template synthesis of silica nanostructures - cheric.org · 377 hwahak konghak vol. 40, no. 3,...

5
377 HWAHAK KONGHAK Vol. 40, No. 3, June, 2002, pp. 377-381 * * * * (2002 3 18 , 2002 4 16 ) Template Synthesis of Silica Nanostructures Hyo-Joong Kim* , Chung-Heop Kwak*, Tae-Soo Suh* and Dong-Soo Suhr Department of Materials Engineering, Chungnam National University, Daejeon 305-764, Korea *Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea (Received 18 March 2002; accepted 16 April 2002) (hydroxyapatite) - . ( ) , . (SEM), (TEM), X- (XRD) (XPS) . , XPS O 1s curve-fitting . , X- (EDS) . 50-200 nm . . Abstract - A novel technique for the synthesis of silica nanostructures with needle-like template, hydroxyapatite, having nanometer diameter was investigated in this study. The synthetic method consisted of the following main steps: the preparation of nanoprecursor(silica-coated templates), the calcination of nanoprecursor and the removal of templates. The analysis results of scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photo- electron spectroscopy(XPS) for nanoprecursor revealed that silica particles were deposited onto the surface of templates. Fur- ther examinations(curve-fitting processing) of the asymmetrical broadening of O 1s peaks in the XPS spectra indicate the presence of multiple oxygen species on the surface. Energy dispersive X-ray spectroscopy(EDS) result confirmed that nano- structures were composed of silicon and oxygen. The diameters of the synthesized nanostructures, mainly in the range of 50- 200 nm, correspond to the diameters of the templates. The results confirm that the proposed technique in this study can be uti- lized as a new method to fabricate the nanostructures. Key words: Template, Sol-Gel, Hydroxyapatite, Silica, Nanostructures 1. 1 1991 Iijima[1] , , , , . laser ablation [2, 3] , (template) - . . - , Al 2 O 3 , V 2 O 5 , MoO 3 [4]. TiO 2 , WO 3 , ZnO Co 3 O 4 [5-7]. . To whom correspondence should be addressed. E-mail: [email protected]

Upload: leanh

Post on 26-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Template Synthesis of Silica Nanostructures - cheric.org · 377 HWAHAK KONGHAK Vol. 40, No. 3, June, 2002, pp. 377-381 *† * * * (2002 3 18 , 2002 4 16 ) Template Synthesis of Silica

HWAHAK KONGHAK Vol. 40, No. 3, June, 2002, pp. 377-381

*†**

*

(2002 3 18 , 2002 4 16 )

Template Synthesis of Silica Nanostructures

Hyo-Joong Kim*†, Chung-Heop Kwak*, Tae-Soo Suh* and Dong-Soo Suhr

Department of Materials Engineering, Chungnam National University, Daejeon 305-764, Korea*Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea

(Received 18 March 2002; accepted 16 April 2002)

(hydroxyapatite) !-"

# $%&'(. ) $%* +( ,- ) ., + /% 0 .1 23 %45 6(.

+7 8 9 +:;(SEM), <2 +:;(TEM), X-= >? @A(XRD) 0 B+: @B @A(XPS) C2

DE FG7 H ,-45 6I JKL M 6N(. O, P@EQ XPS @A7 E RS4 TP U8V

WK O 1s XYZ[ curve-fitting \] C2 + FG7 ^_ `a b/H cde f'(. O, 7gh @

b X-= @A(EDS) DE i2 b/ %45 6I JKL M 6N(. * 8

j@ 50-200 nm 3k 2 lm n f'(. C2 DE ) o7p .q

$%r W HQe JKL M 6N(.

