superfluidity in solid helium and solid hydrogen e. kim*, a. clark, x. lin, j. west, e. kim*, a....

52
Superfluidity in solid Superfluidity in solid helium and solid hydrogen helium and solid hydrogen E. Kim*, E. Kim*, A. Clark, X. Lin, J. A. Clark, X. Lin, J. West, West, M. H. W. Chan M. H. W. Chan Penn State University Penn State University * KAIST, Korea

Upload: patrick-combs

Post on 28-Mar-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Superfluidity in solid helium and Superfluidity in solid helium and solid hydrogensolid hydrogen

E. Kim*,E. Kim*, A. Clark, X. Lin, J. West, A. Clark, X. Lin, J. West, M. H. W. ChanM. H. W. Chan

Penn State UniversityPenn State University

* KAIST, Korea

Page 2: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

IntroductionIntroduction Theoretical background for supersolidTheoretical background for supersolid Experimental setup Experimental setup - Torsional oscillator technique- Torsional oscillator technique Supersolid in porous mediaSupersolid in porous media Supersolid in bulk Supersolid in bulk 44He He Heat Capacity of solid helium.Heat Capacity of solid helium. Results in para-hydrogenResults in para-hydrogen Summary Summary

OutlineOutline

Page 3: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Solid

Superfluid (He II)

Normal Liquid,(He I)

Fritz London is the first Fritz London is the first person to recognize that person to recognize that superfluidity in liquid superfluidity in liquid 44He He is a BEC phenomenon. is a BEC phenomenon.

Condensation fraction was predicted and measured to be 10% near T=0. Superfluid fraction at T=0, however is 100%.

Phase diagram of 4He

Page 4: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Can a solid be ‘superfluid’?*Can a solid be ‘superfluid’?*

- - In a perfect solid when each atom is localized at a specific In a perfect solid when each atom is localized at a specific lattice site and symmetry is ignored, then there is no BEC lattice site and symmetry is ignored, then there is no BEC at T=0. at T=0.

Penrose and Onsager, Penrose and Onsager, Phys. Rev.Phys. Rev. 104104, 576 (1956, 576 (1956))

- - Off Diagonal Long Range Order, or superfluidity, which is Off Diagonal Long Range Order, or superfluidity, which is directly related to Bose-Einstein Condensation, may occur directly related to Bose-Einstein Condensation, may occur in a solid phase if particles are not localized. in a solid phase if particles are not localized.

C. N. Yang,C. N. Yang, Rev. Mod. Phys.Rev. Mod. Phys. 3434, 694 (1962), 694 (1962)

*A.J.Leggett ,PRL 25, 1543 (1970)

Page 5: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Lindemann ParameterLindemann Parameter the ratio of the root mean square of the the ratio of the root mean square of the

displacement of atoms to the interatomic distance displacement of atoms to the interatomic distance (d(daa) )

A classical solid will melt if the Lindemann’s parameter A classical solid will melt if the Lindemann’s parameter

exceeds the critical value of ~0.1 .exceeds the critical value of ~0.1 .

X-ray measurement of the Debye-Waller factor of solid helium at ~0.7K and near melting curve shows this ratio to be 0.262.

(Burns and Issacs, Phys. Rev. B 55, 5767(1997))

26.02

a

L d

uZero-point Energy

Inter-atomic potential

total energy

zero-point energy

Page 6: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Superfluidity in solid: Superfluidity in solid: not impossible!not impossible!

- - If solid If solid 44He can be described by a Jastraw-type He can be described by a Jastraw-type

wavefunction that is commonly used to describe liquid wavefunction that is commonly used to describe liquid helium then crystalline order (with finite fraction of helium then crystalline order (with finite fraction of vacancies) and BEC can coexist.vacancies) and BEC can coexist.

G.V. Chester, G.V. Chester, Lectures in Theoretical PhysicsLectures in Theoretical Physics Vol XI-B(1969); Vol XI-B(1969);

Phys. Rev. APhys. Rev. A 22, 256 (1970), 256 (1970) J. Sarfatt, J. Sarfatt, Phys. Lett.Phys. Lett. 30A30A, 300 (1969), 300 (1969) L. Reatto, L. Reatto, Phys. Rev.Phys. Rev. 183183, 334 (1969), 334 (1969)

- Andreev and Liftshitz assume the specific scenario of - Andreev and Liftshitz assume the specific scenario of zero-point vacancies and other defects ( e.g. interstitial zero-point vacancies and other defects ( e.g. interstitial atoms) undergoing BEC and exhibit superfluidity. atoms) undergoing BEC and exhibit superfluidity.

