synthesis and characterization of nanocrystalline zinc oxide

Upload: han-kok-deng

Post on 16-Oct-2015

61 views

Category:

Documents


1 download

DESCRIPTION

The effect of different material used for synthesizing nanocrystalline zinc oxide was investigated. It has been discovered that zirconium oxide material is suitable to be used as medium to synthesis zinc oxide because it has a catalytic effect on the mechanochemical process. Decomposition of zinc carbonate into zinc oxide and carbon dioxide without applying any external heating has been observed in experiments. Milling time and reactants concentration have prominent effect on zinc oxide crystallite size.

TRANSCRIPT

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    ynt

    Na

    s

    esis

    nocr

    ubmittedin

    Degreei

    & Ch

    stal

    Pre

    HAN

    20

    A

    artialfulfill

    nBacheloro

    Faculty

    Monas

    Sup

    Dr.T.

    Oct

    arac

    ine

    paredby

    KOKDENG

    221290

    Thesis

    entofthere

    Engineering

    fEngineerin

    hUniversity

    rvisedby

    Venugopal

    ber2008

    eriz

    inc

    quirements

    (Mechanical

    tion

    xide

    orthe

    )

    of

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    Acknowledgements

    P a g e |I

    AcknowledgementsIwouldliketoexpressmygratitudetoallthosewhohadsupportedmeinthisproject.

    First,Iwould

    like

    tothank

    Dr.

    T.Venugopal

    who

    ismy

    supervisor.

    He

    has

    contributed

    tremendous

    amountofworksstartingfromtheearlystageofprojectproposaltillnow.Imaginethetimeittakes

    fortheprojectproposaltobeapprovedandthedifficulty inconvincingthecommitteetoapprove

    thepurchasing of expensivemachine.Hehas also successfully in transformingmewhohas little

    background knowledgeonnanomaterials to someonewhomanaged to complete this project far

    beyondanybodyexpectation.

    Secondly, Iwould like to thankDr.T.MaheshKumar1who iscollaborating in thisproject.Hehad

    contributed in xray diffraction experimental work which is the backbone of data input for this

    project. Ihavebeen inspiredbyhimtounderstandchemistryatadifferentperspectiveangle. It is

    quite surprising that someone likemewhomajored inmechanical engineering has been able to

    developinterestsinlearningchemistry.

    Finally,Iwould liketoconveymygratitudetoAssoc.Prof.Dr.TeohKokSoowho isresponsiblefor

    coordinatingeverythingthatisrelatedtofinalyearprojects.LaboratorystaffsMs.FarisyahandMr.

    Sureshhavebeenverykindinmakingthefacilitieseasetoaccess,andsometimeextendtheopening

    hoursduetomymarathonnatureofexperiments.Myfamily,especiallymymotherandsisterhave

    given moral support to me all along the way when I am exhausted in doing numbercrunching

    calculations.

    IapologizetoeveryonewhoIhavenotproperlyacknowledgetheircontributions.

    1Dr.T.MaheshKumar

    SeniorLecturer

    FacultyofAppliedScience

    UiTMShahAlam

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    Abstract

    P a g e |II

    AbstractTheeffectofdifferentmaterialusedforsynthesizingnanocrystallinezincoxidewas investigated.It

    hasbeendiscoveredthatzirconiumoxidematerialissuitabletobeusedasmediumtosynthesiszinc

    oxide because it has a catalytic effect on the mechanochemical process. Decomposition of zinccarbonate into zinc oxide and carbon dioxide without applying any external heating has been

    observed inexperiments.Milling timeand reactantsconcentrationhaveprominenteffecton zinc

    oxidecrystallitesize.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    TableofContents

    P a g e |III

    Table of ContentsAcknowledgements.................................................................................................................................. I

    Abstract................................................................................................................................................... II

    TableofContents................................................................................................................................... III

    ListofFigures......................................................................................................................................... IV

    1 Introduction.................................................................................................................................... 1

    2 Aim.................................................................................................................................................. 2

    3 Objectives........................................................................................................................................ 3

    4 LiteratureReview............................................................................................................................ 4

    4.1 MechanochemicalProcessing(MCP)...................................................................................... 4

    4.2 SynthesisofNanocrystallineZincOxide................................................................................. 7

    5 ExperimentsandAnalysis............................................................................................................... 8

    5.1 SynthesisofZincOxide........................................................................................................... 8

    5.1.1 CalculationofMillingEnergy........................................................................................ 10

    5.2 CharacterizationofZincOxide.............................................................................................. 12

    5.2.1 XrayDiffraction(XRD).................................................................................................. 12

    5.2.2 CalculationofCrystalliteSize........................................................................................ 15

    6 ResultsandDiscussion.................................................................................................................. 16

    6.1 EvolutionofNanoCrystallineZincOxide............................................................................... 16

    6.2 EffectofMillingTimeonCrystalliteSize............................................................................... 23

    6.3 EffectofMolarRatioonCrystalliteSize................................................................................ 27

    6.4 EffectofDifferentMillingMediaonCrystalliteSize............................................................. 28

    6.5 EffectofCatalystZirconiumOxidePowder....................................................................... 30

    6.5.1 CatalyticEffectofZirconiumOxide............................................................................... 32

    7 Conclusions................................................................................................................................... 33

    References............................................................................................................................................... i

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    ListofFigures

    P a g e |IV

    List of FiguresFigure1 Planetaryballmill,FritschPulverisette5.(Source:Gmbh,Fritsch,1999)............................................4

    Figure2 Movementofgrindingbowlandsundisc.(Source:Gmbh,Fritsch,1999)............................................4

    Figure3 Ballpowderballcollisionduringmilling.Source:(Suryanarayana, 2001)............................................5

    Figure4 Narrowparticlesizedistributioncausedbytendencyofsmallparticles toweldtogetherand large

    particlestofractureundersteadystateconditions.Source:(Suryanarayana, 2001)...........................................6

    Figure5 Processesandreactionsinsynthesizingzincoxide..............................................................................7

    Figure6 IllustrationoftheBragglaw...............................................................................................................12

    Figure7 Xraydiffractionpatternofzincoxideexperimentspecimen.............................................................13

    Figure8 Xraydiffractionpatternofzincoxide(ICDD PDF#890510).............................................................14

    Figure9 TypicalshapeofanXRDBraggspeakrelevantannotationsareapplied inEquation6tocalculate

    crystallitesize....................................................................................................................................................15

    Figure10 XRDpatternsofZnCl2+Na2CO3+6NaClasmillingprogressed(zirconiumoxideasmillingmedia,no

    addedcatalyst)..................................................................................................................................................16

    Figure11 XRDpatternsofmilled5hr;milled5hrandcalcined;milled5hr,calcinedandleeched;milled5hrand

    leeched(zirconiumoxideasmillingmedia,noaddedcatalyst) ZnCl2+Na2CO3+6NaCl................................17

