supplement of - acp...season summer summer/autumn winter summer winter summer fall winter winter...

of 11 /11
Supplement of Atmos. Chem. Phys., 16, 8309–8329, 2016 http://www.atmos-chem-phys.net/16/8309/2016/ doi:10.5194/acp-16-8309-2016-supplement © Author(s) 2016. CC Attribution 3.0 License. Supplement of Primary and secondary aerosols in Beijing in winter: sources, variations and processes Yele Sun et al. Correspondence to: Yele Sun ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Author: others

Post on 20-Jan-2021

3 views

Category:

Documents


0 download

Embed Size (px)

TRANSCRIPT

  • Supplement of Atmos. Chem. Phys., 16, 8309–8329, 2016http://www.atmos-chem-phys.net/16/8309/2016/doi:10.5194/acp-16-8309-2016-supplement© Author(s) 2016. CC Attribution 3.0 License.

    Supplement of

    Primary and secondary aerosols in Beijing in winter: sources, variationsand processesYele Sun et al.

    Correspondence to: Yele Sun ([email protected])

    The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

  • 2

    Table S1. A summary of non-refractory submicron aerosol composition and OA factors from AMS measurements in Beijing China.

    Sampling sites: Chinese Academy of Meteorological Sciences (CAMS); Peking University (PEK); Institute of Atmospheric Physics (IAP). References: 1(Sun et al., 2010); 2(Huang et al., 2010); 3(Hu et al., 2016); 4(Sun et al., 2012); 5(Sun et al., 2013); 6(Zhang et al., 2015a); 7(Zhang et al., 2014); 8This study; 9(Zhang et al., 2015b); 10(Xu et al., 2015).

    Site 1CAMS 2PEK 3PEK 4PEK 5IAP 6IAP 6IAP 7IAP 8IAP 9IAP 10IAP

    AMS Q-AMS HR-AMS HR-AMS ACSM ACSM HR-AMS HR-AMS HR-AMS HR-AMS HR-AMS HR-AMS

    Season Summer Summer/Autumn Winter Summer Winter Summer Fall Winter Winter Winter Fall

    Date 9 - 21 Jul,

    2006 24 Jul - 20 Sep,

    2008 22 Nov - 22 Dec, 2010

    26 Jun - 28 Aug, 2011

    21 Nov - 20 Jan, 2012

    1 - 31 Aug, 2012

    1- 31 Oct, 2012

    1 - 31 Jan, 2013

    16 Dec, 2013- 17 Jan, 2014

    1 Jan - 3 Feb, 2014

    14 Oct -12 Nov,

    2014

    Index S, 2006 S-F, 2008 W, 2010 S, 2011 W, 2011-2012 S, 2012 F, 2012 W, 2013 W, 2013-

    2014 W, 2014 F, 2014

    Organics 28.1 23.9 34.5 20.0 34.4 49.1 38.1 27.3 29.4 Sulfate 20.3 16.8 8.7 9.0 9.3 19.6 9.4 8.6 9.1 Nitrate 17.3 10.0 6.8 12.4 10.9 12.5 7.2 8.1 17.8 Ammonium 13.1 10.0 7.7 8.0 8.6 8.9 5.4 4.5 7.8 Chloride 1.1 0.6 5.8 0.5 3.5 3.6 4.0 2.0 2.9 NR-PM1 80 61 64 50 67 94 64 51 67 HOA 11.5 4.3 4.7 7.1 5.8 2.9 3.0 5.4 3.9 4.4 3.4 COA 5.8 6.7 6.6 3.0 7.8 9.8 6.7 3.8 7.5 CCOA 8.2 11.3 9.3 7.6 4.6 BBOA 4.1 3.3 4.1 OOA 12.7 10.7 7.2 SV-OOA 4.3 5.7 4.3 6.3 12.8 12.1 9.8 7.0 LV-OOA 12.3 8.1 6.2 10.2 13.8 4.4 4.1 7.9 OA 28 24 35 20 34 13 27 51 38 27 30

  • 3

    Figure S1. Correlation between measured NH4+ and predicted NH4+ (=18× (2×SO42-/96 + NO3-

    /62 + Chl/35.5)).

    Figure S2. Comparison of the elemental ratios calculated from the A-A method (Aiken et al., 2008) with those from the recently updated I-A method (Canagaratna et al., 2015).