Abstract − A novel technique for the synthesis of silica nanostructures with needle-like template, hydroxyapatite, having

nanometer diameter was investigated in this study. The synthetic method consisted of the following main steps: the preparation

of nanoprecursor(silica-coated templates), the calcination of nanoprecursor and the removal of templates. The analysis resultsof scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photo-

electron spectroscopy(XPS) for nanoprecursor revealed that silica particles were deposited onto the surface of templates. Fur-

ther examinations(curve-fitting processing) of the asymmetrical broadening of O 1s peaks in the XPS spectra indicate the

presence of multiple oxygen species on the surface. Energy dispersive X-ray spectroscopy(EDS) result confirmed that nano-

structures were composed of silicon and oxygen. The diameters of the synthesized nanostructures, mainly in the range of 50-

200 nm, correspond to the diameters of the templates. The results confirm that the proposed technique in this study can be uti-

lized as a new method to fabricate the nanostructures.

Key words: Template, Sol-Gel, Hydroxyapatite, Silica, Nanostructures

1.

1

1991 Iijima[1] !", #$%& ' (

), #*+,, -./!+ 0 +,1& 23 456* 78

, 9: ' ; 0 <*= >? @A

BCD/ EF. GHIG J >?KLM laser ablation

L[2, 3] 0 NOP EM, QR2 S TU(template)V 58

W-XL >? Y6ZG/ EF. [5D TU\ ]^

9 _`%+ abcM QdF. e. TUM

58 fg W-XLM TU hi j\ k1 f

g lm6/ TUV 5no p6^ Dq, r8

KLM Al2O3, V2O5, MoO3 0 <* >? "/ DsF[4].

t8 Nu abc TUM [58 Sv e.

S9 kw8 KLM pDq TiO2, WO3, ZnO xg/

Co3O4 0 <* >? "/ DsF[5-7]. r8 KLy\

F?2= z ?V >?v 5| E )S

~58 KLM NOP EF.

xr GHIG >? 58 TU\ QR2 /†To whom correspondence should be addressed.E-mail: [email protected]

377

Page 2: Template Synthesis of Silica Nanostructures - cheric.org · 377 HWAHAK KONGHAK Vol. 40, No. 3, June, 2002, pp. 377-381 *† * * * (2002 3 18 , 2002 4 16 ) Template Synthesis of Silica

378

Q% :O z QM %6*

7 Zr G p D: EF.

J QM %6* 78 K

M % 8 $c hydroxyapatite

(HAp) TUM 6Z W-XL fg >?6/,

>? ? zg+,[ ? ' Q% ? Q

6Z 6F.

2.

2-1.

TU(HAp) >? ammonium acetate(n 1, Junsei Chemical),

calcium acetate(n 1, Junsei Chemical) ' ammonium dihydrog-

enphosphate(n 1, Junsei Chemical), fg >?

tetraethyl orthosilicate(TEOS, >98%, Aldrich), e(>99.9%,

Aldrich) ' (n 1, k_+,) !p! 5

6F. t8 z\ ¡ K¢ p 3 !p(£¤:

>18.3 MΩcm) 56F.

2-2.

TU\ F¥ ¦ >?6F. S§ ¨©*

Rª 3 «¬] 1.3 M ammonium acetate5­ 2.0 l R

6/ 80oC ~Gn®F. Z* 0.1 M calcium acetate 1.0l9 0.06 M

ammonium dihydrogenphosphate 1.0l w!¯v kn R8 °,

80 oC 3n± ~G8 ° ²M ¨©n³/ 24n± ?6Z µ4

?zV ¶sF. : µ4?z\ Z­ pH 7 Dv· z

¸2¹ º»6/ e ¼½6Z 60oC 24n± ¾6Z T

UV ¶sF[8]. Fig. 1\ ¶:¿ TUV 56Z fg >

? ÀÁv ÂÃ ÄF. fg >?\ S§ 0.70 g '

1.40 g TU ©©V e 4.59 g 2%no 10n± k ŵn³

/, : TEOS 1.09 g 5.23 gV ©© 5n± ±ÆM

R6/ ŵ6Z 2 ? fg TU lmn®

F. ! : TEOS :e Ç £ 30 : 1 : 20M

~G6F[9]. µ4 ÈÉ °, Êrg Z6/ e ËÌ º

»6Mq 70oC ¿1 ¾6Z fg lm TU(6

#)V ¶sF.