    Figure12 XRDpatternsofmilled5hrand leeched;milled5hr, calcined,and leeched (tungsten carbideas

    millingmedia,noaddedcatalyst) ZnCl2+Na2CO3+6NaCl..............................................................................18

    Figure13 XRDpatternsofZnCl2+Na2CO3+4NaClasmillingprogressed(zirconiumoxideasmillingmedia,no

    addedcatalyst)..................................................................................................................................................19

    Figure14 XRDpatternsofasmilled5hr,milled5hrandleeched(zirconiumoxideasmillingmedia,noadded

    catalyst);milled5hr and leeched,milled 5hr, calcined,and leeched (tungsten carbide asmilling media, no

    addedcatalyst)) ZnCl2+Na2CO3+4NaCl........................................................................................................20

    Figure15 XRDpatternsofZnCl2+Na2CO3+8NaClasmillingprogressed(zirconiumoxideasmillingmedia,no

    addedcatalyst)..................................................................................................................................................21

    Figure16 XRDpatternsofasmilled5hr,milled5hrandleeched(zirconiumoxideasmillingmedia,noadded

    catalyst);milled5hr and leeched,milled 5hr, calcined,and leeched (tungsten carbide asmilling media, no

    addedcatalyst)) ZnCl2+Na2CO3+8NaCl........................................................................................................22

    Figure17 Crystallitesizeofzincchlorideasafunctionofmillingtime(zirconiumoxideasmillingmedia,no

    addedcatalyst) ZnCl2+Na

    2CO

    3+6NaCl..........................................................................................................23

    Figure18 Crystallitesizeofsodiumcarbonateasafunctionofmillingtime(zirconiumoxideasmillingmedia,

    noaddedcatalyst) ZnCl2+Na2CO3+6NaCl.....................................................................................................23

    Figure19 Crystallitesizeofzincoxideasafunctionofmillingtime(zirconiumoxideasmillingmedia,noadded

    catalyst) ZnCl2+Na2CO3+6NaCl.....................................................................................................................24

    Figure20 SEMimagewith2000timesofmagnification(zirconiumoxideasmillingmedia,noaddedcatalyst)

    ZnCl2+Na2CO3+6NaCl;5hoursofmilling,calcinedat600Cfor2hours,subsequentlywashed.....................25

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    ListofFigures

    P a g e |V

    Figure21 SEMimagewith15000timesofmagnification(zirconiumoxideasmillingmedia,noaddedcatalyst)

    ZnCl2+Na2CO3+6NaCl;5hoursofmilling,calcinedat600Cfor2hours,subsequentlywashed...................26

    Figure22 EffectofNaCl/ZnCl2molarratio,x,onproductcrystallitesize(ZnCl2+Na2CO3+xNaCl)1stcategory

    (leechedafter5hoursofmilling)......................................................................................................................27

    Figure23 EffectofmillingmediaandNaCl/ZnCl2molarratio,x,onproductcrystallitesize(ZnCl2+Na2CO3+

    xNaCl).Zirconiumoxidemedia (leechedafter5hoursofmilling);Tungsten carbidemedia (milled for5

    hours,calcinedat600Cfor2hoursinair,subsequentlywashed)...................................................................28

    Figure24 Comparisonbetweentungstencarbidemediawithandwithoutaddedzirconiumoxidepowderas

    catalyst.............................................................................................................................................................30

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    1Introduction

    P a g e |1

    1 IntroductionNanocrystallinematerialoften exhibit superiorproperties thanmicroscaleof itsown. Zincoxide

    nanocrystalliteisbeingdiscussedinthisreport.

    Typicalapplicationsofthisproductareinpharmaceutical,nanoelectronics,sunscreenlotions,ultra

    violet (UV) screensetc (X.Zhao,1997).Thereareawidevarietyofmethods thatcanbeused to

    synthesis nanostructured material which include vapor decomposition, sputtering, precipitation,

    thermaldecompositionandmechanochemicalprocessing (MCP).MCP ispreferredbecause it isa

    roomtemperatureprocessandcheapertooperate.

    Generally,therearethreeprocessingstagestosynthesisnanocrystallinezincoxidewhichareball

    milling,calcinations,andselective leeching.Xraydiffraction(XRD)analysis isconductedoneachof

    theprocessessamplingspecimens.Thisisthenusedtodeterminesizeofnanocrystallinezincoxide.

    Specimen after leeching is examined using scanning electron microscopy (SEM) to study the

    morphologyofthenanocrystal.

    Numerous reports are available on MCP of nanocrystalline zinc oxide but none of them have

    investigatetheeffectofdifferentmillingmaterialonsynthesizingoftheproduct(H.M.Yang,2004;

    L.C.Damonte,2004;T.Tsuzuki,2000;WeiqinAo,2006).This is the firstattemptonstudying the

    effectofdifferentmillingmediaonsynthesizingzincoxide.

    The present investigation has also resulted in direct formation of nanocrystalline zinc oxide as a

    resultofMCP.Inotherwords,thehightemperaturecalcinationsstageiseliminated.Thisisthefirst

    report on direct synthesis of nanocrystalline zinc oxide by MCP. However, experiments being

    conductedtoshowthegrowthofzincoxidejustafterMCP.Thismechanismofgrowthisdiscussedin

    report.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    2Aim

    P a g e |2

    2 AimTheaimofthisprojectistosynthesisnanocrystallinezincoxideefficientlyandeconomically.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    3Objectives

    P a g e |3

    3 Objectives Tounderstandthemechanochemicalprocessing.

    To

    understand

    the

    techniques

    such

    as

    XRD

    and

    SEM

    used

    to

    characterizethe

    nanocrystalline

    materials.

    To investigate the effect of different type of milling media (materials) on synthesis ofnanocrystallinezincoxide.

    Toinvestigatetheeffectofcatalystonsynthesisofnanocrystallinezincoxide. Toinvestigatetheeffectofreactantsconcentrationonthesizeofnanocrystallinezincoxide. Toinvestigatetheeffectofmillingtimeonthesizeofnanocrystallinezincoxide.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    4

    4.1MechanoPlanetary

    MCP.

