the extended scattered disk

Upload: dan-malo

Post on 03-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 The Extended Scattered Disk

    1/25

    FROM THE SCATTERED DISK TO

    THE OORT CLOUD

    The Extended Scattered Disk

    Julio A. Fernandez

    Departamento de Astronoma, Facultad de Ciencias,Montevideo, URUGUAY

    Adrian Brunini, Tabare Gallardo, Rodney Gomes

    The observed population Resonances among Scattered Disk Objects (SDOs) Dynamical evolution of SDOs - Some examples

    High-perihelion Scattered Disk Objects (HPSDOs) - Origin

    The diffusion to the Oort cloud - The Neptune barrier Conclusions

    Scattered Disk, Catania Symposium 1

  • 8/13/2019 The Extended Scattered Disk

    2/25

    The Observed Population

    82 SDOs discovered through June 2006

    10 100 1000

    semimajor axis (AU)

    0

    20

    40

    60

    80

    perihelion

    distance

    (AU)

    SDOs

    2004XR190

    Sedna

    2000YW134

    2000CR105

    Centaurs

    detached SDOsClassical

    Belt

    Plutinos

    Res 1:2

    Res 2:3

    2004PD112

    Mass of the Scattered Disk 0.010.1M(Trujillo et al. 2001; Delsanti & Jewitt2006)

    Scattered Disk, Catania Symposium 2

  • 8/13/2019 The Extended Scattered Disk

    3/25

    Resonances among SDOs

    0

    0.5

    1

    50 60 70 80 90 100 110 120 130 140 1500

    0.2

    0.4

    0.6

    0.8

    1

    R

    esonancesStrength(relativeunits)

    sin(i)ofSDOspopulation

    mean barycentric a(AU)

    4:9

    1:3

    1:4

    1:5

    2:5

    2:7

    2:9

    3:8

    3:7

    3:10

    3:11

    2:11 1

    :6

    3:19

    4:27

    2:15

    (Gallardo 2006)

    About 40% of the SDOs are found in MMR Inclinations higher than classical belt objects (highest i = 46.7)

    Scattered Disk, Catania Symposium 3

  • 8/13/2019 The Extended Scattered Disk

    4/25

    How the Scattered Disk formed?

    Diffusion from the classical belt:(i) Instability region between

    40

    43 AU due to overlapping of MMR and secular

    resonances (Duncan et al. 1995; Jones et al. 2006);(ii) Diffusion from the chaotic borders of the 2:3 and 1:2 MMR (Nesvorny & Roig (2001);(iii) Injection of fragments (1-10 km) from collisions (Davis & Farinella 1997; Stern andColwell 1997)

    A fossil scattered disk after Neptunes migration (Gomes2003)

    Scattered Disk, Catania Symposium 4

  • 8/13/2019 The Extended Scattered Disk

    5/25

    Numerical simulations

    Two models:

    MODEL 1The observed population and their clones (399 objects) (Fernandez et

    al. 2004)

    MODEL 2The migration model (an initial population of104 planetesimals between

    14 and 26 AU, and Jovian planets at distances 5.65, 8.2, 11.5 and 13.8

    AU) (Gomes 2003; Gomes et al. 2005)

    Scattered Disk, Catania Symposium 5

  • 8/13/2019 The Extended Scattered Disk

    6/25

  • 8/13/2019 The Extended Scattered Disk

    7/25

    5678

    planet

    100

    1000

    a

    (AU)

    90

    180

    270

    2:9

    20

    30

    40

    q

    (AU)

    20

    30

    4050

    0 500 1000 1500 2000 2500

    i

    time (Myr)

    SDO 1999 DG8 that ends up ejected in a hyperbolic orbit

    Scattered Disk, Catania Symposium 7

  • 8/13/2019 The Extended Scattered Disk

    8/25

    5678

    planet

    90

    180

    270

    w

    100

    1000

    10000

    a(AU)

    30

    40

    50

    q(AU)

    30

    40

    50

    0 500 1000 1500 2000 2500 3000 3500

    i

    time (Myr)

    SDO 1999 DP8 that ends up in the Oort cloud

    qraises for a while by MMR+KR (Duncan & Levison 1997)

    Scattered Disk, Catania Symposium 8

  • 8/13/2019 The Extended Scattered Disk

    9/25

    Dynamical lifetimes of SDOs

    30 32 34 36 38

    perihelion distance (AU)

    8.2

    8.6

    9.0

    9.4

    9.8

    log

    [time(yr)]

    Dynamical half-life

    tdyn 10(q33.5)

    4.7 Gyr

    Average half-life for different q: tdyn 1.8 109 yr

    Scattered Disk, Catania Symposium 9

  • 8/13/2019 The Extended Scattered Disk

    10/25

    Typical energy changes per orbital revolution

    30 40 50 60

    perihelion distance (AU)

    7

    6

    5

    4

    log[

    x

    (AU1)]

    e=0.9

    e=0.5

    Scattered Disk, Catania Symposium 10

  • 8/13/2019 The Extended Scattered Disk

    11/25

    The Neptune barrier

    Two competing process: decrease ofqvs. diffusion ofa. At first, asqdecreases,e increases keepingamore or less constant (Holman & Wisdom1993).

