t. senthil (mit) subir sachdev matthias vojta (karlsruhe)

33
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at http://pantheon.yale. edu/~subir cond-mat/0209144 paper rejected by cond-mat Subject: cond-mat daily 0209108 -- 0209143 received 1651 Date: Thu, 5 Sep 2002 22:56:09 -0400 Subject: cond-mat daily 0209145 -- 0209175 received 1651 Date: Sun, 8 Sep 2002 22:53:13 -0400

Upload: cassia

Post on 10-Feb-2016

57 views

Category:

Documents


0 download

DESCRIPTION

paper rejected by cond-mat. Subject: cond-mat daily 0209108 -- 0209143 received 1651 Date: Thu, 5 Sep 2002 22:56:09 -0400 Subject: cond-mat daily 0209145 -- 0209175 received 1651 Date: Sun, 8 Sep 2002 22:53:13 -0400. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

T. Senthil (MIT)Subir Sachdev

Matthias Vojta (Karlsruhe)

Quantum phases and critical points of correlated metals

Transparencies online at http://pantheon.yale.edu/~subir

cond-mat/0209144

paper rejected by cond-matSubject: cond-mat daily 0209108 -- 0209143 received 1651Date: Thu, 5 Sep 2002 22:56:09 -0400

Subject: cond-mat daily 0209145 -- 0209175 received 1651Date: Sun, 8 Sep 2002 22:53:13 -0400

Page 2: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

OutlineI. Kondo lattice models

Doniach’s phase diagram and its quantum critical point

II. A new phase: FL* Paramagnetic states of quantum antiferromagnets:

(A) Bond order, (B) Topological order.

III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka-Oshikawa flux-piercing arguments

IV. Extended phase diagram and its critical points

V. Conclusions

I. Kondo lattice models

Page 3: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

I. Doniach’s T=0 phase diagram for the Kondo lattice

† †'

Conduction electrons;

localized moments (assumed =1/2, for specificity)

ij i j K i i fii j i

i

fi i

H t c c J c c S

c

S f S

JK / t

“Heavy” Fermi liquid with moments Kondo screened

by conduction electrons. Fermi surface obeys

Luttinger’s theorem.

FLSDW

Local moments choose some static spin

arrangement

2~ / ~ exp /RKKY K K KJ J t T t J

Page 4: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Luttinger’s theorem on a d-dimensional lattice for the FL phase

Let v0 be the volume of the unit cell of the ground state, nT be the total number density of electrons per volume v0. (need not be an integer)

02 Volume enclosed by Fermi surface2

mod 2

d

T

v

n

1c cT fn n n n

A “large” Fermi surface

Page 5: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Arguments for the Fermi surface volume of the FL phase

Single ion Kondo effect implies at low energiesKJ

Fermi surface volume density of holes mod 2

1 1 mod 2c cn n

Fermi liquid of S=1/2 holes with hard-core repulsion

† † † † 0i i i ic f c f † 0 , =1/2 holeif S

Page 6: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Arguments for the Fermi surface volume of the FL phase

Alternatively:

† † †

ij i j i i i i f fi fi fi fii j i

cT f

H t c c Vc f Vf c n n Un n

n n n

Formulate Kondo lattice as the large U limit of the Anderson model

For small , Fermi surface volume = mod 2.

This is adiabatically connected to the large limit where 1f c

f

U n n

U n

Page 7: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Quantum critical point between SDW and FL phases

Spin fluctuations of renormalized S=1/2 fermionic quasiparticles, (loosely speaking, TK remains finite at the quantum critical point)

h

Gaussian theory of paramagnon fluctuations: †' '~ h h

2 2

1Action: , ( , )2

d

d

d qdS q q T

J.A. Hertz, Phys. Rev. B 14, 1165 (1976).

J. Mathon, Proc. R. Soc. London A, 306, 355 (1968); T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974);

T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985) G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339

(1985); A.J. Millis, Phys. Rev. B 48, 7183 (1993).

Characteristic paramagnon energy at finite temperature (0,T) ~ T p with p > 1.

Arises from non-universal corrections to scaling, generated by term.4

Page 8: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Quantum critical point between SDW and FL phases

Critical point not described by strongly-coupled critical theory with universal dynamic response functions dependent onIn such a theory, paramagnon scattering amplitude would be determined by kBT alone, and not by value of microscopic paramagnon interaction term.

Bk T

Additional singular corrections to quasiparticle self energy in d=2

Ar. Abanov and A. V. Chubukov Phys. Rev. Lett. 84, 5608 (2000); A. Rosch Phys. Rev. B 64, 174407 (2001).

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

(Contrary opinions: P. Coleman, Q. Si…………)

Page 9: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

OutlineI. Kondo lattice models

Doniach’s phase diagram and its quantum critical point

II. A new phase: FL* Paramagnetic states of quantum antiferromagnets:

(A) Bond order, (B) Topological order.