    Figure1 Pl

    (Source:G

    The plan

    fourbow

    grinding

    placedint

    Grinding

    tobe

    des

    1. Grind2. Thisc3. Centr

    bowl

    iter

    Mecha

    chemical

    pro ball mill ma

    anetaryballmi

    bh,Fritsch,

    19

    tary ball mil

    lholderswhi

    balls are pla

    othebowlh

    echanisms

    cribed.

    ingbowlsan

    ausesthemt

    ifugal force

    .

    ture

    ochemi

    cessing

    (MCchines such

    ll,FritschPulve

    9)

    l is so called

    charemoun

    ced inside t

    oldersands

    ofplanetary

    supporting

    orotatearo

    roduced by

    Revi

    calProc

    P)

    can

    be

    das the one

    isette5.

    because of

    tedonaco

    e grinding

    curedbycla

    ballmillare

    discarearra

    ndtheirow

    these plane

    4Literatur

    w

    essing(

    scribed

    as

    shown in (P

    Figure2 Move

    mbh,Fritsch,

    its planetlik

    monsun/s

    owls and cl

    mps.Figure1

    escribedasf

    ngedonasp

    axesbutin

    ary movem

    Review4.1M

    MCP)

    echanically

    lverisette5)

    entofgrindin

    999)

    e movement

    pportingdis

    ose with lid

    showsthep

    ollow.Figure

    cialdrivem

    ppositedire

    nt acts on t

    echanochemic

    induced

    che are employ

    gbowlandsun

    . Pulverisett

    c.Powderto

    . Grinding b

    ictureofPul

    2illustratet

    chanism.

    ction.

    he content

    lProcessing(M

    P a g e |

    ical

    reactioed to perfor

    disc.(Source:

    e5 consists

    bemilleda

    owls are th

    erisette5.

    hemechanis

    f the grindi

    P)

    4

    n.

    m

    of

    d

    n

    m

    g

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    4LiteratureReview4.1MechanochemicalProcessing(MCP)

    P a g e |5

    4. Rotationofthegrindingbowlscausesitscontenttoruninsidethewallofthebowl.5. Concurrently, the grinding bowls content is lifted off and travelling freely through the inner

    chamber.

    6. Grindingballsandsubstancearethencollidedagainsttheoppositeinnerwallofbowl.

    There isacertainamountofpowder trapped inbetween twoballswhenever theycollide.This is

    illustratedinFigure3.

    Figure3 Ballpowderballcollisionduringmilling.Source:(Suryanarayana,2001)

    Force from the impact plastically deforms the trapped powder which is then undergoes work

    hardeningandfracture.Thenewsurfacescreatedarethenenablingnearbyparticlestobewelded

    together.Thiscausesthemtoagglomeratewhichtendtoformabiggerparticlesize.

    However,thetendencytofractureispredominateoveragglomerationduringlaterstagesofmilling.

    This iscausedby the fatigue failuremechanismand/or fragmentationof fragile flakes.Fragments

    formedbythismechanismcontinuetodecreaseinsizeuntiltherateofcoldweldingandtherateof

    fracturingreachessteadystateequilibrium(Suryanarayana,2001).

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    4LiteratureReview4.1MechanochemicalProcessing(MCP)

    P a g e |6

    Figure4atshowstheparticlesizedistributionagainstmillingtime.Theparticlessizedistributionat

    laterstageofmillingismuchmorenarrowbecausetheparticleslargerthanaveragearereducedin

    sizeatthesamerateasincreasedinsizeofsmallerthanaverageparticlesduetoagglomeration.

    Figure4 Narrowparticlesizedistributioncausedbytendencyofsmallparticlestoweldtogetherandlargeparticlestofractureundersteadystateconditions.Source:(Suryanarayana,2001)

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    4LiteratureReview4.2SynthesisofNanocrystallineZincOxide

    P a g e |7

    4.2 SynthesisofNanocrystallineZincOxideInthissection,theprocessestoproducethefinalproduct (zincoxide)arediscussedbriefly.Three

    stagesthatinvolvedinsynthesizingzincoxideareMCP,heattreatment,andwashing.Thesecanbe

    summarizedasinFigure5.

    Threetypesofcompounds2(ZnCl2,Na2CO3,NaCl)

    3aremixedtogetherandballmilledtoundergothe

    MCP reaction. Zinc chloride reacts with sodium carbonate to form zinc carbonate and sodium

    chloride.

    Excess

    sodium

    chloride

    which

    is

    added

    to

    the

    initial

    mixture

    does

    not

    involved

    in

    the

    MCP

    reaction

    butactasaprocesscontrolagent(PCA).AmountofPCAaddedtotheinitialmixture isdetermined

    by the value of molar ratio; x. It is added to the reactants to reduce the agglomeration of the

    product.

    TheaddedPCAlowerstheconcentrationofreactantsintheinitialmixture.Thisistranslatedintoa

    lower population of reactants in a given volume of the powder. Thus, the reactants are finely

    dispersedinthepowdermatrixwhichinhibitsagglomeration.

    AftertheMCP,heattreatment iscarriedoutbetween600Cand800Cfor2hourstodecompose

    zinccarbonateintozincoxideandcarbondioxide(escapedintoatmosphere).

    PCA (excesssodiumchloride) is thenremoved fromthemixturebysolute itwith largeamountof

    distilledwater.Product(zincoxide)isobtainedbydryingthesediment.

    2Allcompoundareindrypowderform.

    3ZnCl2zincchloride;Na2CO3sodiumcarbonate;NaClsodiumchloride;ZnCO3zinccarbonate;ZnOzinc

    oxide.

    Figure5 Processesandreactionsinsynthesizingzincoxide

    ReactionsProcesses

    2

    2 2

    2

    Mechanochemical

    Processing

    HeatTreatment

    Washing

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5ExperimentsandAnalysis5.1SynthesisofZincOxide

    P a g e |8

    5 Experiments and Analysis5.1 SynthesisofZincOxideGenerally,

    the

    MCP

    experiments

    are

    arranged

    into

    three

    main

    categories

    asshown

    inTable

    1.

    Table1 Categoriesofexperiments

    Categories 1st 2

    nd3

    rd

    Millingmedia Zirconiumoxide Tungstencarbide Tungstencarbide

    CatalystZrO2 No No Yes

    #1stand2ndcategories(Bothdifferenttypeofmillingmedia,bothwithoutcatalyst)#

    Thepurposeofthesetwosetsofexperimentsistoinvestigatetheeffectofdifferenttypeofmilling

    media(zirconiumoxide,tungstencarbide)onsynthesisofnanocrystallinezincoxide.

    #2ndand3

    rdcategories(Bothidenticalmillingmedia,onewithcatalyst)#

    The purpose of these two sets of experiments is to investigate the effect of catalyst (zirconium

    oxide4)onsynthesisofnanocrystallinezincoxide.

    4ZrO2zirconiumoxide.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5ExperimentsandAnalysis5.1SynthesisofZincOxide

    P a g e |9

    TheoperatingparametersforMCPexperimentsareshowninTable2andTable3.