# Ͳ¯v 2oC/min Ͳ nÎ ° 400oC 1n±k

.?6/, 3N Ï%5­ 250 ml ² 1n± Ðg6Z TUV p

8 F¥, Z­ pH 7 Dv· Ñ~zV 2¹ º!6/ 90oC

24n±k ¿1 ¾6Z fg ¶sF.

2-3.

TU Ò! U, # fg lm? ' fg

U 0V X-§ÓÔ*(XRD, Rigaku, D/MAx IIB,

CuKα radiation), T#$Õ(SEM, Philips, XL30S FEG), #$

Õ(FE-TEM, LEO, EM912 OMEGA), [Ö§ 2×*(FT-IR, Digilab,

FTS-165) ' ×#$ 2×2Ø*(XPS, VG Scientific, ESCALAB 200R)

0M ÙÚ"ÛF. xg/ >? fg ?\ ÜG

2% X-§ 2Ø*(EDS, Energy Dispersive X-Ray Spectrometer) Ý

c6F. 8Þ, ×#$ 2×2Ø* 56Z TU Q8 fg l

m?V 2Ø6ß, à ×#$2× ¬áâãV ¶* 76Z 5ä

10−10 torr ¿1 Al-Kα §V 300 W(15 kV, 20 mA) åæM

56F. X-§\ nÉ Q6Z 67o 6/ 90o ×#$

å6Z ¬áâãV ç!6F. 0-1,100 eV è\ é êë

2 X-§ ×#$ ¬áâãV *·ì S kAµ ÜG 2

Ø*(Concentric Hemispherical Analyzer; CHA) /! 2Ø* Ü

G(Fixed Analyzer Transmission; FAT) ; íÜG(pass energy)

100 eV î/ ç!6Mq, O 1s, Si 2p !8 ïSg Q8

/2 ¬áâãV ¶V S íÜG 20 eV î/ ç!

6F.

3.

p8 TU T#$Õ ¿ XRD ðñV Fig. 2 Â

sF. TU $ \ 50-200 nm, ò 2-4µmc UM ó

ôV N EsF. XRD ðñ\ HAp õwö ?Ds¥V "

ZT/ EMq, JCPDS ;9 w¼6 Ò Â/ EF.

Fig. 3 a, b, c TU 0.70 g HAp TUV 56Z >?8

#, xg/ TUV p6/ ¶\ fg FT-IR ¬

áâãV "c ÄF. TU[Fig. 3(a)] ¬áâã 571, 601, 962,

1,044 cm−1 band PO43−8 ÷, 631 ' 3,571 cm−1 band OH

øùk 8 ÷ ©© Âq, Âú ÷l] Waters

0[10] Joschek[11] HAp @8 "/9 w¼6/ EF. 8Þ, 3,425.9

-3,432 cm−1 ' 1,620 cm−1 ÷ l] º* hû ¬áâã"F ]

^ Âüß, Q* C ÷ª $~ *c8 ÄM ýõ

F[12]. Fig. 3(b) fg lm TU S lm £! fg

8 1,000-1,200 cm−1 þ; O-Si £Qÿøù¿k 8 ÷l],

803 cm−1 þ; SiO4 i 8 ÷l] ' 464 cm−1 þ

; Si-O-Si U¿k 8 ÷l] 0 TU Q 8 ÷l

] "/ EF[12-14]. # fg TU hi lm

D: EG ZR XPS 2ØV í Ë6F.

Fig. 4 Fig. 3 (a) ' (b) nÉ Q8 è\ é(0-1,200 eV)

2 XPS ¬áâãV "c ÄF. TU ¬áâã[Fig. 4(b)]V Ù

Ú"i Ca 2p9 P 2p l] Ò>ÜG ©© 347.29 133.0 eV

Â/ Eß, HAp #U[c l] "/ EF[15].

