synthesis of polymers || organic/inorganic hybrid polymers

56
10 Organic/Inorganic Hybrid Polymers Matthias Rehahn Polymer.1nstitut. Universitat Karlsruhe. Karlsruhe. Germany List of Symbols and Abbreviations ....................................... 320 Scope and Structure ......................................... 322 Polymers with only Main Group Elements in Their Backbone ....... 323 10.3.1 Polysilanes ................................................. 323 Polygermanes and Polystannanes ................................ 327 10.3.3 Polysiloxanes ............................................... 328 10.3.4 Polycarbosilanes ............................................. 332 10.3.5 Polyphosphazenes ............................................ 337 10.3.6 Polysilazanes ............................................... 340 10.3.7 Further Main Group Hybrid Polymers ............................ 341 Poly( 1,l'-metallocenylenes) .................................... 343 Poly( 1,1'-metallocenylene arylenes) .............................. 344 with n-Conjugated Bridging Units Poly( 1,1'-metallocenylene ethylenes) ............................. 346 10.1 Introduction ................................................ 322 10.2 10.3 10.3.2 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.4.6 10.4.7 10.4.9 10.4.10 Polymers that have Transition Metals as Integral Parts of Their Main Chains ........................................ 343 Further Poly( 1,l'-metallocenylene) Derivatives ............................... 346 Phosphorus-, Sulfur-, and Selenium-Bridged Poly( 1,l'-metallocenylene) Derivatives ................................................. 347 Further Poly( 1,l '-metallocenylene) Derivatives with Nonmetallic Bridging Units ................................ 349 Poly( 1,1 '-ferrocenylene silanes) and Poly( 1,l'-ferrocenylene germanes) . . 349 Polymers from Octahedrally Coordinated Polyimine-Transition Metal Complexes ................................................. 356 Polymers from Tetrahedrally Coordinated Polyimine-Transition Metal complexes .................................................. 358 10.4.8 Poly(meta1laines) ............................................ 352 10.4.1 1 Schiff-Base Coordination Polymers .............................. 360 Further Transition Metal Coordination Polymers .................... 360 Poly(phtha1ocyaninato)siloxanes and Related Polymers ............ 362 10.6 Conclusions ................................................ 365 10.7 Acknowledgements .......................................... 365 10.8 References ................................................. 365 10.4.1 2 10.5 Materials Science and Technology A Comprehensive Treatment Edited by: R.W. Cahn, P. Haasen, E. J. Kramer Copyright 0 WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany), 1999

Upload: a-dieter

Post on 19-Dec-2016

227 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10 Organic/Inorganic Hybrid Polymers

Matthias Rehahn

Polymer.1nstitut. Universitat Karlsruhe. Karlsruhe. Germany

List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Scope and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Polymers with only Main Group Elements in Their Backbone . . . . . . . 323

10.3.1 Polysilanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Polygermanes and Polystannanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

10.3.3 Polysiloxanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 10.3.4 Polycarbosilanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 10.3.5 Polyphosphazenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 10.3.6 Polysilazanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 10.3.7 Further Main Group Hybrid Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Poly( 1,l '-metallocenylenes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Poly( 1, 1'-metallocenylene arylenes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

with n-Conjugated Bridging Units Poly( 1, 1'-metallocenylene ethylenes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 10.2 10.3

10.3.2

10.4

10.4.1 10.4.2 10.4.3

10.4.4 10.4.5

10.4.6

10.4.7

10.4.9

10.4.10

Polymers that have Transition Metals as Integral Parts of Their Main Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Further Poly( 1,l '-metallocenylene) Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Phosphorus-, Sulfur-, and Selenium-Bridged Poly( 1,l '-metallocenylene) Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 Further Poly( 1,l '-metallocenylene) Derivatives with Nonmetallic Bridging Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 Poly( 1,1 '-ferrocenylene silanes) and Poly( 1,l '-ferrocenylene germanes) . . 349

Polymers from Octahedrally Coordinated Polyimine-Transition Metal Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 Polymers from Tetrahedrally Coordinated Polyimine-Transition Metal complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

10.4.8 Poly(meta1laines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

10.4.1 1 Schiff-Base Coordination Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 Further Transition Metal Coordination Polymers . . . . . . . . . . . . . . . . . . . . 360 Poly(phtha1ocyaninato)siloxanes and Related Polymers . . . . . . . . . . . . 362

10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 10.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 10.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

10.4.1 2 10.5

Materials Science and Technology A Comprehensive Treatment Edited by: R.W. Cahn, P. Haasen, E. J. Kramer

Copyright 0 WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany), 1999

Page 2: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

320 10 Organicllnorganic Hybrid Polymers

List of Symbols and Abbreviations

a 12

m 'P

M,, M w n P" p w Tg Trn x , .Y. z

&

I171 il V

0

z, x'z'

X'?'

Ac acac ADMET

Bu BuLi

DMA DMSO ESR Et GPC IR LAH LB LED M Me Mt NMR Nu

bPY

CP

Mark-Houwink exponent Planck constant persistent length number number-average molecular weight weight-average molecular weight number number-average degree of polymerization weight-average degree of polymerization glass transition temperature melting temperature number

extinction coefficient intrinsic viscosity wavelength frequency electric conductivity electro-optic switching time second-order nonlinear optical susceptibility third-order nonlinear optical susceptibility

acety 1 acetylacetonate(-o) acyclic diene metathesis 2,2'-bipyridine butyl n-butyllithium cyclopentadienyl dimethylacetamide dimethylsulfoxide electron spin resonance ethyl, C2Hs gel-permeation chromatography infrared lithiumaluminumhydride, LiAlH4 Langmuir-Blodgett light-emitting diode metal methyl. CH, metal nuclear magnetic resonance nucleophil

Page 3: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

Ph ROP SAXS TEM THF TMEDA TPFPB tPPZ uv

List of Symbols and Abbreviations 32 1

phenyl ring-opening polymerization small-angle X-ray scattering transmission electron microscopy tetrahydro furan N,N,N:N’-tetramethylethylendiamine tetrakis (pentafluorophenyl) borate tetrap yridophenazine ultraviolet

Page 4: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

322 10 Organic/lnorganic Hybrid Polymers

10.1 Introduction

The overwhelming majority of synthetic macromolecules known today is character- ized by a backbone that contains either on- ly carbon or carbon in combination with a selection of nonmetallic heteroatoms like oxygen, nitrogen. sulfur, or phosphorus. This predominance of “organic polymers” is contrasted by a tremendous lack of well- defined organic/inorganic hybrid polymers, i.e., macromolecules where carbon does not play the key role in the backbone. Of course, there are plenty of well-known inorganic or organometallic chain molecules in inorgan- ic and solid-state chemistry, but almost all of them are insoluble and infusible or de- compose when heated or brought into con- tact with a potential solvent. Hence they are inaccessible for profound polymer analysis and, i n general, not considered to be well- defined macromolecules. The obvious pref- erence of organic polymers in today’s sci- ence and technology is mainly due to the fact that the exploitation of fossil carbon sourc- es like oil. coal, or gas is cheap and conven- ient. Hence people preferred the develop- ment of organic to inorganic processes, and macromolecular science clearly became a part of organic rather than inorganic chem- istry.

Research on soluble hybrid polymers has increased dramatically only i n the last two decades. The search for novel synthetic challenges was one important reason for this development. but also the new interest in su- pramolecular chemistry and the need for new materials with exceptional properties helped induce this impressive catch-up pro- cess (Ciardelli et al., 1996; Manners, 1996; Mark et al., 1992). First. however, these ef- forts were hindered by the lack of appropri- are organic/inorganic hybrid monomers and optimized reaction conditions, which would ensure homogeneous and quantitative con-

version of these monomers - radical or ionic chain polymerization of unsaturated monomers proved to be possible only in some specific cases - and the apparently easier step-growth processes were also problematic. Consequently, only low mo- lecular weight products of irregular consti- tution became available in most cases. Fun- damental progress has only been possible since the late 1980s when modern polymer- ization reactions were applied, such as ring- opening polymerization or transition metal catalyzed polycondensation reactions. These novel synthetic techniques - in com- bination with new concepts like using solubilizing side chains and dendritic growth - opened up access to an impressive variety of soluble hybrid polymers and hence revolutionized our knowledge about this fascinating class of macromolecular systems.

10.2 Scope and Structure

In this chapter, well-defined macromole- cules are described whose chemical struc- ture is represented by one of the three sche- matic drawings A-C shown in Fig. 10.1. Thus polymers with carbon-containing building blocks in the main chains are con- sidered, if these organic blocks are (i) short and (ii) connected covalently or coordina- tively to one another by (semi)metals (A, B). In contrast to this, systems C have a com- pletely carbon-free main chain but bear or- ganic substituents as side groups. On the other hand, macromolecules that have strict- ly carbon-free chemical structures (D) are disregarded here as well as all those macro- molecule metal complexes in which (semi) metals are laterally attached to an otherwise purely organic polymer (E-G). The second prerequisite for considering a hybrid poly-

Page 5: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 323

L Jn

E F 25

G

: organic residues containing chemical elements like C, 0, N, S , P

: covalent bond @ : (semipnetat - : coordinative bond X : any element except carbon

Figure 10-1.

mer here is that it must be soluble and thus have a constitution and an average molecu- lar weight that can be determined experi- mentally.

The following description of the individ- ual hybrid polymer classes is divided into three parts. In the first part (Sec. 10.3), poly- mers are described that only have main group elements in their backbone, while the second part (Sec. 10.4) deals with polymers that additionally contain transition metals. In the third part (Sec. 10.5), some macro- molecules are presented that contain stacked planar ring systems, irrespective of whether the main chains contain transition metals or not.

10.3 Polymers with only Main Group Elements in Their Backbone

10.3.1 Polysilanes

Polysilanes 1 (Scheme 10-l), i.e., poly- silylenes, have a main chain that is made up entirely of silicon atoms. The two remain- ing valences at each silicon bear substitu- ents R, R: which are typically organic (al- kyl, aryl) but may also be H, Me& or oth- ers. Oligomeric silanes have been studied for more than 70 years (Kipping, 1924), but the belief that silicon has only a limited ca- pability for catenation persisted until quite recently (Mark et al., 1992). In 1975, Yaji- ma observed that the insoluble polydime- thylsilane l a (a: R=R’=CH3), as well as its cyclic oligomer (Me,Si),, transform into sil- icon carbide at high temperatures (Yajima

Page 6: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

324 10 Organic/lnorganic Hybrid Polymers

1

n

Na, toluene

I 110°C

c H3

c H3 CH3

Cl-$,-Cl + CI-SI-CI - 2 3 I b

2 eq CaK t +liH+,

y 3

CI-Si-CI THF, 0 "C

Scheme 10-1.

L o + 4 O i C H3 bo&01cH3 l c

et al., 1975 a. b). This important finding in- itiated renewed attempts to make well-de- fined polymers 1 of high molecular weights available. Only three years later, West et al. showed that the introduction of some ran- domly distributed phenyl groups into poly- silane homopolymers such as l a greatly re- duces their crystallinity and thus increases their solubility and lowers their melting temperatures: Soluble and thermoplastic polysilane copolymers l b became available via Wurtz coupling of mixtures of 2 and 3 with sodium metal in boiling toluene (Maz- dyasni et al.. 1978: West et al., 1981).

Since then, many other well-defined polysilanes 1 of high molar mass (Mn>lOs) have been prepared using the Wurtz coupling. Nevertheless, the classic Wurtz reaction (Burkhard, 1949) also has some specific disadvantages, i.e., low tolerance towards functional groups, low yields, and bimodal or even multimodal molecular weight distributions in the products. The lat-

ter observation has been interpreted as a re- sult of the complex reaction mechanism in- volving radical, anionic, and silylene inter- mediates (Odian, 199 1 ; Gauthier and Wors- fold, 1989; Matyjaszewski et al., 1988). A recent reappraisal of the origins of the poly- modal molecular mass distributions, how- ever, rationalizes this phenomenon in terms of a competition between polymer forma- tion and degradation processes (Jones et al., 1996). Thus a satisfactory and unifying me- chanistic theory as well as a general best procedure for the Wurtz reaction are still not available. To alleviate these drawbacks nu- merous modifications of the classic proce- dure were tested (Cragg et al., 1990; Miller and Jenker, 1994; Jones et al., 1995; La- cave-Goffin et al., 1995; Uhlig, 1995). For example, THF-soluble alkali metal com- plexes with 18-crown-6 have been used (Jedlinski et al., 1997). Here well-defined alkali-metal ion pairs (Mt+/l8-crown-6, Mt-) are the reducting agents rather than

Page 7: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 325

5

7 Q 9

I d

I f

R Li - - -

CH2R

l e

electrons (Jedlinski and Sok61, 1995). The polymers thus obtained have a narrow mo- lecular weight distribution and molecular weights of up to Mw=8500, with cyclic oligomers being formed along with linear chains. Graphite-potassium (C8K), on the other hand, has been used recently for the preparation of nonionic, water-soluble poly- silane derivatives l c of high molecular weight and low polydispersity (Mw/M,<2.0) (Cleij et al., 1997). Moreover, activation of the sodium surface by ultrasound irradiation greatly accelerates the polymerization even at low temperatures and produces polymers with a much higher molecular weight and a monomodal molecular weight distribution (Kim and Matyjaszewski, 1988; Fujino and Isaka, 1989; Matyjaszewski et al., 1995).

+

l g Scheme 10-2.

Despite these important improvements, the Wurtz process still has obvious limita- tions because it does not allow the prepara- tion of functionalized polysilanes and is highly unattractive for large scale synthesis (Market al., 1992). Some alternative proce- dures were therefore developed, such as the dehydrogenative coupling of silicon hy- drides like 5 (Scheme 10-2), which pro- ceeds rapidly and nearly quantitatively in the presence of dimethyltitanocene as a cat- alyst, but gives polysilanes like Id of only very low molecular weight (P,=lO) (Aitken et al., 1985, 1986a, b; Campbell et al., 1989; Woo et al., 1991; Tilley, 1993). Using zirconium catalysts, the P, could mean- while be doubled, but the preparation of really high molecular weight polymers

Page 8: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

326 10 Organicllnorganic Hybrid Polymers

(M,>8000) has failed so far (Tilley, 1993). On the other hand, this route is important because it provides polysilanes with Si-H groups. Substitution of the hydrogen atoms (Id -+ le) allows the introduction of func- tional side groups into the polysilane back- bone (Hsiao and Waymouth, 1994).

A second alternative to the Wurtz process is the ring-opening polymerization (ROP) of strained cyclosilane oligomers such as 6 under kinetic control (Cypryk et al., 1991; Fossum and Matyjaszewski, 1995). More- over. Sakomoto et al. (1989) could show that polymerization of disilabicycloocta- dienes like 7 - a masked disilene - leads to pol ysilanes such as Ig. The polymerization most likely proceeds anionically, with elim- ination of the disilene fragment as a new si- lyl anion which can continue the reaction chain. Finally, some condensation reactions were tested to produce polysilanes: Poly- condensation of a,mdilithiooligosilanes with dichlorosilanes (Wesson and Williams, 1980) and the thermal decomposition of si- lyl-mercury polymers (Maxka et al., 1991) may serve as examples.

Scattering data obtained from poly(di-n- hexylsilane) (M, = 6 000 000) indicate that polymers 1 form random coils in solution, but have a slightly higher chain stiffness than typical polyolefins (Cotts et al., 1987). The electronic and photochemical proper- ties of polysilanes differ from those of all organic high polymers in that o-electron delocalization is possible along the cumu- lated Si-Si bonds (Bock and Ensslin, 197 1 ; Trefonas et al., 1983; Nelson and Pietro, 1988; Teramae and Takeda, 1989; Miller and Michl, 1989; Michl. 1990; Savin et al., 1992). Because the cr cr* transition (Lax = 300-400 nm) is permitted, the elec- tronic absorptions are intense, with extinc- tion coefficients E between 5000 and 10000 per Si-Si bond (Trefonas et al., 1983; Take- da et al., 1986: Klingensmith et al., 1986).

Theoretical as well as experimental evi- dence indicates that &,,, increases as the number of trans Si-Si-Si-Si conformations increases (Trefonas et al., 1983; Takeda et al., 1986; Michl et al., 1988; Miller et al., 1988). Therefore the 0-a"" separation de- pends on the conformation of the polysilane chains, and many polysilanes show rever- sible thermochromism (Lovinger et al., 1986; Miller and Michl, 1989; Weber et al., 1989; Schilling et al., 1990). Another con- sequence of cr-electron delocalization is the substantial electric conductivity of polysi- lanes after doping (Kepler et al., 1983, 1989): While the parent systems have con- ductivities of less than lo-'* S cm-', treat- ment with oxidizing agents like AsF5 af- fords materials with conductivities of up to 0.5 S cm-' (West et al., 1981; Mark et al., 1992). Moreover, polysilanes are photocon- ducting (Kepler et al., 1982; Frey et al. 1994), can be used as charge transport ma- terials in electrophotography (Stolka and Abkowitz, 1987; Stolka et al., 1987) or as transport layers in LEDs (Suzuki et al., 1993), and exhibit marked nonlinear optical properties (Baumert et al., 1988; Kajzar et al., 1986; Lovinger et al., 1989): The val- ue of x"'= 1 1 ~ 1 0 - ' ~ esu observed for po- ly(di-n-hexylsilane) is the largest ever ob- served for a polymer that is transparent in the visible region. Upon irradiation with ultraviolet light, most polysilanes undergo chain scission into smaller fragments (Tre- fonas et al., 1985; Karatsu et al., 1989). Thus polysilanes can be used as photoresists in microlithography (West, 1986; Miller and Michl, 1989; Mark et al., 1992).

Finally, they play an important role as pre- cursors of silicon carbide ceramics (Miller et al., 1988). In this context, a novel syn- thetic route has been published recently which opens up access to Fe/Si/C compos- ites as well: Iron tricarbonyl functionalized polysilanes Ik (Scheme 10-3) were pre-

Page 9: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 327

CI-Si-CI Me I I - toluene Na +!+ = +#j## H

a I h l i ' n

I k (C0)3 Scheme 10-3.

pared via hydrosilylation of conjugated trienes using l h followed by the treatment of l i with triiron dodecacarbonyl (Ungure- nasu, 1996). First investigations concerning the thermal conversion of l k into ceramic materials have been reported to be promis- ing.

10.3.2 Polygermanes and Polystannanes

In the 1980s, the first successful Wurtz synthesis of polygermanes, (R,Ge),, with M , >500 000 was published (Trefonas and West, 1985; Miller and Sooriyakumaran, 1987; Miller and Michl, 1989). Later on, Mochida and Chiba (1994) developed an al- ternative route to polygermanes using diio- dogermylene, GeI,, and alkyl Grignard re- agents or organolithiums. This latter meth- od is experimentally easier and safer than the Wurtz process and gives higher yields of narrowly distributed but relatively low molecular weight polygermanes (M,=103 - lo4). After further optimization, the titanocene- or zirconocene-catalyzed dehydrogenative coupling of germanium hydrides might also develop into an efficient synthetic route to polygermanes (Harrod, 1988).