    Table2 Operatingparametersof1stand2

    ndcategories

    Categories 1st 2

    nd

    FixedConfiguration

    Ballmillmodel(Fritschplanetarymill) Pulverisette6 Pulverisette5

    Millingmedia(vialandballs) Zirconiumoxide Tungstencarbide

    Vialsvolume(ml) 250 250

    Balls(massandquantity) 23.88gram/each,10 8.20gram/each,50

    Radiusofgrindingballs,(mm) 10 5Radiusofvialsinnerwall,(mm) 37.5 37.5Radiusofplanetarypath,(mm) 60 120

    OperationVariables

    Angularvelocityofplateandvial,

    /(rpm) 500/1000 360/792

    Balltopowdermassratio 10 10

    Massofpowder,(gram) 23.88 41.00NaCl/ZnCl2molarratio,x 4,6,8 4,6,8

    Millingsequences(hr) 0,,1,2,3,4,5 0,,1,2,3,4,5

    Heattreatment(temperatureandtime) 600C/2hr 600C/2hr

    Table3 Operatingparametersof3rd

    category

    OperatingParametersExperiments

    I II

    Massofaddedcatalyst(gram) 1.85 8.92

    Percentagevolumetricofaddedcatalyst(%) 1.747 7.90

    Millingtime,t(hr) 5 5

    Operatingparametersof3rdcategoryaresameas2

    ndcategory,exceptthatsmallamountofcatalyst

    isaddedtotheinitialmixture.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5ExperimentsandAnalysis5.1SynthesisofZincOxide5.1.1CalculationofMillingEnergy

    P a g e |10

    5.1.1 CalculationofMillingEnergyMCP requireshighmechanicalenergy to initiate chemical reaction.Partsof theenergy inputare

    translatedintokinetic,strain,andheatenergy.

    Powderparticlesareworkhardenedduring coldweldingand fracturingprocesses.This cause the

    forces(kineticenergy) impartedonthepowderparticlesbeingstored intheformofstrainenergy.

    Theamountofkineticenergypossessedbyagrindingball()isestimated5asfollow:

    Equation1

    0.5

    Equation2

    260

    1 2

    Whilethetotalamountofenergyexertedbythegrindingballstothepowder()is:

    Equation3

    Equation4

    2

    :massofagrindingball :angularvelocityofvial

    :velocityofagrindingball :numberofballs

    :radiusofplanetarypath :shockfrequency

    :angularvelocityofplate :millingtime

    :radiusofvialinnerwall :massofpowder

    :radiusofgrindingball :energydissipationtimeconstant(~1)

    Boththe1stcategoryand2

    ndcategoryexperimentsareconductedbyusingdifferentballmill,namely

    Pulverisette6 and Pulverisette5 respectively. Configurations for both the machines such as

    dimensionsofmechanicalcomponentandtypeofmillingmaterialaredifferent.

    5Reference:(M.Abdellaoui,1995)

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5ExperimentsandAnalysis5.1SynthesisofZincOxide5.1.1CalculationofMillingEnergy

    P a g e |11

    Equalamountofenergyexertedbythegrindingballstothepowder()canbeachievedforbothofthemachinesbyadjustingtherotationalspeed.Angularvelocityofplate()forPulverisette6has

    beenfixedat500rpm.

    Equation 1 to Equation 4 is used to determine the suitable angular velocity of plate () for

    Pulverisette5.Ithastopossesstheequivalentamountofenergyexertedbythegrindingballstothe

    powder()ofPulverisettte6whichrunsat500rpm.

    Table 4 shows the typical computergenerated results for the calculation of amount of energy

    exerted by the grinding balls to the powder () of Pulverisettte6 and Pulverisettte5. Time ofmillinghasbeensetat300minutes(5hours).

    Table4 Ballmillenergycalculations

    Pulverisette6 Pulverisette5

    Configurations

    Planetaryradius,Rp(mm) 60 120Vialradius,Rv(mm) 37.5 37.5

    Ballradius,Rb(mm) 10 5

    Planetaryangularvelocity, (rpm) 500 360

    Vialangularvelocity, (rpm) 1000 792

    Numberofball,Nb 10 50

    Massofeachball,mb(g) 23.88 8.20

    Massoftotalpowder,mp(g) 23.88 41.00

    Timeofmilling,t(min) 300 300

    Energydissipationtimeconstant,K 1 1

    Calculations Velocityofball,vb(m/s) 7.16 7.73

    Energyofballperimpact,Eb(J) 0.613 0.245

    Shockfrequency,fb 79.6 68.8

    Totalkineticenergyofballs,Et(MJ) 367.66 369.42

    Thenearestsuitableangularvelocityofplate()forPulverisette5is360rpm6asshowninTable4.

    Percentageerrorfromthedifferenceofthistypicalexample(aswellappliedtoanymillingtime)is:

    |369.42 367.66|367.66 100%

    0.5%

    Thus,angularvelocityofplate()forPulverisette5whichissetat360rpmisjustified.

    6SmallestspeedsteppingofbothPulverisette5andPulverisette6is10rpm.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5.25.2.1This met

    2001).Int

    overara

    The diffr

    they are

    destructi

    xraysou

    Theeffec

    Asetof

    tothecr

    firstcryst

    There is

    reflected

    wavelengtheBragg

    Equation5

    7Monochr

    Charac

    X-rayDif

    od involved

    ensityof

    the

    geofincide

    cted beam

    hit by the i

    einterferen

    ce,andthes

    ofdiffracte

    arallelcrysta

    stalatanan

    alplane.The

    path differ

    rays will rei

    th,.

    The

    pa

    lawisexpre

    Bragglaw

    omaticxray

    5Experi

    erizati

    raction(

    the diffracti

    diffracted

    b

    t/diffraction

    onsists of e

    ncident xra

    ewitheach

    pacingbetw

    wavescan

    lplanesiss

    gleof.InB

    xraysared

    nce betwee

    nforce each

    thdifferenc

    sedas,

    eanssinglew

    entsandAnal

    nofZin

    RD)

    on of mono

    amis

    meas

    angle.

    lectromagne

    beam. Th

    others.This

    enatomsin

    edescribed

    Figure6 Illustr

    owninFigu

    ragglaw,iti

    flectedatan

    n the ray re

    other only i

    is

    two

    time

    avelengthxr

    sis5.2Charact

    cOxide

    hromatic7 x

    redby

    an

    x

    ic radiations

    se diffracte

    dependson

    thecrystal(

    byBragglaw

    tionoftheBra

    e6.Anxra

    assumedth

    angleequiva

    flected by pl

    f the path d

    sof

    y.

    erizationofZinc

    ray by pow

    aydetector.

    which are

    waves can

    heangleof

    aghavan,20

    whichissho

    gglaw

    beamwith

    atpartofth

    lenttothei

    ane 1 and t

    ifference is

    here

    isth

    xide5.2.1Xr

    er specimen

    Thisproced

    mitted by e

    be either c

    incident,the

    04).

    natbelow.

    avelength

    xrayspass

    cidentangle

    e adjacent

    n integral

    interplanar

    yDiffraction(X

    P a g e |

    (B. D. Cullit

    reis

    repeat

    lectrons wh

    onstructive

    wavelength

    fisdirect

    dthrought

    ,.

    lane 2. The

    ultiple of t

    spacing.Th

    D)

    2

    y,

    d

    n

    or

    of

    d

    e

    se

    e

    s,

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5ExperimentsandAnalysis5.2CharacterizationofZincOxide5.2.1XrayDiffraction(XRD)

    P a g e |13

    where

    :Positiveinteger. :Wavelengthofradiationsource. :Interplanarspacing :Incidentangle

    Givenan interplanarspacing()of2, the first-ordered ray reflection ( 1) limits the maximumradiation source wavelength () to be 4.8This means that the reflected ray will be reinforced if and

    only if the radiation source wavelength is less than or equal to 4. There will be no reflected ray if

    is greater than 4 (radiation source wavelength is too big to squeeze through the narrow crystal

    interplanar space).

