the baylis –hillman reaction and related modifications

43
Literature meeting Presented by Josée Philippe Prof André B. Charette October 4 th , 2005 The Baylis–Hillman Reaction and Related Modifications

Upload: fruma

Post on 02-Feb-2016

108 views

Category:

Documents


9 download

DESCRIPTION

The Baylis –Hillman Reaction and Related Modifications. Literature meeting Presented by Josée Philippe Prof André B. Charette October 4 th , 2005. 2. Content. What is the Baylis – Hillman Reaction? Activation of the Reaction Enantioselective Reaction Intramolecular Reaction - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The  Baylis –Hillman  Reaction and Related Modifications

Literature meeting Presented by

Josée Philippe

Prof André B. CharetteOctober 4th, 2005

The Baylis–Hillman Reaction and

Related Modifications

Page 2: The  Baylis –Hillman  Reaction and Related Modifications

Content

What is the Baylis–Hillman Reaction?

Activation of the Reaction

Enantioselective Reaction

Intramolecular Reaction

Aza–Baylis–Hillman Reaction

Application of Baylis–Hillman Reaction in the Synthesis of Natural Products such as Salinosporamide A.

2

Page 3: The  Baylis –Hillman  Reaction and Related Modifications

About Baylis–Hillman Reaction

In 1968, Morita reported the reaction between acetaldehyde and ethyl acrylate in the presence of a tertiary phosphine.

Four years later, Baylis and Hillman developed the same transformation, but in the presence of a tertiary amine, DABCO, which is less toxic and cheaper.

Reaction works with aliphatic as well as aromatic aldehydes.

Carbon-carbon bond formation involving Michael-type addition.

DABCO

N

N

Morita, K. et al. Bull. Chem. Soc. Jpn. 1968, 41, 2815Basavaiah, D. et al. Chem. Rev. 2003, 103, 811-891

EWG

H R1 R2

Z R3N or R3P EWG

ZHR1

R2

EWG = CONH2, CONR2, COOR, etc.Z = O, NTs, NCO2R, NSO2ArR1, R2 = Alkyl, Aryl, H

3

Page 4: The  Baylis –Hillman  Reaction and Related Modifications

What Kind of Substrates Are Used in BH Reaction?

Activated alkenes

Electrophile

Catalyst

Amine (BH Rxn)

Phosphine (MBH Rxn)

RCO2Me

OH

EWG

R1

RCHO

DABCO (cat.)

RSO3Ph

OH

RCN

OH

RCO2R

OH

RCOR

OH

RCHO

OH

RSO2Ph

OHRCONH2

OH

MeCO2Me

OH

MeCN

OH

RSOPh

OH

RPO(OEt)2

OH•

Me

Me

R1 = H

R1 = H

R = R1 = Me R1 = H

R1 =

H

R1 =

H

R1 = H

R1 = H

R 1 = H

R 1 =

H

R = R1 = Me

R 1 =

HBasavaiah, D. et al. Chem. Rev. 2003, 103, 811-891

4

Page 5: The  Baylis –Hillman  Reaction and Related Modifications

General Mechanism of BH Reaction

N

N

O

CH3

N

N

H3C O

O

H

N

N

H3C O

OH

N

N

H3C O

OH

OHO

H3C

N

N

N

N

H3C O

O

H3C

N

N

H3C O

HO

CH3

N

N

H3C O

OH

CH3

H3C

O O

CH3

N

N

Path I

Path II

MAJOR

MINOR

Basavaiah, D. et al. Chem. Rev. 2003, 103, 811-891

H

O

Me

O OH

Me

O

5

Page 6: The  Baylis –Hillman  Reaction and Related Modifications

New Interpretation of the Mechanism

• RDS is the elimination product and not the 1,2-Addition

• The rate law is second order in aldehyde and first order in catalyst and in methyl acrylate

