thales overview jan 2014

85
Accelerating Your Synthesis with Flow Chemistry Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Upload: hgraehl

Post on 11-May-2015

146 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Thales overview jan 2014

Accelerating Your Synthesis with Flow Chemistry Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Page 2: Thales overview jan 2014

Who  are  we?  

•  ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

•  Based  Budapest,  Hungary  •  33  employees  with  own  chemistry  team.  •  11  years  old-­‐most  established  flow  reactor  company.  

•  R&D  Top  100  Award  Winner.

Page 3: Thales overview jan 2014

• Flow  Chemistry  Market  Leader  • Over  800  customers  worldwide  

Customers  

Page 4: Thales overview jan 2014

What is flow chemistry?

Page 5: Thales overview jan 2014

Performing  a  reacQon  conQnuously,  typically  on  small  scale,  through  either  a  coil  or  fixed  bed  reactor.  

OR  

Pump  Reactor   CollecQon  

What  is  flow  chemistry?  

Page 6: Thales overview jan 2014

•  In  a  microfluidic  device  with  a  constant  flow  rate,  the  concentraQon  of  the  reactant  decays  exponenQally  with  distance  along  the  reactor.    

•  Thus  Qme  in  a  flask  reactor  equates  with  distance  in  a  flow  reactor  

X  

A  

dX/dt  >  0    

dA/dt  <  0    

KineQcs  in  Flow  Reactors  

Page 7: Thales overview jan 2014

Flow  reactors  can  achieve  homogeneous  mixing  and  uniform  hea6ng  in  microseconds  (suitable  for  fast  reac6ons)  

Improved  Mixing  Compared  to  Batch  

Page 8: Thales overview jan 2014

Improved  mixing  can  lead  to  improved  reac6on  6mes,  especially  with  fixed  bed  reactors  

Improved  Mixing  =  Faster  Rxn  Time  

Page 9: Thales overview jan 2014

•  Microreactors  have  higher  surface-­‐to-­‐volume  raQo  than  macroreactors,  heat  transfer  occurs  rapidly  in  a  flow  microreactor,  enabling  precise  temperature  control.  

Yoshida,  Green  and  Sustainable  Chemical  Synthesis  Using  Flow  Microreactors,  ChemSusChem,  2010  

Enhanced  Temperature  Control  

Page 10: Thales overview jan 2014

Lower reaction volume. Closer and uniform temperature control

Outcome:

Safer chemistry. Lower possibility of exotherm.

Batch

Flow

Larger solvent volume. Lower temperature control.

Outcome:

More difficult reaction control. Possibility of exotherm.

Enhanced  Temperature  Control  

Page 11: Thales overview jan 2014

Batch  Heated  Rxns  •  Safety  concerns,  especially  in  scale

 up  

•  Microwave  technology  is  fastest  way  of  heaQng  solvent  in  batch  

Flow  Chemistry  Heated  Rxns  •  Flow  mimics  microwave’s  rapid

 heat  transfer  

•  Solvent  is  not  limited  to  dipole  

•  Higher  pressures  and  temperatures  possible  

•  High  pressures  allow  use  of  low  boiling  point  solvents  for  easy  workup  

•  Safety  improvement  as  small  amount  is  reacted,  conQnuously  

Enhanced  Temperature  Control  

Page 12: Thales overview jan 2014

Exothermic Chemistry – LiBr Exchange

•  Batch experiment shows temperature increase of 40°C. •  Flow shows little increase in temperature.

Ref: Thomas Schwalbe and Gregor Wille, CPC Systems

Enhanced  Temperature  Control  

Page 13: Thales overview jan 2014

Reactants

Products

By-products

Traditional Batch Method

Gas inlet

Reactants

Products

By-products

Better surface interaction Controlled residence time Elimination of the products

Flow Method

H-Cube Pro™

SelecQvity  –  Residence  Time  Control  

Page 14: Thales overview jan 2014

Catalyst screening

Parameter scanning: effect of residence time to the conversion and selectivity

Catalyst Flow rate / mL/

min

Residence time / sec

Conc. / mol/dm3

Conv. / %

Sel. / %

IrO2 2 9 0,2 52 69

Re2O7 2 9 0,2 53 73

(10%Rh 1% Pd)/C

2 9 0,2 79 60

RuO2 (activated)

2 9 0,2 100 100

1 18 0,2 100 99

0,5 36 0,2 100 98

Ru black 2 9 0,2 100 83

1% Pt/C doped with Vanadium

2 9 0,2 100 96

1 18 0,2 100 93

0,5 36 0,2 100 84

Conditions: 70 bar, EtOH, 25°C

Increase and decrease of residence time on the catalyst cannot be performed in batch

SelecQve  AromaQc  Nitro  ReducQon  

Page 15: Thales overview jan 2014

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaQon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaQon  

§  SelecQvity  §  Green  

   Why  move  to  flow?  