Andreev & Liftshitz, Andreev & Liftshitz, Zh.Eksp.Teor.Fiz.Zh.Eksp.Teor.Fiz. 5656, 205 (1969)., 205 (1969).

Page 7: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

The ideal method to detect superflow would be to The ideal method to detect superflow would be to subject solid helium to undergo dc or ac rotation to subject solid helium to undergo dc or ac rotation to look for evidence of look for evidence of ‘Non-Classical Rotational Inertia‘Non-Classical Rotational Inertia’. ’.

Leggett,Leggett, Phys. Rev. Lett. Phys. Rev. Lett. 2525, 1543 (1970), 1543 (1970)

fs(T) is the supersolid fractionIts upper limit is estimated by different theorists to range from 10-6 to 0.4; Leggett: 10-4

Solid Helium

R

I(T)=Iclassical[1-fs(T)]

Quantum exchange of particles arranged in an annulus under rotation leads to a measured moment of inertia that is smaller than the classical value

Page 8: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

• Plastic flow measurement Andreev et al. Sov. Phys. JETP Lett 9,306(1969) Suzuki J. Phys. Soc. Jpn. 35, 1472(1973) Tsymbalenko Sov. Phys. JETP Lett. 23, 653(1976) Dyumin et al.Sov. J. Low Temp. Phys. 15,295(1989);

• Torsional oscillator Bishop et al. Phys. Rev. B 24, 2844(1981)

• Mass flow Greywall Phys. Rev. B 16, 1291(1977) Bonfait, Godfrin and Castaing, J. de Physique 50, 1997(1989) Day, Herman and Beamish, Phys. Rev. Lett. 95, 035301 (2005)

• PV(T) measurement Adams et al. Bull. Am. Phys. Soc. 35,1080(1990) Haar et al. J. low Temp. Phys. 86,349(1992)

•However, interesting results are found in Ultrasound Measurements at UCSD. Goodkind Phys. Rev. Lett. 89,095301(2002) and references therein

No experimental evidence of superfluidity in solid helium prior to 2004

Page 9: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

9.3 MHzx 28MHz 46MHz

P.C. Ho, I.P. Bindloss and J. M. Goodkind, J. Low Temp. Phys. 109, 409 (1997)

Ultrasound velocity and dissipation measurements in solid 4He with 27.5ppm of 3He

The results are interpreted by the authors as showing BEC of thermally activated vacancies above 200mK.

Page 10: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Amorphous boundary layer

Solidification proceeds in two different directions:

1) In the center of the pore a solid cluster has crystalline order identical to bulk 4He2) On the wall of a pore amorphous solid layers are found due to the van der Waals force of the substrate

Elbaum et al. Adams et al. Brewer et al.

Solid helium in a porous medium should Solid helium in a porous medium should have more disorder and defects, which have more disorder and defects, which may facilitate the appearance of may facilitate the appearance of superflow in solid?superflow in solid?

Crystalline solid

TEM of Vycor glass

Page 11: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Torsional oscillator is ideal for the detection of superfluidity

Be-Cu Torsion Rod

Torsion Bobcontaining helium

Drive

Detection

K

Io 2

Q=f0/f ~ 2×106

Resolution

Resonant period (o) ~ 1 ms

stability in is 0.1ns

/o = 5×10-7

Mass sensitivity ~10-7gf0

f

Am p

Page 12: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Torsional oscillator studies of Torsional oscillator studies of superfluid films superfluid films

Above Tc the adsorbed normal liquid film behaves as solid and oscillates with the cell, since the viscous penetration depth at 1kHz is about 3 m.