McQuade, D.T. et al. Org. Lett. 2005, 7, 147-150

Aprotic Solvent

Byproduct observed

6

Page 7: The  Baylis –Hillman  Reaction and Related Modifications

Protic Solvent

New Interpretation of the Mechanism7

Aggarwal, V.K. et al. Angew. Chem. Int. Ed. 2005, 44, 1706-1708

Page 8: The  Baylis –Hillman  Reaction and Related Modifications

Tertiary Amines and PhosphinesUsed in the BH or MBH Reaction

N

N

N N

OH

N

O

DABCO25g = 26.00$

Quinuclidine10g = 600.50$

3-HQD25g = 112.60$

3-Quinuclidone*25g = 78.50$

* Sold in Aldrich under the HCl salt

N

N

N,N-Dimethylaminopyridine25g = 47.40$

P(n-Bu)3 P(Me)3 P(Et)3

25 g = 361.60 $ 25 g = 233.00 $25 mL = 209.60 $

Drawback of reaction: very slow process: can take many days,

weeks or even months to complete the reaction!!!

8

Page 9: The  Baylis –Hillman  Reaction and Related Modifications

What Can Be Used to Activate the Reaction?

• Different methods have been used so far to enhance the rate of the reaction.

– Use of DBU as catalyst or DMAP– Mixture of water and organic solvent has been shown to increase

the rate of reaction– Solvent dependant: Dioxane and methanol are also used

– Use of stoichiometric amount of catalyst– Use of co-catalyst in the reaction: LiClO4 with DABCO, proline with

imidazole, DABCO with CaH2

• These modifications are often substrate dependant and vary in yield and in time: usually between 0.5 h and 6 days or more!!!

• Question: Are there more efficient conditions for the BH-reaction?

Basavaiah, D et al. Chem. Rev. 2003, 103, 811-891

9

Page 10: The  Baylis –Hillman  Reaction and Related Modifications

Activation of the BH Reaction

• Catalysis by Ionic Liquid Immobilized Quinuclidine

N Nn-C4H9

HN

N

R H

O EWG (0.3 equiv.)

MeOH (2 equiv.)1 equiv. 1.5 equiv.

R

OH

EWG

Reaction time between 30 minutes and 12 hours

Works well when EWG = CO2Alkyl and CN (yields > 62%)

Good yield obtained with R = alkyl, aromatic subtituted either by EDG or EWG and hetero aromatic ring

The catalyst can be reused after extraction with ether up to 6 time without losing significant activity

Cheng, J.–P. et al. J. Org. Chem. 2005, 70, 2338-2341

10

Page 11: The  Baylis –Hillman  Reaction and Related Modifications

Activation of the BH Reaction

• Use of TiCl4 in combination with proazaphosphatranes

Verkade J. G. et al. Angew. Chem. Int. Ed, 2003, 42, 5054-5056

PNN

N

N

RRR

P

S

NN

N

NP

S

NNN

P

O

NN

N

NP

S

NN

N

N

RRR

P

S

NNN

R = Me, iBu, iPr R = Me, iBu, iPr

11

Page 12: The  Baylis –Hillman  Reaction and Related Modifications

Activation of the BH Reaction

CHOO2N O

O

O

CHOCl O

H

O

O

OOH

OOH

OOH

O2N

O2N

O2N

OOH

Cl

OH O

10

10

10

10

10

94

92

91

94

88

Entry Aldehyde enone Product t (min) Yield (%)

CHOO2N

CHOO2N

1

2

3

4

5

R

O

H

O OOH

RTiCl4 (1 equiv)

Cat (5 mol%)DCMr.t.

P

S

NN

N

N

catalyst

12

Page 13: The  Baylis –Hillman  Reaction and Related Modifications

Activation of the BH Reaction

CHO

CHO

CHO

OMe

CHOH3C

CHO

O

O

O

O

OH O

OOH

OOH

OMeOOH

30

30

10

10

H3COOH

10

81

89

88

91

90O

6

7

8

9

10

Entry Aldehyde enone Product t (min) Yield (%)

R

O

H

O OOH

RTiCl4 (1 equiv)

Cat (5 mol%)DCMr.t.