Survey  Conducted  

Page 16: Thales overview jan 2014

150°C, 100 bar (1450 psi) H2, CO, O2, CO/H2, C2H4, CO2. Reactions in minutes. Minimal work-up.

-70 - +80C O3, Li, -N3, -NO2

Safe and simple to use. Multistep synthesis. 2 step independant T control. Coming: fluorinations, low T selectivity

450°C, 100 bar (1450 psi) New chemistry capabilities. Chemistry in seconds. Milligram-kilo scale Solve Dead-end chemistry. Heterocycle synthesis

H-Cube Pro & Gas Module: Reagent gases

Phoenix Flow Reactor: Endothermic chemistry

IceCube: Exothermic Chemistry

Reactor  Pladorms  

Page 17: Thales overview jan 2014

H-Cube Catalysis Platform: Making hydrogenations safe, fast, and selective

Page 18: Thales overview jan 2014

•  HPLC pumps continuous stream of solvent •  Hydrogen generated from water electrolysis •  Sample heated and passed through catalyst •  Up to 150°C and 100 bar. (1 bar=14.5 psi)

Hydrogenation reactions: § Nitro Reduction § Nitrile reduction § Heterocycle Saturation § Double bond saturation § Protecting Group hydrogenolysis § Reductive Alkylation § Hydrogenolysis of dehydropyrimidones § Imine Reduction § Desulfurization

H-­‐Cube  –  How  it  Works  

Page 19: Thales overview jan 2014

•  Large cylinders contain 4360 litres of compressed H2

•  They are a severe safety hazard •  H-Cube doesn’t use gas cylinders •  Only water •  Clean •  No transportation costs •  Low energy •  Safe •  Just 2 mL H2 @ 1bar

No  more  hydrogen  cylinders!  

Page 20: Thales overview jan 2014

Hydrogen generator cell §  Solid Polymer Electrolyte

High-pressure regulating valves

Water separator, flow detector, bubble detector

Water  Electrolysis  

Page 21: Thales overview jan 2014

• Benefits •  Safety •  No filtration necessary •  Enhanced phase mixing

• Over 100 heterogeneous and Immobilized homogeneous catalysts

10% Pd/C, PtO2, Rh, Ru on C, Al2O3 Raney Ni, Raney Co Pearlmans, Lindlars Catalyst Wilkinson's RhCl(TPP)3 Tetrakis(TPP)palladium Pd(II)EnCat BINAP 30

• Different sizes • 30x4mm • 70x4mm (longer residence time or scale up)

• Ability to pack your own CatCarts • CatCart Packer (with vacuum) • CatCart Closer (no vacuum)

Catalyst  System  -­‐  CatCarts  

Page 22: Thales overview jan 2014

10% Pd/C, RT, 1 bar Yield: 86 - 89% Alternate reductions Ketone: Pt/C Aromatic: Ru/O2

Raney Ni, 70°C, 50 bar, 2M NH3 in MeOH, Yield: >85%

Simple  ValidaQon  ReacQons  (out  of  5,000)  

Page 23: Thales overview jan 2014

10% Pd/C, 60˚C, 1 bar Yield: >90%

Batch reaction of {3-[(2-carbazol-9-yl-acetylamino)-methyl]-benzyl}-carbamic acid benzyl ester Reagent: H2, catalyst: 10% Pd/C, EtOH, 1 atm, Yield: 76 % Conn, M. Morgan; Deslongchamps, Ghislain; Mendoza, Javier de; Rebek, Julius; JACSAT; J. Am. Chem. Soc.; EN; 115; 9; 1993; 3548-3557.

Raney Ni, 80˚C, 80 bar Yield: 90%

Batch reference: Reagent: HCOONH4, catalyst: 10% Pd/C, solvent: MeOH, Reaction time: 30 min, 1 atm. Yield: 78 % Kaczmarek, Lukasz; Balicki, Roman; JPCCEM; J. Prakt. Chem/Chem-Ztg.; EN; 336; 8; 1994; 695-697

Simple  ValidaQon  ReacQons  (out  of  5,000)  

Page 24: Thales overview jan 2014

Batch: 200°C, 200 bar, 48 hours

Batch: 150°C, 80 bar, 3 days

Difficult  Hydrogenatons  

Page 25: Thales overview jan 2014

Selective reduction in presence of benzyl protected O or N 5% Pt/C, 75°C, 70 bar, 0,01M, ethanol,no byproduct Yield: 75%

Batch reference: Reagent: aq. NaBH4, Solvent: THF; 0°C, Yield: 76,1 % Nelson, Michael E.; Priestley, Nigel D.; JACSAT; J. Am.