VycorVycor

Berthold,Bishop, Reppy, PRL 39,348(1977)

Δ

Page 13: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Solid helium in Vycor glassSolid helium in Vycor glass

5cm

Detect

Torsion Bob(vycor glass)

Torsion Rod

Drive

2.2mm

0.38mm

f0 = 1024HzQ ~ 1*106

A=A0sinωtv=|v|maxcosωt|v|max=rA0ω

Page 14: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Solid 4He at 62 bars in Vycor glass

Period shifted by 4260ns due to mass loading of solid helium

*=966,000ns

Page 15: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Supersolid response of helium in Vycor glassSupersolid response of helium in Vycor glass

• Period drops at 175mK appearance of NCRI

• size of period drop - ~17ns

*=971,000ns

Page 16: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Superfluid response

-

*[n

s]

*=971,000ns

Total mass loading =4260ns

Measured decoupling

-o=17ns

“ Apparent supersolid fraction”= 0.4%

(with tortuosity correction s/ =2% )

Weak pressure dependence

Page 17: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Δ

0[ns]

Strong velocity dependence

• For liquid film adsorbed on Vycor glass

vc > 20cm/s

Chan et. al. Phys. Rev. Lett. 32, 1347(1974).

• For superflow in solid 4He

vc < 30 µm/s

Page 18: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Control experiment I : Solid Control experiment I : Solid 33He?He?

Nature 427,225(2004)

Page 19: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

4He solid diluted with low concentration of 3He

Page 20: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Effect of the addition of Effect of the addition of 33He impuritiesHe impurities

At 0.3ppm, the separation of the 3He atoms is about 450Å

Page 21: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Be-Cu Torsion Rod

OD=2.2mm

I D=0.4mm

Filling line

Detection

Drive

Torsion cell with helium in annulus

Mg disk

Filling line

Solid helium in annulus channel

Al shell

Channel OD=10mm

Width=0.63mm

Search for the supersolid phase Search for the supersolid phase in the bulk solid in the bulk solid 44He.He.

Page 22: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Torsional Oscillator (bulk solid helium-4) Torsional Oscillator (bulk solid helium-4)

Drive

Detection

3.5 cm

Torsion rod

Torsion cell

Page 23: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Solid 4He at 51 bars

NCRI appears below 0.25K

Strong |v|max dependence(above 14µm/s)

Amplitude minimum, Tp 0= 1,096,465ns at 0 bar

1,099,477ns at 51 bars(total mass loading=3012ns

due to filling with helium)

Science 305, 1941(2004)

4µm/s corresponds to amplitude of oscillation of 7Å

Porous media are not essential ! Porous media are not essential !

Page 24: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Non-Classical Rotational Inertia FractionNon-Classical Rotational Inertia Fraction

loading mass total

NCRIF

Total mass loading=3012ns at 51 bars

NC

RIF

ρS/ρ|v|max

Page 25: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

loading mass total

NCRIF

Total mass loading=3012ns at 51 bars

ρS/ρ |v|max

Non-Classical Rotational Inertia FractionNon-Classical Rotational Inertia Fraction

Page 26: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Control experiment Control experiment IIII With a barrier in the annulus, With a barrier in the annulus, there should be there should be NONO simple simple

superflow and the measured superfluid decoupling should superflow and the measured superfluid decoupling should be vastly reducedbe vastly reduced

Torsion cell with blocked annulus

Solid helium

Mg barrier

Al shell

Mg Disk

Mg disk

Filling line

Solid helium in annulus channel

Al shell

Mg barrier

Channel OD=15mmWidth=1.5mm

Page 27: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

If there is no barrier,then the supersolid fraction appears to be stationary in the laboratory frame; with respect to the torsional oscillator it is executing oscillatory superflow.

Superflow viewed in the rotating frame

-

*[ns

]

Page 28: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

With a block in the annulus, irrotational flow of the supersolid fraction contributes about 1% (Erich Mueller) of the barrier-free decoupling.Δ~1.5ns

Irrotational flow patternin a blocked annular channel (viewed in the rotating frame)

-

*[ns

]

A. L. Fetter, JLTP(1974) * If no block, the expected Δ=90ns

Page 29: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Similar reduction in superfluidSimilar reduction in superfluid response is seen in response is seen in liquid helium at 19 bars in the same blocked cellliquid helium at 19 bars in the same blocked cell

measured superfluid decoupling in the blocked cell

Δ(T=0)≈ 93ns.

While the expected decoupling in unblocked cell is 5270ns.

Hence the ratio is 1.7% similar to that for solid.

[n

s]

Conclusion : superflow in solid as in superfluid is irrotational.

Page 30: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Superflow persists up to at least 136 bars !Superflow persists up to at least 136 bars !