Ö C 1s l] Q* C ÷ª ~*z *c ÄM !FFig. 1. Schematic drawing for the preparation of silica nanostructures

by template method.

40 3 2002 6

Page 3: Template Synthesis of Silica Nanostructures - cheric.org · 377 HWAHAK KONGHAK Vol. 40, No. 3, June, 2002, pp. 377-381 *† * * * (2002 3 18 , 2002 4 16 ) Template Synthesis of Silica

379

[16]. # T ¬áâã[Fig. 4(a)] TU  l]

Ö 155.3 eV9 103.2 eV ó6 õwl] Si 2s9 Si 2p3/2

Si 8 ? l]  ÄF[17]. Fig. 4(a) ¬áâãV $

º¹ @6i Si 2s, Si 2p, C 1s, O 1s l] ]^ Âú µi, Ca

2p9 P 2p l] º* T 8ß, TU hi lm fg

*c8 ÄM ýõF. 8Þ fg lm TU /2

XPS 2Ø @D è/ £Qÿ[c O 1s ¬áâã(Fig. 5)V

6i Zr ÈÌ %. óôV Eß, Ò>ÜG 531.2

eV ó6 l][Fig. 5(b)] fg(SiO2) , l]

532.9 eV[Fig. 5(a)] Ca-O9 P-O Ò>, xg/ TU hi ÷ª OH

* åD l]c ÄM ÉF[18].

Fig. 6\ Fig. 3 (b) ¾M ¶\ # T #$Õ

¿V "c ÄF. ¿ fg TU hi 6^ lm

D: E¥ @D/ EF.

TUV Ï%5­ p8 ° fg y

#$Õ ¿V Fig. 7 "F. [Fig. 7(a), (b)] ©© TUV

0.7 ' 1.4 g 58 S 8F. >?8 QR2

Fig. 2. SEM micrograph and XRD pattern of templates(HAp).

Fig. 3. FT-IR spectrum of samples: (a) templates; (b) nanoprecursors;(c) silica nanostructures.

Fig. 4. XPS survey spectrum of samples: (a) nanoprecursors; (b) tem-plates.

Fig. 5. Curve-fitting of the oxygen XPS spectrum for nanoprecursors.

Fig. 6. SEM micrograph for nanoprecursors.

HWAHAK KONGHAK Vol. 40, No. 3, June, 2002

Page 4: Template Synthesis of Silica Nanostructures - cheric.org · 377 HWAHAK KONGHAK Vol. 40, No. 3, June, 2002, pp. 377-381 *† * * * (2002 3 18 , 2002 4 16 ) Template Synthesis of Silica

380

d

J.

nd

, J.

50-200 nm, ò 0.2-4µm ]* U V "

ZT/ EMq, Fig. 7 (b) @D 400 nm V w

R $ TU "F ]^ Âú ÄV EF.

>? 5)(N) ÀÀ$ 2% u:

GG \ TU4B fg lm *c8 ÄM ©F.

8Þ, TU ]*"F \( 0.2-0.4µm) fg S

TU lm fg î TUV 5no fg

U?n³ ! ^ G Õ

TU "F x ]* G^ DsF/ !F.

fg UV @"i, 8 j\ _ õ

9 _ õ ôV "/ EF. #

$ TUV 56 ! P w: Õq,

°$ TU ?2 lm fg ó6 k1M ¹

å Ò/ ýõF.

r8 Ò >? fg ò TUM

¹ p:ì E¥V n8F/ ÉDq, î >?

¾ 20-40 nm[Fig. 7(c) ' 8(d)] !vV N EF.

>? nÉ Fig. 7(a) EDS 2Ø Ò(Fig. 8) %.9

fg T?2M u:P E¥V "ZT/ EF.

4.

W-XLV ±M 6Z $c HAp TUM

8 >?KL 8 fg p Q6Z

8 Ò F¥ ¦\ GV ¶sF.