Chem. Soc.; EN; 124; 12; 2002; 2894-2902

Route A: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 25°C. Yield: 80%

Route B: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 100°C. Yield: 85%

No batch reference

SelecQve  HydrogenaQons  

Page 26: Thales overview jan 2014

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 97% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

Conditions: Au/TiO2, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

H-Cube® - Chemoselective hydrogenations

Ürge, L.et al. submitted for publication

Selective hydrogenation of the double-bond

Selective hydrogenation to afford oxime

Selective hydrogenation of the double-bond

SelecQve  HydrogenaQons  

Page 27: Thales overview jan 2014

Conditions: 10% Pd/C, 70 bar, 0°C, residence time 16s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 11-17s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 100% yield

Ürge, L.et al. submitted for publication

H-Cube® - Chemoselective hydrogenations

Nitro group reduction in the presence of a halogen

Nitro group reduction in the presence of Cbz-group

Nitro group reduction without retro-Henry as a

side-reaction

SelecQve  HydrogenaQons  

Page 28: Thales overview jan 2014

Flow rate

(mL/min)

Pressure (bar) Temperature (oC)

Bubdet Catalyst Amount A (%)

Amount B (%)

Amount C (%)

Amount D (%)

1 20 (∆p:5 bar) 110 50 10% Pd/C 26.7% 61.5% - 7% 1 20 (∆p:3 bar) 110 50 1% Pd/C 61,90% 29,40% - 2,50% 1 20 (∆p:13

bar) 110 50 5% Rh/C 78.9% 5.1% - 9.2%

1 20 (∆p:10 bar)

110 50 5% Pd/C 26.7% 60.9% - 6.7%

1 20 (∆p:5 bar) 110 50 5% Pd/C(S) 25% 63.4% - 6.6%

Objective: Match similar selectivity of 60% but without additives of CsF, S, K2CO3 and PPh3

SelecQve  DehydrochlorinaQon  

Page 29: Thales overview jan 2014

Optimised reaction parameters: -  H-Cube Pro -  Temperature: 100oC -  Pressure: 100 bar -  Hydrogen amount: Maximum

Results:

•  Generate new non-planar molecules from existing stocks. •  New molecules have new Log P and other characteristics.

•  Cheap •  Clean •  Quick •  Only on H-Cube: High P + Selective control.

Flow  rate  (ml/min)   Conversion  %  of  A  %  of  B  %  of  C  0.3   100%   100   0   0  0.5   100%   92   8   0  1.0   100%   86   14   0  

ParQal  SaturaQon  of  Heterocycles  

Page 30: Thales overview jan 2014

Chiral Phosphine-phosphoramidite ligands packed in CatCart

Asymmetric  HydrogenaQon  

Page 31: Thales overview jan 2014

Substrate Product Deuterium content(%)

Isolated yield / %

99 99

97 98

93 97

96 98

96 99

Mándity, I.M.; Martinek, T.A.; Darvas, F.; Fülöp, F.; Tetrahedron Letters; 2009, 50, 4372–4374

DeuteraQon  

Page 32: Thales overview jan 2014

• Original 2005 R&D100 award winner • 20mg-10g/day • Ambient to 100°C • Limited H2 control: Full H2 mode (30ml/min), Controlled H2 mode, No H2

• Improved H-Cube • 20mg-50g/day •  -10°C to 150°C • H2 production variability from 0ml/min – 60ml/min (selectivity!) • Reaction timer with auto switching valves • Software for logs, graphs, reaction guide, module control

• High throughput • Larger MidiCart Catalysts • 20mg-500g/day • Ambient to 150°C • H2 production variability from 0ml/min – 125ml/min • Reaction timer with auto switching valves

Which H-Cube is best for me?

H-­‐Cube  Family  

Page 33: Thales overview jan 2014

• Touch Screen Interface • Now can control hydrogen variability (0-60ml/min) for selectivity • Suggested reaction parameters for each functional group • Reaction Timer with automatic valve switching • Logs and graphs for viewing achieved reaction parameters

New  Sooware  with  H-­‐Cube  Pro  

Page 34: Thales overview jan 2014

2 cells for higher hydrogen production: 60 mL/min

Compare to H-Cube SS where maximum concentration is 0.2M

100% conversion

H-­‐Cube  Pro  =  Higher  Throughput  

Page 35: Thales overview jan 2014

H-­‐Cube  Pro  =  Higher  Temp  Capability  

Page 36: Thales overview jan 2014

T (oC) p (bar) Flow rate (ml/min) Conversion (%) B Selectivity (%)

20 1, controlled 1 37 99 20 1, controlled 2 65 93 20 1, controlled 3 87 77

Solvent Conc. Temp. (°C) Pressure (bar)

Flow Rate (mL/min)

Product Distribution (%, GC-MS)