P

S

NN

N

N

catalyst

13

Page 14: The  Baylis –Hillman  Reaction and Related Modifications

CHO

R

EWG EWG

OH

R

1 equiv 3 equiv

cat (5 mol%)

TiCl4 (1 equiv)DCMr.t.

Activation of the BH Reaction

Entry R EWG t (min) Yield (%)

1 NO2 COCH3 5 92

2 H COCH3 5 85

3 NO2 CO2Et 10 92

4 NO2 CO2CH3 10 92

5 Cl CO2CH3 10 92

6 H CO2CH3 10 88

7 OCH3 CO2CH3 10 87

8 H CN 20 95

9 NO2 CN 10 88

P

S

NN

N

N

catalyst

14

Page 15: The  Baylis –Hillman  Reaction and Related Modifications

• Few work has been done on the intramolecular MBH reaction compared to the acyclic one

• Can lead to interesting multifunctionalized cycles

R

O

n

OH

Intramolecular Morita–BH Reaction

O

O

OH

O

OO

15

Page 16: The  Baylis –Hillman  Reaction and Related Modifications

Intramolecular Morita–BH Reaction

Murphy, P. J. et al. Tetrahedron, 2001, 57, 7771-7784

Entry R n Method Yield (%)

1 Ph 1 0.3 equiv. piperidine, CDCl3, 144 h 50

2 OEt 1 0.4 equiv. n-Bu3P, CDCl3, 28 days 40

3 Ph 20.3 equiv. piperidine, CDCl3, 14 to 28

days24-30

4 Ph 2 0.2 equiv. n-Bu3P, CDCl3, 2 h 75

5 OEt 2 0.2 equiv. n-Bu3P, CDCl3, 24 h 50

R

O

O

n

R

O

n

OH

r.t.R

O

n

OH

X

2 3

X

X = HN

P(n-Bu)3

When an excessof piperidine is

used, the reaction stops at the

intramolecular aldol reaction to give

mainly product 2.

16

Page 17: The  Baylis –Hillman  Reaction and Related Modifications

Vinylogous Intramolecular Morita–BH Reaction

Roush, W. R et al. J. Am. Chem. Soc. 2002, 124, 2404-2405

Entry R R’ Cat (%) Solvent [M] t (h) Yield (%)Ratio (A/B)

1 Me OMe PBu3 (10) CH3CN 0.05 24 80 95:5

2 Me OMe PBu3 (10) CH3CN 0.10 8 61 95:5

3 Me OMe PBu3 (10) t-amyl-OH 0.10 11 88 96:4

4 Me OMe PMe3 (10) t-amyl-OH 0.05 3 91 97:3

5 Me OMe PMe3 (10) t-amyl-OH 1.00 0.75 81 96:4

6 H OMe PMe3 (20) t-amyl-OH 0.10 0.25 43 100:0

7 H OMe PMe3 (20) t-amyl-OH 0.01 4 90 100:0

COR

COR'

CORConditions

COR'

A B

COR'

COR

17

Page 18: The  Baylis –Hillman  Reaction and Related Modifications

Vinylogous Intramolecular Morita–BH Reaction

Roush, W. R et al. J. Am. Chem. Soc. 2002, 124, 2404-2405

Entry R R’ Cat (%) Solvent [M] t (h) Yield (%)Ratio(A/B)

8 Me OMe PMe3 (25) t-amyl-OH 0.10 8 83 92:8

9 H Me PBu3 (50) CH3CN 0.06 0.5 55 90:10

10 H Me PMe3 (50) t-amyl-OH 0.01 0.75 45 95:5

COR

COR'

COR

COR'

Condition

COR'

COR

A B

Conclusion: 5 membered cycloalkenes are easier to synthesise by a vinologous intramolecular MBH reaction. Lower concentration reduces the yield due to self-condensation.