    But when the body approaches Neptune, it will be most likely scattered outward About 60% of the bodies scattered outward have perihelia beyond Neptunes orbit(31< q < 36 AU) at the moment of reaching the Oort cloud

    (Holman & Wisdom 1993)

    Scattered Disk, Catania Symposium 11

  • 8/13/2019 The Extended Scattered Disk

    12/25

    Histogram-distributions of the perihelion distances of SDOs when

    they reach the end states indicated in the figures

    5 15 25 35perihelion distance (AU)

    0

    10

    20

    number

    0

    10

    20

    number

    Hyperbolic ejection

    Transfer to Oort cloud

    Scattered Disk, Catania Symposium 12

  • 8/13/2019 The Extended Scattered Disk

    13/25

    Scattering to the Oort cloud

    No objects with q > 36AU are found to diffuse to the Oort cloud Current injection rate of SDOs to the Oort cloud: 5 yr1

    Scattered Disk, Catania Symposium 13

  • 8/13/2019 The Extended Scattered Disk

    14/25

    The formation of a high-perihelion scattered disk

    Orbital evolution of a fictitious body temporarily trapped in the 1:24 MMRwith Neptune. The Kozai resonance also works to raise the perihelion to 64AU (Gomes et al. 2005)

    Scattered Disk, Catania Symposium 14

  • 8/13/2019 The Extended Scattered Disk

    15/25

    The case of 2005 XR190

    Anomalous SDO in a low-eccentricity orbit : q = 51.03 AU,a = 57.4 AU, i = 46.7

    Scattered Disk, Catania Symposium 15

  • 8/13/2019 The Extended Scattered Disk

    16/25

    The Kozai resonance

    Conditions: H =

    1 e2 cos i, H= constant

    Mean a constant

    0

    10

    20

    30

    40

    50

    60

    10 20 30 40 50 60 70 80 90 100

    inclination(

    degrees)

    perihelion distance (AU)

    Sedna

    2004 XR190

    2000 CR105

    2004 PD112

    (82075) 2000 YW134

    2005 EO297

    (48639) 1995 TL8

    Scattered Disk, Catania Symposium 16

  • 8/13/2019 The Extended Scattered Disk

    17/25

    Distribution of perihelion distances and inclinations

    Model 1

    Scattered Disk, Catania Symposium 17

  • 8/13/2019 The Extended Scattered Disk

    18/25

    Model 2

    Scattered Disk, Catania Symposium 18

  • 8/13/2019 The Extended Scattered Disk

    19/25

    Fraction of HPSDO with respect to the total surviving population

    Model 1

    Scattered Disk, Catania Symposium 19

  • 8/13/2019 The Extended Scattered Disk

    20/25

    Model 2

    Scattered Disk, Catania Symposium 20

  • 8/13/2019 The Extended Scattered Disk

    21/25

    Do MM + Kozai resonances explain all the HPSDO?

    Almost all .... but not Sedna and, perhaps, 2000 CR105

    High-Perihelion Scattered Disk Objects

    Object q(AU) a (AU) i2000 CR105 44.3 221 22.7

    2000 YW134 41.2 57.9 19.8

    2003 VB12 (Sedna) 76.1 489 11.9

    2004 PD112 43.6 64.3 6.7

    2004 XR190 51.0 57.4 46.7

    2005 EO297 41.2 63.0 25.0

    Alternative explanations:

    Sun birth in a star cluster Solar companion Rogue planet (Brunini & Melita 2002; Morbidelli and Levison 2004)

    Scattered Disk, Catania Symposium 21

  • 8/13/2019 The Extended Scattered Disk

    22/25

    Sun birth in a star cluster

    o: central cluster density (M pc3)Big dots : Sedna, 2000 CR105, 2003 UB313(Brasser, Duncan & Levison 2006)

    Scattered Disk, Catania Symposium 22

  • 8/13/2019 The Extended Scattered Disk

    23/25

    Solar companion

    20 40 60 8040 200 400 600 800400

    20

    40

    60

    80

    40

    200

    400

    600

    800

    400

    (Matese, Whitmire & Lissauer 2006; Gomes, Matese & Lissauer 2006)

    Scattered Disk, Catania Symposium 23

  • 8/13/2019 The Extended Scattered Disk

    24/25

    SDOs + HPSDOs + Inner core bodies

    Scattered Disk, Catania Symposium 24

  • 8/13/2019 The Extended Scattered Disk

    25/25

    Conclusions

    FOSSIL SD vs. LIVE SD (i.e., continuous replenishment from theclassical belt.

    Almost all extended or HPSDOs (q > 40 AU and a > 50 AU) canbe explained by the combined action of MMR with Neptune + Kozai

    resonances.

    Roughly 12-15% of all SDOs may be HPSDOs.

    Sedna, and perhaps 2000 CR105, may require an external perturber

    (members of the inner core of the Oort cloud). Most of the SDOs diffusing to the Oort cloud have perihelia beyondNeptunes orbit. Neptune acts as a dynamical barrier.

    On the other hand, no objects diffusing to the Oort cloud haveq > 36

    AU. Resonance sticking might be the main cause. The contribution of SDOs to the Oort cloud may be quite substantialeven at present ( 5 yr1).

    Scattered Disk, Catania Symposium 25