    Thus,asetofdiffractedxraysrangedfromweaktostrong intensity isobtainedwhenthe incident

    angle isbeingvaried.Graphofdiffractedbeam intensity isplottedagainst theBraggsangle (2).

    Thisiscalledasxraydiffractionpattern.

    Everycompoundhas itsownuniqueXRDpatternas if it is fingerprintrecognition.That is,notwo

    compoundshaveidenticalXRDpattern.

    Figure 7 and Figure 8 shows the zinc oxide XRD patterns from experimental specimen and the

    InternationalCentreforDiffractionData(ICDD)respectively.

    Figure7 Xraydiffractionpatternofzincoxideexperimentspecimen

    81angstrom()=0.1nm.Takethemaximumvalueofsintobe1.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5ExperimentsandAnalysis5.2CharacterizationofZincOxide5.2.1XrayDiffraction(XRD)

    P a g e |14

    Figure8 Xraydiffractionpatternofzincoxide(ICDD PDF#890510)

    Three strongest intensity lines from the ICDDPowderDiffraction File (PDF)#890510 in Figure89

    matchexactlytothecorrespondingthreehighestpeaksinFigure7.Intensitylinesotherthanthose

    threestrongestarematchtotheotherstoo.

    Thus, XRD pattern can be used to determine the identity of known compound presents in the

    specimen. Quantitative information such as crystallite size and strain can be obtained from XRD

    analysistoo.

    RigakuD/Max2200PCxraydiffractometerwithCuKradiation10isutilizedtoexaminespecimens.

    Itisoperatedatascanningstepof0.020degreeanglewithscanningintervalof0.3second.

    9Therangeofincident/diffraction(2)anglehasbeentruncatedfortheeaseofvisualizing.

    10WavelengthofCuKradiationis1.5409.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    5ExperimentsandAnalysis5.2CharacterizationofZincOxide5.2.2CalculationofCrystalliteSize

    P a g e |15

    5.2.2 CalculationofCrystalliteSizeXRDpatterncontainsuseful information suchascrystallite sizeand strain.Theaveragecrystallite

    sizecanbeestimatedbyusingScherrers formula.Figure9 showsa typical shapeofXRDpattern

    Braggspeakcommonlyobtainedbyexperiments.

    Figure9 TypicalshapeofanXRDBraggspeakrelevantannotationsareappliedinEquation6tocalculatecrystallite

    size.

    Equation6istheScherrersformulacorrespondingtotheannotationsinFigure9.

    Equation6 Scherrer'sformula

    0.9

    where

    D :Approximatedcrystallitesize.

    :Wavelengthofradiationsource.

    :Fullwidthathalfmaximumintensity.

    2 :Braggsangle.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.1EvolutionofNanoCrystallineZincOxide

    P a g e |16

    6 Results and Discussion6.1 EvolutionofNanoCrystallineZincOxidePowder

    from

    the

    sampling

    sequence

    of,1,2,3,4,and

    5

    thhour

    are

    characterized

    byXRD

    method.

    TheXRDpatterns for the1st category (zirconiumoxide asmillingmedia,no added catalyst)with

    NaCl/ZnCl2molarratioof6areshowninFigure10.

    Figure10 XRDpatternsofZnCl2+Na2CO3+6NaClasmillingprogressed(zirconiumoxideasmillingmedia,noadded

    catalyst)

    Allthestartingmaterials(sodiumchloride,sodiumcarbonate,zincchloride)areclearlypresent11 in

    thepowderbeforebeingmilled(0hr).

    Thereactants(sodiumcarbonate,zincchloride)arebeingconsumedtoformfinalproductanditsby

    productasmillingprogressed.Theproductthatformedinthisexperimentiszincoxidewhiletheby

    productissodiumchloride.

    11ICDDPDF#:NaCl=882300;Na2CO3=772082;ZnCl2=740517;ZnO=890510;ZrO2=899069.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.1EvolutionofNanoCrystallineZincOxide

    P a g e |17

    Zincoxidestartedtoformat2ndhourofmillingwith itstwomost intensepeaks(between30and

    40)asevidence.Intensitiesofthesepeaksaregettingstrongerwithfurthermillingupto5thhour.

    Thisshowsthatthezincoxideisformedprogressivelythroughthewholemillingprocess.

    Figure11showstheXRDpatternsofvariouscombinationsofheattreatmentprocessandwashing

    processafter5hrofballmilling.

    Figure11 XRDpatternsofmilled5hr;milled5hrandcalcined;milled5hr,calcinedandleeched;milled5hrandleeched

    (zirconiumoxideasmillingmedia,noaddedcatalyst) ZnCl2+Na2CO3+6NaCl

    XRDpatternofasmilled5hrshowsthestrongpresenceofsodiumchlorideandzincoxide.TheXRDpatternofmilled5hrandcalcineddoesnotdiffermuchfromtheasmilled5hr.Thisconcludesthat

    there isnopresenceof zinccarbonate in theasmilled5hrpowder.Themilled5hr,calcined,and

    leechedXRDpatternshowthepresenceofzincoxideonly.

    There isnodifferencebetweentheXRDpatternofmilled5hrand leechedwiththeprevious.This

    concludes that zinc oxide can be obtained without heat treatment by using zirconium oxide as

    millingmedia.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.1EvolutionofNanoCrystallineZincOxide

    P a g e |18

    Figure12showstheXRDpatternsofmilled5hrand leechedcomparedtomilled5hr,calcined,and

    leeched under the 2nd category (tungsten carbide as milling media, no added catalyst) with

    NaCl/ZnCl2molarratioof6.

    Figure12 XRDpatternsofmilled5hrandleeched;milled5hr,calcined,andleeched(tungstencarbideasmillingmedia,

    noaddedcatalyst) ZnCl2+Na2CO3+6NaCl

    XRDpatternofmilled5hrand leecheddoesnotshowsastrongpresenceofzincoxide.Thereare

    many unidentified peaks which are not the reactants, PCA, nor product. These may be the

    intermediate product phase formed during milling (Suryanarayana, 2001) which can be any

    combinationoftheelements(Na,Zn,C,Cl,O)presentintheinitialmixture.