The chain structure and material proper- ties of polygermanes are similar to those of

polysilanes 1 (Aitken et al., 1988; Miller and Michl, 1989; Hallmark et al., 1990; Welsh and Johnson, 1990): Polygermanes decompose and volatilize upon exposure to radiation (Mochida and Chiba, 1994) and thus might be useful in microlithography (Miller and Michl, 1989; Hallmark et al., 1990). a-Electron delocalization is more pronounced than in 1 and thus Lax is shift- ed bathochromically by about 20 nm in high molecular weight polygermanes (Tre- fonas and West, 1985; Miller and Sooriya- kumaran, 1987). An even more pronounced a-electron delocalization was expected for polystannenes, (R,Sn), (Adams and Drager, 1987; Takeda and Shiraishi, 1992; Sita et al., 1995). However, until 1992 the long- est known stannane chain had only nine met- al centers (Devylder et al., 1996; Brown and Morgan, 1963; Neumann and Pedain, 1964; Mitchell, 1975; Grugel et al., 1977; Adams and Drager, 1987). Zou and Yang (1992) were the first to prepare really high molec- ular weight linear polystannanes via 15- crown-5-catalyzed Wurtz coupling of Bu2- SnC1,. Subsequently, Imori and co-workers (Imori and Tilley, 1993; Imori et al., 1995) obtained similar polymers through zirconi- um-catalyzed dehydrogenation of secon- dary stannanes. Finally, an improved Wurtz synthesis has been described by Devylder

Page 10: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

328 10 Organic/lnorganic Hybrid Polymers

et al. ( 1996) which yields poly(dibuty1stan- nanes) of very high molecular weights (M,,=lOh; GPC). In this study, the reaction time was identified as the key parameter, since polymers degrade upon prolonged re- action. A detailed investigation of the poly- stannanes thus available (M,=96000, M,,=22 000) showed a highly extended o-delocalization in these polymers (A,,,,,,, = 384 - 388 nm; THF). Upon doping with AsF,, an electrical conductivity of up to 0.3 S cm-’ was determined (Imori et al., 1995).

10.3.3 Polysiloxanes

Polysiloxanes represent by far the most studied and economically most important hybrid polymers worldwide (Archer, 1986; Zeldin. 1986: Rheingold, 1987; Rochow, 1987; Patai and Rappoport. 1989; Bock, 1989; Goodwin and Kenney, 1990; Zeigler and Fearon, 1990; Allcock and Lampe, 1990; Semlyen and Clarson, 1991; Sheats et al., 1991; Clarson and Semlyen, 1991: Market al., 1992;Manners, 1996). They can be produced via polycondensations, or via anionic or cationic ROP reactions.

In the polycondensation approach (Scheme 10-4A), dichlorodialkylsilanes 9

R R \ I

o/si\ 0 I I

R-,Si, ,S\-R R o R

10

are hydrolyzed to give long chain linear (12) and/or cyclic siloxanes such as 10 and 11 via hydroxy intermediates. Basic catalysts and high temperatures favor linear, high mo- lecular weight polymers, while acidic cata- lysts tend to produce cyclic and/or linear oli- gomers (Odian, 1991). Today, this “hydro- lysis approach” has been largely replaced by the ROP of organosilicon cyclic trimers and tetramers 10 and 11, respectively (Scheme 10-4B) (Rochow, 1987; Kendrick et al., 1989; McGrath, 1985; Saam, 1990; Chojnowski, 199 1 a). Typical catalysts for the anionic ROP are alkali metal oxides, hy- droxides, and bases in general. The con- trolled polymerization of hexa-n-alkylcy- clotrisiloxanes using cryptated lithium, moreover, yields polymers with low poly- dispersity, demonstrating the presence of a single growing species in this case (Molen- berg et al., 1997). Finally, the “living” an- ionic ROP of cyclic siloxanes opens up el- egant access to block copolymers (Choj- nowski, 1991 b; Stein et al., 1991).

Cationic ROP of cyclosiloxanes, on the other hand, has not received as much atten- tion as the anionic variety. Despite the fact that the results are generally similar to those of the anionic ROP, the mechanism is very different (Wilczek et al. 1986; Kendrick

heat, anionic

initiators

R, P o/si, 0

o,si’o

\ 3 R\ 1 fi\R RHS\

d ‘R 11

Page 11: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 329

Scheme 10-5.

R R' R y - y I I I

I I I I R R R R'

1) Ph3C-TPFPB * R3SiO-Si-O-Si-O-Si Si-Nu

2) Nu'

r R /R R,' /R I Nu-

!

R I - . . . -. . . . . - --... - R3SiO-Si-hMlvn"-O-Si 0,

et al., 1989). It is assumed that two active ends per chain are involved in the propaga- tion process, and both condensation and ad- dition polymerization must be considered here. However, Wang et al. ( 1 996) recently described a modified cationic ROP of cy- closiloxanes which was initiated by electro- philic organosilicon reagents such as R3- SiH-Ph3Cf B(C,F,), (Ph3C-TPFPB) in the absence of protic acids. This latter ROP is of substantial interest from the mechanistic and synthetic point of view, as in this case the chains propagate at only one single "long-lived" oxonium ion end. The proposed mechanism is outlined in Scheme 10-5.

A versatile method for subsequent mod- ification of the substitution pattern of polysiloxanes is hydrosilylation. The reac- tion of poly(methylhydrosi1oxane) 13 (Scheme 10-6) with vinyl compounds, for example, allows the introduction of side chains and thus opens up access to an enor- mous variety of products (Boileau and Teys- sie, 1991), such as the ferroelectric liquid- crystalline polysiloxane 14 a (Poths and Zentel, 1994) or carbazole-containing poly- mers like 14 b, some of which show smec- tic thermotropic mesophases (Arnim et al., 1996).

A modified hydrosilylation strategy was used by Hempenius et al. (1996 a, b, 1997),

who report on liquid-crystalline polysilox- anes 14c (Scheme 10-7) (M,=lO000; M J M , <1.2; GPC) whose electro-optic switching times are z, = 1 min at 20 "C and 7 s at 32°C. Very recently, the controlled synthesis of siloxane copolymers 14 d (Scheme 10-8) having organosulfur groups has been reported (R6zga-Wijas et al., 1996). Here, a cryptand-lithium silanolate complex was selected as the initiator for the ROP synthesis, and the sulfur groups were generated by the ene-thiol addition to the vi- nyl functions bound to silicon. Both synthet- ic routes (shown in Scheme 10-8) give high yields of copolymers 14d of fairly regular chain structure.

Another development is the preparation of poly(dimethylsiloxanes), randomly sub- stituted with up to 37% calix[4]arene or ben- zo-15-crown-5 moieties (Klok et al., 1997), or with polar cyanopropyl and crosslinkable methacryloxypropyl groups. The latter polymers have superior diffusion and permeability coefficients and might be use- ful as matrices for Na+-sensitive membranes in chemically modified field effect transis- tors (Gankema et al., 1994). Polysiloxanes 14 e bearing Ru(bpy)32+ pendant groups have been reported by Nagai et al. (1996). The emission of films of 14e was quenched by oxygen in water more efficiently than in

Page 12: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

330 10 Organicllnorganic Hybrid Polymers

13 FH2 R

14

Me, ,CH=CHz

Me H I I

Me-Si-0-Si-Me I I

(7Hdm (~Hz),,,+~ Me

Me Me I I

H-Si-0-Si-H I I

Me Me

14b

Scheme 10-6.

Q Q CN

CN CN 14c Scheme 10-7.

the gas phase. From this result, the authors conclude that polysiloxane chains have a specific affinity for oxygen molecules in water. In addition to this, the siloxane back-

bone is one of the most flexible of all known polymers (Flory, 1969; Oberhammer and Boggs, 1980; Lukevics et al., 1989; Mark, 1990). Even at very low temperatures, these

Page 13: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 331

Me, ,CH=CH,

o/si\o

I / \o/ \

Si-Me MelSi I

Me Me

MeaSiCHzLi + [211]

in toluene

H

Me\ ,CH-CH2-S-t-Bu

I I / \o/ \

- Si-Me

t-BUSH

AlBN MelSi

Me Me

I Me3SiCHzLi + [211]

in toluene

14d

-OH

Scheme 10-8.

S-t-Bu

materials maintain their elasticity: po- ly(dimethylsi1oxane) for example has a Tg of -123 "C, and poly(methylhydrosi1ane) has a still lower glass transition temperature

Another important property of polysilox- anes is their exceptional stability against heat, oxidation, and UV radiation. Depend- ing on the side chains, morepver, polysilox- anes may have very low surface free ener-

(Tg=-137 "C).

gies and are therefore widely used as coat- ings, mold-release agents, surface modifi- ers, or separation membranes. Finally, their chemical inertness and high gas permeabil- ity make them attractive in biomedicine where they are used for soft contact lenses, artificial skin, body implants, or controlled- release systems (Arkles, 1983; Rochow, 1987; Semlyen and Clarson, 1991; Mark et al., 1992).

Page 14: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

332 10 Organic/lnorganic Hybrid Polymers

10.3.4 Polycarbosilanes

The first polycarbosilanes were reported in the 1960s. but intensive polycarbosilane research started about ten years ago (Wey- enberg and Nelson. 1965; Cundy and Lap- pert, 1978; Yamashita et al., 1995). A mile- stone in polycarbosilane research was the synthesis of poly(sily1ene methylene) 17 (Scheme 10-9). i.e., polysilaethylene, as recently published by Interrante et al., which involves the platinum-catalyzed ROP of 15, leading to poly( dichlorosilaethylene) 16, followed by reduction using LAH (Wu and Interrante, 1992; Interrante et al., 1994; Rushkin and lnterrante, 1995). Using the

thus-developed route, a variety of further poly(sily1ene methylene) derivatives have been prepared, such as 19-26 (Shen and Interrante, 1996; Rushkin and Interrante, 1996a). Also, some [Si(Me)(C3H6R)CH2], polymers were obtained by hydrosilylation, having R = C3H7. NEt,, carbazole, and OC2H40C2H40CH3 (Rushkin and Inter- rante, 1996 b).

While polymer 17 (Tm=25 "C, Tg=-135 to -140°C) is stable in air and dissolves read- ily in common organic solvents, the hydro- lytic sensitivity and glass transition temper- ature of polymers 20 were found to vary widely depending on their R groups. Koop- mann and Frey (1996) report poly(si1ylene

CI H

Li[AIH4J CI-Si-C-H H2PtC16 ~ ~ ~ - C H 2 ~ - t f - C H z t

H-C-Si-CI I I n H CI

I 1 1 1

15 16 17

CI ROH I EtjN I

Me or NaOR

Me Me-Si-CH2

H2C ---Si-Me I 0, bl

18 19 20

22 21 23

n \ \ CH2 24 19 25

Scheme 10-9. R = Et. OCHzCF3, C(O)CH3, C6H5

Page 15: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 333

26

R = H, propyl, phenyl

BH3 THF I 20 29

Si-CH2-CH2 r hv

n Me-Si-Me - I n

[ h e

31

methylenes) with long n-alkyl side chains which have been prepared via cationic ROP of tetraalkyl-substituted 1,3-disilacyclobu- tanes. Longer polymerization times were found to be necessary in comparison to the case for monomers with methyl groups on- ly, and the backbone flexibility of these po- ly(sily1ene methylenes) proved to be lower than that of the analogous poly(di-n-alkyl- siloxanes). Unusual polycarbosilanes have been described by Matsumoto et a]. (1997): Anionically initiated ROP of 3-methylene- silacyclobutanes 26 (Scheme 10-10) gave polymers 27 (M, = 28 000, M,/M, = 1.8 - 2.9; GPC) which were subsequently subjected to (i) hydroboration followed by oxidative work-up or (ii) cyclopropanation, leading to polymers 29 and 30, respective- ly. The hydroboration occurs without side reactions, while a somewhat less homoge- neous conversion was found for the cyclo- propanation reaction. A photoactivated platinum-catalyzed hydrosilylation poly- merization of vinyldimethylsilane 31 has

32 Scheme 10-10.

been found by Fry and Neckers (1996). Once photoactivated, the catalyst remains active for an indefinite period of time, and the poly(dimethylvinylsi1ane) oligomers 32 formed shortly after irradiation ( M , = 5500) grow further up to M , = 12 300 after six months due to end-linking of their hydride and vinyl termini.

A variety of polycarbosilanes is known whose main chains contain unsaturated hy- drocarbon moieties (West et al., 1991; Wa- gener and Smith, 1991; Anhaus et al., 1991; Corriuet al., 1992; Brkfordet al., 1992; Ish- ikawa et al., 1992; Sargeant et al., 1992; Theurig et al., 1992): Poly(sily1ene ethyny- lene-ah-phenylene ethynylenes) were pre- pared for example by dehydrogenative poly- merizations using MgO as a catalyst, or by condensation reactions using Grignard intermediates. Silicon analogs of poly(p- phenylenevinylene) were also synthesized using the Wittig reaction (Kim et al., 1997). The photoluminescence of the polymers thus obtained ( M , = 2500-2800; GPC) ap-

Page 16: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

334 10 Organichorganic Hybrid Polymers

f I f Rl (Ph3P)zPdCIz

I H-CrC-Si-CrC-H + X-Ar-X P C--'C-Si-CEC-Ar

CUI, Et3N R2

33 n

R1 I R2 = MeIOct or Ph / Ph

A r = 4oHo)- I 1

L 35 Jn

pears at around Anax =440-480 nm in the blue emission region, and makes these poly- mers attractive for LED applications. Co- balt-containing polycarbosilanes 34 (Scheme 10-1 1 ) were prepared by Corriu et al. (1993) from precursor polymers 33 [which are semiconducting after doping (Corriu et al., 1991) and have a high and stable nonlinear optical x ' ~ ' value if Ar is a donor-acceptor group (Cross et al.. 1992)1 by reaction with dicobalt octacarbonyl. Mao and Tilley (1995) describe a simple proce- dure for the incorporation of zirconacyclo- pentadienyl rings into polymers such as 35

which have been shown to be versatile and efficient precursors to, on the one hand, polymers such as 36 and 37. On the other hand, 35 degrades upon heating, leading to the cyclic trimer.

Ohshita et al. (1997) published the synthesis of poly[(ethoxysilylene)pheny- lenes] 39 (Scheme 10-12) by the treat- ment of 38 with magnesium metal. The OEt groups of the soluble polymers 39

could be replaced by many other substitu- ents including H, F, C1, or another substit- uent R'.

( M , = 10000- 30000; M,IM,= 1.6- 1.8)

Page 17: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 335

B I i - O E t

OEt THF

38 39 n OEt Br

Me I

L J n 40

Me I

42

n

43

41

44-

m = 1,2, 3,4,6 Scheme 10-12.

In 1995, Fang et al. described soluble sil- ylene-phenylene and silylene-thienylene copolymers 40 and 41, respectively (Mw=2500-7500). An enhancement of 0- nconjugation between the dimethylsilylene units and the n-conjugated units with in- creasing dimethylsilylene chain length was suggested. Later on, another series of 0-n conjugated organosilicon copolymers

42-44 was described consisting of alternat- ing dimethylsilylene and aromatic units. Here as well, the emission decay and the quantum yield suggest 0 - x conjugation along the organosilicon copolymer chains (Fang et al., 1996). In 1997, Isaka reported the Si,C-type periodic polycarbosilane 46 (Scheme 10-13) which was prepared via Wurtz coupling of 45. Its 0-0°F transition en-

Page 18: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

336 10 Organic/lnorganic Hybrid Polymers

Me THF M e H Me I l l

I l l I hexane Me H Me Me

CI-Si-c-Si-CI + 2 ( @ & i - H

Me M e H Me Me

Me Me Me M e H Me Me I I l l I

I / / I I toluene Me Me H Me Me

Me Me Na. 15-crown-5 HCI [AIC13] - CI-Si-Si-C-Si-Si-CI chloroform

Me Me H Me Me

45 46

’ir 47

49 Scheme 10-13.

ergy is shown to vary from 5.2 to 4.5 eV. Strong Stokes shifts (1.2 eV) indicate that the emission is due to a “self-trapped” ex- citon state.

Some carbosilane dendrimers have been reported as well (van der Made and van Leeuwen. 1992: Zhou and Roovers, 1993;

Coen et al., 1996; Lach et al., 1997), such as the mesogen-functionalized G1 dendrim- er 47 bearing 12 cholesteryl end groups. The corresponding G2 and G3 systems bearing 36 and 108 mesogenic groups, respectively, are also described (Coen et al., 1996). Fi- nally, some papers deal with the germani-

Page 19: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone 337

um- and tin-analogs of polycarbosilanes. In general, the same synthetic methods can be used for their preparation [see, for example, Corriu et al. (1990), BrCfort et al. (1992, 1994)l. In addition to this, Wolfe et al. ( I 997) reported an elegant acyclic diene me- tathesis leading to well-defined polycarbo- stannanes 49, utilizing both a well-defined molybdenum alkylidene and an aryloxo tungsten “classic” catalyst system. In both cases, the polymerization proceeded smoothly to produce linear polymers 49 which were characterized using proton, car- bon, and tin NMR. Molecular weights of about 16000 can be reached.

10.3.5 Polyphosphazenes

Polyphosphazenes, by far the largest class of hybrid polymers known today, have a backbone that consists of alternating phos- phorus and nitrogen atoms with two side groups, R, being attached to each phosphor- us (Mark et a]., 1992). R may be organic, organometallic, or inorganic. Stokes (1895- 1898) was the first to suggest that the reaction of PC15 and NH3 leads to a mix- ture of cyclic products (NPC12),<8 which transform into a crosslinked elastomeric material known today as “inorganic rubber” when heated. This material, however, re- mained a curiosity for a long time because it was insoluble, unprocessable, and very unstable against water. This situation per- sisted until the mid-1960s when Allcock et al. (Allcock and Kugel, 1965, 1966; All- cock et al., 1966; Neilson and Wisian-Neil- son, 1988) showed that unbranched, soluble polymers 51 (Scheme 10-14) are available when the thermal ROP of 50 is carried out with careful control of the reaction condi- tions. Moreover, they took advantage of the high reactivity of the P-C1 bonds to trans- form the hydrolytically unstable polymers

51 into hydrolytically more stable deriva- tives: Treatment of 51 with organic nucle- ophiles such as the sodium salts of alcohols or phenols, or with primary or secondary amines, brought about total replacement of the chlorine atoms by the organic units (All- cock and Mack, 1970; Allcock and Chu, 1979; Allcock et al., 1977; Allcock, 1992, 1994 a, b).

Still today, this macromolecular substitu- tion route is used as the standard synthetic route for many polyphosphazene deriva- tives, and is perhaps the most important fea- ture of polyphosphazane chemistry as it al- lows variation of the side groups R over a very wide range. Recent publications deal- ing with the derivatization of 51 and relat- ed compounds describe the introduction of side groups R which result in liquid crystal- linity (Allcock and Kim, 1989), photo- chromism (Allcock and Kim, 1991), photo- crosslinkability (Allcock et al., 1991a; Fac- chin et al., 1991; Allcock and Cameron, 1994), and short chain branches (Ngo et al., 199 1 ; Allcock et al., 1994 a). A new type of phosphazene high polymer containing 2,2‘- dioxybiphenyl groups was reported by Car- riedo et al. (1996), who showed that the di- rect reaction of 51 (Mw=lOOOOOO) with the difunctional reagent 2,2‘-dihydroxybiphe- nyl and K2C03 in THF gives soluble, line- ar polyphosphazenes 52 instead of the ex- pected crosslinked products.