18

Page 19: The  Baylis –Hillman  Reaction and Related Modifications

Explanation of Regioselectivity

O

CH3

O

OMe

Path A

Path B

PBu3 O

CH3

O

OMe

Bu3P

O

CH3

O

OMe

Bu3P

HO

CH3

Major

O

CH3

O

OMe

Bu3P

O

OMeBu3P

H

OMeO

Minor

O

Me

O

Me

OMe

O

Roush, W. R et al. J. Am. Chem. Soc. 2002, 124, 2404-2405

The most electrophilic carbon will react first: aldehyde>ketone>ester

19

Page 20: The  Baylis –Hillman  Reaction and Related Modifications

Combination of MBH Reaction and Trost–Tsuji Reaction

Krische M.J. et al. J. Am. Chem. Soc. 2003, 125, 7758-7759

OH

R

O

R2R1

LG

R2R1

Nuc

PBu3

Pd (0)

O

O

R

Soft Nuc: Retention configurationHard Nuc: Inversion of configuration

MBH Reaction

Trost-Tsuji Reaction

R

OPBu3

Pd (0)

ORO

RCombination

of both

20

Page 21: The  Baylis –Hillman  Reaction and Related Modifications

Combination of MBH Reaction and Trost–Tsuji Reaction

Entry R n yield (%)

1

2

3

4

Ph 1 92

Ph 2 64

furyl 1 83

cyclopropyl 1 76

PBu3 (100 mol%)Pd(PPh3)4 (1 mol%)

tert-BuOH60oC

Reaction Conditions

21

Page 22: The  Baylis –Hillman  Reaction and Related Modifications

New MBH Cyclization Reactions

Entry R R1 yield (%)

1

2

3

4

5

6

Ph H

Me Me

Ph Me

PhCH2CH2 Me

Ph H

Ph Me

n

1

1

1

1

2

2

82

78

94

74

75

80

ClO

R

n

R

O

n

PBu3 or PMe3 (100 mol%)

tert-BuOH 0.5 Mthen, KOH (200 mol%),

DCM/H2O (1:1)BnEt3NCl (10 mol%)

R1

R1

2 possible sites of attack

ClO

R

n

R1

ClO

R

n

R1

R3P

PR3

PR3 O

R

n

R1

R3P

Does not occur

Favorable attack

Krafft, M. E. et al. J. Am. Chem. Soc. 2005, 127, 10168-10169

22

Page 23: The  Baylis –Hillman  Reaction and Related Modifications

• Have been a challenge in organic synthesis

• Enantioselectivity can come from:

– Chiral Lewis acid

– Chiral amine

– Bifunctional organocatalyst

– Kinetic Resolution

23

Enantioselective MBH Reactions

Page 24: The  Baylis –Hillman  Reaction and Related Modifications

Enantioselective MBH Reactions

R H

O

CH3

O NH

CO2H

N

N

CH3

BocHN O

Peptide

CH3

O

R

OH

(R) configuration

Entry Aldehyde Yield (%) ee

1

2

3

4

CHO

NO2

CHOO2N

OCHO

CHO

NO2MeO

81 78

81 69

95 63

88 81

Conditions: CHCl3/THF 0.5M, 25oC

H2N

HN

O

NH

OHN

O

NHtrtO

N

O

Ph

HNO

NH

O

OMe

O

Miller, S. J. et al. Org. Lett. 2003, 5, 3741-3743

Proposed Intermediate

N

Me

N

N

RHNO

NH R

O

O

OHN

Me

R

n

24

Page 25: The  Baylis –Hillman  Reaction and Related Modifications

Enantioselective MBH Reactions

Entry Ar Yield (%) ee (%)

1

2

3

4

Cl

Br

S

5

82 (51)

92 (56)

88 (66)

94 (46)

83 (50)

80

79

79

51

74

O O

Ar

OH

Ar

ONH

CO2H

NN

(20 mol%)

(10 mol%) R configuration

OHO OHO

90 10

5 mol% catAc2O (3 equiv.)

Toluener.t.

24 hOHO OAcO

50% yield98% ee

Miller, S. J. et al. Org. Lett. 2005, 7, 3849-3851Conditions: THF/H2O 3:1, 0.6M, 48 h at r.t.