    However,XRDpatternofmilled5hr,calcined,and leechedshowsthepresenceofzincoxideonly.

    Thecomparisonbetweenthemdrawstoaconclusionthatzincoxidehasnotbeenabletosynthesis

    bymillingalonebutheattreatmentisneededtocompletethechemicalreaction.

    Noticethattheformationofzincoxide iscompleted inthe5hourmillingusingzirconiumoxideas

    media compared to incompleteof chemical reaction for tungsten carbidewith the similarmilling

    time. Thus, zirconium oxide may be a catalyst for the ball milling process. This argument is

    investigatedinsection6.5atpage30.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.1EvolutionofNanoCrystallineZincOxide

    P a g e |19

    TheXRDresultsfortheNaCl/ZnCl2molarratioof4and8areshownfromFigure13toFigure16.The

    resultsarequite similar to theexplanationsas for theoneexplainedpreviouslyexcept thatheat

    treatment is not carried out for the experiments using zirconium oxide as milling media. Heat

    treatmentisunnecessaryinthiscasesincezincoxidehasformedduringballmillingprocess.

    Figure13 XRDpatternsofZnCl2+Na2CO3+4NaClasmillingprogressed(zirconiumoxideasmillingmedia,noadded

    catalyst)

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.1EvolutionofNanoCrystallineZincOxide

    P a g e |20

    Figure14 XRDpatternsofasmilled5hr,milled5hrandleeched(zirconiumoxideasmillingmedia,noaddedcatalyst);

    milled5hrandleeched,milled5hr,calcined,andleeched(tungstencarbideasmillingmedia,noaddedcatalyst)) ZnCl2

    +Na2CO3+4NaCl

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.1EvolutionofNanoCrystallineZincOxide

    P a g e |21

    Figure15 XRDpatternsofZnCl2+Na2CO3+8NaClasmillingprogressed(zirconiumoxideasmillingmedia,noadded

    catalyst)

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.1EvolutionofNanoCrystallineZincOxide

    P a g e |22

    Figure16 XRDpatternsofasmilled5hr,milled5hrandleeched(zirconiumoxideasmillingmedia,noaddedcatalyst);

    milled5hrandleeched,milled5hr,calcined,andleeched(tungstencarbideasmillingmedia,noaddedcatalyst)) ZnCl2

    +Na2CO3+8NaCl

    XRDpatternofmilledandleechedpowderwithtungstencarbidemediashowsthepresenceofzinc

    oxide, as shown in Figure 14 and Figure16.However, there are otherunidentified strongpeaks

    which do not belong to the zinc oxide too. Thus, it can be concluded that 5 hoursmilling with

    tungstencarbidemediadoesnotproducezincoxidecompletely.

    Itmaybeduetothehighkineticenergy impartedtothepowdercauses localtemperaturetorise.

    This isjustifiedbyexperimentalobservationofhotgrindingbowlsurfaceaftermilling.Thepowder

    thatisdeformedinballpowderballcollisioncanachievedaveryhighmicroscopictemperaturerise,

    oftenexceedsthemeltingpointsofthereactants(Suryanarayana,2001).Decompositionofthezinc

    carbonateisthenmadepossiblebythishighmicroscopictemperature.

    Itistooearlyinthisstagetodrawupconclusionthatthedirectformationofzincoxideratherthan

    zinc carbonate is due to the heat treatment made possible by high microscopic temperature.

    However,thefactthatzirconiumoxideisveryeffectiveasacatalystisundeniable.Thisisprovenby

    theXRDpatternof5hoursmillingwithzirconiumoxidemedia(Figure14andFigure16)whichhas

    only zincoxidepresencewhile there isotherunidentifiedpeaks in theusingof tungsten carbide

    media.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.2EffectofMillingTimeonCrystalliteSize

    P a g e |23

    6.2 EffectofMillingTimeonCrystalliteSizeCrystallitesizesofreactantsandproductcanbecalculated fromtheXRDpatternsasafunctionof

    millingtime.MethodthatcommonlyusedisScherrersformula.

    Thecrystallitesizeofreactantsandproductasafunctionofmillingtimeareshownatbelow:

    Figure17 Crystallitesizeofzincchlorideasafunctionofmillingtime(zirconiumoxideasmillingmedia,noadded

    catalyst) ZnCl2+Na2CO3+6NaCl.

    Figure18 Crystallitesizeofsodiumcarbonateasafunctionofmillingtime(zirconiumoxideasmillingmedia,noadded

    catalyst) ZnCl2+Na2CO3+6NaCl.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.2EffectofMillingTimeonCrystalliteSize

    P a g e |24

    Figure19 Crystallitesizeofzincoxideasafunctionofmillingtime(zirconiumoxideasmillingmedia,noaddedcatalyst)

    ZnCl2+Na2CO3+6NaCl.

    Both the crystallite size of reactants (zinc chloride, sodium carbonate) decreased with increased

    millingtimewhilethecrystallitesizeofproduct(zincoxide)increasedwithincreasedmillingtime.

    The crystallite sizeof sodium carbonatedecreased exponentially to a saturated20nmwhile the

    crystallitesizeofzincchloridedroptoabout26nmasmillingcontinuesupto1sthour.

    Phenomenonof thisexponential trendofcrystallitegrowthcanbeexplainedas followed.Surface

    areaofthereactants isincreasedrapidlybytheexponentialdecreasingofthereactantscrystallite

    size.Thisrapidlygrowthofreactantssurfaceareacausesthecontactsurfacebetweenthemtobe

    increased.Asaresult,thereactionprocessisbeingaccelerated.

    Theevidenceofthisacceleratedprocessisobservedintheexponentialgrowthofproductcrystallite

    size inFigure19.Thesizeofzincoxide is increasedtremendously inthe2ndand3

    rdhourofmilling

    andgraduallyreachedasaturatedsizeofabout20nm.

    Crystallitesizeofzincoxidehasfoundtobeincreasedbyexponentialdecayasopposedtoresearch

    donebyothers.H.M. Yang (2004)has found that the crystallite sizeof zincoxidedecreased by

    exponentialdecayandreachessaturatedsizeat longermillingtime.However,this iscontradicting

    withexperimentalfindingasshowninFigure19.

    This isduetothefactthatzinccarbonateisformedbeforebeingdecomposed intozincoxideinH.