III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka-Oshikawa flux-piercing arguments

IV. Extended phase diagram and its critical points

V. Conclusions

II. A new phase: FL*

Page 10: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Reconsider Doniach phase diagram

02 Volume enclosed by Fermi surface2

1 mod 2

d

T

v

n

II. A new phase: FL*

This phase preserves spin rotation invariance, and has a Fermi surface of sharp electron-like quasiparticles.

The state has “topological order” and associated neutral excitations. The topological order can be easily detected by the violation of

Luttinger’s theorem. It can only appear in dimensions d > 1

Precursors: L. Balents and M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654, (1999); T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000); S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).

Page 11: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

It is more convenient to consider the Kondo-Heiseberg model:

† †' ,ij i j K i i fi H fi fj

i j i i j

H t c c J c c S J i j S S

Work in the regime JH > JK

Determine the ground state of the quantum antiferromagnet defined by JH, and then couple to conduction electrons by JK

Page 12: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Ground states of quantum antiferromagnetsBegin with magnetically ordered states, and consider quantum

transitions which restore spin rotation invariance

Two classes of ordered states:

(A) Collinear spins (B) Non-collinear spins

1 2

2 21 2 1 2

cos sin

4 4, ; 1 ; 03 3

S N N

N N N N

r Q r Q r

Q

2

cos

, ; 1

S N

N

r Q r

Q

Page 13: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

(A) Collinear spins, bond order, and confinement

Quantum transition restoring

spin rotation

invariance

Bond-ordered state

2

1

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

2

cos

, ; 1

S N

N

r Q r

Q

Page 14: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

(A) Collinear spins, bond order, and confinement

Quantum transition restoring

spin rotation

invariance

Bond-ordered state

2

1

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

2

cos

, ; 1

S N

N

r Q r

Q 1 excitation is

gapped particle

S

N

Page 15: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

State of conduction electrons

Perturbation theory in JK is regular and so this state will be stable for finite JK

However, because nf=2 (per unit cell of ground state)nT= nf+ nc= nc(mod 2), and Luttinger’s theorem is obeyed.

At JK= 0 the conduction electrons form a Fermi surface on their own with volume determined by nc

FL state with bond order

Page 16: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

(B) Non-collinear spins, deconfined spinons, Z2 gauge theory, and topological order

1 2

2 21 2 1 2

cos sin

4 4, ; 1 ; 03 3

S N N

N N N N

r Q r Q r

Q

Quantum transition restoring

spin rotation

invariance

RVB state with free spinons

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) – Z2 gauge theory A.V. Chubukov, T. Senthil and S. Sachdev, Phys. Rev. Lett. 72, 2089 (1994).

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).

Page 17: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

1 2

2 21 2 1 2

cos sin

4 4, ; 1 ; 03 3

S N N

N N N N

r Q r Q r

Q

Solve constraints by writing:

1 2

1,2

2 21 2

where are two complex numbers with

1

abac c bN iN z zz

z z

3 2

2

Order parameter space: Physical observables are invariant under the gauge transformation a a

S ZZ z z

Other approaches to a Z2 gauge theory: R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991); S. Sachdev and M. Vojta, J. Phys. Soc. Jpn 69, Suppl. B, 1 (2000). X. G. Wen, Phys. Rev. B 44, 2664 (1991). T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000). R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2002). L. B. Ioffe, M.V. Feigel'man, A. Ioselevich, D. Ivanov, M. Troyer and G. Blatter, Nature 415, 503 (2002).

Page 18: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Vortices associated with 1(S3/Z2)=Z2

S3

(A) North pole

(B) South pole x

y(A)

(B)

Can also consider vortex excitation in phase without magnetic order, : vison 0S

r

A paramagnetic phase with vison excitations suppressed has topological order. Suppression of visons also allows za quanta to propagate – these are the spinons.

State with spinons must have topological order

Page 19: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

State of conduction electrons

Perturbation theory in JK is regular, and topological order is robust, and so this state will be stable for finite JK

So volume of Fermi surface is determined by(nT -1)= nc(mod 2), and Luttinger’s theorem is violated.

At JK= 0 the conduction electrons form a Fermi surface on their own with volume determined by nc

The FL* state

Page 20: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

OutlineI. Kondo lattice models

Doniach’s phase diagram and its quantum critical point

II. A new phase: FL* Paramagnetic states of quantum antiferromagnets:

(A) Bond order, (B) Topological order.

III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka-Oshikawa flux-piercing arguments

IV. Extended phase diagram and its critical points

V. Conclusions

III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka Oshikawa flux-piercing arguments

Page 21: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck- Yamanaka-Oshikawa flux-piercing arguments

Lx

Ly

1

Adiabatically insert flux =2 (units =c=e=1) acting on electrons.

State changes from to ' , and 0 , where

2 ˆ exp .Tx

UH U H

iU x n

L

rr

M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000).