Acylation Kinetic Resolution

NN

BocHN

HN

O

NH

OHN

O

NH

OHN

O

NH

O

O

HN

O

OMe

H3C Oi-Bu

i-Pr

NNTrt

Ph

H3C

CH3i-BuO

H3C

H3CCatalyst

25

Page 26: The  Baylis –Hillman  Reaction and Related Modifications

R

O

H

O OH

R

10 mol% catPEt3 (2 equiv.)

THF, –10oC48 h

O

S Configuration

Enantioselective MBH Reactions

Mechanism

Schaus, S. E. et al. J. Am. Chem. Soc. 2003, 125, 12095-12096

B-H = Chiral Bronsted Acid

OH

OH

CR3

CR3

CR3

CR3

R = F or H

26

Page 27: The  Baylis –Hillman  Reaction and Related Modifications

R

O

H

O OH

R

10 mol% catPEt3 (2 equiv.)

THF, –10oC48 h

O Entry Aldehyde Cat Yield (%) ee (%)

1

2

3

4

5

6

7

8

Ph

O

H

BnO

O

HO

HO

H

O

H

O

O

O

H

O

H

Ph

O

H

2f

2f

2f

2e

2e

2e

2e

2e

88

74

72

71

82

70

40

39

90

82

96

96

95

92

67

81

Enantioselective MBH Reactions

Schaus, S. E. et al. J. Am. Chem. Soc. 2003, 125, 12095-12096

Catalyst :

OH

OH

CR3

CR3

CR3

CR3

2e R = H 2f R = F

27

Page 28: The  Baylis –Hillman  Reaction and Related Modifications

R

O

H

O OH

R10 mol% cat

CH3CN, 0oC48 h

O

R configuration Entry Aldehyde Yield (%) ee (%)

1

2

3

4

5

Ph

O

H

O

H

O

H

O

H

O

Hn

80 83

82 81

75 81

67 92

63 94

Enantioselective MBH Reactions Via a Bifunctional Organocatalyst

Wang, W. et al. Org. Lett. 2005, 7, 4293-4296

N

N

N

S

CF3

F3C

O

H H

HR

O

Catalyst and Transition State:

28

Page 29: The  Baylis –Hillman  Reaction and Related Modifications

Aza-BH Reaction: General

• Use of imines instead of aldehydes

• General reaction:

R

NTs

H

EWGEWG

NTs

R

R1 R2

R1 R2

Conditions

29

Page 30: The  Baylis –Hillman  Reaction and Related Modifications

Enantioselective Aza-BH Reaction

Shi, M. et al. Angew. Chem. Int. Ed. 2002, 69, 4507-4510

Ar

NTs

H

EWGEWG

NHTs

RDMF/CH3CN–30oC

Cat 10 mol%

N

O

O

N

O

H

NAr

H

TsH

Proposed Transition State

30

Page 31: The  Baylis –Hillman  Reaction and Related Modifications

Enantioselective Aza-BH Reaction

Entry Ar Yield (%) ee (%)

1 C6H5 80 97

2 p-MeC6H4 76 96

3 p-MeOC6H4 64 99

4 p-ClC6H4 68 93

5 p-NO2C6H4 60 74

6 C6H5-CH=CH 54 46

Shi, M. et al. Angew. Chem. Int. Ed. 2002, 69, 4507-4510

•Only works when directly attached to Ph ring•With aliphatic imines, no product obtained

•Best results obtained with EDG•Configuration is R

ORTEP of 4

Ar

NTs

H

NHTs

ArDMF/CH3CN–30oC

Cat 10 mol%CH3

OO

CH3

31

Page 32: The  Baylis –Hillman  Reaction and Related Modifications

Entry Ar R Conditions Yield (%) ee (%)