A B C EtOH 0.1 M 10 10 1 0 100 0

H-Cube

H-Cube Pro

H-­‐Cube  Pro  –  Lower  Temp  SelecQvity  

Page 37: Thales overview jan 2014

Parameters: -  p= 1-100 bar -  T=10-150°C -  v=0.1-3 ml/min - c=0.01-0.1 M - H2 production = up to 60ml/min - CatCarts = 30x4mm or 70x4mm

Parameters: -  p= 1-100 bar -  T=25-150°C -  v=5-25 ml/min - c=0.05-0.25 M - H2 production = up to 125ml/min - CatCarts = 90x9.5mm

Milligram to Gram Scale

Half Kilogram Scale

H-­‐Cube  Midi  –  Reactor  for  Scale  Up  

Page 38: Thales overview jan 2014

Gilson 271 Liquid Handler §  402 single Syringe pump (10 mL) §  Direct GX injector (Valco) §  Low-mount fraction collection (Bio-Chem) §  Septum-piercing needle §  Static drain wash station §  Tubes, connectors, fittings

Open vial collection Collection through probe (into closed vial)

H-­‐Cube  Autosampler  

Page 39: Thales overview jan 2014

Expanding H-Cube Beyond Hydrogenation

Page 40: Thales overview jan 2014

Purity (LCMS): 63%

Batch parameters: Pd(OAc)2, PPh3, TEA, DMF, 3 days, 110°C, yield: 70% Reference: J. Chem. Soc. Dalton Trans., 1998, 1461-1468 J. Chem. Soc. Dalton Trans., 1998, 1461-1468

Heck C-C cross coupling:

CatCartTM: Pd (PPh3)4, TBAF, 2-propanol, 0.05M, 100oC, 1 bar, 0.2 ml/min.

Coupling  ReacQons  

Page 41: Thales overview jan 2014

Conversion: 90-95% (TLC) Purity: 70% (LC-MS) without work-up

Batch parameters: K3PO4, TBA-Br, Pd(OAc)2, DMF, 2 hours, 130 °C Reference: (Zim, Danilo; Monteiro, Adriano L.; Dupont, Jairton; Tetrahedron Lett.; EN; 41; 43; 2000; 8199-8202)

Suzuki-Miyaura C-C cross coupling:

Br

N O 2 B

O H O H

N O 2 CatCart TM 70*4 mm Pd EnCat TM BINAP 30, 2-propanol, TBAF, 80°C, 20 bar, 0.05M, 0.5 ml/min

+

Coupling  ReacQons  

Page 42: Thales overview jan 2014

The  condiQons  were:  

1  equivalent  of  2,6-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraQon  set  to  0.02M  

Solvent:  Methanol  

Base:  NaOH  

AnalyQcs:  GC-­‐MS  

SelecQve  Coupling  ReacQon  

Page 43: Thales overview jan 2014

Flow  rate  (ml/min)  

Pressure   Temperature  Catalyst   Base  

Result  (bar)   (oC)   LC-­‐MS,  220nm  

0.8   20   100  Fibrecat  1007  

(70mm)   3  ekv  Conversion:  82%  SelecQvity:  48%  

0.3   20   100  Fibrecat  1007  

(70mm)   3  ekv  Conversion:  99%  SelecQvity:  48%  

0.8   20   100  Fibrecat  1035  

2.5  ekv  Conversion:  16%  

(30mm)   SelecQvity:  100%  

0.8   20   100  Fibrecat  1029  

(30mm)   2.5  ekv  Conversion:  18%  SelecQvity:  100%  

0.8   20   100  Fibrecat  1048  

(30mm)   2.5  ekv  Conversion:  40%  SelecQvity:  100%  

0.8   20   100  10%  Pd/C  

2.5  ekv  Conversion:  89%  

(30mm)   SelecQvity:  14%  

0.5   20   50  Fibrecat  1048  

2.5  ekv  Conversion:17%  

(30mm)   SelecQvity:  ~100%  

0.5   20   100  Fibrecat  1048  

2.5  ekv  Conversion:  35%  

(30mm)   SelecQvity:  ~100%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecQvity:  73%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecQvity:  80%  

0.2   20   100  Fibrecat  1029  

2.5  ekv  Conversion:  12%  

(30mm)   SelecQvity:  100%  

SelecQve  Coupling  ReacQon  1  equivalent  of  2,6

-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraQon  set  to  0.02M  

Solvent:  Methanol,  Base:  NaOH  

AnalyQcs:  GC-­‐MS  

Page 44: Thales overview jan 2014

•   Versa6le:    Compressed  Air,  O2,  CO,  C2H4,  SynGas,  CH4,  C2H6,  He,  N2,  N2O,  NO,  Ar.  