    40

    35

    30

    25

    20

    15

    10

    5

    0

    Mea

    sure

    d N

    H4

    (µg

    m-3

    )

    6050403020100Predicted NH4 (µg m

    -3)

    f(x) = 0.69xr2 = 0.98

    80

    60

    40

    20

    RH

    (%)

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    Ele

    men

    tal R

    atio

    s, I-

    A

    2.01.51.00.50.0

    Elemental Ratios, A-A

    O/Cr2 = 0.998Slope = 1.28

    H/Cr2 = 0.97Slope = 1.10

    OM/OCr2 = 0.998Slope = 1.24Intercept = -0.25

  • 4

    Figure S3. A summary of PMF diagnostic plot: (a) Q/Qexp as a function of number of factors, (b) mass fractions of OA factors as a function of fpeak, (c) scaled residual for each fragment ion, (d) a comparison of measured and PMF reconstructed mass, (e) time series of residual, and (f) time series of Q/Qexp.

    14

    12

    10

    8

    6

    Q/Q

    expe

    cted

    87654321Number of factors

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Mas

    s Fr

    actio

    n

    -1 -0.5 0 0.5 1

    fPeak

    80

    40

    0

    -40Sca

    led

    Res

    idua

    l

    14012010080604020m/z120

    80

    40

    0

    Tota

    l Mas

    s

    12/16 12/21 12/26 12/31 1/5 1/10 1/15

    Measured Reconstructed

    2.01.00.0

    -1.0Σ R

    esid

    12/16 12/21 12/26 12/31 1/5 1/10 1/15Date & Time

    50403020100

    Σ (R

    esid

    2 /σ2

    )/Qex

    p

    aq-OOA

    BBOA

    CCOA

    COAHOA

    OOA

    (a) (b)

    (c)

    (f)

    (e)

    (d)

  • 5

    Figure S4. Correlations of six OA factors with other tracers.

    Figure S5. Comparisons of time series of six OA factors from PMF analysis of V-mode and W-mode.

    1.00.80.60.40.20.0

    1.00.80.60.40.20.0

    1.00.80.60.40.20.0

    1.00.80.60.40.20.0

    1.00.80.60.40.20.0

    1.00.80.60.40.20.0

    SN

    AS

    O4

    NO

    3N

    H4

    Chl

    PA

    HC

    O2

    C2H

    4O2

    C2H

    3OC

    3H5O

    C6H

    10O

    C3H

    7C

    4H6

    C4H

    7C

    4H9

    C8H

    5C

    H4N

    C2H

    6NC

    3H8N

    CH

    3SO

    2S

    O2

    O3

    Ox

    NO

    xC

    O

    (f) aq-OOA

    (e) OOA

    (d) CCOA

    (c) BBOA

    (b) COA

    (a) HOA

    R2

    OA

    Fac

    tors

    vs.

    Tra

    cer S

    peci

    es

    40

    30

    20

    10

    0

    12/21/2013 12/26/2013 12/31/2013 01/05/2014 01/10/2014 01/15/2014dat

    W-mode V-mode HOA

    200

    150

    100

    50

    0

    12/21/2013 12/26/2013 12/31/2013 01/05/2014 01/10/2014 01/15/2014dat

    W-mode V-mode COA

    60

    40

    20

    0

    12/21/2013 12/26/2013 12/31/2013 01/05/2014 01/10/2014 01/15/2014dat

    W-mode V-mode CCOA

    40

    30

    20

    10

    0

    12/21/2013 12/26/2013 12/31/2013 01/05/2014 01/10/2014 01/15/2014dat

    W-mode V-mode WCOA

    40

    30

    20

    10

    0

    12/21/2013 12/26/2013 12/31/2013 01/05/2014 01/10/2014 01/15/2014dat

    W-mode V-mode LVOOA

    60

    50

    40

    30

    20

    10

    0

    12/21/2013 12/26/2013 12/31/2013 01/05/2014 01/10/2014 01/15/2014dat

    W-mode V-mode SVOOA

    HOA

    COA

    CCOA

    BBOA

    OOA

    Aq-OOA

  • 6

    Figure 6. Mass spectra comparisons between UMR-PMF and HMR-PMF.

    12840

    120110100908070605040302010m/z (amu)

    12840

    6420

    6420

    86420

    1086420

    43210

    543210

    86420

    86420

    12840

    86420

    (f) aq-OOA

    (e) OOA

    (d) CCOA

    (c) BBOA

    (b) COA

    (a) HOA

    % o

    f Tot

    al S

    igna

    l

    HMR UMR

    % of Total S

    ignal

  • 7

    Figure S7. Correlations of organics at different sizes with six OA factors, sulfate and nitrate.