Yet the macromolecular substitution route also has limitations if the target poly- mers are to contain essentially organic side groups linked to the skeleton through car- bon-phosphorus bonds. Unlike their oxo- or nitrogen-nucleophile counterparts, orga- nometallic reagents generate more compli- cated reactions (Allcock et al., 1977; All- cock and Chu, 1979). For example, the inter- action of 51 with RMgX or RLi usually fol- lows two competitive and conflicting path- ways. Replacement of chlorine by the group

Page 20: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

338 10 Organic/lnorganic Hybrid Polymers

CI, CI P' further

250 'C 1 heating ~ - "inorganic rubbet'

N@ \N

/ \N/ kI conversion CI n C L P I p-CI II < 70%

CI 50 51

+ RONa

t Jn 51

OH

HO

KzCO3 I THF

53

R certainly occurs, but this is accompanied by (or followed by) cleavage of the phos- phorus-nitrogen bonds in the skeleton. Thus special techniques are required to replace chlorine (or fluorine) side units without sig- nificant \keletal cleavage (Allcock et al., 1987). Two alternative approaches were de- veloped which completely avoid the inter- action of organometallic reagents with high polymeric phosphazenes. The first one in- volves the introduction of the organic (or or-

J n

54 Scheme 10-14.

ganometallic) side groups at the cyclic trimer level, followed by ring-opening poly- merization (Prons et al., 197 1 ; Ritchieet al., 1979; Allcock, 1980; Scopelianos et.al., 1980; Allcock et al., 1985; Allcock and Brennan, 1988). However, while cyclic tri- mers with only one or two organic or orga- nometallic side groups usually polymerize almost as easily as (NPCl,)3 or (NPF2)3, the tendency towards polymerization declines as more and more halogen atoms in the

Page 21: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone

190'C R I

I - (CHS)~S~OR R

RO-P=N-Si(CH&

55 56

R = alkyl or aryl

56a 56b 57

R = Ph, R = CI R = Me, R' = Et R = R = M e

R Me I I

CI-P=N-Si-Me I I R Me 1

61

- MesSiOPh / \\

PhO NSiMe3

62

trimer are replaced by organic groups (All- cock and Moore, 1975). This restriction does not exist if the phosphazene ring is strained by, for example, the presence of a transannular ferrocenyl group like in 53 (Manners et al., 1989 a). Here, polymeriza- tion takes place to give polymer 54 even if no halogen atoms are attached to the phos- phorus atoms.

60

63 Scheme 10-15.

339

The second way to prepare polyorgano- phosphazenes is condensation reactions such as 55 + 56 (Scheme 10-15) (Wisian- Neilson, 1980; Neilson et al., 1987; Neilson and Wisian-Neilson, 1988). Although this approach is somewhat restricted, in the sense that the variety of side groups that can be incorporated is limited, the polymers ob- tained by this route are exactly those that are

Page 22: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

340 10 Organic/lnorganic Hybrid Polymers

so difficult to produce by the macromolec- ular substitution approach. Moreover, poly- mers such as 56a undergo lithium-hydrogen exchange reactions to give anionic species 56b, and these react with organic or orga- nometallic halides to give further deriva- tives such as 57 (Wisian-Neilson et al., 1986). Very recently, Allcock et al. (1996) reported the “living” cationic polymeriza- tion of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights. This new method involves the initiation of C13P=NSiMe3 (58 ) with small amounts of PC15 in CH,C12 to yield poly(dich1orophos- phazenes) with narrow polydispersities. PBr,, SbCl,, and Ph3C+[PF6]- were also found to be effective initiators in CH,C12 at room temperature. Moreover, the polymer chains 59 were found to be active after chain propagation. Thus this method allows the synthesis of block copolymers like 60 and 61 (Montague and Matyjaszewski, 1990; Matyjaszewski. 1992: Matyjaszewski et al.. 1993. 1994; Allcock et al., 1997).

The synthesis of a new phosphazene polymer, i.e., poly(phospho1enazene) 63

has been reported recently by Gruneich and Wisian-Neilson (1996). It was found that only small amounts of the 3.4-isomer 62 were converted to the 2,3 isomer during thermolysis. After extensive handling in air. however, the solubility of63 decreases, pre- sumably due to reactions at the unsaturated sites in the ring. In addition to the polymers shown. many other polyphosphazenes exist which may serve as solid electrolyte mate- rials. for optical applications, or as gas per- meation membranes (Mark et al.. 1992; Manners, 1996). Moreover, many polyphos- phazenes are of interest since they have an enormous chain flexibility and thus very low glass transition temperatures: (NPCI?),,, for example. has a Tg of -66 “C, and the Tg

( M w =: 40 000-50 000, M,/Mn=3.3 , GPC)

of [NP(OC3H7)2]rl is -100 “C. Also, poly- phosphazenes are distinguished by a high thermal and oxidation stability, optical transparency from 220 nm up to near IR, and high stability towards hydrocarbons.

The bond structure in the polyphospha- zene backbone is formally represented as a series of alternating single and double bonds. However, this formulation is mis- leading as all the bonds along the chain are equal or nearly equal in length, but without an extensive conjugation. It is believed that the electron on nitrogen is accommodated in a 2p, orbital while the one from phosphor- us is in a 3d orbital (Dewar et al., 1960). Thus, although the n-bonds are delocalized over three atoms (“island” n-bond struc- ture), they are not broadly delocalized over the whole chain because of the orbital mis- match and nodes that occur at every phos- phorus. This may explain why most poly- phosphazenes are colorless materials. On the other hand, because each phosphorus at- om can use as many as five 3d orbitals, tor- sion of a P-N bond brings the nitrogen p or- bital into an overlapping position with a phosphorus d orbital at virtually any torsion angle. Hence the inherent torsional barrier is much smaller than in a p,-p,double bond of the type found in organic molecules.

10.3.6 Polysilazanes

Up to recently, the ROP synthesis of high molecular weight linear polysilazanes failed due to termination, transfer, and ring- condensation side reactions (Andrianov et al., 1965; Blum and Laine, 1986; Seyferth eta]., 1989; Bruzaud and Soum, 1996). However, this reaction was reinvestigated recently, and it was established that high molecular weight linear polymers are avail- able via both anionic and cationic ROP of specific cyclodisilazanes (Duguet et al.,

Page 23: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.3 Polymers with only Main Group Elements in Their Backbone

I N THF

Me=. / \ Vi tolueneITHF PhCH*----Li+ + Si

SL ____t

THF Me! \N/ Me 20 "C

I Me

34 1

,,LiL.. / :N

/":\ / Me

Me

-. phCH& ,,,' \ yi

**.Si SL

Me Me N \

Me Me Vi Me,,.,Li'--.. I

Me Me ''si

I I I 1.1 ':N Si-N-Si-N..= . I ,,' \ Vi I I SL

Me / Me i\ N / Me \ Me

l y e I y j y e vi ,Li+ THF

PhCH2 Si-N-Si-N Si-N-ii-Ni THF

MeMeMe MeMeMe Me I l l

THF - PhCH+3i-N-&--N: THF

Me Vi ,Li+

I l l MeMeMe Me

+ n 64 I

toluene I THF 20 "C

L J "

65

1992). Moreover, when optimized condi- tions are adhered to, the anionic ROP initiat- ed with organosodium and organolithium initiators exhibits all the characteristics of a living process. On the basis of kinetic meas- urements, a mechanism of the anionic ROP is proposed, which is shown in Scheme 10- 16 (Bruzaud and Soum, 1996; Bruzaud et al., 1997).

In another recent paper, the solid state structure and transition properties of three poly(N-methylsilazanes) are described (Tang et al., 1997). These results will stim- ulate for sure further research activities on polysilazanes which are of particular inter- est as precursors to ceramics or fibers us- able at very high temperatures (Laine et al., 1988; Soula, 1988; Duguet et al., 1992; Bouquey et al., 1996; Bruzaud and Soum, 1996).

Me = CH3

Vi = CH=CHp

Ph = CsH5

Scheme 10-16.

10.3.7 Further Main Group Hybrid Polymers

In recent years, novel synthetic methods such as the ROP technique have opened up access to many further hybrid polymers with main group elements in their backbone, like polyoxothiazenes (See1 and Simon, 1960; Parshall et al., 1962; Roy, 1992; Roy et al., 1993), polycarbophosphazenes (Manners et al., 1989b; Allcock et al., 1991 b; All- cock et al., 1993 a; Allcock et al., 1994b), and sulfur-nitrogen-phosphorus polymers (van de Grampel, 1981; Dodge et al., 1990; Liang and Manners, 1991 a, b; Allcock et al., 1993 b; Ni et al., 1996 a). An interest- ing system is the recently reported copol- ymer66 (Scheme 10-17), which is available via copolymerization of cyclic germylenes and p-benzoquinones (Kobayashi et al., 1994). Another high molecular weight ger-

Page 24: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

342 10 Organidlnorganic Hybrid Polymers

I

1 (H3C)3Si-N m N-Si(CH3)3 ‘bR2 \ /

-0-

66

SiMe3

I R

I R

GeR2 + 1 1 - $&-S-CH2-CH2-CH2 67: G ( N a or Ge[N(SiMe3)2]2

F: -S

SiMe3 67 68 69

X Y ~ ~ ~ ~ - ~ ~ ~ - ~ ~ - ~ ~ c ~ c - c ~ c - ~ ~ 0 1 0.8 0.8 0.2 0.2

1 0.9 0.1 2 0.9 0.1 Y z n

70

inanium containing copolymer 69 ( M , >loh; GPC) was recently prepared by the combined use of a germylene 67 and thie- thane 68 (Shoda et al., 1996). Sundar and Keller (1996) report on linear boron-silicon- diacetylene copolymers 70. The diacetylen- ic functionalities were found to crosslink

Scheme 10-17.

thermally to give stable networks at elevat- ed temperatures, and the silicon and boron incorporated into the host polydiacetylenic polymers were found to enhance the oxida- tive stability of the material.

Page 25: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 343

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains

10.4.1 Poly( 1,l’-metallocenylenes)

Soon after the discovery of ferrocene (Kealy and Pauson, 1951; Miller et al., 1952; Togni and Hayashi, 1994), an attempt was made to use this organometallic com- pound in polymer science (Neuse and Ro- senberg, 1970; Neuse, 1981; Sieber, 1991; Rosenblum, 1994; Manners, 1994; Ciardel- li et al., 1996). The technological interest was in particular areas such as thermal stability, radiation protection, combustion catalysis, rubber vulcanization, and redox properties. Although the preparation of polymers with metallocene-containing side groups (Pittman et al., 1970) and of poly- mers that contain isolated metallocenylene moieties in polyester, polyamide, or poly- urethane main chains (Patterson et al., 1974; Gonsalves et al., 1984; Wright and Sigman, 1992; Wright and Toplikar, 1994)

was not difficult, it proved to be extremely hard to synthesize macromolecules in which the metallocenylene moieties are linked (i) directly to each other, (ii) via short bridges [Fe-Fe distances <7 8, (0.7 nm)], or (iii) via z-conjugated comonomers. A multitude of competing side reactions which ferrocene and other metallocenes tend to undergo have hindered clean and homologous prop- agation steps for many years. Much effort was nevertheless invested to make such polymers available in which the ferroceny- lene moieties can interact intramolecularly. They therefore, should display interesting electrical (Morrison and Hendrickson, 1975; Kramer and Hendrickson, 1980; Mueller-Westerhoff, 1986; Nalwa, 1990), magnetic (Kollmar et al., 1991; Chi et al., 1991; Hmyene et al., 1994), and optical (Wrighton, 1979; Niishikata et al., 1989; Nalwa, 1991; Wright et al., 1992, 1994) properties.

The earliest and most widely explored ap- proach to the parent polymer poly( l,l’-fer- rocenylene) 72 (Scheme 10- 18) involves

Fe - I Fe

71 72 72a 72b

73 74 72 Scheme 10-18.

Page 26: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

344 10 Organicllnorganic Hybrid Polymers

free radical processes (Neuse and Rosen- berg, 1970: Neuse, 1981): Ferrocene radi- cals are generated via thermolysis of ferro- cene 71 in the presence of peroxides, and polymer growth occurs via polyrecombina- tion mechanism. However. the degrees of polymerization of 72 were typically lower than M,=7000. Moreover, all three possible constitutional isomeric constituents were present in the products as well as defects like CH, and 0 groups. Finally, most products were crosslinked, clearly attesting both the lack of regioselectivity in the primary free radical attack and the potential polyfunc- tionality of the dicyclopentadienyl iron system. Therefore a variety of condensation reactions was tested including the Ullmann coupling of 1 , 1’-dihaloferrocenes (Nesmey- anov et al., 1963; Rausch et al., 1970; Rol- ing and Rausch, 1972). the self-condensa- tion of chloromercuriferrocenes (Izumi and Kasahara. 1975). the oxidative coupling of dilithioferrocene (Spilners and Pellegrini, 1965: Watanabe et al., 1966; Rausch and Ciappenelli, 1967; Rauschet al., 1973; Bed- narik et al., 1977). the treatment of 1,l-di- lithioferrocene with 1 , 1’-diiodoferrocene (Neuse and Bednarik, 1979a, b), and the conversion of I , 1 ’-dihalogenated ferrocene monomers i n the presence of stoichiometric quantities of magnesia (Yamamoto et a]., 1983) to make constitutionally homogene- ous polymers 72 with high molecular weights available. However. values of M , <SO00 were determined throughout for the soluble parts of the products, and the other- wise highly efficient palladium-catalyzed aryl-aryl coupling reaction also failed to couple lerrocene- 1.1 ’-diboronic acid 73, which is stable in air and water and can thus be isolated and purified, with 1,l’-dihalofer- rocenes 74 (X=Br, I ) (Knapp and Rehahn, I993a. b; Knapp et al., 1998). Thus there has been no method so far that provides po- ly( l . 1 ’-ferrocenylenes) 72 of acceptable

molecular masses and free from structural imperfections. The same applies to po- ly( l , I’mthenocenylenes), where low mo- lecular weight materials ( M , <2000) are constantly obtained.

10.4.2 Poly( 1,l’-metallocenylene arylenes)

Two successful strategies have been de- veloped in the last decade for the synthesis of well-defined poly( 1,1 ’-ferrocenylene ar- ylenes), both taking advantage of the con- cept of solubilizing side chains (Ballauff, 1989). Rosenblum et al. obtained polymer- ic metallocenylene polydecker sandwich complexes in which the repeating metallo- cene units are held face-to-face by naphtha- lene spacers (Arnold et al., 1988; Foxman et al., 1991; Foxman and Rosenblum, 1993; Nugent et al., 1993; Rosenblum, 1994; Ro- senblum and Reiff, 1995). Initially, the au- thors tested the palladium-catalyzed poly- condensation of bis(ch1orozinc)ferrocene 76 (Scheme 10-19) with 1,8-diiodonaph- thalene 75 to obtain polymers 77. However, because the formed products 77 were of rather low molecular weight (MI, <4000), an ameliorated coupling technique was devel- oped where a monomeric dianion is gener- ated in situ from compound 78, which is sub- sequently reacted with FeCl, to give the pur- ple polymer 79 (M,= I8 000) (Nugent et al., 1993; Rosenblum, 1994). When [ N i ( a ~ a c > ~ ] is used instead of FeC12, alternating copoly- mers were obtained having both iron and nickel atoms in their main chains. Howev- er, the soluble fractions of these latter poly- mers only have low molecular weights ( M , <3000) so far. Investigation of the electrical and magnetic properties of these rather un- usual polymers and copolymers showed electrical conductivities of up to 6.7x1V3 S cm-’ for I?-doped materials (Rosenblum,

Page 27: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 345

r 1

75 76 1 J ”

77

78

1994; Rosenblum and Reiff, 1995). From structural investigations of oligomers, it was concluded that the stacked arrays in these polymers have a helical structure (Foxman et al., 1991).

The palladium-catalyzed polycondensa- tion reaction of haloaromatics and arylbo- ronic acid derivatives constitutes the second successful route to well-defined poly( 1,l’- ferrocenylene arylenes) (Knapp and Re- hahn, 1993 a, b; Knapp et al., 1998). Initial- ly, an attempt was made to prepare po- ly( l , l’-ferrocenylene- l ,4-phenylenes) 82 (Scheme 10-20). However, side reactions were found to prevent the formation of high molecular weight products in all polycon- densations where a phenyl-ferrocenyl bond formation step was the polymer propagation

79

R = H, 2-0ctyl Scheme 10-19.

process. To circumvent this difficulty, an al- tered strategy was developed and indeed, high molecular weight poly( 1 ,l’-ferroceny- lene-4,4”-p-oligophenylenes) 84 - 86 were obtained when 1, 1’-bis(p-bromopheny1)fer- rocene 83 was used as the ferrocene-con- taining monomer. Constitutionally homoge- neous polymers 84 (P,=55), 85 (P,-40), and 86 (P,=lO) were obtained as soluble orange solids in nearly quantitative yields.

The poly( 1,l’-ferrocenylene arylenes) 84,8S and 86 are stable up to about 380 “C. Poly ( 1,l ’-ferroceny lene-p-terphenylenes) 84 form amorphous glasses and have glass transitions at Tg=80 “C (84 a) and 20 “C (84 b), respectively. Polymers 85 and 86, on the other hand, are semicrystalline.

Page 28: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

346 10 Organicllnorganic Hybrid Polymers

80 81a,b 82a,b

R /

o c c c c I1 Y Y

Scheme 10-20.

R

84a,b (v = 0) 85a,b (v = 1) 86a,b (y = 2)

n

10.4.3 Further Poly( 1,l'-metalloceny- lene) Derivatives with n-Conjugated Bridging Units

having molar masses of up to M, = 17 700 (after fractionation) were obtained.

In 1993, Gamble et al. reported the acy- clic diene metathesis (ADMET) polymer- ization of 1.1'-divinylferrocene 87

10.4.4 Poly(1,l'-metallocenylene ethylenes)

(Scheme 10-21) to form oligomeric po- While an efficient synthetic route for po- ly( l , l '-ferrocenylene vinylenes) 88. Steba- ly( l , l '-ferrocenylene methylenes) is still ni et al. (1993) obtained soluble poly(ferr0- unavailable (Manners, 1996; Neuse and Ro- cenylene dimethylvinylenes) 90 via poly re- senberg, 1970), the corresponding macro- ductive coupling of 1 , 1'-diacetylferrocene molecules having two carbon atoms 91 using low valency titanium compounds. between the ferrocenylene moieties, i.e., po- Constitutionally homogeneous polymers 92 ly(ferroceny1ene ethylenes) 92, are avail-

Page 29: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 347

-H=CH*

-CH=CH?

Fe

87

- HzC=CHz t J" 88

89 90

n R'

91

able in excellent yields by the recently de- veloped thermally induced ROP synthesis of carbon-bridged [2]ferrocenophanes 91 (Nelson et al., 1993; Manners, 1994; Hmyene et al., 1994). The driving force of this polymerization is the ring strain in- duced by the tilt angle (approx. 21") of the two cyclopentadienyl rings of 91 (Manners, 1995). The ring strain is further increased when the larger ruthenium atom is placed into the [2] metallocenophane. Hence, hy- drocarbon-bridged [2]ruthenocenophanes (tilt angle ~ 3 0 " ) can be readily polymerized as well via ROP, leading to poly(ruthen0- cenylene ethylenes) (Nelson et al., 1995).