•   Fast:    ReacQons  with  other  gases  complete  in  less  than  10  minutes  

•   Powerful:    Up  to  100  bar  capability.  

•   Robust:    All  high  quality  stainless  steel  parts.  

•   Simple:    3  buson  stand-­‐alone  control  or  via  simple  touch  screen  control  on  H-­‐Cube  Pro™.  

Other  Reagent  Gases  

Page 45: Thales overview jan 2014

Ø  Conditions: 100oC, 30 bar, CO gas, 0.5 ml/min liquid flow rate, 0.01 M in THF Ø  Catalyst: Polymer supported Pd(PPh3)4 Ø  Reaction was repeated Ø  Different gas flow rates were tested

Observed reproducible conversion at each gas flow rate

ApplicaQon  1:  CarbonylaQon  

Page 46: Thales overview jan 2014

ApplicaQon  2:  Green  OxidaQon  

Page 47: Thales overview jan 2014

Pressure Temp. (oC) CatCart Conversion Selectivity

40 25 1 % Au/TiO2 0 – 40 65 1 % Au/TiO2 6.5 >85 40 25 1 % Au

/Fe2O3 0 – 40 65 1 % Au

/Fe2O3 12.7 0 40 25 5 % Ru

/Al2O3 2.8 ~100 40 65 5 % Ru

/Al2O3 3.6 ~100 100 65 5 % Ru

/Al2O3 2.7 ~100 100 100 5 % Ru

/Al2O3 8.5 ~100 100 140 5 % Ru

/Al2O3 15.5 ~100 100 65 1 % Au/TiO2 5.6 84 100 100 1 % Au/TiO2 47.2 93 100 140 1 % Au

/TiO2 ~100 93 100 65 1 % Au

/Fe2O3 4 0 100 100 1 % Au

/Fe2O3 31 7 100 • Area% of desired product in GC-MS / (100 – Area% of reactant in GC-MS)

General conditions: H-Cube Pro with Gas Module, 50 mL/min oxygen gas, 1 mL/min liquid flow rate (0.05M in acetone, 20 mL sample volume), CatCart: 70mm., 1 % Au/TiO2 (cartridge: 70mm, THS 01639),

Batch ref.: Oxygen; perruthenate modified mesoporous silicate MCM-41 in toluene T=80°C; 24 h; Bleloch, Andrew; et al. Chemical Communications, 1999 , 8,1907 - 1908

Very fast addition of alcohol to gold surface. Alkoxide formation.

Green  OxidaQon  OpQmizaQon  

Page 48: Thales overview jan 2014

Reaction parameters were tested: -  H-Cube Pro with and without GasModule -  Oxidizing agent: Hydrogen-peroxide and Oxygen -  Catalyst: MnO2, Amerlyst 36, Au/TiO2 -  Solvent: Acetone/H2O2, Acetone -  Temperature 60-150oC, pressure 20-50 bar, flow rate 1 ml/min, concentration: 0.05 mmol/ml

Oxidizing  agent   Solvent   Catalyst  

Temperature  (oC)  

Pressure  (bar)   Conversion   Comment  

MnO2   Acetone   MnO2   60   20   82%   Blockage  aoer  10  minutes  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   70   20  68%  aoer  1  run  78%  aoer  2  run  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   100   30  68%  aoer  1  run  98%  aoer  2  run  

The  catalyst  was  reacQvated  with  H2O2  between  the  runs.  

O2  (10  ml/min)   Acetone   Au/TiO2   75   11   8%  

O2  (10  ml/min)   Acetone   Au/TiO2   150   11   95%  

Aoer  10  minutes  the  conversion  was  dropped  to  

50%  

O2  (50  ml/min)   Acetone   Au/TiO2   150   20   >  98%  

AromiQzaQon  of  Heterocycles  

Page 49: Thales overview jan 2014

Accessing New Molecules or Chemical Space

Page 50: Thales overview jan 2014

Heterocyclic rings of the future, J. Med. Chem., 2009, 52 (9), pp 2952–2963.

•  3000 potential bicyclic systems unmade • Many potential drug like scaffolds Why? • Chemists lack the tools to expand into new chemistry space to access these new compounds. •  Time • Knowledge

The  Quest  for  Novel  Heterocycles  

Page 51: Thales overview jan 2014

•  Standard benzannulation reaction •  Good source of:

•  Quinolines •  Pyridopyrimidones •  Naphthyridines

→ Important structural drug motifs

Disadvantages: • Harsh conditions • High b.p. solvents • Selectivity • Solubility

W. A. Jacobs, J. Am. Chem. Soc.; 1939; 61(10); 2890-2895

High  Temp  Chemistry  –  In  Batch  

Page 52: Thales overview jan 2014

• Replacement of diphenyl ether (b.p: 259°C) with THF (b.p.: 66 °C)

Cyclization conditions: a: 360 °C, 130 bar, 1.1 min b: 300 °C, 100 bar, 1.5 min c: 350 °C, 100 bar, 0.75 min

Pyridopyrimidinone Quinoline

No THF polymerization!