    Figure S8. Variations of (a) mass concentrations and (b) mass fractions of OA factors as a function of RH.

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    R2

    3 4 5 6 7 8100

    2 3 4 5 6 7 81000

    2

    Dva (nm)

    aq-OOA HOA COA CCOA BBOA OOA NO3 SO4

    80

    60

    40

    20

    0

    Mas

    s C

    onc.

    (µg

    m-3

    )

    8070605040302010RH (%)

    HOA COA BBOA CCOA OOA aq-OOA1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Mas

    s Fr

    actio

    n

    8070605040302010RH (%)

    HOA COA BBOA CCOA OOA aq-OOA(a) (b)

  • 8

    Figure S9. Correlations of six OA factors with each unit m/z.

    0.80.60.40.2

    3803403002602201801401006020m/z (amu)

    1.00.80.60.40.2

    1.00.80.60.4

    0.60.50.40.30.2

    0.80.60.40.2

    1.00.80.60.4

    (f) aq-OOA

    (e) OOA

    (d) CCOA

    (c) BBOA

    (b) COA

    (a) HOA

    R2

    OA

    Fac

    tors

    vs.

    m/z

  • 9

    Figure S10. Contributions of six OA factors to each m/z.

    Figure S11. Bivariate polar plot of BBOA.

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Frac

    tion

    of m

    /z

    3803403002602201801401006020m/z (amu)

    HOA COA CCOA BBOA OOA aq-OOA

    0

    10

    20

    30

    40

    50

    10 20 30 40 50

    0

    45

    90

    135

    180

    225

    270

    315

    N

    NE

    E

    SE

    S

    SW

    W

    NW

    12.5 25 37.5

    6

    5

    4

    3

    2

    1

    0

    BB

    OA

    (μg m-3)

  • 10

    Figure S12. Average diurnal cycles of OA/CO for six OA factors.

    Figure S13. Variations of SO2+/SO3+ and SO+/SO2+ ratios as a function of RH.

    References:

    Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42, 4478-4485, 2008.

    Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using

    16

    12

    8

    4

    0

    OA

    /ΔC

    O (µ

    g m

    -3 p

    pm-1

    )

    24201612840Hour of Day

    HOA COA BBOA CCOA OOA aq-OOA

    7

    6

    5

    4

    3

    2

    1

    SO

    2+/S

    O3+

    8070605040302010RH (%)

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    SO

    +/SO

    2 +

    SO2+/SO3

    + SO+/SO2+

  • 11

    aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253-272, 10.5194/acp-15-253-2015, 2015.

    Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemical composition, sources and aging process of sub-micron aerosols in Beijing: contrast between summer and winter, Journal of Geophysical Research: Atmospheres, 121, n/a-n/a, 10.1002/2015JD024020, 2016.

    Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L. W., Liu, X. G., Zhang, Y. H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933-8945, 10.5194/acp-10-8933-2010, 2010.

    Sun, J., Zhang, Q., Canagaratna, M. R., Zhang, Y., Ng, N. L., Sun, Y., Jayne, J. T., Zhang, X., Zhang, X., and Worsnop, D. R.: Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmos. Environ., 44, 131-140, 2010.

    Sun, Y. L., Wang, Z., Dong, H., Yang, T., Li, J., Pan, X., Chen, P., and Jayne, J. T.: Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor, Atmos. Environ., 51, 250-259, 10.1016/j.atmosenv.2012.01.013, 2012.

    Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577-4592, 10.5194/acp-13-4577-2013, 2013.

    Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Zhao, X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study, Atmos. Chem. Phys., 15, 13681-13698, 10.5194/acp-15-13681-2015, 2015.

    Zhang, J., Wang, Y., Huang, X., Liu, Z., Ji, D., and Sun, Y.: Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer, Advances in Atmospheric Sciences, 32, 877-888, 10.1007/s00376-014-4153-9, 2015a.

    Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887-2903, 10.5194/acp-14-2887-2014, 2014.

    Zhang, J. K., Ji, D. S., Liu, Z. R., Hu, B., Wang, L. L., Huang, X. J., and Wang, Y. S.: New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing, Atmos. Chem. Phys. Discuss., 15, 18537-18576, 10.5194/acpd-15-18537-2015, 2015b.