    M.Yang(2004)workswhichisdifferentfromthisexperimentalfinding.Experimentsshowthatzinc

    oxideisdirectlyformedinsteadofzinccarbonate.Thiscanbeexplainedbythesuccessivenucleation

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.2EffectofMillingTimeonCrystalliteSize

    P a g e |25

    ofzincoxideisdepositedonthesurfaceofzincoxideparticlethathasbeenformed.Thisistheeffect

    ofsnowballwhichthenincreasesthecrystallitesizeprogressively.

    Sizeofthezincoxideparticlewillcontinueto increasetillthecriticalsize isreached.Thisoccurred

    when the rate of fracturing (breaking of particle into smaller bits) is equal to the rate of

    agglomeration(depositionofnewlynucleizincoxideontotheexistingparticle).

    Figure20showsthe2000timesmagnificationofaspecimenfrom1stcategoryexperiment(ZnCl2+

    Na2CO3+6NaCl);5hoursofmilling,calcinedat600Cfor2hours,andsubsequentlywashed.

    Figure20 SEMimagewith2000timesofmagnification(zirconiumoxideasmillingmedia,noaddedcatalyst) ZnCl2+

    Na2CO3+6NaCl;5hoursofmilling,calcinedat600Cfor2hours,subsequentlywashed.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.2EffectofMillingTimeonCrystalliteSize

    P a g e |26

    Figure21showsthe15000timesmagnificationofaspecimenfrom1stcategoryexperiment(ZnCl2+

    Na2CO3+6NaCl);5hoursofmilling,calcinedat600Cfor2hours,andsubsequentlywashed.

    Figure21 SEMimagewith15000timesofmagnification(zirconiumoxideasmillingmedia,noaddedcatalyst) ZnCl2+

    Na2CO3+6NaCl;

    5hours

    of

    milling,

    calcined

    at

    600

    Cfor

    2hours,

    subsequently

    washed.

    Figure 20 shows various shapes of zinc oxide particle present in the SEM image. The mean

    agglomeratesizeisapproximatedaround10m.

    However,furthermagnificationofthisspecimenshowsauniformnarrowdistributionofzincoxide

    particleas inFigure21.It ischaracterizeassphericalshapeparticlewithadiameterofaround100

    nm.

    Theaveragecrystallitesizeobtained isabout19nm.Thus, there isabout fivenanocrystallinezinc

    oxideineachoftheparticles.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.3EffectofMolarRatioonCrystalliteSize

    P a g e |27

    6.3 EffectofMolarRatioonCrystalliteSizeAmountofPCAinsideoftheinitialmixtureisvariedtoinvestigateitseffectontheproductcrystallite

    size.ValuesoftheNaCl/ZnCl2molarratio,xbeingcontrolledare4,6,and8.

    Figure22showsthetrendofthiseffectwithNaCl/ZnCl2molarratio,x(4,6,8).

    Figure22 EffectofNaCl/ZnCl2molarratio,x,onproductcrystallitesize(ZnCl2+Na2CO3+xNaCl)1stcategory(leeched

    after5hoursofmilling)

    Crystallitesizeofzincoxidedecreasedwhenthemolarratioisincreasedfrom4to6andincreased

    withmolarratiobeingincreasedto8.Thisresultisconfirmedwiththeworksdoneby(H.M.Yang,

    2004).

    A smaller crystallite size (18.7nm) can beobtained by usingNaCl/ZnCl2molar ratio, x of 5.6 by

    interpolationthroughthesecondorderedpolynomialfittedcurveasshowninFigure22.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.4EffectofDifferentMillingMediaonCrystalliteSize

    P a g e |28

    6.4 EffectofDifferentMillingMediaonCrystalliteSizeTwo typeofmillingmedia (zirconiumoxide, tungsten carbide)havebeenused to investigate the

    effectofdifferentmillingmediaon theproductcrystallite size.Figure23 shows the trendof this

    effectwithNaCl/ZnCl2molarratio,x(4,6,8).

    Figure23 EffectofmillingmediaandNaCl/ZnCl2molarratio,x,onproductcrystallitesize(ZnCl2+Na2CO3+xNaCl).

    Zirconiumoxidemedia(leechedafter5hoursofmilling);Tungstencarbidemedia(milledfor5hours,calcinedat

    600Cfor2hoursinair,subsequentlywashed)

    Table5 Crystallitesizes,DasrefertoFigure23

    MillingmediaNaCl/ZnCl2molarratio,x

    4 6 8

    Crystallitesizeofzirconiumoxide(nm) 21 19 24

    Crystallitesizeoftungstencarbide(nm) 30 24 41

    By comparison, zirconium oxide media yield smaller product crystallite size than using tungsten

    carbidemedia.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.4EffectofDifferentMillingMediaonCrystalliteSize

    P a g e |29

    Trendlinesforboththemediahavebeenfittedthroughexperimentaldatapointsbyusingasecond

    order polynomial curve fitting analysis. Optimum value of NaCl/ZnCl2 molar ratio, x, and its

    correspondingproductcrystallitesizeistabulatedatbelow:

    Table6

    Optimumvalues

    for

    the

    interpolation

    of

    Figure

    23

    Millingmedia Zirconiumoxide Tungstencarbide

    InterpolatedoptimumNaCl/ZnCl2molarratio,x 5.6 5.5

    Correspondingproductcrystallitesize,Dopt(nm) 18.7 23.8

    Both the trend lines for zirconiumoxideand tungstencarbidemediaareplaced smoothlydistant

    apartwiththeleastatabout5nmaroundtheoptimumNaCl/ZnCl2molarratio,x(5.55.6).

    Thus,crystallitesizethatisobtainedusingzirconiumoxidemillingmediawillbeatleast5nmsmaller

    thantungstencarbidemillingmedia.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.5EffectofCatalystZirconiumOxidePowder

    P a g e |30

    6.5 EffectofCatalystZirconiumOxidePowderZincoxidehasbeensuccessfullyobtainedintheexperimentbyusingzirconiumoxidemediaandno

    addedcatalystwithoutgoingthroughheattreatmentprocess.

    Contrary,only zinccarbonate isproduced ifheat treatment isnotbeing carriedout (H.M.Yang,2004)ifusingtungstencarbidemediaandnoaddedcatalyst.

    Thepurposeofthe3rdcategoryexperimentistoverifywhetherzincoxideisasuitablecatalystinthe

    MCP.Catalyticeffectcanbeeitheracceleratesreactionprocessor lowerstheactivationenergyof

    reactionorboth.

    Thus,asmallamountofzirconiumoxidepowderisaddedtotheinitialmixturewhichisthenmilled

    withtungstencarbidemedia.Theamountofaddedzirconiumoxidepowderisvariedtoobservethe

    effectofcatalystconcentration(volumetric).

    Figure24 Comparisonbetweentungstencarbidemediawithandwithoutaddedzirconiumoxidepowderascatalyst

    Alltheexperiment(a)to(d)inFigure24isconductedbyusingtungstencarbideasmillingmedia.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.5EffectofCatalystZirconiumOxidePowder

    P a g e |31

    TheXRDpatternofFigure24(a)doesnotshowstheconfidentpresenceofzincoxide.Ithasother

    strongpeaksthatdonotcorrespondedtoanyreactants,zinccarbonate,norbyproduct.