92 Scheme 10-21.

10.4.5 Phosphorus-, Sulfur-, and Selenium-Bridged Poly( 1,l'- metallocenylene) Derivatives

Until recently, poly( 1 , 1'-ferrocenylene phosphanes) were only available via poly- condensation reactions. Among these, the most efficient route is the reaction of 1,l'- dilithioferrocenexTMEDA 93 (Scheme 10- 22) with phenyldichlorophosphine (Withers et al., 1982; Fellmann et al., 1983). Poly- mers 94 ( M , = 8900 - 16 1 000) were ob- tained which are thermally stable up to 350 "C. Recently, the thermally induced ROP of phosphorus-bridged [ llferroceno-

Page 30: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

348 10 Organic/lnorganic Hybrid Polymers

Li

93

- LiCl

94

95

R.

r"- %"' A

96

sulfu

n

97

R', R", R"' = alkyl, aryl

99 R = n-butyl. t-butyl

phanes 95 was shown to be an efficient route to poly( 1 ,I/-ferrocenylene phosphanes) 96 and poly( 1 , 1'-ferrocenylene phosphanesul- fides) 97 (Honeyman et al., 1995). Sulfur- bridged [ 1 lferrocenophanes can be convert- ed analogously to give poly( 1 ,l'-ferroceny- lene sulfides) 98 (Pudelski et al., 1995a). More recently, Honeyman et al. ( 1996) also described the living anionic ROP (n-BuLi, THF, 25 " C ) of I 1 jferrocenophanes such as

100 Scheme 10-22.

95 to yield poly(ferroceny1ene phosphanes) 96 of controlled molecular mass, as well as block copolymers.

In 1992, Brandt and Rauchfuss showed that even the nearly unstrained [3] trithiafer- rocenophanes 99 can be used as monomers: Poly( 1, 1'-ferrocenylene persulfides) 100 are formed in atom-abstraction polymeriza- tion using PBu, as the desulfuration agent. The molecular weights of 100 depend on the

Page 31: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 349

101

II fl -S-yH-CH2-C-CHZ-CH 0 I1 1 -S--C-(CH2)rc

I Fe

103 Scheme 10-23. 102

solvent and vary from M , = 12 000 to 395 000 (GPC). Moreover, polymers 100 are distinguished by many interesting prop- erties (Nuyken et al., 1992; Brandt and Rauchfuss, 1992; Galloway and Rauchfuss, 1993; Compton and Rauchfuss, 1994; Compton et al., 1995). The S-S bonds, for example, can be cleaved reductively using Li[BEt,H], and reformed subsequently via oxidation with 12. The electrochemical be- havior is similar to that of poly( l,l’-ferro- cenylene silanes), but the interactions between the iron centers seem to be even stronger. Finally, crosslinked polymers 100 were prepared by using [3]ferrocenophanes with two trisulfide bridges (Galloway and Rauchfuss, 1993), and linear poly( 1,1’-fer- rocenylene perselenides) of lower molecu- lar weight became available upon conver- sion of the respective selenium-bridged monomers.

10.4.6 Further Poly(1,l’-metallo- cenylene) Derivatives with Nonmetallic Bridging Units

Novel ferrocene-containing copolyesters such as 101 (Scheme 10-23) have been pub-

lished recently by Wilbert et al. (1995). In the course of these investigations it was shown that the redox potential of the ferro- cenylene units increases by about 40 mV upon polyester formation. Since the ester groups are four to six o-bonds away from the ferrocenylene moieties, this increase is assumed to be due to through-space charge- transfer interactions. Rheological measure- ments also show an unusual rubber-like be- havior of the ferrocene-containing polyes- ters. Nuyken et al. (1996), on the other hand, prepared sulfur-containing polymers such as 102 and 103 via polyaddition of l,l’-di- mercaptoferrocene and 1,1’-bis(2-mercap- toethyl)ferrocene, respectively, to diolefin- ic monomers, or via polycondensation of 1,1 ’-dimercaptoferrocene with bifunctional acid chlorides.

10.4.7 Poly(1,l’-ferrocenylene silanes) and Poly( 1,l’-ferrocenylene germanes)

The first low molecular weight poly( 1,1’- ferrocenylene silanes) 105 (Scheme 10-24) (Mn<7000) were prepared using polycon- densation reactions (Neuse and Rosenberg, 1970; Tanaka and Hayashi, 1993; Park

Page 32: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

350 10 Organic/lnorganic Hybrid Polymers

I 04 I05

R, R' = alkyl, aryl, ferrocenyl

104a 106 107

- Y "

104a

I 'Z

ioa Scheme 10-24.

et al., 1995). Really high molecular weight poly(l,l'-ferrocenylene silanes) ( M , = lo5 to lo6, Mn>105), on the other hand, have been available since 1992 when Foucher et al. took advantage of thermally induced ROP for the preparation of 105 and well- defined poly(ferroceny1ene germanes) (Foucher and Manners, 1993; Foucher et al., 1994a, b). The driving force for the ROP is the ring strain in monomers like 104 (= 80 kJ mol-'), whose cyclopentadienyl rings are tilted by about 21" towards each other.

Since then, many other silicon-bridged [ l]ferrocenophanes have been prepared and polymerized analogously (Manners, 1993; Nguyen et al., 1993; Finckh et al., 1993; Foucher et al., 1993a, b; Manners, 1994; Rulkens et al., 1994a; Foucher et al., 1994c; Pudelski and Manners, 1995; Pudel- ski et al., 1995 b; Manners, 1995; Pudelski et al., 1996; Peckham et al., 1996). More- over, the living anionic ROP of 104 (n-Bu- Li, THF, 25 "C) has been found to be an ef- ficient alternative to the thermally induced process (Rulkens et al., 1994b; Ni et al.,

Page 33: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 35 1

Me Me I I

Me Ph-Si-Si-Ph il

I I - sic + &/ Me Ph-Si-Si-Ph I I

Me Me

104a 109

Ill

1996b), as the molecular weights can be predetermined, narrow molecular weight distributions can be realized, and even block copolymers are available. Another recent success is the platinum- or palladium-cata- lyzed ROP of [llsila- and [llgerma-ferro- cenophanes, which gives poly( 1, 1'-ferro- cenylene silanes) 105, poly( 1 ,l'-ferroceny- lene germanes), and copolymers thereof even at room temperature (Ni et al., 1995; Reddy et al., 1995). It also provides access to block copolymers such as 107 (M,=104, M,/M,= 2.3) (Sheridan et al., 1996) or graft copolymers such as 108 (G6mez-Elipe et al., 1997). Moreover, random copoly- mers 110 were prepared via thermal co- polymerization of 104a and 109 (Fossum et al., 1995). These polymers are expected to display interesting photophysical and charge carrier properties, and their back- bone can be degraded by UV-induced cleav- age of the oligosilane segments. Finally, thermotropic poly(ferroceny1ene silanes) bearing 4-pentoxy-4'-hydroxyhexanoxyazo- benzene acrylate side chains have been pre- pared (Liu et al., 1997), spirocyclic [ llferro- cenophanes such as 111 and 112 have been found to function as crosslinking agents for poly(ferroceny1ene silanes) when prepared

' X J "

110

112 Scheme 10-25.

via the thermal ROP reaction (MacLachlan et al., 1996), and the ROP of silicon-bridged [ 11 ferrocenophanes with silicon-bridged bis(benzene)chromium complexes has been shown to lead to unusual dimetallic po- ly( l , l '-ferrocenylene si1ane)-poly(chrom- arylene silane) copolymers (Eschenbroich et al., 1990; Hultzsch et al., 1995).

High molecular weight poly(ferroceny- lene silanes) 105 a (a: R = R' = Me) display two reversible oxidations in a 1 : 1 ratio (Foucher et al., 1992; Rulkens et al., 1994a). This is interpreted to be the result of intramolecular electronic interactions between the metallocene centers which first cause only every second iron atom to be oxidized, and a further increase of the volt- age is needed to transfer all the iron centers into Fe3+. Similar behavior was also report- ed for other poly( 1 ,If-ferrocenylene silanes) (Foucher et al., 1993 b; Manners, 1993; Nguyen et al., 1993; Manners, 1995). If 105a is doped with I*, semiconducting ma- terials are obtained (oapprox. S cm-') (Manners, 1995). The thermal behavior of polymers 105 depends on their substituents, R: The dimethyl derivative, for example, forms amber-colored films (T, = 122 "C, Tg= 33 "C), while its di-n-hexyl analog is

Page 34: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

352 10 Organidlnorganic Hybrid Polymers

described as rubber-like at room tempera- ture (T,=-26 "C) (Manners, 1995; Rasburn et a].. 1995 j. Poly( 1.1'-ferrocenylene si- lanes) do not lose weight up to temperatures of 400°C. but form Fe/Si/C ceramic com- posites when heated up to 500- 1000°C (Tang et al., 1993; Petersen et al., 1995: Corriu et a].. 1996).

10.4.8 Poly(metal1aines)

In general. o-bonds between a transition metal and a carbon atom are thermodynam- ically and kinetically unstable. Therefore it seemed unlikely for a long time that poly- mers held together by such bonds may be stable enough to be isolated under normal conditions. Nevertheless. some transition metal acetylide complexes were found to satisfy the prerequisities concerning the stability of the M-C a-bonds (Davidson et al.. 1976; Schrock et al., 1976; Hagihara et al.. 1081; Ciardelli et al., 1996). Today, poly(metal1aines) number among the best characterized transition metal containing polymers (Chisholm, 199 1 ). Three copper- catalyzed methods have been developed for their preparation, i.e., dehydrohalogenation of a,o-bisethynyl compounds (Hay, 1969; Sonogashira et al., 1977: Hagihara et a].. 198 I ; Matsuda et a].. 1984), oxidative coupling of metal-tcrminated oligoethynyl compounds (Takahashi. 1980), and the al- kynyl-ligand exchange (Sonogashira, 1980). In 1977, Hagihara and co-workers described yellow, film-forming nickel-. pal- ladium-, and platinum-containing polymers 115 (Scheme 10-26) of high molecular weight (M,= 120000, P,%=l85, [Q] =2.11 dL g') (Sonogashira et al., 1977; Takahashi et al.. 1978; Hagihara et al., 1981).

Soon after this success, further soluble poly(metallaines) such as 116 (M,= 13000- 120000) (Takahashi et a]., 1978)

were prepared analogously by the dehydro- halogenation route, i.e., via reaction of rrnns-LzMClz complexes (L = various phos- phines. M = Pt, Pd) with bisacetylides (Sonogashira et al. 1977, 1978; Takahashi et al., 1978, 1979; Hagihara et al., 1981; Lang, 1994). More recently (Sonogashira, 1980), high molecular weight nickel- and platinum-containing polymers 119 were ob- tained in good yields via the alkynyl-ligand exchange approach and thus via conversion of rmns-bis(tri-n-buty1phosphine)diethy- nylnickel 117 with a,o-diethynyl com- pounds 118. Finally, well-defined poly(p1at- inaines) 121 (M,=100000, GPC) could be prepared via oxidative coupling of rrans- PtC12(PR3)2 complexes like 114 with met- al-terminated oligoethynyl compounds such as bis(trimethylstanny1)diins 120 (Da- vies et al., 1991). Analogously, high molec- ular weight polymers 124 (M,= 96000-210000) and 125 having oligo- acetylenic blocks in the main chains were prepared in excellent yields as well as iron- containing polymers 128 by the application of 127 as the transition metal containing monomer (Johnson et al., 1991).

The solution properties of the above po- ly(metal1aines) suggest that they have a rod- like structurc. Mark-Houwink exponents of a= 1.7 and independency of the intrinsic vis- cosity from solvent were found (Takahashi et al., 1978), and viscosity and sedimenta- tion velocity measurements led to persistent lengths of I,= I3k3 nm. Moreover, some poly(metal1aines) display lyotropic nemat- ic mesophases (Abe eta]., 1991a,bj, or form crystallites with a diameter of up to 50 nm (Dray et al., 1992). The electronic spectra and the luminescence behavior of poly(meta1laines) show the 15-electron con- jugation to be expanded over the whole polymer chain (Johnson, 1991), and the third-order nonlinear optical properties are greater than those of the corresponding

Page 35: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 353

116

120 121

(H&)3Sn-C=CtCEC*=C-Sn(CH3)3

122 I

X = P, As

rn=O,1,2 R = n-butyl

poly(diacety1enes) (Blau, 1991; Abe et al., 1991 b). The optical absorption and photo- luminescence spectra of 124, moreover, show a lower z-n? energy gap for triacety-

lenic than for the diacetylenic polymeric complexes. A well-resolved vibronic struc- ture associated with the C=C stretching fre- quency is observed for both absorption and

Page 36: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

354 10 Organic/lnorganic Hybrid Polymers

H5C2\ ,C2H5

H5C2' C2H5

R = H, methyl, 127: Fe(DEPE)2C12, p? = DEPE = P-CHz-CHz-P, P

OC, ,PBu~ + CI-,R+I

Bu'P130 co * + R ~ ~ c - c - R - c = c (H~C)$~I-C=C-R-C=C-S~(CH~)~

129 133

(H3C)3Sn-CrC-R-C=C-Sn(CH3)3 - 129

R2P?PR* + Cl - ,~~-Cl

R2P PR2 v

X = none, p-C&, p-C6H&&, p-CeF4, R = methyl, n-butyl, L = PR3 Scheme 10-27.

emission, indicating strong electron-pho- non coupling for the di- and triacetylenic polymers 124 (Lewis et al., 1992; Lhost et al., 1993; Frapper and Kertesz, 1993; Khan et al., I994a). For poly(p1atinaines) such as 125, whose platinum centers are

interconnected by n-conjugated acetylide- arene bridges of different lengths, the band gaps for the electronic transitions in the vis- ible range lie between 2.5 and 3.1 eV. These values are smaller than those of model com- plexes and are thus in full agreement with a

Page 37: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 355

139 140

EC -@c =c f 143

conjugation over the transition metal cen- ters (Khan et al., 1994a).

Recently, moreover, the synthesis and the electronic structure were described of rigid- rod octahedral iron-, ruthenium-, and os- mium-o-acetylide complexes such as 133-135 (Scheme 10-27) (Atherton et al., 1993; Faulkner et al., 1994; Khan et al., 1994 b). In this study, the important role that the transition metal, the auxiliary ligands, and the bridging alkyne units play in deter- mining the degree of n-electron delocaliza- tion in such polymers was demonstrated again. The linear arrangement of the acety- lenic units around octahedral metal centers has been confirmed by single crystal X-ray structure determination performed with low molecular weight model complexes. An- other interesting development is the synthe- sis of the rhodium-containing poly(meta1- laines j 138 via the conversion of diines 137 with [Rh(PR3)&H3] 136, which involves reductive elimination of methane and one

144 Scheme 10-28.

phosphane ligand (Fyfe et al., 1991 j. While the rodlike trimethylphosphane derivative is insoluble, the soluble tri(n-buty1)phos- phane compound permitted films to be cast from THF solution. Hunter and co-workers showed that even arene-bridged organome- tallic polymers such as 141 and 142 (Scheme 10-28) are available via a metath- esis reaction between organolithium re- agents like 140 and nickel bromide com- plexes 139 (Sturge et al., 1992; Guo et al., 1994).

Structural elucidation was done by means of low molecular weight model complexes. The 'H, I9F, and 31P NMR data suggest that, in contrast to the C6F4-bridged species 142, there is no significant electronic interaction between adjacent metal centers in the C6F4- C6F4-bridged complexes 141. This suggestion is consistent with the large twist angles (ca. 52") observed between rings of the octafluorobiphenyl groups. Bunten and Kakkar (1996) describe a number of 2,5-

Page 38: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

356 10 Organic/lnorganic Hybrid Polymers

and 2,6-diethynylpyridine-based Pt-o-acet- ylide monomers and polymers like 143. Quaternization of the pyridine nitrogen with methyl iodide yields stable pyridinium an- alogs like 144, and is accompanied by strong red shifts in the UV-vis absorption spectra. The uncharged polymers exhibit strong fluorescence with quantum yields of 0.060-0.223. Quaternization further en- hances fluorescence and quantum efficien- cies. Upon doping with 12, the polymers dis- play semiconducting behavior.

10.4.9 Polymers from Octahedrally Coordinated Polyimine-Transition Metal Complexes

Multinuclear polyimine-transition metal complexes of well-defined constitution are of special interest as they may serve as mod- el systems for the development of a pro- found understanding of energy- and elec- tron-transfer processes occurring in orga- nometallic compounds, and because of their potential technical benefit which may be based upon their unusual magnetic, elec- tronic, and photooptical properties (Balza- ni et al.. 1996; Harriman and Ziessel, 1996; Lehn, 1995; Ward, 1995; Sauvage et al., 1994; Denti et al.. 1992a). Ruthenium(I1)- and osmium(I1)-polyimine complexes may play a key role here, since they combine con- siderable thermal. chemical, and photo- chemical stability with advantagenous elec- tronic properties. Even in the early 1950s, the first macromolecular complexes like 145 (Scheme 10-29) were aimed at. but i t was concluded from the rather disappoint- ing results that such coordination polymers are hardly accessible (Goodwin and Lions, 1959). In the following decades, there was an almost complete lack of papers that deal with coordination polymers like 145. Only in the last five years have renewed attempts

been undertaken to make such linear-chain macromolecules available. In 1996, finally, the first synthesis of readily soluble, linear ruthenium(I1) coordination polymers was reported (Knapp et al., 1996; Kelch and Re- hahn, 1997): Macromolecules 148 were shown to be easily available via the conver- sion of tetrapyridophenazine (tppz) 146 with ruthenium monomers [Ru(R2bpy)C1,], 147 (bpy = 2,2'-bipyridine).

While the polymers 148 prepared were in- itially of only low molecular weight (P,=15, NMR: Knapp et al., 1996), due to a nonre- movable impurity in the monomers 147, an improved synthesis of monomers 147 final- ly resulted in sufficiently pure starting ma- terials (>98%, NMR; Kelch and Rehahn, 1997) and consequently in really high mo- lecular weight polymers 148 (M,-47 000 g mol-', P,=43; SAXS). Moreover, the brownish-black polymers 148 can be dis- solved in a variety of solvents such as ace- tonitrile, ethanol, or dimethylacetamide (DMA) and, with C1- as the counterion, even in pure water easily and completely. In eth- anol/water or DMA solution, polymers 148 display a pronounced polyelectrolyte effect when measurements are performed without a foreign salt. In the presence of a foreign salt, on the other hand, intrinsic viscosities of [ q]= 15 mL g-' were determined. Accord- ing to the SAXS and viscosity data, poly- mers 148 have a rigid, randomly coiled chain conformation with densely packed chain segments. This is possible due to the random occurrence of the differentiy con- figurated, chiral ruthenium(I1) complexes (A or A configuration) along the ribbon-like polymer backbones.