Batch conditions: 2 hours

Gould  Jacobs  ReacQon  -­‐  Overview  

Page 53: Thales overview jan 2014

The nature of the substituents is critical because they increase or decrease the nucleophilicity of the ring: Electron donating groups increase yields, Electron withdrawing groups decrease yields.

53

• Meldrum’s acidic route to pyridopyrimidones and to hydroxyquinolines

Cyclization conditions: a: 300 °C, 160 bar, 0.6 min b: 300 °C, 100 bar, 0.6 min c: 360 °C, 100 bar, 1 min d: 350 °C, 130 bar, 4 min e: 300 °C, 100 bar, 1.5 min

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., 2012; 53; 738-743

Process  ExploraQon  

Page 54: Thales overview jan 2014

5 novel bicyclic scaffolds generated-fully characterized. Many more to follow

New  Scaffold  GeneraQon  

Page 55: Thales overview jan 2014

Powerful: Up to 450°C

Versatile: Heterogeneous and homogeneous capabilities.

Fast: Reactions in seconds or minutes.

Innovative: Validated procedure to generate novel bicyclic compounds

Simple: 3 button stand-alone control or via simple touch screen control on H-Cube Pro™.

Phoenix  Flow  Reactor  

Page 56: Thales overview jan 2014

•  Choice of stainless steel, teflon, or Hastelloy

•  Different length coils to vary residence time

•  Easy to recoil

Phoenix  Homogeneous  ReacQons  

Page 57: Thales overview jan 2014

•  Use same H-Cube Pro or Midi CatCarts

•  Phoenix metal-metal Catcarts for >250°C reactions

Phoenix metal-metal CatCarts (125mm/250mm)

H-Cube Pro CatCarts (30 or 70mm)

Phoenix  Heterogeneous  ReacQons  

Page 58: Thales overview jan 2014

Ring closure on aryl NH : key step •  Mitsunobu reaction or traditional heating with T3P did not

furnish the bicyclic heterocycle. •  Reaction proceeded smoothly in Phoenix reactor at 300oC with

65% yield despite requirement for the cis amide conformer in transition state.

Mitsunobu  ReacQon  not  Possible  in  Batch  

Page 59: Thales overview jan 2014

RaNi 70mm 200C, 80bar 0.5ml/min

N-­‐AlkylaQon  with  RaNi  CatCart  

Page 60: Thales overview jan 2014

60 The total amount of dialkylated products was 18%.

Alkylation coupled with dehydrogenation

AlkylaQon  of  2-­‐methyl-­‐indone  

Page 61: Thales overview jan 2014

61

Ring closure is coupled with hydrogenation of double bond

Ring closuring of 2-methyl-indole with 1,3-butanediol

AlkylaQon  with  Diol  –  Ring  Closure  

Page 62: Thales overview jan 2014

cf. MW reaction: Bagley, M. C.; et al. J. Org. Chem. 2005, 70 , 7003

In AcOH/2-propanol (3:1) (0.5M) 150 °C, 60 bars,

1.0 mL min-1 (4 min res. time) 88% isolated yield

Continuous Flow Results (4 mL or 16 mL Coil) Scale-up

200 °C, 75 bars, 5.0 mL min-1 (~3 min res. time)

96% isolated yield

25 g indole/hour

Fischer-­‐Indole  Synthesis  –  Scale  Out  

Page 63: Thales overview jan 2014

Conditions: p = 70 bar T = 270°C v = 0.4 mL/min c = 0.04 M (NMP) Result: 82% yield

Kappe, O. C. et al. Eur. J. Org. Chem., 2009, 9, 1321-1325.

X-Cube FlashTM – Kolbe Synthesis Conditions: p = 60 bar T = 180°C v = 4 mL/min Residence time: 440 s c = 0.49 M (H2O) Best result: 51% conversion

Kappe, O. et al. Chem. Eng. Technol. 2009, 32(11), 1-16.