XRD, SEM ' TEM 2ØV í6Z TU fg ¹ lmD

: E¥V Ýcì Es/, ¹ # XPS 2Ø O 1s

Q8 curve-fitting Zr G %. óôV Esß,

lm fg9 TU +,[ Ò> w:! *c8 ÄM

!F.

8Þ, fg %. T?2c fg

Ýc DsMq, x ò QR2 50-200 nm ' 0.2-4µm !v

"F. fg ?V TUM ¹ p:ì

E¥V "ZT Äw "ö p KL fg

Q>? [5 ôV n T ÄF. KL\ f

g Ö TiO2, V2O5, ZnO, WO3 0 F# <* >

?v [5ì EF/ ýõF.

J ,*$R ºQ !%+, *$À&(½À§5 $

&' É À ' f5+ J; KN-0133; (Z*&, §") J

£ GM S:¿ Äq, J£ GM u:¿ Äq,

)\ *;+F.

1. Iijima, S.: Nature, 354, 56(1991).

2. Morales, A. M. and Lieber, C. M.: Science, 279, 208(1998).

3. Zhang, Y., Suenaga, K., Colliex, C. and Iijima, S.: Science, 281, 973

(1998).

4. Satishkumar, B. C., Govindaraj, A., Vogl, E. M., Basumallick, L. an

Rao, N. R.: J. Mater. Res., 12(3), 604(1997).

5. Lakshmi, B. B., Dorhout, P. K. and Martin, C. R.: Chem. Mater., 9,

857(1997).

6. Schlottig, F., Textor, M., Georgi, U. and Roewer, G.: J. Mater. Sci. Lett.,

18, 599(1999).

7. Zhang, M., Bando, Y., Wada, K. and Kurashima, K.: J. Mater. Sci.

Lett., 18, 1911(1999).

8. Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M. and Elliott,

C.: Biomaterials, 22, 2459(2000).

9. Chen, C. C. and Yen, F. S.: J. Mater. Sci., 29, 3215(1994).

10. Walters, M. A., Leung, Y. C., Blumenthal, N. C., LeGeros, R. Z. a

Konsker, K. A.: J. Inorg. Biochem., 39, 193(1990).

11. Joschek, S., Nies, B., Krotz, R. and Gopferich, A.: Biomaterials, 21,

1645(2000).

12. Costa, T. M. H., Gallas, M. R., Benvenutti, E. V. and Da Jornada

Fig. 7. Low magnification(left) and high magnification(right) TEM micro-graphs of nanostructure obtained by different concentrations oftemplates: (a) 0.7 g · dm−3; (b) 1.4 g · dm−3.

Fig. 8. EDS spectrum from nanostructures in Fig. 7(a).

40 3 2002 6

Page 5: Template Synthesis of Silica Nanostructures - cheric.org · 377 HWAHAK KONGHAK Vol. 40, No. 3, June, 2002, pp. 377-381 *† * * * (2002 3 18 , 2002 4 16 ) Template Synthesis of Silica

381

5).

nd

A. H.: J. Non-Crystalline Solids, 220, 195(1997).

13. Kamistos, E. I., Patsis, M. A. and Kordas, G. P.: Phys. Rev., B48,

12499(1993).

14. Wood, D. L. and Rabinovich, E. M.: Appl. Spectrosc., 43, 263(1989).

15. Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D.:

“Handbook of X-Ray Photoelectron Spectroscopy,” 2nd ed., Chastain, J.

and King, Jr. R. C., Physical Electronics. Inc., Eden Prairie, MN(199

16. Xiao, S. J., Textor, M., Spencer, N. D., Wieland, M., Keller, B. a

Sigrist, H.: J. Mater, Sci. Mater. Med., 8, 867(1997).

17. Clarke, T. A. and Rizkalla, E. N.: Chem. Phys. Lett., 37, 523(1976).

18. Milella, E., Cosentino, F., Licciulli, A. and Massaro, C.: Biomaterials,

22, 1425(2001).

HWAHAK KONGHAK Vol. 40, No. 3, June, 2002