Other linear, high molecular weight coor- dination polymers from octahedrally coor- dinated polyimine-transition metal com- plexes have not been described so far. How- ever, a variety of bis-chelating ligands ex- ist, as well as a variety of oligomeric com-

Page 39: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 357

2 c i 2 cl- 1

1 145

J ni2

plexes. Hence it is lighly probable that quite soon many further soluble, linear-chain co- ordination polymers will be available, such as systems like 149 (Scheme 10-30), the oligomeric species of which are currently under investigation in different research groups (see, for example, Constable et al., 1993; Barigelletti et al., 1996; Romero et al., 1996; Harriman and Ziessel, 1996; Vogler and Brewer, 1996).

On the other hand, there is a well-known, enormous variety of multinuclear complex-

es that are branched or even dendritic, the lat- ter being prepared both via convergent and divergent approaches (Serroni et al., 1992; Denti et al., 1992b; Newkome et al., 1993; Achar and Puddephatt, 1994 a, b; Alonso et al., 1995; Campagna et al., 1995; Arm- spach et al., 1996; Constable et al., 1996a; Constable and Harverson, 1996; Warnmark et al., 1996; Serroni et al., 1996, 1997; Con- stable, 1997; Newkome and He, 1997). While in the early 1990s the largest den- drimer was the decameric complex 150

Page 40: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

358 10 Organicllnorganic Hybrid Polymers

M = Fe, Ru. Os, Co

Scheme 10-30.

(Serroni et al., 1992), many systems are known today with approximately 20 metal centers, and the largest well-defined den- drimers have as many as 40 transition met- als. Presently, the research activities are di- rected towards the development of even larger, well-defined coordination com- pounds and the profound investigation of these supramolecular species to develop re- liable structure-property relationships.

10.4.10 Polymers from Tetrahedrally Coordinated Polyimine-Transition Metal Complexes

As a result of the fact that tetrahedral poly- imine-transition metal complexes like those of copper (I) and silver (I), widely used to build up fascinating supramolecular assem- blies such as helicates, catenanes, rotax- anes, or grids [see, for example, Lehn (1990,

Page 41: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 359

[C u(C H3C N)f P F F (1 52)

+ or

Y Ago BFP (1 53) 151 a,b,c

154a,h,c (M’X’ = [CU(CH~CN)~ ]@PF~ ) 155a,b1,c (M@X’ = Ago BFf )

R = C6ti13, Y = (a) H, (b) CI, (c) OCH3, Ar = CeH4-Y Scheme 10-31.

1995), Schneider and Durr (1991), Amabi- lino and Sauvage (1996), CArdenas et al. (1996), Constable et al. (1996 b, 1997), Col- lin et al. (1996), Smith and Lehn (1996). Weidmann et al. (1996), Baxter et al. (1996, 1997), Meyer et a]. (1997)], are kinetically unstable, they were believed until very re- cently to be inappropriate for the prepara- tion of well-defined coordination polymers. In 1996, however, ’Velten and Rehahn devel- oped a novel synthetic strategy that made the first soluble, constitutionally well-de- fined copper (1)- and silver (1)-coordination polymers available (Velten and Rehahn, 1996; Velten et al., 1997). Exclusion of even traces of (co-)solvents from the polymer so- lutions, which can act as competitive li- gands for the metal ions, proved to be one central prerequisite for this success. To sol- ubilize the desired polyelectrolytes in strict-

ly noncoordinating and thus rather apolar solvents, apolar n-alkyl side chains should also be introduced into the planned coordi- nation polymers. Thus 4,4”-bis[(9-aryl)- 2-o-phenanthroline]-2’,5’-di-n-hexyl-p-ter- phenyls 151 (Scheme 10-31) were reacted with metal monomers like 152 and 153 to yield the soluble coordination polymers 154 and 155.

After isolation from their viscous reaction mixtures as reddish-brown (154) or yellow (155) fibrous materials, the constitutionally well-defined polymers proved to be stable over months. In solution, however, “prop- er” coordination polymers, i.e., polymers having a constant number of repeat units per individual chain, are only guaranteed if pure halogenated hydrocarbons or acetone are used for their dissolution. Otherwise, only solution-aggregates exist, according to

Page 42: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

360 10 Organic/lnorganic Hybrid Polymers

NMR investigations. The precise determi- nation of the achieved molecular weights and a profound analysis of the properties of the novel coordination polymers 154 and 155 is still outstanding.

10.4.1 1 Schiff-Base Coordination Polymers

The first soluble and linear Schiff-base rare earth coordination polymers such as 159 (Scheme 10-32) (M,=30000) were re- ported in 1994 by Chen et al. The polymers were characterized using NMR, viscosime- try. and GPC, and exhibit high thermal stability and high glass transition tempera- tures.

Later on. the scope of the shown strategy was broadened to other well-characterized cerium (IV) coordination polymers bearing modified ligand moieties, and lanthanoide- containing polymers such as 160, which are polyelectrolytes (Chen and Archer, 1995, 1996; Chen et al., 1995). Some of these polymers readily dissolve in polar organic

N OH

156

solvents such as DMSO, have molecular weights of up to M , = 18 000, and are expect- ed to exhibit interesting photophysical prop- erties.

10.4.12 Further Transition Metal Coordination Polymers

Serrano and co-workers developed liq- uid-crystalline polymers 161 (Scheme 10- 33) which contain paramagnetic copper (11) centers within their polymer main chains (Marcos et al., 1992; Alonso et al., 1993; Oriol et al., 1994). Electron paramagnetic resonance, magnetization, and susceptibil- ity measurements indicate that all the sam- ples show paramagnetic behavior with a weak exchange interaction of antiferromag- netic character between the copper ions. In powdered samples, changes in magnetic properties are related to thermally induced structural modifications. Melt-drawn fibers display a large nematic order parameter. Thermotropic liquid crystalline polymers 162 linked via the bis(pdiketonato)cop-

160 Ln = La, Gd, Y, Yb

159

H2 H2Nm;* N

157 Scheme 10-32.

Page 43: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.4 Polymers that have Transition Metals as Integral Parts of Their Main Chains 361

161

J n 162

N C 111 C n

Scheme 10-33.

~,jqf C L - c-C' :

163

per(I1) complex were furthermore reported by Hanabusa et al. (1993). Electron spinres- onance (ESR) spectra of the melt-drawn fi- bers indicate that the plane of the square pla- nar bis(b-diketonal.o)copper(II) complex in the fiber is oriented parallel to the fiber ax- is. Perreault et al. (1992) reported the lumi- nescent, silver-containing coordination polymers 163, which are insoluble in non- polar or weakly polar solvents and water, but readily dissolve (60- 100 mg L-') in, for example, acetone, ethers, and alkyl al- cohols. The Ag-Ag distance in 163 [-5.0 (0.5 nm)] is believed to be sufficiently large to conceive the possibility of encapsulating small monoatomic anions or cations and hence of generating chains with relatively close contacts.

Wang and Reynolds (1990) reported a new series of presumably oligomeric mate- rials 166 and 167 (Scheme 10-34) contain- ing nickel bis(dithio1ene) linkages along their polymer main chains. A variety of flex- ible linkages, R, was utilized to separate the nickel complexes including 0, S, CH2, (CH,)lo7 (CH2)22, and (OCH&H2)30. Poly- mers 166 with short flexible linkages are highly soluble in both aqueous and organic solvents, while the oxidized forms 167 are only slightly soluble. Increasing the length of R increases the solubility of the oxidized polymers 167. The electrochemical and spectral properties of the polymers are con- sistent with a stable main chain nickel bis(dithio1ene) structure where the metal complex can attain -2, -1, and neutral oxi-

Page 44: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

362 10 Organichorganic Hybrid Polymers

167

168

r 1

1 0 J " 169

166

R = urethane moiety

R = urethane or oligosiloxane moiety

Scheme 10-34.

dation states. Many other coordination poly- mers of tetrathiolates with M=Fe(II), Co(II), Cu(II), Pd(II), and Pt(I1) have been prepared from tetrathiooxalate (Reynolds et al., 1987), tetrathiosquarate (Schumater and Engler, 1977), tetrathiofulvalene tetra- thiolate (Rivera et al., 1979; Ribas and Cas- soux, 198 l) , benzene- 1,2,4,5tetrathiolate (Dirk et al., 1986), and naphthalene tetrathi- olate (Tec et al., 1977). Unfortunately, the black powders are insoluble and infusible. The polymer metal complexes exhibit con- ductivities of up to 30 S cm-' and their elec- tronic structures were investigated theoret- ically (Bohm, 1984).

Tenhaeff and Tyler (1991, 1992) de- scribed some of the first soluble coordina- tion polymers 168 and 169 having metal- metal bonds within their polyurethane back- bones. Some of these polymers have molec-

ular weights of up to M,=5000-20000. As a result of the metal-metal bonds along the backbones, these polymers undergo metal- metal bond photolysis reactions. As this bond cleavage is induced by visible light, these materials are of interest as photoreac- tive polymers. Finally, Moran et al. (1993) also report some polymers 169 having oli- gosiloxane bridging units R. These poly- mers are also distinguished by interesting electrochemical properties.

10.5 Poly(phtha1ocyaninato)- siloxanes and Related Polymers

Bridged one-dimensional macrocyclic metal complexes containing phthalocya- nine (Metz and Hanack, 1983; Schneider and Hanack, 1983; Die1 et al., 1984; Hanack

Page 45: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.5 Poly(phtha1ocyaninato)siloxanes and Related Polymers 363

171 oR

AICI3, CaCI2, CsCI, ... FeC13, ZnC12,

\, R?

170

RQ

172 oR

200 "C AgSO&Fj TiS03CF3 / [ C U ( C ~ ~ C N ) ~ S O ~ C F ~ ] I

OR OR 174

OR Scheme 10-35.

and Munz, 1985; Kobe1 and Hanack, 1986), tetrabenzoporphyrine (Hanack and Hedt- mann-Rein, 1985:1, and naphthalocyanine (Deger and Hanack, 1986; Keppeler et al., 1987) as the macrocycle, a transition metal

atom, e.g. iron, ruthenium, cobalt, and rho- dium, as the central metal atom, and a line- ar bidentate ligand such as cyanide, pyra- zine, tetrazine, or 1,4-diisocyanatobenzene as the bridging ligand, are well known to ex-

Page 46: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

364 10 Organichorganic Hybrid Polymers

hibit good semiconducting properties, even without external oxidative doping. There- fore these polymers have been widely inves- tigated, and many excellent papers are avail- able dealing with them (Ciardelli et al., 1996; Hedtmann-Rein et al., 1987). More- over. transition metal containing macromol- ecules such as 170 (Scheme 10-35), as well as their covalently bound polysiloxane and polygermanoxane analogs, are of consider- able importance as building blocks of su- pramolecular assemblies (Shimidzu and Iy- oda, 1981; Dirk et al.. 1981; Hanack and Pawlowski, 1982: Simon et al.. 1984; Ha- nack et al. 1986; van der Pol et al., 1990; Adam et al., 1993). However, because of their rod-like main chain conformation, most of these macromolecules are insoluble and infusible materials. Therefore the con- cept of solubilizing side chains has been ap- plied to these macromolecules as well, and indeed readily soluble phthalocyaninato polysiloxanes and -germanoxanes 174 hav- ing a variety of different solubilizing side groups, R, have been published (Metz et al., 1983; Orthmann and Wegner, 1986 a, b; Sir- linet al., 1988a.b:Caseriet al., 1988, 1990; Sauer and Wegner, 1989, 1991; Schwiegk et al.. 1991: Ferencz et al., 1993). In addi- tion to the alkyl and alkoxy substituted de- rivatives, the p-oxo-phthalocyaninatosili- con compounds might also contain R groups such as methyleneoxyalkyls. crown ethers, and ester groups (Sielken et al., 1990; Kent- gens et al.. 1990: Crockett et al., 1990; Du- long et al.. 1993 a. b).

The homogeneous molecular constitution and the rod-like shape of these "shish-ke- bab" polymers could be proved, and the de- grees of polymerization were determined to be I>,? = SO- 160 (M,lM,=2; SAXS) for polymers having R = n-alkyl, while for poly- mers bearing ester groups values of M , as high as 360 000 (M, = 140 000) were report- ed. The rotational dynamic behavior of

polymers [Si(O)PcR,],, was investigated in the solid state by two-dimensional NMR spectroscopy (Schwiegk et al., 1993). By this technique it was shown, for example, that the individual phthalocyanine moieties rotate round their covalent Si-0 bonds rath- er than that the molecules as a whole rotate around their columnar axis.

Study of the phase behavior of alkoxy substituted polymers reveals the existence of three different classes of this type of poly- mer, depending on the side chain length (Sauer, 1993). Short side chain derivatives do not show any phase transition up to the decomposition temperature. Medium side chain derivatives show a transition to ahigh- ly viscous liquid-crystalline phase, while the long side chain derivatives have an ad- ditional fluid mesophase at higher temper- atures. In all solid and liquid-crystalline phases, the rodlike molecules are packed in a two-dimensional hexagonal lattice with no discontinuous structural variations at the phase transition temperature (Sauer and Wegner, 1989; Kentgens et al., 1990; Sauer, 1993; Dulong et al., 1993a, b). Polymers with longer side groups, R, were investigat- ed with regard to their ability to form Lang- muir-Blodgett (LB) films (Orthmann and Wegner, 1986 b; Crockett et al., 1990; Schwiegk et al., 1992; Ferencz et al., 1993; Dulong et al., 1993a, b). Recently, more- over, highly ordered phthalocyaninatopoly- siloxane thin films were produced on a va- riety of substrates using the LB thin-film deposition techniques, with coverages ran- ging from 1 to 100 molecular layers (Ferencz et al., 1994). These ultra-thin films show fa- cile electron and ion transport during elec- trochemical and chemical oxidation, and notable stability of the phthalocyaninato cation radicals in the polymer chains in con- tact with both aqueous and nonaqueous me- dia. Finally, very recently Wu et al. (1996) succeeded in directly imaging individual

Page 47: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.8 References 365

shape-persistent macromolecules and their interaction by transmission electron micros- copy (TEM). Cospreading of different types of hairy rod macromolecules from a com- mon solvent in a Langmuir trough gives two-dimensional liquid-crystalline mix- tures of the constituents. Individual chains and clusters of parallel chains of the minor- ity constituent can be clearly discerned by TEM. The micrographs thus provide hither- to unknown insights into the details of the chain-packing behavior of macromolecules close to liquid-crystal defects (disclina- tions).

10.6 Conclusions

The aim of the present chapter was to show that organic/inorganic hybrid poly- mers are a highly attractive, but neverthe- less rather unexplored class of macromolec- ular materials. Since the synthesis of most of these systems is still a challenge today, only a limited nuniber of hybrid polymers has found technical application to date, and all of them have backbones exclusively composed of main group elements. Howev- er, not only such main group systems are ex- pected to be of special benefit for future technologies, but also those macromole- cules that additionally contain transition metals: Their unus iral chemical, electronic, or magnetic properties - not shown by the conventional organic macromolecules - make them potentially useful in fields like information technology, energy conversion, or catalysis. Nevertheless, for the realistic assessment of the real technological poten- tial of this promising class of polymeric ma- terials, reliable structure-property relation- ships are the basic requirement. Therefore (i) the synthetic strategies developed in re- cent decades must ibe optimized further, (ii) novel synthetic pathways have to be found,

and (iii) a profound characterization of the thus-obtained polymers is imperative. Con- sequently, research on soluble, constitution- ally well-defined hybrid polymers is an ex- ceptionally fruitful field of today’s macro- molecular research, both with regard to fun- damental and materials science, and for sure the continuously increasing number of re- search groups working in this area will make plenty of novel and unexpected results available in the near future.

10.7 Acknowledgements

Financial support given by the Deutsche Forschungsgemeinschaft is gratefully ac- knowledged. Moreover, the author is in- debted to B. Lahn and s. Kelch for careful proofreading of this chapter.

10.8 References Abe, A., Tabata, S., Kimura, N. (1991 a), Polym. J . 23,

69. Abe, A,, Kimura, N., Tabata, S. (1991 b), Macrornol-

ecules 24, 6238. Achar, S., Puddephatt, R. J. (1994a), Angew. Chern.

106, 895; Angew. Chem. Int. Ed. Engl. 33, 847. Achar, S., Puddephatt, R. J. (1994b), J . Chem. Soc.,

Chem. Commun., 1895. Adam, D., Closs, F., Frey, T., Funhoff, D., Haarer, D.,

Ringsdorf, H., Schuhmacher, P., Siemensmeyer, K. (1993), Phys. Rev. Lett. 70, 457.

Adams, S., Drager, M. (1987), Angew. Chem. 99, 1280; Angew. Chem. Int. Ed. Engl. 26, 1255.

Aitken, C. T., Harrod, J. F., Samuel, E. (1985), J . Or- gunomet. Chem. 279, C 1 1.

Aitken, C. T., Harrod, J. F., Samuel, E. (I986 a), J . Am. Chem. Soc. 108, 4059.

Aitken, C. T., Harrod, J. F., Samuel, E. (1 986 b), Can. J . Chem. 64, 1677.

Aitken, C., Harrod, J. F, Malek, A,, Samuel, E. (1988), J. Organornet. Chem. 349, 285.

Allcock, H. R. (1980), Polymer 21, 673. Allcock, H. R. (1992), J. Inorg. Organornet. Pdym. 2

Allcock, H. R. (1994a), Chern. Mufer. 6 , 1476. Allcock, H. R. (1 994 b), Adv. Matel: 6 , 106. Allcock, H. R., Brennan, D. J (1988), J. Organornet.

197.

Chem. 341, 231.

Page 48: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

366 10 Organidlnorganic Hybrid Polymers

Allcock. H. R., Cameron, C. G. (1994), Mucromole- cules 27, 3131.

Allcock, H. R., Chu. C. T.-W. ( 1979), Macromolecules 12. 55 1 .

Allcock, H. R.. Kim, C. ( 1989). Macroniolecirler 22. 2596.

Allcock, H. R.. Kim. C. (1991). Mucromolecu1e.s 24. 2846.

Allcock, H. R., Kugel. R. L. ( 1965). J . Am. Chem. Soc. 87, 4216.

Allcock, H. R.. Kugel. R. L. (1966). Inorg. Chem. 5. 1716.

Allcock. H. R.. Lanipe, F. W. (1990), Conreniporm~ Polymer Chenzi.sf,-\: 2"" ed. Englewood Cliffs, NJ: Prentice Hall.

Allcock. H. R., Mack. D. P. (1970), J. Chem. Soc. Chon. Commun. I I . 685.

Allcock, H. R., Moore, G. Y. (1975), Macromolecdes 8. 377.

Allcock, H. R.. Kugel. R . I,.. Valan, K. J . (1966). I n - org. Chem. 5, 1709.

Allcock, H. R., Patterson. D. B.. Evans, T. L. ( 1977). J. Am. Chem. Soc. 99. 6095.

Allcock, H. R., Lavin. K. D., Riding, G. H. (1985). Mucromolecules 18, 1340.

.4llcock, H. R., Mang. M. N., McDonnel, G. S., Par- vey, M. ( 1987). Macromolecules 20, 2060.