Unit cell ax , ay.Lx/ax , Ly/ay

coprime integers

Page 22: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

1

Adiabatic process commutes with the translation operator , so momentum is conserved.

2 ˆ However exp ;

so shift in momentum between states ' and

x

x

x x Tx

x

TP

iU T U T nL

P U

rr

0

is

2 mod 1 .

Alternatively, we can compute by assuming it is absorbed by quasiparticles of a Fermi liquid. Each quasip

yx T

x

x

LP n

v a

P

2

article has its momentum shifted by 2 , and so

Volume enclosed by Fermi surface2 2 mod 2 .2

From 1 and 2 , same argument in direction, using coprime , :

x

xx xx y

x x y y

L

PL aL L

y L a L a

0

2 2 Volume enclosed by Fermi surface mod 22

Tv

n

M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000).

Page 23: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Effect of flux-piercing on a topologically ordered quantum paramagnetN. E. Bonesteel, Phys. Rev. B 40, 8954 (1989). G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre, Eur. Phys. J. B 26, 167 (2002).

DD

a D D

1 2 3Lx-1Lx-2 Lx

Ly

Page 24: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Effect of flux-piercing on a topologically ordered quantum paramagnetN. E. Bonesteel, Phys. Rev. B 40, 8954 (1989). G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre, Eur. Phys. J. B 26, 167 (2002).

DD

a D D

1 2 3Lx-1Lx-2 Lx

Number of bonds cutting dashed line

After flux insertion

1 ;

D

D

vison

0

Equivalent to inserting a inside hole of the torus.

carries momentum yL v

vison

Vison

Ly

Page 25: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Flux piercing argument in Kondo lattice

Shift in momentum is carried by nT electrons, where

nT = nf+ nc

In topologically ordered, state, momentum associated with nf=1 electron is absorbed by creation of vison. The remaining

momentum is absorbed by Fermi surface quasiparticles, which enclose a volume associated with nc electrons.

The FL* state.

cond-mat/0209144

Page 26: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

OutlineI. Kondo lattice models

Doniach’s phase diagram and its quantum critical point

II. A new phase: FL* Paramagnetic states of quantum antiferromagnets:

(A) Bond order, (B) Topological order.

III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka-Oshikawa flux-piercing arguments

IV. Extended phase diagram and its critical points

V. Conclusions

IV. Extended phase diagram and its critical points

Page 27: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

IV. Extended T=0 phase diagram for the Kondo lattice

JK / t

FL

SDW

Magneticfrustration

FL*

SDW*

Hertz Gaussian paramagnon theory

Quantum criticality associated with the onset of topological order – described by interacting gauge theory. (Speaking loosely – TK vanishes along this line)

• * phases have spinons with Z2 (d=2,3) or U(1) (d=3) gauge charges, and associated gauge fields.• Fermi surface volume does not distinguish SDW and SDW* phases.

Page 28: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

• Because of strong gauge fluctuations, U(1)-FL* may be unstable to U(1)-SDW* at low temperatures.• Only phases at T=0: FL, SDW, U(1)-SDW*.

IV. Extended T=0 phase diagram for the Kondo lattice

JK / t

FL

SDW

Magneticfrustration

SDW*

SDW*

Hertz Gaussian paramagnon theory

Quantum criticality associated with the onset of topological order – described by interacting gauge theory. (Speaking loosely – TK vanishes along this line)

U(1) fractionalization (d=3)

Page 29: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

• Because of strong gauge fluctuations, U(1)-FL* may be unstable to U(1)-SDW* at low temperatures.• Only phases at T=0: FL, SDW, U(1)-SDW*. • Quantum criticality dominated by a T=0 FL-FL* transition.

U(1) fractionalization (d=3) Mean-field phase diagram

C/T ~ ln(1/T)

(cf. A. Georges)

Page 30: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Strongly coupled quantum criticality with a topological or spin-glass order parameter

Order parameter does not couple directly to simple observables

Dynamic spin susceptiblity

2

1,

B

qi A q Q B T

k T

Non-trivial universal scaling function which is a property of a bulk d-dimensional quantum field

theory describing “hidden” order parameter.

Page 31: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

• Superconductivity is generic between FL and Z2 FL* phases.

JK / t

FL

SDW

Magneticfrustration

FL*

SDW*

Hertz Gaussian paramagnon theory

Superconductivity

Z2 fractionalization

Page 32: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

Z2 fractionalization

Pairing of spinons in small Fermi surface state induces superconductivity at the confinement transition

Small Fermi surface state can also exhibit a second-order metamagnetic transition in an applied magnetic

field, associated with vanishing of a spinon gap.

FL*

FL

Mean-field phase diagram

Page 33: T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe)

JK / t

FL

SDW

Magneticfrustration

FL*

SDW*

Conclusions• New phase diagram as a paradigm for clean metals with local moments. • Topologically ordered (*) phases lead to novel quantum criticality.• New FL* allows easy detection of topological order by Fermi surface

volume