1 C6H5 H THF, -25oC 80 85

2 C6H5 OMe DCM, 0oC 76 83

3 p-MeOC6H5 OMe DCM, 0oC 64 70

4 C6H5 OPh CH3CN, -20oC 64 74

5 p-MeC6H4 H THF, -25oC 68 83

6 p-MeC6H4 OMe DCM, 0oC 60 80

7 p-MeC6H4 OPh CH3CN, -20oC 54 69

Ar

NTs

H

NHTs

ArCat 10 mol%

R

OO

R

(S) Configuration

Shi, M. et al. Chem. Eur. J. 2005, 11, 1794-1802

N

O

O

N

H

Enantioselective Aza-BH Reaction

ORTEP of 3

Catalyst

32

Page 33: The  Baylis –Hillman  Reaction and Related Modifications

N

O

O

N

O

H

N

Ar

H

TsH

H

H

H

S Adduct

N

O

O

N

O

H

N

H

Ar

TsH

H

H

H

R Adduct

N

O

O

N

O

O

H

N

Ar

H

TsH

S Adduct

H

H H

N

O

O

N

O

H

N

H

Ar

TsH

R Adduct

O

H

H H

Change of Configuration: Explanation

Shi, M. et al. Chem. Eur. J. 2005, 11, 1794-1802

33

Page 34: The  Baylis –Hillman  Reaction and Related Modifications

Enantioselective Aza-BH Reaction

Ar

NTs

H

TsHN

ArTHF

–30oCMS 4A

Cat 10 mol%O

CH3 CH3

O

S Configurationo

PPh2

OH

Catalyst

Shi, M. et al. J. Am. Chem. Soc. 2005, 127, 3790

Entry Ar Yield (%) ee (%)

1 C6H5 83 83

2 p-MeC6H5 82 81

3 p-FC6H5 84 81

4 m-FC6H5 96 85

5 p-BrC6H5 85 83

6 p-ClC6H5 90 87

7 m-ClC6H5 88 88

8 o-ClC6H5 85 61

9 p-NO2C6H5 86 92

10 o-NO2C6H5 88 84

11 C6H5CH=CH 94 95

The use of phenyl acrylate or acrolein worked well, but showed a decrease in enantioselectivity

Reaction time between 18 and 36 h By changing CH3 by H or OPh, the same

configuration was obtained!

34

Page 35: The  Baylis –Hillman  Reaction and Related Modifications

Enantioselective Aza-BH Reaction: Proposed TS35

RS

Page 36: The  Baylis –Hillman  Reaction and Related Modifications

Entry Ar R Yield (%) ee (%)

1 C6H5 Me 93 87

2 p-ClC6H4 Me 96 95

3 m-ClC6H4 Me 93 93

4 p-BrC6H4 Me 93 94

5 p-MeOC6H4 Me 93 94

6 2-furyl Me 100 88

7 2-naphtyl Me 94 91

8 p-NO2C6H4 Me 91 91

9 p-NO2C6H4 Et 88 88

10 p-NO2C6H4 H 95 94

Ar

NTs

H

NHTs

RToluene: CPME (9:1)–15oC

Cat 10 mol%O

R Ar

O

R Configuration

Enantioselective Aza-BH Reaction

OH

OH

N

N

(S)-CatalystLewis Base

Lewis Acid

Sasai, H. et al. J. Am. Chem. Soc. 2005, 127, 3680-3681

36

Page 37: The  Baylis –Hillman  Reaction and Related Modifications

NH

O

O

OMe

Cl

OH

H

Application of BH Reaction in Total Synthesis

Salinosporamide A

Corey, E.J. et al. J. Am. Chem. Soc. 2004, 126, 6230-6231

NH

OHCO2Me

O

MeHO

OH

H

H

N

OHCO2Me

O

Me

OPG

PG

O

NMeO

Me

MeO2C

OPG

1

CO2MeH2N

HO Me

(S)–Threonine

1

Retrosynthetic Analysis

37

Page 38: The  Baylis –Hillman  Reaction and Related Modifications

Corey, E.J. et al. J. Am. Chem. Soc. 2004, 126, 6230-6231

Application of BH Reaction in Total Synthesis

NH

O

O

OMe

Cl

OH

H

CO2MeH2N

HO Me(S)–Threonine

MeO

O

Cl1)