Allcock, H. R., Dembeck, A. A,, Klingenberg. E. H. (1991 a). Macromo1ecirle.s 24, 5208.

Allcock, H. R., Coley. S. M., Manners, I., Nuyken, 0. ( 1991 b), Mucroniolerules 24, 2024.

Allcock, H. R.. Coley. S. M.. Manners. I., Visscher. K. B.. Parvez. M.. Nuyken. 0. (1993a). Inorg. Cheni. 32. 5088 .

Allcock. H. R., Dodge. J. A.. Manners. I. (1993 b), Macromolecules 26. 1 .

Allcock, H. R.. Kuharcik, S. E.. Morrissey, C. T., Ngo. D. C. (1994a). Mucromolecules 27, 7556.

Allcock. H. R., Coley. S. M.. Morrissey, C. T. (I994 b), Macromolrcules 27, 290.

Allcock, H. R.. Crane. C. A,. Morrissey. C. T., Nel- son, J . M.. Reeves, S. D.. Honeyman, C. H., Man- ners, 1. (1996), Macromolecules 29, 7740.

Allcock, H. R.. Reeves. S. D.. Nelson, J . M., Crane, C. A.. Manners, 1. ( 1997). Macromolecules 30. 22 13.

Alonso. B.. Cuadrado. I . , Moriin, M., Casado, C.. Lo- bete, F.. Losada. J.. Cuadrado, I. ( 1995), Chem. Mat- el: 7, 1440.

Alonso, P. J. , PuCrtolas, J . A,. Davidson, P., Martinez. B.. Martinez. J. I . . Oriol. L.. Serrano, J. L. (l993), Mricroniolec~u1e.s 26, 4304.

Amabilino, D. B.. Sauvage, J.-P. (1996). J. Chem. Soc., Chem. Cotnuri.. 2441.

Andrianov, K. A.. Isrnailov. B. A., Konov, A. M., Kotrelev. G. V. (1965). J . Orgunoniet. Chem. 3. 129.

Anhaus. J . T.. Clegg, W., Collingwood. S. P.. Gibson, V. C. ( 199 I ), J . Chem. Soc. Chem. Commun., 1720.

Archer, R. D. (1986). in: Encyclopedia ofMaterials Science and Engineering, Vol. 3: Bever, M. B. (Ed.). Oxford: Pergamon.

Arkles, B. (1983), CHEMTECH 13, 542. Armspach, D., Cattalini, M., Constable, E. C., House-

croft, C. E., Phillips, D. (1996), J. Chem. Soc., Chem. Commun., 1823.

Arnim, V., Finkelmann, H., Dobarro, A., Velasco, D. (1996), Macromol. Chem. Phys. 197, 2729.

Arnold, R., Matchett, S. A., Rosenblum, M. (1988), Organometallirs 7 , 226 1 .

Atherton ,Z . , Faulkner, C. W.. Ingham, S. L., Kakkar, A. K., Khan, M. S., Lewis, J., Long, N. J., Raitby, P. R. (1993), J. Organomet. Chem. 462, 265.

Ballauff, M. (1989). Angew. Chem. Int. Ed. Engl. 28, 253.

Balzani, V., Juris, A., Venturi, M., Campagna, S., Ser- roni, S. (1996), Chem. Rev. 96, 759.

Barigelletti, F.. Flamigni, L., Guardigli, M., Sauvage, J.-P., Collin, J.-P., Sour, A. (1996), J. Chem. Soc.. Chem. Commun., 1329.

Baumert. J. C., Bjorklund, G. C., Jundt, D. H., Jurich, M. C., Looser, H., Miller, R. D., Rabold, J. , Sooriy- amaran, R., Michl, J . (1988). Appl. Phys. Lett. 53, 1147.

Baxter, P. N. W., Hanan, G. S., Lehn, J.-M. (1996). J. Chem. Soc.. Chem. Commun., 2019.

Baxter, P. N. W., Lehn, J.-M., Rissanen, K. (1997). J. Chem. Soc., Chem. Commun., 1323.

Bednarik, L., Neuse, E. W. (1980), J. Org. Chem. 45, 2032.

Bednarik. L., Gohdes, R. 0.. Neuse, E. W. (1977), Transition Met . Chem. 2, 2 12.

Blau, W. J. (1991), J . Muter. Chem. I, 245. Blum, Y. D., Laine, R. M. (1986), Organometullics 5,

Bock, H. (1989), Angew. Chem. Int. Ed. Engl. 28,

Bock, H., Ensslin, W. (1971). Angew. Chem. Int. Ed.

Bohm, M. C. (1984). Phys. Status Solidi ( B ) 121, 255. Boileau. S., Teyssie, D. (1991), J. Inorg. Organornet.

Polyrn. I . 247. Bouquey, M., Brochon, C., Bruzaud, S., Mingotaud,

A. F., Schappacher, M., Soum, A. (1996), J. Orga- nomet. Chenz. 521, 2 1 .

BrCford, J. L., Corriu, R. J . P., Gerbier, P., GuCrin. C., Henner, B. J . L., Jean, A., Kuhlmann, T., Garnier, F., Yassar, A. (1992), Organometullics 11, 2500.

Breford, J . L., Corriu, R. J . P., Gutkin, C., Henner, B. J . L. (1994). J. Organomet. Chem. 464. 133.

Brown, T. L., Morgan, G. L. (1963), Inorg. Chem. 2, 736.

Bruzaud, S., Soum, A. (1996). Macromol. Chem. Phw. 197, 2379.

Bruzaud, S . , Mingotaud, A.-F., Soum, A. (1997). Muc- rornol. Chem. Phys. 198. 1873.

Brandt, P. F., Rauchfuss, T. B. (1992). J. Am. Chem. Soc. 114, 1926.

208 1.

1627.

Engl. 10, 404.

Page 49: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.8 References 367

Bunten, K. A,, Kakkar. A. K. (1996), Macromolecules 29, 2885.

Burkhard, C. A. (1949), J . Am. Chem. SOC. 71, 963.

Campagna, S., Denti, G., Serroni, S., Juris, A., Ven- turi, M., Ricevuto, V., Balzani, V. (1995), Chem. Eur. J . I, 211.

Campbell, W. H., Hilty, T. K., Yurga, L. (1989), Or- ganometallics 8, 26 15.

CBrdenas, D. J., Gavina, P., Sauvage, J.-P. (1996), J. Chem. Soc., Chem. Commun., 1915.

Carriedo, G. A,, Fernhdez-Catuxo, L., Alonso, F. J. G., G6mez-Elipe, P., Gonzilez, P. A. (1996), Mac- romolecules 29, 5320.

Caseri, W., Sauer, T., Wegner, G. (1988), Makromol. Chem., Rapid Comnzun. 9, 651.

Caseri, W., Sauer, T., Wegner, G. (1990), Mol. Cryst. Liq. Cryst. 183, 387.

Chen, H., Archer, R. I). (1995), Macromolecules 28, 1609.

Chen, H., Archer, R. I). (1996), Macromolecules 29, 1957.

Chen, H., Cronin, J. A , Archer, R. D. (1994), Macro- molecules 27, 2174.

Chen, H., Cronin, J. A,, Archer, R. D. (1995), Inorg. Chem. 34, 2306.

Chi, K. M., Calbrese, .I. C., Reiff, W. M., Miller, J. S. (1991), Organometcillics 10, 668.

Chisholm, M. H. (1991 ),Angew. Chem. 103,690;An- gew. Chem. lnt. Ed. Engl. 30, 673.

Chojnowski, J. (1991 a), in: Siloxane Polymers: Clar- son, S. J., Semlyn, 1. A. (Eds.). Englewood Cliffs, NJ: Prentice Hall.

Chojnowski, J. (1991 ti), J. lnorg. Organomet. Polym. I , 299.

Ciardelli, F., Tsuchida, E., Wohrle, D. (1996), Mac- romolecule-Metal Complexes. Berlin: Springer.

Clarson, S. J., Semlyen, J. A. (1991), Siloxane Poly- mers. Englewood Cliffs, NJ: Prentice Hall.

Cleij, T. I., Tsang, S. K.. Y., Jenneskens, L. W. (l997), J . Chem. Soc., Chenz. Commun., 329.

Coen, M. C., Lorenz, K., Kressler, J., Frey, H., Mulhaupt, R. (1996), Macromolecules 29, 8069.

Collin, J.-P., Gavina, P., Sauvage, J.-P. (1996), J. Chem. Soc., Chem. iCommun., 2005.

Comproil, D. L., Rauchfuss, T. B. (1994), Organo- metallics, 13, 4367.

Compton, D. L., Bran'lt, P. F., Rauchfuss, T. B., Ro- senbaum, D. F., Zukoski, c. F. (1995), Chem. Muter: 7, 2342.

Constable, E. C. (199'r). J. Chem. Soc., Chem. Com- mun., 1073.

Constable, E. C., Harverson, P. (1996), J. Chem. SOC., Chem. Commun., 3:~.

Constable, E. C., Cargill Thompson, A. M. W., Toch- ter, D. A. (1993), Polym. Prepr. 34(1), 110.

Constable, E. C., Huverson, P,, Oberholzer, M. (1996a), J. Chem. Soc., Chem. Commun., 1821.

Constable, E. C., Heirtzler, F. R., Neuburger, M., Zehnder, M. (1996b), J. Chem. Soc., Chem. Com- mun., 933.

Constable, E. C., Heirtzler, F. R., Neuburger, M., Zehnder, M. (1997), J. Am. Chem. SOC. 119, 5606.

Corriu, R. J.-P., Gukrin, C., Henner, B. J. L., Kuhl- mann, T., Jean, A. (1990), Chem. Muter. 2, 351.

Corriu, R. J.-P., Douglas, W. E., Yang, Z.-X., Garni- er, F., Yassar, A. (1991), Organomet. Chem. 417, C50.

Corriu, R. J.-P., Gerbier, P., Gutrin, C., Henner, B. J. L., Jean, A., Mutin, P. H. (1992), Organometallics 11, 2507.

Corriu, R. J.-P., Douglas, W. E., Yang, Z.-X. ( 1 993). Polymer 34, 3535.

Corriu, R. J.-P., Devylder, N., Guerin, C., Henner, B., Jean, A. (1996), J. Organomet. Chent. 509, 249.

Cotts, P. M., Miller, R. D., Trefonas 111, P. T., West, R., Fickes, G. (1987), Macromolecules 20, 1046.

Cragg, R. H., Jones, R. G., Swain, A. C., Webb, S. J. (1990), J. Chem. SOC., Chem. Commun., 1147.

Crockett, R. G. M., Campbell, A. J., Ahmed, F. R. (1990), Polymer 31, 602.

Cross, G. H., Gray, D., Karakus, Y., Bloor, D., Cor- riu, R. J. P., Douglas, W. E., Yang, Z.-X. (1992), in: SPIE International Symposium, Optical Applied Science and Engineering, San Diego: Paper

Cundy, C. S., Lappert, M. F. (1978), J. Chem. SOC. Dalton Trans., 665.

Cypryk, M., Gupta, Y., Matyjaszewski, K. (1991), J. Am. Chem. SOC. 113, 1046.

Davidson, P. J., Lappert, M. F., Pearce, R. (1976), Chem. Rev. 2, 219.

Davies, S. J., Johnson, B. F. G., Khan, M. S., Lewis, J. (1991), J. Chem. SOC., Chem. Commun., 187.

Deger, S., Hanack, M. (1986), Synth. Met. 13, 319. Denti, G., Serroni, S., Campagna, S., Juris, A,, Ciano,

M., Balzani, V. (1992a), in: Perspectives in Coor- dination Chemistry: Williams, A. F., Floriani, C., Merbach, A. E. (Eds.). Weinheim: VCH.

Denti, G., Campagna, S., Serroni, S., Ciano, M., Bal- zani, V. (1992b), J. Am. Chem. Soc. 114, 2944.

Devylder, N., Hill, M., Molloy, K. C., Price, G. J. (1996), .I. Chem. SOC., Chem. Commun., 71 1.

Dewar, M. J. S., Lucken, E. A. C., Whitehead, M. A. (1960), J. Chem. SOC., 2423.

Diel, B. N., Inabe, T., Jaggi, N. K., Lyding, J. W., Schneider, 0. (1984), J. Am. Chem. SOC. 196,3207.

Dirk, C. W., Mintz, E. A., Schoch, A. F., Jr., Marks, T. J. (1981), J. Macromol. Sci. Chem. A 16, 275.

Dirk, C. W., Mintz, E. A., Schoch, K. F., Marks, T. J. (l986), in: Advances in Organometallic and Inor- ganic Polymer Science: Carraher, C. E., Sheats, J. E., Pittmann, C. U. (Eds). New York: Marcel Dek- ker, p. 275.

Dodge, J. A., Manners, I., Renner, G., Allcock, H. R., Nuyken, 0. (1990), J. Am. Chem. Soc. 112, 1268.

1775 -45.

Page 50: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

368 10 Organicllnorganic Hybrid Polymers

Dray. A. E.. Rachel. R., Saxton, W. O., Lewis, J . , Khan, M. S.. Donald. A. M.. Friend, R. H. (1992).

Duguet, E., Schappacher. M., Soum. A. (1992). Mnc- romolecules 25, 4835.

Dulong, L., Gittinger. A,. Roth. S.. Wagner, T. (1993 a). Mcikroniol. Chern. 194. 493.

Dulong, L.. Gittinger, A,. Roth, S.. Wagner. T. (1993b). Mol. Cnst. Liq. Cnst. 237, 235.

Eschenbroich, C., Hurley. J . . Metz. B., Massa, W.. Baurn, G. ( 1990), Orgunonietnllics 9, 889.

Facchin, G., Minto. F.. Gleria. M., Bertani, R., Borto- lus. P. i 199 I ). J. lriorq. Orgunornet. P o l p . I , 389.

Fang. M.-C.. Watanabe. A,. Matsuda, M. (1995). J. Organornrt. Cherrr. 489, 15.

Fang. M.-C.. Watanabe. A,, Matsuda. M. ( 1996). Muc- romolecules 29. 6807.

Faulkner, C. W., Inghain, S. L., Khan. M. S., Lewis, J . , Long, N. J . . Raithby, P. R. (1994). J. Organornet. Chem. 482. 139.

Fellrnann. J . D., Garrou, P. E.. Withers. H. P., Seyferth. D., Traficiante. D. D. (1983). Orgarioriretollic~s 2, 818.

Ferencz, A , . Ries, R.. Wegner. G. (1993). Angetr: Chein. 105, 125 I .

Ferencz. A. . Armstrong. N. R., Wegner. G. (1994). Mut.)Y)r~ioICc.lile,s 27. 15 17.

Finckh. W.. Ziernbinski. R.. Tang, B. Z., Foucher, D. A.. Zamble. D. B.. Lough. A,. Manners. I . (1993). Ol:~rrrior~lc,tcillic.s 12. 823.

Flory. P. J. ( 1969). Statistical Mechanics of' Chain Molecule.\. New York: Wiley-lnterscience.

Fossurn, E.. Matyjaszewski. K. ( 1995). Macromole- cules 28. I61 8.

Fossurn, E., Matyjaszewski. K., Rulkens, R.. Man- ners, I . i 1995). Mtrc~romolecules 28, 401.

Foucher. D. A.. Manners. I . ( 1993), Makrornol. Chem. Rapid Comrnirri. 14. 63.

Foucher, D. A,, Tang. B. Z., Manners, I. ( 1992). J. Am. Chem. Soc. 114, 6246.

Foucher. D. A.,Ziembinski. R.,Tang, B. Z.. Macdon- ald. P. M., Massey. J., Jaeger, R..Vancso,G. J . , Man- ncrs. I . ( I993 a). M~icroniolecule.s 26, 2878.

Foucher. 1). A,. Honeyman, C.. Nelson, I. M.. Tang. B. Z.. Manners. I. (1993 b). Angetc: Chern. 105. 1813: AngebI: Clirm. Int. Ed. EngI. 32, I 709.

Fouchcr. D. A.. Edwards, M., Burrow, R. A., Lough. A . J . . Manners. 1. (1994a). Orgcinnmernllics 13. 4959.

Foucher, D. A,. Zambinski. R.. Rulkens. R., Nelson, J . M., Manners. I . i I994 b). ACS Syrnp. Sei: 572, 449.

Foucher. D. A, . Zienibinski. R.. Petersen, R.. Pudel- ski. J. , Edwards. M.. Ni. Y.. Massey. J., Jaeger. D. R.. Vancso. G. J . . Manners. I. ( 1 9 9 4 ~ ) . Mcicrornol- ivules 27. 39Y2.

Foxman. H. M.. Rosenblum. M. (1993). Organorm- tcillic..s 12. 4805.

Foxman, B. M., Gronbeck, D. A,, Rosenblum, M.

Frapper, G., Kertesz, M. (1993), lnorg. Chem. 32,732. Frey. H, Moller, M., Matyjaszewski, K. (1994), Mac-

romolecules, 27, 18 14. Fry, B. E., Neckers, D. C. (1996), Mucromolecules 2Y,

5306. Fujino, M., Isaka, H. (1989). J. Chcm. Soc., Chem.

Commun., 466. Fyfe, H. B., Mlekuz, M., Zargarian, D., Taylor, N. J . ,

Marder, T. B. (1991), J . Chem. Soc., Chem. Com- mun., 188.

Galloway, C . P., Rauchfuss, T. B. (1993). Angew. Chern. 105. 1407; Angew. Chem. Int. Ed. Engl. 32, 1319.

Gamble, A. S.. Patton, J. T., Boncella, J. M. (1993), Makromol. Chem., Rapid Commun. 13, 109.

Gankema, H., Lugtenberg, R. J . W., Engbersen, J. F. J. , Reinhoudt. D. N., Moller, M. ( I 994). Adv. Mat- er. 6, 944.

Gauthier, S., Worsfold, D. J . (1989), Macromolecules 22, 2213.

G6mez-Elipe, P., Macdonald, P. M., Manners, I. (1997). Angew. Chem. 109, 780.

Gonsalves. K., Zhanru, L., Rausch. M. V. (1984), J. Am. Chem. Soc. 106, 3862.

Goodwin, G. B., Kenney, M. E. (1990), in: Silicon- Bused Polymer Science. A Comprehensive Re- source, Vol. 224: Zeigler, J . M., Fearon, F. W. G . (Eds.). Advances in Chemistry Series, Vol. 224. Washington, DC: American Chemical Society.

Goodwin, H. A,, Lions, F. (1959), J . Am. Chern. Soc. 81. 6415.

Grarnpel, vande, J . C. (1981). Rev. lnorg. Chcvn. 3, 1. Green, M. L. H. (1968). in: Organomefallic Com-

pounds, 3rd ed. Vol. 2: Coat, G. E., Green, M. L. H. (Eds.). London: Methuen, p. 203.

Grugel, C., Neumann, W. P., Leifert, P. ( 1 977), Terra- hedron Lett., 2205.

Gruneich, J . A , , Wisian-Neilson. P. (l996), Macro- molecules 2Y, 55 1 1 .

Guo. X. A,, Sturge, K. C., Hunter, A. D., Williams, M. C. (1994). Macromolecules 27, 7825.

Hagihara, N., Sonogashira, K.. Takahashi, S. (I98 I ) , Adv. Polym. Sci. 41, 149.