    Experiment of Figure 24 (a) is repeated by adding a small amount of zirconium oxide powder

    (1.747%volumetric)tothe initialmixture.XRDpatternofFigure24(b)showsthepresenceofzinc

    oxideandzirconiumoxide.However,therearefewpeakswhichcannotbeidentified12

    .

    ExperimentofFigure24 (b) is repeatedagainand isheattreated.Result fromtheXRDpattern in

    Figure24(c)showsthesameunidentifiedpeaksasinFigure24(b).Theseunidentifiedpeaksdonot

    matchtoanyofthereactants,PCA,norproduct.

    Thus, composition with 1.747% volumetric of zirconium oxide powder does not have adequate

    catalyticeffect.Anotherexperiment similar toexperimentof Figure24 (b) is conductedbyusing

    7.90%volumetricofzirconiumoxideandwiththesimilarmillingtime.

    TheXRDpatternofthisexperimentisshowninFigure24(d).Allthepeaksarematchedtozincoxide

    and zirconium oxide. Furthermore, it does not have any unidentified peaks. This concluded that

    compositionwith7.90%volumetricofzirconiumoxideisabletoobtainthefullcatalyticeffectwithin

    similaramountofmillingtime.Averagesizeofthenanocrystallinezincoxidefromthisspecimen is

    about17nm.Thesmallercrystallitesizeobtainedisbecausetheaddedzirconiumoxidenotonlyacts

    ascatalystbutPCAtoo.IncreasedPCAwilldispersethezincoxidefinerwithinthepowdermatrix.

    Thepurposeofthis3rdcategoryexperimenthasbeenachieved.Zirconiumoxideisasuitablecatalyst

    toacceleratetheMCPinsynthesisofnanocrystallinezincoxide.

    12Unidentifiedpeaksmaybeintermediateproductphase.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    6ResultsandDiscussion6.5EffectofCatalystZirconiumOxidePowder6.5.1CatalyticEffectofZirconiumOxide

    P a g e |32

    6.5.1 CatalyticEffectofZirconiumOxide3

    rd category

    13 experiments are designed to show its catalytic effectiveness difference to be

    comparedwith1stcategoryexperiments.

    Explanationsfortheinadequateeffectofcomposition1.747%volumetricascatalystareasfollowed.

    1stcategoryexperimentsareconductedwithzirconiumoxideasmillingmedia.Thus,thereactants

    arefullyexposedtothecatalyticsurfacethroughoutthewholemillingprocess.

    However,the3rdcategoryexperimentsisconductedwithtungstencarbideasmillingmediaandonly

    asmallamountofzirconiumoxidepowderisaddedtotheinitialmixture.Thus,thezirconiumoxide

    powder is evenly distributed in the total mixture. This decreased the probability of reactants to

    comeintocontactwiththezirconiumoxidepowder.

    However, the chance for the reactants to be catalyzed by the zirconium oxide powder can be

    increasedbyincreasingthepercentagecompositionofzirconiumoxidepowderinthemixture.This

    hasbeenproven inthe3rdcategoryexperiments inwhich7.90%volumetriccompositionhas100%

    catalyticchancewhile1.747%volumetriccompositiondoesnothavefullcatalyticchance.

    131

    stcategoryZirconiumoxideasmillingmedia,noaddedcatalyst.

    2ndcategoryTungstencarbideasmillingmedia,noaddedcatalyst.

    3rdcategoryTungstencarbideasmillingmedia,withaddedcatalyst.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    7Conclusions

    P a g e |33

    7 Conclusions NanocrystallinezincoxideissuccessfullysynthesizedbyMCP.

    Heattreatment

    process

    that

    requires

    high

    temperature

    treatment

    for

    several

    hours

    has

    been

    eliminated.IthasbeenincorporatedintoMCPprocess.Thisresultsinhugemonetarysavings.

    HeattreatmentprocesscanbeachievedbyhighmicroscopictemperatureduringMCP.Thiscanbe achieved by having high kinetic energy balls imparting tremendous force on the trapped

    powderinbetweenthem.

    ZirconiumoxideissuitabletobeusedasacatalystinacceleratingMCPprocess. Crystallitesizeofzincoxidesynthesizedbyusingzirconiumoxidemillingmedia issmallerthan

    usingtungstencarbidemillingmedia.

    Thereisanoptimumreactantsconcentrationwhichaffectsthecrystallitesizeofzincoxide.Thecrystallitesizewillget largerifthereactantsconcentration isreducedor increasedbeyondthe

    optimumvalue.

    Growthofzincoxidecrystallitesize ischaracterizedas increasingbyexponentialdecay. Initialgrowth of crystallite is fast while slowing down at intermediate milling time. Crystallite size

    saturatedatfurthermilling.

  • 5/26/2018 Synthesis and Characterization of Nanocrystalline Zinc Oxide

    http:///reader/full/synthesis-and-characterization-of-nanocrystalline-zinc-

    References

    P a g e |i

    ReferencesB.D.Cullity,&.S.(2001).Elementsofxraydiffraction(3rded.).UpperSaddleRiver,NewJersey:

    PrenticeHall,Inc.

    Gmbh,Fritsch.(1999).DownloadPULVERISETTE5.RetrievedOctober9,2008,fromFritschGmbh

    MillingandSizing:http://www.fritsch.de/uploads/media/BA_055000_0492_e.pdf

    H.M.Yang,X.C.(2004).Formationofzincoxidenanoparticlesbymechanochemicalreaction.

    MaterialsScienceandTechnology,20,14931495.

    L.C.Damonte,L.A.(2004).NanoparticlesofZnOobtainedbymechanicalmilling.Powder

    Technology,148,1519.

    M.Abdellaoui,&.E.(1995).Thephysicsofmechanicalalloyinginaplanetaryballmill:Mathematical

    treatment.ActaMetall.Mater.,43(3),10871098.

    Raghavan,V.(2004).Materialsscienceandengineering(5thed.).NewDelhi,India:PrenticeHallof

    India.

    Suryanarayana,C.(2001).Mechanicalalloyingandmilling.ProgressinMaterialsScience,46,1184.

    T.Tsuzuki,&.P.(2000).Synthesisofmetaloxidenanoparticlesbymechanochemicalprocessing.

    MaterialsScienceForum,343346,383388.

    WeiqinAo,J.L.(2006).Mechanochemicalsynthesisofzincoxidenanocrystalline.Powder

    Technology,168,148151.

    X.Zhao,S.C.(1997).Journalof

    Materials

    Synthesis

    and

    Processing,

    227(5).