X-Cube FlashTM – SNAr reaction

Other  High  T/p  Flow  ReacQons  

Page 64: Thales overview jan 2014

• Reactions from 10-450C and 1-100bar (1450 psi) • Up to 13 different reagent gases • Heterogeneous or homogeneous catalysis

Fully Automated system now available

VersaQle  Catalysis  System  

Page 65: Thales overview jan 2014

High  Energy  

Reac6ons  

Page 66: Thales overview jan 2014

Safe:  Low  reacQon  volume,  excellent  temperature  control,  SW  controlled  –  including  many  safety  control  points  

Simple  to  use:  easy  to  set  up,  default  reactor  structures,  proper  system  construcQon  

Powerful:  Down  to  -­‐50°C/-­‐70°C,  up  to  80°C  

Versa6le  chemistry:  Ozonolysis,  nitraQon,  lithiaQon,  azide  chemistry,  diazoQzaQon  

Versa6le  reactors:  Teflon  loops  for  2  reactors  with  1/16”  and  1/8”  loops  

High  Chemical  resistance:  Teflon  wesed  parts  

Mul6step  reac6ons:  2  reacQon  zones  in  1  system  Modular:  OpQon  for  Ozone  Module  or  more  pumps  

Size:  Stackable  to  reduce  footprint  

IceCube  

Page 67: Thales overview jan 2014

First  Reac6on  Zone   Second  Reac6on  Zone  

Water  inlet  and  outlet  

Reactor  Plate  • Aluminum  stackable  blocks  • Teflon  tubing  for  ease  in  addressing  blocks  • Easy  to  coil  for  desired  pre-­‐cooling  and  desired  residence  Qme  aoer  mixing  • Different  mixers  types  available  

A  B  

D  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

C  First  Reac6on  Zone   Second  Reac6on  Zone  

ReacQon  Zones  

Page 68: Thales overview jan 2014

A  

B  C  

A  B  

C  

D  

Pre-­‐cooler/Mixer   Reactor  

-­‐70-­‐+80ºC  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

Applica6ons:  Azide,  Lithia6on,  ozonolysis,  nitra6on,  Swern  oxida6on  

Azide,  nitra6on,  Swern  oxida6on  

Ideal for reactive intermediates or quenching

Single  or  MulQ-­‐Step  ReacQons  

Page 69: Thales overview jan 2014

Halogena6on  

Nitra6on  Azides  

Mul6step  reac6ons  

Reac6ve  Intermediates  

Lithia6on  

Ozonolysis  

Swern  Oxida6on  

IdenQfied  ApplicaQons  

Page 70: Thales overview jan 2014

Welcome  screen  of  the  IceCube  

Ozonolysis  set-­‐up   3  pump  –  2  reactor  set-­‐up  

Touch  Screen  Interface  

Page 71: Thales overview jan 2014

•   2pcs  rotary  piston  pumps    

•   2pcs  3-­‐way  inlet  valves  

•   Flow  rate:  0.2  –  4.0  mL/min  

•   Max  pressure:  6.9  bar  

•   Main  reactor  block  temp:    -­‐70/50°C  –  +80°C    

•   Main  reactor  volume  up  to  8  mL  

•   Tubing:  1/16”  or  1/8”  OD  PTFE  

•   Secondary  reactor  block  temp.:    -­‐  30  –  +80°C  

•   Secondary  reactor  volume  up  to  4  mL  

Cooling  Module  

•   ConQnuous  ozone  producQon  

•   Controlled  oxygen  introducQon  

•   Max.  100  mL/min  gas  flow  

•   14%  Ozone  producQon  

Pump  Module   Ozone  Module  

Modular  for  a  Variety  of  Chemistry  

Page 72: Thales overview jan 2014

Batch  reac6on:  Max.  -­‐60°C  to  avoid  side  reacQon  

In  Flow:  

Even  at  -­‐10°C  without  side  product  formaQon  

0.45  M  in  DCM,  0.96  mL/min  

0.45  M  alcohol,  0.14  M  DMSO  in  DCM  0.94  mL/min  

3.6  M  in  MeOH,  0.76  mL/min  

*  Aoer  purificaQon  

When  compared  to  batch  condiQons,  IceCube  can  sQll  control  reacQons  at  warmer  temperatures  due  to  beser  mixing  and  more  efficient  heat  transfer.  

ApplicaQon  1:  Swern  OxidaQon  

Page 73: Thales overview jan 2014

•  Ozonolysis  is  a  technique  that  cleaves  double  and  •  triple  C-­‐C  bonds  to  form  a  C-­‐O  bond.  

Flow  Ozonolysis  and  Rebirth  of  O-­‐Cube  

Page 74: Thales overview jan 2014

•  Highly  exothermic  reacQon,  high  risk  of  explosion    

•  Normally  requires  low  temperature:  -­‐78°C.  •  In  addiQon,  the  batchwise  accumulaQon  of  ozonide  is  associated  again  with  risk  of  explosion  

•  There  are  alternaQve  oxidizing  agents/systems:  •  Sodium  Periodate  –  Osmium  Tetroxide  (NaIO4-­‐OsO4)  

•  Ru(VIII)O4    +  NaIO4  

•  Jones  oxidaQon  (CrO3,  H2SO4)  

•  Swern  oxidaQon  •  Most  of  the  listed  agents  are  toxic,  difficult,  and/or    expensive  to  use.  