Hallmark, V. M., Zimba, C. G., Sooriyakumaran, R., Miller, R. D., Rabolt, J . F. (1990). Macromolecules 23. 2346.

Hanabusa, K., isogai, T., Koyama. T., Shirai, H. (1993), Makromol. Chern. 194, 197.

Hanack, M., Hedtmann-Rein, C. (l985), Z. Nafur- forsch., B: Anorg. Chem.. Org. Chem. 40B.

( 199 I ), J. Organornet. Chem. 4 13, 287.

1087. Hanack, M., Miinz, X. (1985), Synth. Met. 10, 357. Hanack, M.. Pawlowski, G. (l982), Narurwissen-

schajien 69, 266. Hanack, M., Datz. A,, Fay, R., Fischer, K., Keppeler,

U., Koch, J., Metz, J. , Mezger, M., Schneider, 0.. Schulze, H.-J. (1986), in: Handbook of Conducting

Page 51: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.8 References 369

Polymers: Skotheix, T. A. (Ed.). New York: Dek- ker, p. 133.

Harriman, A., Ziessel, 13. (1996),J. Chem. Soc., Chem. Commun., 1707.

Harrod, J. F. (1988), i n : Inorganic and Organometal- lic Polymers, Vol. 360: Zeldin, M., Wynne, K. J., Allock, H. R. (Ed,$.). ACS Symposium Series, Washington, DC: American Chemical Society.

Hay, A. S. (1969), J . f’olym. Sci. A-I , 7, 1625. Hedtmann-Rein, C., Hanack, M., Peters, K., Peters,

E.-M. (1987), Inorg. Chem. 26, 2647. Hempenius, M. A., Lainmertink, R. G. H., Vancso, G.

J. (1996a), Macrom.71. Rapid Commun. 17, 299. Hempenius, M. A,, Lainmertink, R. G. H., Vancso, G.

J. (1996b), Macromol. Rapid Commun. 17, 843. Hempenius, M. A,, Lainmertink, R. G. H., Vancso, G.

J. (1997). Macromor‘ecules 30, 266. Hmyene, M., Yassar, A,, Escorne, M., Percheron-Gue-

gan, A., Gamier, F. 1:1994), Adv. Muter. 6, 564. Honeyman, C. H., Foucher, D. A,, Dahmen, F. Y.,

Rulkens, R., Lough, A. J., Manners, I. (1995), Or- ganometallics 14, 5503.

Honeyman, C. H., Peckham, T. J. , Massey, J. A., Mannes, I. (1996), J . Chem. SOC., Chem. Commun., 2589.

Hsiao, Y., Waymouth, I<. M. (1994), J. Am. Chem. Soc. 116,9719.

Hultzsch, K. C., Nelson, J. M., Lough, A. J., Manners, I. (1995), Organomt~tallics 14, 5496.

Imori, T., Tilley, T. D. (1993), J. Chem. Soc., Chem. Commun., 1607.

Imori, T., Lu, V., Cai, H., Tilley, T. D. (1995), J. Am. Chem. Soc. I 1 7, 99:~ 1.

Interrante, L. V., Wu, 13. J., Apple, T., Shen, Q., Zie- mann, B., Narsavagi:, D. M. (1994), J . Am. Chem. Soc. 116, 112085.

Isaka, H. (1997), Maci.omolecules 30, 344. Ishikawa, M., Hatano, T., Hasegawa, Y., Horio, T., Ku-

nai, A,, Miyai, A., Ishida, T., Tsukihara, T., Yama- naka, T., Koike, T., Shioya, J. (1992), Organome- tallics 11, 1604.

Izumi, T., Kasahara, A. (197% Bull. Chem. SOC. Jpn. 48, 1955.

Jedlinski, Z. J., Sok61, M. (1995), Pure Appl. Chem. 67, 187.

Jedlinski, Z. J., Kurcok, P., Nozirow, F. (1997), Mac- romol. Rapid Commun. 18, 483.

Johnson, B. F. G. (1991), J. Mater. Chem. 1,485. Johnson, B. F. G., Kakkar, A. K., Khan, M. S., Lew-

is, J. (1991), J . Orgonomet. Chem. 409, C12. Jones, R. G., Benfield. R. E., Evans, P. J., Swain, A.

C. (1995), J . Chem. Soc., Chem. Commun., 1465. Jones, R. G., Budnik, U., Holder, S. J., Wong, W. K.

C. (1996), Macromolecules 29, 8036. Kajzar, F., Messier, J., Rosilio, C. (1986), J. Appl.

Phys. 60, 3040. Karatsu, T., Miller, R. I)., Sooriyakumaran, R., Michl,

J. (1989),J.Am. Ch.cm. SOC. 111, 1140. Kealy, T. J., Pauson, P. L. (1951), Nature 168, 1039.

Kelch, S., Rehahn, M. (1997), Macromolecules 30, 6185.

Kendrick, T. C., Parbhoo, B., White, J. W. (1989), in: The Chemistry of Organic Silicon Compounds: Patai, S., Rappoport, Z. (Eds.). New York: Wiley.

Kentgens, A. P. M., Markies, B. A., Pol, van der, I. F., Nolte, R. J. M. (1990),J.Am. Chem. Soc. 112,8800.

Kepler, R. G., Zeigler, J. M., Harrah, L. A., Kurtz, S. R. (1982), Phys. Rev. B. 35, 2818.

Kepler, R. G., Zeigler, J. M., Harrah, L. A. (1983), Bull. Am. Phys. SOC. 28, 362.

Kepler, F., Zeigler, J. M., Harrah, L. A,, Kurtz, S. R. (1989), Phys. Rev. B 35, 3818.

Keppeler, U., Deger, S., Lange, A,, Hanack, M. (1987), Angew. Chem. 99, 349.

Khan, M. S., Kakkar, A. K., Long, N. J., Lewis, J., Raithby, P., Nguyen, P., Marder, T. B., Wittmann, R. H., Friend, R. H. (1994a), J. Muter. Chem. 4, 1227.

Khan, M. S., Kakkar, A. K., Ingham, S. L., Raithby, P. R., Lewis, J., Spencer, B., Wittmann, F., Friend, R. H. (1994b), J. Organomet. Chem. 472, 247.

Kim, H. K., Matyjaszewski, K. (1988), J. Am. Chem. Soc. 110,3321.

Kim, H. K., Ryu, M.-K., Lee, S.-M. (1997), Macro- molecules 30, 1236.

Kipping, F. S. (1924), J. Chem. Soc. 125, 2291. Klingensmith, K., Downing, J. W., Miller, R. D.,

Michl, J. (1986), J. Am. Chem. SOC. 108, 7438. Klok, H.-A,, Eibeck, P., Moller, M., Reinhoudt, D. N.

(1997), Macromolecules 30, 795. Knapp, R., Rehahn, M. (1993 a), J. Organomet. Chem.

452, 235. Knapp, R., Rehahn, M. (1993 b), Makromol. Chem.,

Rapid Commun. 14,45 1. Knapp, R., Schott, A,, Rehahn, M. (1996), Macromol-

ecules 29, 478. Knapp, R., Velten, U., Rehahn, M. (1998), Polymer,

in press. Kobayashi, S., Iwata, S., Hirashi, M. (1994), J . Am.

Chem. Soc. 116, 6041. Kobel, W., Hanack, M. (1986), Inorg. Chem. 25, 103. Kollmar, C., Couty, M., Kahn, 0. (1991),J. Am. Chenz.

Koopmann, F., Frey, H. (1996), Macromolecules 29,

Kramer, J. A,, Hendrickson, D. N. (1980), Inorg.

Lacave-Goffin, B., Havesi, L., Devaux, I. (1995), J .

Lach, C., Muller, P., Frey, H, Mulhaupt, R. (1997),

Laine, R. M., Blum, Y. D., Tse, D., Glaser, R. (1988),

Lang, H. (1994), Angew. Chem. 106, 569. Lehn, J.-M. (1990),Angew. Chem. 102, 1347. Lehn, J.-M. (1995), Supramolecular Chemistry.

Soc. 113,7994.

3701.

Chem. 19, 3330.

Chem. Soc., Chem. Commun., 769.

Macromol. Rapid Commun. 18, 253.

ACS Symp. Ser. 360, 142.

Weinheim: VCH.

Page 52: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

370 10 Organicllnorganic Hybrid Polymers

Lewis, J.. Khan. M. S. . Kakkar. A. K.. Johnson, B. F. G.. Marder. T. B.. Fyfe, H. B.. Wittmann. F.. Friend. R. H. Dray. A. E. ( 1992). J. Organornet. Chem. 425, 165.

Lhost. 0.. Toussaint. J . M.. Bredas. J. L., Wittmann. H. F., Fuhrmann, K.. Friend, R. H.. Khan, M. S.. Lewis, J . (1993). Synth. Met. 55-57, 4525.

Liang, M.. Manners, I . (1991 a), J . Am. Chem. SOC. I 13, 4044.

Liang. M., Manners. I . ( 1991 b). Makrornal. Chern. Rapid Commun. 12. 61 3 .

Liu. X.-H.. Bruce. D. W.. Manners, I. (1997). J . Cherii. SOL.., Chein. Commun., 289.

Lovinger. A. J., Schilling. F. C.. Bovey, F. A,. Zeigler. J . M. (1986). Muc~r~~nrolec~u1e.s 19. 2660.

Lovinger. A. J.. Davis. D. D.. Schilling, F. C.. Bovey. F. A., Zeigler. J. M. (1989). Polym. Cummiin. 30. 356.

Lukevics. E.. Pudova, 0.. Sturkovich, R. (1989), M o - Iec.ular Structure of Or,ganosilicon Coriyioitrids. New York: Wiley.

MacLachlan. M. 1.. Lough. A. J.. Manners, I. (1996). Macmmolec~ir1e.s 2% 8562.

Made. van der. A. W., Leeuwen, van, P. W. N. M. 1992 1. J . Cheni. Soc., Chern. Cuinniuri.. 1400.

Manners. I. ( 1993). J . Innrq. Or,ganoniet. Polyrn. 3.

Manners. I. ( 1994). Ad): Mcrtec 6, 68. Manners. I. (1995). A h Orgunomer. Chem. 37, 131. Manners, 1. (l996), A n g e ~ : Chem. 108, 1713. Manners, I., Riding. G. H.. Dodge, 1. A,. Allcock. H.

R. (1989a), J . Am. Chem. Soc. 1 1 1 . 3067. Manners, I . , Renner. G.. Allcock. H. R.. Nuyken, 0.

(1989b). J.Anl. Chent. S o c . I l l . 5478. Mao, S . S. H., Tilley. T. D. (1995). J. Am. Chein. Soc.

Marcos, M.. Oriol, L.. Serrano. J. L. (1992). Macro- ino1ri.iile.s 2.5, 5362.

Mark, J . E. ( I 990), in: Silicon-Based Polymer Science. A Comprehen.siw Rr.vortrc~e, Vol. 224: Zeigler. J. M.. Fearon. F. W. G. (Eds.). Advaricc~s in Cliernisry Se- ries. Washington. DC: American Chemical Society.

Mark, J. E., Allcock. H. R.. West, R. (1992). Inorgan- ic Polymers. Polymer Science and Engineering Se- ries. Englewood Cliffs, New Jersey: Prentice Hall.

Matsuda, H.. Nakanishis. N.. Karo, M. (1984). J. Polym. Sci. Polyrz . Lett. Ed. 22, 107.

Matsumoto. K.. Miyagawa. K., Yamaoka. H. (1997). Mucrotnolecules 30, 2524.

Matyjaszewski, K. ( 1992). J . lnorg. Orgcinon~et.

Matyjaszewski, K.. Chen. Y. L., Kim, H. K. (1988). in: Inor~pnic arid Organornetallic Po1yrner.s. Zel- din. M.. Wynne. K. J. . Allcock, H. R. (Eds.). ACS Symp. Ser. 360. Washington. DC: American Chem- ical Society.

Matyjaszewski. K.. Montague, R. A.. Dauth. J., Nuyk- en. 0. (1992). J. Polym. Sci., PartA: Polym. Chern. 30, 813.

185.

Polyl?f.nr. 2 , 5.

Matyjaszewski, K., Franz, U., Montague, R. A,, White, M. L. (1994), Polymer 35, 5005.

Matyjaszewski, K., Greszta, D., Hrkach, I. S., Kim, H. H. (1995), Macromolecules 28, 59.

Maxka, J., Mitter, F. K.. Powell, D. R., West, R. ( 199 1 ), Organornetallics I I , 660.

Mazdyasni, K. S., West, R., David, L. D. (1978), J. Am. Ceram. Soc. 61, 504.

McGrath, J. E. (1985). in: Ring-Opening Polymeriza- tions, Vol. 286: McGrath, J. E. (Ed.). ACS Sympo- sium Series, Washington, DC: American Chemical Society.

Metz, J., Hanack, M. (1983), J. Am. Chem. Soc. 105, 828.

Metz, J., Pawlowski, G.. Hanack, M. (1983), Z. Nu- tutfursch. 38B, 378.

Meyer. M., Albrecht-Gary, A.-M.. Dietrich-Bucheck- er. C. 0.. Sauvage, J.-P. (1997), J. Am. Chem. Soc. I 19, 4599.

Michl. J . (1990), Acc. Chem. Res. 23, 127. Michl, J., Downing, J. W.. Karatsu, T., Klingensmith,

K. A.. Wallraff, G. M., Miller, R. D. ( I 988), in: In- organic and Organornetallic Polymers. Vol. 360: Zedlin, M., Wynne, K. J., Allcock, H. R. (Eds.). ACS Symposium Series, Washington, DC: Ameri- can Chemical Society, p. 61.

Miller, R. D., Jenker, P. K. (1994). Macromolecules 27, 592 I .

Miller, R. D., Michl, J. (l989), Chem. Rev. 89,1359. Miller, R . D., Sooriyakumaran, R. ( l987), J. Polym.

Sci., Polym. Chern. Ed. 25, I 1 1 . Miller, R. D., Rabolt, J., Sooriyakumaran, R.. Flem-

ing, W.. Fickes, G. N.. Farmer, B. L., Kuzrnany, H. (1988), in: Inorganic and Organometallic Poly- mers. Vol. 360: Zedlin, M., Wynne, K. J., Allcock, H. R. (Eds.). ACS Symposium Series, Washington, DC: ACS, p. 43.

Miller, S. A,, Tebboth, J. A,, Tremaine, J. F. ( 1 9S2), J . Chem. Soc., 632.

Mitchell, T. N. (1975), J. Orgunornet. Chem. 92, 31 1. Mochida, K., Chiba, H. (1994), J. Organomet. Chem.

Molenberg, A.. Klok. H.-A., Moller, M., Boileau, S.,

Montague, R. A., Matyjaszewski, K. (1990). J. Am.

Moran. M., Pascual. M. C., Cuadrado, I.. Losada. J.

Morrison, W. H., Hendrickson, D. N. (1975), Inorg.

Mueller-Westerhoff. U. T. (1986), Aiigew. Chem. 98,

Nagai, K.. Takamiya, N., Kaneko. M. (1996). Macro-

Nalwa. H. S. ( l990), Appl. Organomet. Chem. 4, 9 1. Nalwa. H. S. (1991), Appl. Orgunornet. Chrm. 5.

Neilson, R. H., Wisian-Neilson, P. (1988). Chem. Rev.

473, 45.

TeyssiC, D. (1997), Macromolecules 30, 792.

Cheni. Soc. I 12, 672 I .

( 1993). Organornetallics 12, 8 1 1 .

Chern. 14, 2331.

700: Angew Chem. Int. Ed. Engl. 25, 702.

mu/. Chem. Phys. 197. 2983.

349.

88. 54 1.

Page 53: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.8 References 371

Neilson, R. H., Hani, R., Wisian-Neilson, P., Meister, J. J., Roy, A. K., Hagnauer, G. L. (1987), Macro- molecules 20, 910.

Nelson, J., Pietro, W J. (1988), J. Phys. Chem. 92, 1365.

Nelson, J. M., Rengel, H., Manners, I. (1993), J. Am. Chem. SOC. 115, 7035.

Nelson, J. M., Lough, A. J., Manners, I. ( 1 995), An- gew. Chem. 106, 1019.

Nemeyanov, A. N., Drozd, V. N., Sazonova, V. A., Romanenko, V. I., Prokofiev, A. K., Nikonova, L. A. (1963), lzv. Akad Nauk SSSR, Otd. Khim Nauk, 667.

Neurnann, W. P., Pedain, J. (1964), Liebigs Ann. Chem. 672, 34.

Neuse,E. W. (1981),.r. Macromol. Sci. Chern.Al6, 3. Neuse, E. W., Bednarik, L. (1979a), Macromolecules

12, 187. Neuse, E. W, Bednarik, L. (1979b), Transition Met.

Chem. 4, 104. Neuse, E. W., Rosenbcrg, H. (1970), J. Macromol. Sci.

Rev. Macromol. Chem. C4(1), 1 . Newkorne, G. R., He, E. (1997), J. Chem. Soc., Chem.

Cornmun., 1237. Newkome, G. R., Cardullo, F., Constable, E. C.,

Moorefield, C. N., Cargill, Thompson, A. M. W. (1993), J. Chem. Soc., Chem. Commun., 925.

Ngo, D. C., Rutt, J. S. , Allcock, H. R. (1991), J . Am. Chem. Soc. 113, 5675.

Nguyen, M. T., Diaz, .4. F., Dement’ev, V. V., Pannell, K. H. (1993), Cheni. Muter. 5, 1389.

Ni, Y., Rulkens, R., Pudelski, J. K., Manners, I. (1995), Makromol. Chem. Rapid Cornmun. 16, 637.

Ni, Y., Park, P., Liang,, M., Massey, J. , Waddling, C., Manners, I. (1996 a), Macromolecules 29, 3401.

Ni, Y.,Rulkens, R., Manners, I. (1996b),J. Am. Chem. Soc. 118, 4102.

Niishikata, Y., Morikawa, A,, Kakimoto, M., Imai, Y., Hirata, Y., Nishiyama, K., Fujihira, M. (1989), J. Chem. SOC., Chem. Commun., 1172.

Nugent, H. M., Rosenblum, M., Klemarczyk, P. (1993), J. Am. Chem. SOC. 115, 3848.

Nuyken, O., Pohlmann, T., Herberhold, M. (1992), Macromol. Rev. A29(3), 21 1.

Nuyken, O., Pohlmaiin, T., Herberhold, M. (1996), Macromol. Chem. Phys. 197, 3343.

Oberharnrner, H., Boggs, J. E. (1980), J. Am. Chem. SOC. 102, 7241.

Odian, G. (1991), Principles of Polymerization, 3rd ed. New York: Wiley-Interscience. .

Ohshita, J., Yamashila, A,, Hiraoka, T., Shinpo, A., Kunai, A,, Ishikau a, M. (1997), Macromolecules 30, 1540.

Oriol, L., Alonso, P. J., Martinez, J. I., Pinol, M., Ser- rano, J. L. (1994), Macromolecules 27, 1869.

Orthrnann, E., Wegner, G. (1986a), Makromol. Chem., Rapid Commun. 7, 243.

Orthmann, E., Wegner, G. (1986b),Angew. Chem. 98, 11 14.

