Bondi pebble accretionLambrechts & Johansen, 2012

3

Page 4: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

- Hill regime starts above a transition mass:

- accretion occurs from the full Hill radius

- relative velocities are set by the Keplerian shear (independent of )

Pebble accretion dynamics 2

Mt ⇡ 3⇥ 10�3⇣ r

5AU

⌘3/4M�

Hill pebble accretionLambrechts & Johansen, 2012

4

4

Page 5: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

- Hill regime starts above a transition mass:

- accretion occurs from the full Hill radius

- relative velocities are set by the Keplerian shear (independent of )

Pebble accretion dynamics 2

Mt ⇡ 3⇥ 10�3⇣ r

5AU

⌘3/4M�

Hill pebble accretionLambrechts & Johansen, 2012

4

4

Page 6: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Difference with planetesimals

5

MMSN scaling

Mpeb ⇠ rHvH⌃peb

Mplan ⇠ r2accvH⇢plan

⇢plan ⇠ ⌃plan/hplan

hplan ⇠ vH/⌦K ⇠ rH

Mpeb ⇠ rHvH⌃peb

See also:Ormel & Klahr 2010

Rafikov 2004 planetesimals/fragmentsand Levison et al 2010

5

Page 7: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

An analytic “toy model”

+⌃p(r, t)Mc,p(r, t) ⇡2(⌧f/0.1)

2/3rHvH⌃p⌧f(r, t)

6

Birnstiel et al, 2012

Lambrechts and Johansen, 2014

6

Page 8: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Pebble drift planets

7

- start with compact configuration of 4 embryos

- few Myr in disc with pebble surface density reduced by a factor ~5 with respect to MMSN

- inside out planet formation

- pebble flux filtering

17% for one core and about 50% for a ‘Solar System’

- mass budget: total mass: ~120-160 Me terrestrial mass: 50 Me/2 (inside the ice line)

f =Mc

MF=

5

⇣ ⌧f0.1

⌘�1/3⌘�1

⇣rHr

⌘2

⇡ 0.034⇣ ⌧f0.1

⌘�1/3✓Mc

ME

◆2/3 ⇣ r

10AU

⌘�1/2

Lambrechts and Johansen, 2014

7

Page 9: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

- overcome type I migration ice giants form ~ in situ -> cross over mass

- steep initial dust-to-gas ratio dependency

Characteristics of the model

8 Bucchave et al, 2012

For more talk by Bert!

8

Page 10: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

9

Mc

Menv

Coregrowth

Envelopegrowth

Runawaygas accretion

�0.07 g/cm2, r=10 AU�pPebble accretion scenario

0 2 4 6 8 100

10

20

30

40

50

t /Myr

M/M

E

Core accretion with pebbles:

- rapid formation of the core without enhancements of the solid surface density

- faster contraction of the gaseous envelope, because of pebble isolation mass

- particular attention at forming ice giants

The core accretion scenariowith pebbles

9

Page 11: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

The critical core mass

10

- Protoplanetary disc lifetimes constrain accretion rates to be high to complete cores

- critical core mass increase with accretion rate (Rafikov 2006)

- The high accretion rates necessary to form the cores lead to core masses much too large compared to the gas giants in the Solar System

- Therefore halting the accretion is a necessity in the core accretion scenario (or a lot of ice pollution)

Lambrechts et al 2014

10

Page 12: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

The pebble isolation mass

11

- gravity of the core perturbs gas disc- creates a pressure bump (shallow gap) that traps particles outside the accretion radius, thereby halting solid accretion- pebble isolation mass ~ critical core mass

Mc

M iso

Menv

Coregrowth

Envelopecontraction

Runawaygas accretion

�p�0.07 g/cm2, r=10 AUPebble accretion scenario

0 2 40

10

20

30

40

50

t /Myr

M/M

E

Miso

⇡ 20⇣ r

5AU

⌘3/4

ME

/✓H

r

◆3

11

Page 13: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Ice giant / gas giant divide

Lambrechts et al 2014

- radial and compositional dichotomy between gas and ice giants

- gas giants in the inner disc (<10 AU) reach isolation and therefore undergo runaway gas accretion

- ice giants have not undergone isolation (or only briefly). The blue lines show the least polluted envelope that can be bound to the core.

12

Jupiter

Lambrechts et al 2014Lambrechts et al 2014

Saturn Uranus Neptune

12

Page 14: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Exoplanets with envelopes

13

H2

H2O

SiO2

10-1 100 101 102 103 104

100

101

M /ME

R/RE

Data from open exoplanets catalogue

13

Page 15: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Expanding the scenario

• full disc models see following talk by Bertram Bitsch

• terrestrial embryo/planet formation(Guillot+2014, Johansen+2015, Morbidelli+2015, Levison/Kretke group+2015, Lambrechts in prep)

• (hybrid) N-body codesKretke & Levison, 2014, Levison+2015 , Chambers, 2014, and above

• doing the gas envelope contraction carefully Piso & Youdin 2014,

Mordasini+a,b 2014, Ormel, 201414

1. 2. 3.10-4 ME 0.01-10ME

Mc

M iso

Menv

Coregrowth

Envelopecontraction

Runawaygas accretion

�p�0.07 g/cm2, r=10 AUPebble accretion scenario

0 2 40

10

20

30

40

50

t /Myr

M/M

E

14

Page 16: The formation of gas giants and ice giants by pebble accretion · The formation of gas giants and ice giants by pebble accretion Michiel Lambrechts Anders Johansen / Alessandro Morbidelli

Questions?

15

Lambrechts & Johansen, 2014Lambrechts, Johansen, Morbidelli, 2014Lambrechts & Johansen, 2012Morbidelli, Lambrechts +, 2015 submittedBitsch, Lambrechts & Johansen, 2015 submitted

• formation in a few Myr

• halting solid accretion (~20 Me)form gas giants and ice giants

• dust-to-planet efficiency (~50%)

• metallicity correlation (steep)

• overcome type I migration

15