Why  is  Ozonolysis  neglected?  

Page 75: Thales overview jan 2014

SM1  /  Reactant  or  Solvent  

SM2  /  Quench  or  Solvent  

Product  or  Waste  

IceCube  Ozonolysis  Setup  

Page 76: Thales overview jan 2014

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Les.,  

Flow  Ozonolysis  of  Styrenes  

Page 77: Thales overview jan 2014

Oxida6on  of  alkynes  

Oxida6on  of  amines  to  nitro  groups  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Les.,  

More  Flow  Ozonolysis  

Page 78: Thales overview jan 2014

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Les.,  

Flow  Ozonolysis  of  Tioanisole  

Page 79: Thales overview jan 2014

•  2 Step Azide Reaction in flow •  No isolation of DAGL •  Significantly reduced hazards

TKX50

Making  Azide  Chemistry  Safer  

Page 80: Thales overview jan 2014

Entry   Vflow  (ml/min)  A  -­‐  B  -­‐  C  

T  (°C)   τ  (1.  loop,  min)  

τ  (2.  loop,  min)  

Isolated  Yield  (%)  

1   0.4   0   2.12   3.33   91  

2   0.9   0   0.94   1.48   91  

3   0.6   0   1.42   2.22   85  

4   0.9   10   0.94   1.48   85  

5   1.5   10   0.56   0.88   86  

6   1.5   15   0.56   0.88   98  

7   1.2   15   0.71   1.11   84  

8   1.8   15   0.47   0.74   86  

Aniline  HCl  sol.   Pump  A  

Pump  B  NaNO2    sol.  

Pump  C  

Phenol    NaOH  sol.   •  Most  aromaQc  diazonium  salts  

are  not  stable  at  temperatures  above  5°C  •  Produces  between  65  and  150  kJ/mole  and  is  usually  run  industrially  at  sub-­‐ambient  temperatures  •  Diazonium  salts  decompose  exothermically,  producing  between160  and  180  kJ/mole.    •  Many  diazonium  salts  are  shock-­‐sensiQve  

DioaziQzaQon  and  azo  coupling  

Page 81: Thales overview jan 2014

NitraQon  of  AromaQc  Alcohols  

Pump  A   Pump  B   Temperature  (oC)  

Loop  size  (ml)  

Conversion  (%)  

SelecQvity  (%)  

SoluQon  Flow  rate  (ml/

min)   SoluQon  Flow  rate  (ml/

min)  

ccHNO3   0.4  1g  PG/15ml  ccH2SO4   0.4   5  -­‐  10   7   100  

0  (different  products)  

1.48g  NH4NO3/15ml  ccH2SO4   0.7  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   100   100  

1.48g  NH4NO3/15ml  ccH2SO4   0.5  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   50   80  (20%  dinitro)  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (3  bar)   100   100  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (1  bar)   80  

70  (30%  dinitro  and  nitro)  

Currently  invesQgaQng  selecQvity  at  lower  temperatures  on  IceCube  

Scaffolds  from  Explosive  Intermediates  

Page 82: Thales overview jan 2014

•  LithiaQon  experiments  (collaboraQons)  

•  FluorinaQon  experiments  (collaboraQons)  

•  Low  temperature  selecQve  reacQons,  not  necessarily

 exothermic  nature  

•  Very  low  temperature  experiments,  where  batch

 condiQons  required  liquid  nitrogen  temperature  or

 below  

Coming  soon…  

Page 83: Thales overview jan 2014

Our chemistry team is full of flow chemistry and catalysis experts

We aim to solve your challenging chemistry in flow!

Phoenix Flow Reactor - High temperature and pressure reactor for novel heterocycle and compound synthesis (up to 450C)

H-Cube Pro and Gas Module - for gas reagent chemistry from hydrogenation to oxidation

IceCube - for low temperature and high energy reactions

Free chemistry services on Thalesnano flow platforms for up to a week. No strings attached.

Ship us your compound or visit our labs in Budapest, Hungary. CDAs and NDAs are approved quickly.

Free  Chemistry  Services  

Page 84: Thales overview jan 2014

We can visit your site for chemistry demos and seminars. Impress your colleagues and bring flow chemistry to your lab.

Phoenix Flow Reactor - High temperature and pressure reactor for novel heterocycle and compound synthesis (up to 450C)

H-Cube Pro and Gas Module - for gas reagent chemistry from hydrogenation to oxidation

H-Cube Midi – scale up H-Cube for 10-500g/day hydrogenations

IceCube - for low temperature and high energy reactions

Heather Graehl, MS, MBA Director of Sales North America

Based in sunny San Diego [email protected]

Onsite  Demos  &  Seminars  Available  

Page 85: Thales overview jan 2014

THANK YOU FOR YOUR ATTENTION!!

ANY QUESTIONS?