Park, J., Seo, Y., Cho, S., Whang, D., Kim, K., Chang, T. (1995), J. Organomet. Chem. 489, 23.

Parshall, G. W., Cramer, R., Foster, R. E. (l962), ln- org. Chem. 1, 677.

Patai, S., Rappoport, Z. (1989), The Chemistry o f o r - ganic Silicon Compounds. New York: Wiley.

Patterson, W. J., McManus, S., Pittman, C. H. (1974), J. Polym. Sci. Part A-1, 12, 837.

Peckharn, T. J., Massey, J . A., Edwards, M., Manners, I., Foucher, D. A. (1996), Macromolecules29,2396.

Perreault, D., Drouin, M., Michel, A,, Harvey, P. D. (1992), lnorg. Chem. 31, 3688.

Petersen, R., Foucher, D. A., Tang, B. Z., Lough, A. J., Raju, N. P., Greedan, J. E., Manners, I. (1995). Chem. Muter. 7, 2045.

Pittman, C . U., Lai, J. C., Vandepool, D. P., Good, M., Prado, R. (1970), Macromolecules 3, 746.

Pol, van der, J. F., de Haas, M. P., Warman, J. M., Drenth, W. (1990), Mol. Cryst. Liq. Cryst. 183, 41 1.

Poths, H., Zentel, R. (1994), Macromol. Chem. Rap- id Commun. 15, 433.

Prons, V. N., Grinblat, M. P., Klebanskii, A. L. (1971), Gen. Chem. USSR 41, 475.

Pudelski, J. K., Manners, I. (1995), J. Am. Chem. SOC. 117, 7265.

Pudelski, J. K., Rulkens, R., Gates, D., Lough, A. J., Manners, I. (1995 a), Angew. Chem. 107,1633; An- gew. Chem. lnt. Ed. Engl. 34, 1506.

Pudelski, J. K., Rulkens, R., Foucher, D. A., Lough, A. J., Macdonald, P. M., Manners, I. (1995 b), Mac- romolecules 28, 7301.

Pudelski, J. K.,Foucher, D. A., Honeyman, C. H,Mac- donald, P. M., Manners, I., Barlow, S., O’Hare, D. (1996), Macromolecules 29, 1894.

Rasburn, J., Petersen, R., Rulkens, R., Manners, I., Vancso, G. J. (1995), Chem. Muter. 7, 871.

Rausch, M. D., Ciappenelli, D. J. (1967), J. Organo- met. Chem. 10, 127.

Rausch, M. D., Roling, P. V., Siegel, A. (1970), Chem. Commun., 502.

Rausch, M. D, Moser, G. A., Meade, C. F. (1973), J . Organomet. Chem. 51, 1.

Reddy, N. P., Yamashita, H., Tanaka, M. (1995), J. Chem. SOC., Chem. Commun., 2263.

Reynolds, J. R., Lillya, C. P., Chien, J. C. W. (1987). Macromolecules 20, 1184.

Rheingold, A. (1987), in: Encyclopedia of Polymer. Science and Engineering, 2nd ed. New York: Wi- ley Interscience.

Ribas, J., Cassoux, P. C. (1981), R. Seances, Acad. Sci. 293, 665.

Ritchie, R. J., Harris, P. J., Allcock, H. R. (1979), Mac- romolecules 12, 1014.

Rivera, N. M., Engler, E. M., Schurnater, R. R. (1979). J. Chem. SOC., Chem. Commun., 184.

Rochow, E. G. (1987), Silicon and Silicones. Berlin: Springer.

Roling, P. V., Rausch, M. D. (1972), J. Org. Chem. 37, 129.

Page 54: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

372 10 Organicllnorganic Hybrid Polymers

Romcro, F. M.. Ziessel, R.. Dupont-Gervais. A,, Dors- selaer, van. A. ( 1996). J . Chem. SOL... Chem. Com- niun.. 55 1.

Rosenbluni. M. ( 1994). A& Molar. 6 , 159. Rosenblum. M.. Reiff. W. M. ( 1995). Macroniolecules

Roy, A. K. (1992). J . Am. C/ieni. Soc. 114, 1530. Roy. A . K.. Burns. G. T.. Lie. G. C.. Grigoras, S.

( 1993). J . Am. Cheni. SOL.. 11.5. 2604. Rozga-Wijas, K., Chojnowski. J.. Zundel. T.. Boileau.

S. ( 1996). Mocromolecu1e.s 29. 27 1 1. Rulkens. R.. Lough. A. J.. Manners. I . (1994a). J . Am.

Chem. Soc. 116. 797. Rulkens. R.. Ni, Y.. Manners. 1. ( 1994b).J. Am. Chem.

Soc. 116. 12 121. Rushkin, 1. L.. Interrante. L. V. (1995). Macromole-

cules 28. 5 160. Rushkin, I . L., Interrante. L. V. (1996a). Mricrnniole-

cules 29. 3 123. Rushkin. 1. L.. Interrante. L. V. (1996b). Mticromol-

ucl11e.s 29, 5784. S a m , J. C . ( 1990). in: Silicon-Bct.sed PolTmer Sci-

etrcx'. A Comprehensive Resource. Vol. 224: Zei- gler, J. M., Fearon. F. W. G. (Eds.). Avances in Chemistry Series. Washington, DC: ACS.

Sakoinoto. K., Obata. K., Hirata. H., Nakajima. M.. Sakurai. H. (1989). J . Am. Chem. Soc. 111. 7641.

Surgeant, S. J. . Zhou, S. W.. Manuel, G., Weber. W. P. ( 1992). Mrrt~roniole.c~ule.s 2.5, 2832.

Sauei-. T. ( 1993). Macromolecu1e.s 26, 2057. Sauer. T.. Wegner. G. ( 1989). Mnkromol. Chem. M ~ K -

Sauer. T.. Wegner. G. ( I 99 1 ). M~ii~ronrolecir1e.s 24. 2240.

Sauvage. J.-P., Collin. J.-P.. Chambron. J.-C.. Guille- rez. S.. Coudret. C.. Balzani. V.. Baripelletti, F.. DeCola. L.. Flamigni. L. ( 1994). Cliem. Rei: Y4, 093.

Sa\in. A.. Jrpsen. 0.. Flad. J.. Andersen, 0. K.. Preuss. H.. Schnering. von. H. G. (1992). Angeii: C h r m 104. I X6: Angebi: Chem. Int. Ed. Eiigl. 31, 1x7.

Schilling. F. C. . Bovey. F. A,. Lovinger. A. J.. Zeigler. I . M . ( 1990). in: Si l i c~o i i -R~i sed Polymer Sciencv. Vol. 224: Zeigler. J. M.. Fearon. F. W. G . (Eds.). Ad- vances in Chemistry Series. Washington. DC: ACS.

Schneider-. H.-J.. Diirr. H. (1991). Froritierx in Sir- ~ ~ i ~ ~ i i i t ~ ~ l r c ~ r t l t ~ Orgtrriic Chemisrr:\~ cind Phorodiertr- i.\tr.\. Weinheiin: VCH.

Schneider. 0.. Hanack. M. (1983). Angew. Ckeni. Y5. X0.1.

Schrock. R . R.. Panhall. C . W. ( 1976). Chem. Rei: 2. 143.

Schumater. R. R. , Engler. E. M. (1977). J . Am. Chem. Sot.. 9, 552 I,

Schwiegk. S.. Fixher. H.. Xu. Y.. Kremer. F., Weg- ncr. G. ( I99 I 1. Mrrc~rwmol. Chrm. Mucrnmol. Syrnp. 46, 21 I

28, 6330.

r f~l l lO/ , s ~ n l p . 24, 303.

1'. 31 I.

Schwiegk. S., Vahlenkamp, T., Xu, Y., Wegner, G. (1992), Macromolecules 25, 25 13.

Schwiegk, S., Werth, M., Leisen, J., Wegner, G., Spiess, H. W. (19931, Acfa Polym. 44, 3 I .

Scopelianos, A. G., O'Brien, J. P., Allcock, H. R. (1980). J . Chem. Soc., Chem. Commun., 198.

Seel, F.. Simon. G. (1960). Angew. Chem. 72, 709. Semlyen. J. A., Clarson, S. J. (1991). Siloxane Poly-

mers. Englewood Cliffs, NJ: Prentice Hall. Serroni, S., Denti, G., Campagna, S., Juris, A., Ciano,

M., Balzani, V. (1992), Angew. Chem. 104, 1540; Angew Chem. Inr. Ed. EngI. 31, 1493.

Serroni, S., Campagna, S., Denti, G., Keyes, T. E., Vos. J. G. (l996), Inorg. Chem. 35, 45 13.

Serroni, S., Juris, A,, Venturi, M., Campagna, S., Res- ino, 1. R., Denti. G., Credi, A., Balzani, V. (1997), J . Mater. Chem. 7. 1227,

Seyferth. D., Schwark, M. J., Stewart, M. R. (1989), Organometallics 8. 1980.

Sheats. J., Carraher, C. E., Jr., Zeldin, M., Currell, B., Pittman, C. U., Jr. (1991). Inorganic and Metal- Contuining Polymeric Materials. New York: Plenum.

Shen, Q. H., Interrante. L. V. (1996). Macromofecu1e.s 2Y. 5788.

Sheridan, J. B., Gomez-Elipe, P., Manners, I. ( 1996), Mucroino1. Rapid Commun. 17, 3 19.

Shimidzu, T., Iyoda, T. (1981), Cliern. Left.. 853. Shoda. S.-I.. Iwata. S., Kim, H. J.. Hiraishi, M., Ko-

bayashi, S. (l996), Macrtimol. Chem. Phvs. 197, 2437.

Sieber. W. (1991), Russ. Chem. Rev. 60, 784. Sielken, 0. E.. Kuil. van de, L. A,, Drenth, W.,

Schoonman. J., Nolte. R. J. M. ( 1990). J . Am. Chem. Soc. 112. 3086.

Simon. J . . AndrC, J.-J., Skoulios, A. (1984). New J . Chem. 10, 295.

Sirlin, C., Bosio, L.. Simon, J . (1988a),J. Chem. Soc., Chem. Commun.. 236.

Sirlin. C.. Bosio, L., Simon, J. (I988 b), M o f . Cryst. Liq. Cryst. 155, 23 1 .

Sita, L. R., Terry, K. W., Shibata, K. (1999, J . Am. Chem. Soc. 117, 8049.

Smith, V. C. M., Lehn, J.-M. (1996), J. Chem. Soc., Cheni. Cnmmun., 2733.

Sonogashira. K. ( 1980). J . Organomet. Chem. 188, 237.

Sonogashira. K.. Takahashi. S., Hagihara, N. (1977), Macromolecu1e.s 10, 879.

Sonogashira, K.. Fujikura, Y., Yatake. T., Toyoshima, N., Takahashi, S., Hagihara. N. (1978), J . Orgtino- met. Chem. 14.5. 101.

Soula, G. (1988). Actual. Chiin., 249. Spilners, 1. J.. Pellegrini, J. P., Jr. ( 1965).J. Org. C'lzern.

30, 3800. Stebani. J.. Nuyken, 0.. Lippert. T., Wokaun, A.

(1993). Makrornol. Cheni., Rapid Commun. 14, 365. Stein. J . . Lewis, L. N., Smith, K . A.. Lettko, K . X.

( 1991 ). J . Inor<q. Orgnnomer. Polym. 1. 325.

Page 55: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

10.8 References 373

Stokes, H. N. (1895), Am. Chem. J 17, 275. Stokes, H. N. (1896), Am. Chem. J. 18, 629,780. Stokes, H. N. (1897), Am. Chem. J. 19, 782. Stokes, H. N. (1898), Am. Chem. J. 20, 740. Stolka, M., Abkowit;!, M. (1987), Non-Cryst. Solids

97, 1 1 1 1 . Stolka, M., Yuh, H.-J., McCrane, K., Dai, D. M.

(1987), J. Polym. J'ci., Polym. Chem. Ed. 25, 823. Sturge, K. C., Hunter, A. D., McDonald, R., Santar-

siero, B. D. (1992), Organometallics 11, 3056. Sundar, R. A,, Keller, T. M. (1996), Macromolecules

29, 3647. Suzuki, H., Meyer, H. , Simmerer, J., Yang, J., Haar-

er, D. (1993), Adv. Muter. 5, 743. Takahashi, S. (1980), J. Polym. Sci. Polym. Chem. Ed.

18, 661. Takahashi, S., Kari ya, M., Yatake, I., Sonogashira, K.,

Hagihara, N. (1976), Macromolecules 11, 1063. Takahashi, S., Murata, E., Kariya, M., Sonigashira,

K., Hagihara, N. (1'979), Macromolecules 12, 1016. Takeda, K., Shiraishi, K. (1992), Chem. Phys. Lett.

195, 121. Takeda, K., Teramae. H.., Matsumoto, N. (1986), J.

Am. Chem. Soc. 108, 8186. Tanaka, M., Hayashi, T. (1993), Bull. Chem. Soc. Jpn.

66,334. Tang, B. Z., Petersen. R., Foucher, D. A., Lough, A.,

Coombs, N., Sodhi. R., Manners, I. (l993), J. Chem. Soc., Chem. Commun., 523.

Tang, H., Prud'homme, R. E., Mingotaud, A,-F., Schappacher, M., Soum, A. (1997), Macromole- cules 30, 1400.

Tec, B. K., Wudl, F., Hauser, J. J., Kruger, A. (1 977), J. Am. Chem. Soc. 99, 4862.

Tenhaeff, S. C., Tyler, D. R. (1991), Organometallics 10, 473.

Tenhaeff, S. C., Tyler, D. R. (1992), Organometallics 11, 1466.

Teramae, H., Takeda, K. (1989), J. Am. Chem. Soc. 111, 1281.

Theurig, M., Sargeant, S. J. , Manuel, G., Weber, W. P. (1992), Macromolecules 25, 2834.

Tilley, T. D. (1993), Acc. Chem. Res. 26, 22. Togni, A,, Hayashi, T. (1994), Ferrocenes. Weinheim:

Trefonas, P., West, R., Miller, R. D., Hofer, D. (1983),

Trefonas, P., Miller, R. , West, R. (1985), J. Am. Chem.

Trefonas, P., West, R. (1985), J. Polym. Sci., Polym.

Uhlig, W. (1995), Z. IVaturforsch. 50b, 1674. Ungurenasu, C. (199B), Macromolecules 29, 7297. Velten, U., Rehahn, h l . (1996), J. Chem. Soc., Chem.

Velten, U., Lahn, B., Rehahn, M. (1997), Macromol.

Vogler, L. M., Brewer, K. J. (1996), Inorg. Chem. 35,

VCH.

J . Polym. Sci., Polym. Lett. Ed. 21, 832.

Soc. 107, 237.

Chem. Ed. 23, 2090.

Commun., 2639.

Chem. Phys. 198, 21789.

818.

Wagener, K. B., Smith, D. W. (1991), Macromolecules 24, 6073.

Wang, E, Reynolds, J. R. (1990), Macromolecules 23, 3219.

Wang, Q., Zhang, H., Prakash, G. K. S., Hogen-Esch, T. E., Olah, G. A. (1996), Macromolecules 29, 6691.

Ward, M. D. (1995), Chem. Soc. Rev., 121. W&nmark, K., Heyke, O., Thomas, J. A,, Lehn, J.-M.

(1996), J. Chem. Soc., Chem. Commun., 2603. Watanabe, H., Motoyanna, I., Hata, K. (1966), Bull.

Chem. Soc. Jpn. 39, 790. Weber, P., Guillon, D., Skoulios, A,, Miller, R. D.

(1989), J. Phys. France 50, 795. Weidmann, J.-L., Kern, J.-M., Sauvage, J.-P., Geerts,

Y., Muscat, D., Miillen, K. (1996), J. Chem. Soc., Chem. Commun., 1243.

Welsh, W. J, Johnson, W. D. (1990), Macromolecules 23, 1881.

Wesson, J. D., Williams, T. C. (1980), J. Polyrn. Sci., Polym. Chem. Ed. 18, 959.

West, R. (1986), J. Organomet. Chem. 300, 327. West, R., David, L. D., Djurovich, P. I., Steady, K. L.,

Srinivasan, K. S. V., Yu, H. (1981), J. Am. Chem. Soc. 103, 7352.

West, R., Hayase, S., Iwahara, T. (1991), J. lnorg. Or- ganomet. Polym. 1 , 545.

Weyenberg, D. R., Nelson, L. E. (1965), J. Org. Chem. 30, 2618.

Wilbert, G., Wiesemann, A,, Zentel, R. (1995), Mac- romol. Chem. Phys. 196, 377 1.

Wilczek, L., Rubinsztajn, S., Chojnowski, J. (l986), Makromol. Chem. 187, 39.

Wisian-Neilson, P. (1980), J. Am. Chem. Soc. 102, 2848.

Wisian-Neilson, P., Ford, R. R., Neilson, R. H., Ray, A. K. (1986), Macromolecules 19, 2089.

Withers, H. P., Jr., Seyferth, D., Fellmann, J. D., Gar- rou, P. E., Martin, S. (1982), Organometallics 1 , 1283.

Wolfe, P. S., Gbmez, F. J., Wagener, K. B. (1997), Macromolecules 30, 7 14.

Woo, H. G., Waltzer, I. F., Tilley, T. D. (l991), Mac- romolecules 24, 6863.

Wright, M. E., Sigman, M. S. (1992), Macromolecules 25, 6055.

Wright, M. E., Toplikar, E. G. (1994), Macrornole- cules 27, 3016.

Wright, M. E., Toplikar, E. G., Kubin, R. F., Seltzer, M. D. (1992), Macromolecules 25, 1838.

Wright, M. E., Toplikar, E. G., Lackritz, H. S., Ker- ney, J. T. (1994), Macromolecules 27, 3016.

Wrighton, M. S. (1979), Acc. Chem. Res. 12, 303. Wu, H. J. , Interrante, L. V. (1992), Macromolecules

Wu, J., Lieser, G., Wegner, G. (1996), Adv. Muter. 8,

Yajima, S., Hayashi, J., Omori, M. (1975a). Chem.

25, 1849.

151.

Lett., 93 1.

Page 56: Synthesis of Polymers || Organic/Inorganic Hybrid Polymers

374 10 Organicllnorganic Hybrid Polymers

Yajima, S., Okamura. K.. Hayashi. J . (1975 b), Cheni. Lett.. 1209.

Yamamoto. T., Sanechika. K.. Yamamoto, A,. Kata- da. M.. Motoyama. I . . Sano. H. (1983), Inorg. Chinr. Actu 73, 75.

Yamashita, H.. Tanaka, M.. Honda. K. (1995). J . Am. Cheni. Soc. 117, 8873.

Zeldin, M. (1986). in: Encylopedia of Materials Sci- ence and Engineering: Bever, M. B. (Ed.). Oxford: Pergamon.

Zhou. L. L., Roovers. J . ( 1993). Macromolecules 26, 963.

Zou, W. K., Yang, N.-L. (1992), Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 3(2), 188.

General Reading

Zeigler, J. M., Fearon, F. W. G. (Eds.) (1990), Silicon- Based Polymer Science. A Comprehensive Resource, Vol. 224: Advances in Chemistry Series. Washington, DC: American Chemical Soci- ety.