DCM, r.t71%

2) p-TsOH, TolueneReflux, 12 h

80%

CO2Me

Me

N

O

MeO

–78oCClCH2OBn, 4 h,

69%

LDA, THF/HMPA

Me

N

O

MeOOBn

CO2MeNaCNBH3, AcOH

40oC, 12 h90% Me

HN

HO

OBn

CO2Me

1) TMSCl, Et2O23oC, 12 h

2) Acryloyl chloridei-PrNEt, DCM, 1 h

then H+, Et2O, r.t. 1 h96%

PMB

Me

N

HO

OBn

CO2MePMB

O Dess–Martin Oxidation

r.t.1 h

96%Me

N

O

OBn

CO2MePMB

O

38

Page 39: The  Baylis –Hillman  Reaction and Related Modifications

Me

N

O

OBn

CO2MePMB

O N

OHCO2Me

O

Me

OBn

PMB

N

ORCO2Me

O

Me

OBn

PMB1) Quinuclidine, DME0oC, 7 days, 90%

2) BrCH2Si(CH3)2ClDMAP, DCM, 0oC

0.5 h, 95%

1 : 9

NH

O

O

OMe

Cl

OH

H

N

NO

OOCH3

O

O

HH

HN

NO

OOCH3

O

OH3C

O

CH3

O

H3C

A lot of interactionbetween the tertiary

amine and the methylof the ketone

BH Reaction as Key Step

Explanation

39

Page 40: The  Baylis –Hillman  Reaction and Related Modifications

NO

OOCH3

O

OH

H

HN

NO

OOCH3

O

CH3

O

OH3C

OH3C

N

BH Reaction as Key Step

Explanation

Less interaction because the methyl is more far from the quinuclidine moiety

40

Page 41: The  Baylis –Hillman  Reaction and Related Modifications

NO

OOCH3

O

O

CH3

Si

OH3C

Br

NO

OOCH3

O

CH3

O

Si

Br

OH3C

Why One is Silylated and Not the Other One?

Big interaction between the chain and benzyl group

The methyl groups on the silicon aremore far from the methyl of the ester

41

Page 42: The  Baylis –Hillman  Reaction and Related Modifications

N

OCO2Me

O

Me

OBn

PMB

Bu3SnH, AIBN

BenzeneReflux, 8 h

89%

N

CO2MeO

OBnPMB

Si

OMe

Me

Me

H

1) Pd-C/EtOH

H2 (1 atm)18 h, 95%

2) Dess–Martinr. t. 1 h

95%

N

CO2MeO

OPMB

Si

OMe

Me

Me

H

ZnClTHF, -78oC

5 h, 88%

NCO2Me

O

PMB

Si

OMe

Me

Me

H

H

OH

KF, KHCO3

H2O2

THF/MeOH 1:1r.t. 18 h,

92%

NCO2Me

O

PMB

OHMeH

H

OH

HO

1) CAN, MeCN/H2O, 1 h, 83%2) 3N LiOH/THF, 5oC, 4d

3) BOPCl, pyr, DCM, r.t. 4) Ph3PCl2, MeCN, pyr, r.t. 1 h, 65%

NH

O

O

OMe

Cl

OH

H

1

dr 20:1

Si

Br

End of the Synthesis of Salinosporamide A42

Page 43: The  Baylis –Hillman  Reaction and Related Modifications

• Activation of BH reaction by reusable Ionic Liquid Immobilized Quinuclidine and use of TiCl4 in combination with proazaphosphatranes can provide adduct in less than 10 minutes!

• Development of new methods of intramolecular cyclization

• Enantioselective MBH reaction providing ee up to 99%

• Synthesis of aromatic α-substituted chiral tosyl amines by Aza-BH reaction. Very few BH adducts with alkyl imines

• Total synthesis of Salinosporamide A by Corey using BH reaction as a key step with a 10% overall yield for 18 steps

Conclusion43