ρs/ρ

136bar

ρs/ρ

108bar

Page 31: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Strong and ‘universal’ velocity dependence Strong and ‘universal’ velocity dependence in all samplesin all samples

vC~ 10µm/s

=3.16µm/s for n=1

nRm

hv

nm

hdlv

s

s

2

ω

R

Page 32: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Pressure dependencePressure dependence As a function of pressure the supersolid fraction shows a As a function of pressure the supersolid fraction shows a

maximum near 55bars. The supersolid fraction extrapolates maximum near 55bars. The supersolid fraction extrapolates to zero near 170 bars.to zero near 170 bars.

Page 33: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Superfluidity in ultra-pure Solid Helium: 1ppb Superfluidity in ultra-pure Solid Helium: 1ppb 33HeHe

00 ~ 0.77ms [1300Hz] ~ 0.77ms [1300Hz] 4He4He - - 00 = 3920ns = 3920ns NCRIF ~ 1.25/3920 = 0.03%NCRIF ~ 1.25/3920 = 0.03%

0 50 100 150 200 250

4722.0

4722.5

4723.0

4723.5

4724.0

* = 770,000ns

-

* [n

s]

Temperature [mK]

Exp. done atat U. of Florida

Page 34: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Phase Phase Diagram Diagram of of 44HeHe

Page 35: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Heat Capacity signature?Heat Capacity signature?

No reliable heat capacity No reliable heat capacity measurement of solid measurement of solid 44He below He below

200mK because of large background200mK because of large background

contribution due to the sample cell.contribution due to the sample cell.

Page 36: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Experimental cell of Xi Lin and Tony ClarkExperimental cell of Xi Lin and Tony ClarkSilicon!!Silicon!!

Page 37: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Results: pure Results: pure 44He (He (0.3ppm 0.3ppm 33HeHe) )

Page 38: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Results: pure Results: pure 44He (He (0.3ppm 0.3ppm 33HeHe) )

Page 39: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Results: pure Results: pure 44He (He (0.3ppm 0.3ppm 33HeHe))

Page 40: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Results: pure Results: pure 44He (He (0.3ppm 0.3ppm 33HeHe))

Page 41: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Results: pure Results: pure 44He (He (0.3ppm 0.3ppm 33HeHe) )

Heat capacity peak near the supersolid transition

Page 42: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Is the supersolid phase unique with Is the supersolid phase unique with 44He?He?

Apparently not!Apparently not!

Preliminary torsional oscillator data of Tony Clark and Xi Lin indicate similar supersolid-like decoupling in solid H2.

3He 3.09

4He 2.68

H2 1.73

HD 1.41

D2 1.22

de Boer parameter

More quantum mechanical

Page 43: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.5

0.0

0.5

1.0

1.5

2.0

Oscillation Period vs. Temperature

(PO = 560,400ns)

Pe

rio

d C

ha

ng

e [

ns]

Temperature [K]

Empty Cell

Q = 1.6millionP0 = 560,400nsP ~0.05ns

InsideMg bob:

Hydrogen space

BeCu wall

Hydrogen in a cylindrical cell

Page 44: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

InsideMg bob:

Hydrogen space

BeCu wall

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.5

0.0

0.5

1.0

1.5

2.0

Oscillation Period vs. Temperature

(PO = 560,400ns)

Per

iod

Cha

nge

[ns]

Temperature [K]

Empty Cell Cell Full of HDHD

PHD = 4014ns(93% filling)

Hydrogen in a cylindrical cell

Page 45: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.5

0.0

0.5

1.0

1.5

2.0

Oscillation Period vs. Temperature

(PO = 560,400ns)

Per

iod

Cha

nge

[ns]

Temperature [K]

Empty Cell Cell Full of HD Cell Full of H2HDH2

PH2 = 1638ns(64% filling)

InsideMg bob:

Hydrogen space

BeCu wall

Hydrogen in a cylindrical cell

Page 46: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Hydrogen in a cylindrical cell

0.00 0.05 0.10 0.15 0.20 0.25 0.30-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5Oscillation Period vs. Temperature

(PO = 560,400ns)

Per

iod

Cha

nge

[ns]

Temperature [K]

Empty Cell Cell Full of HD Cell Full of H2HDH2

Temperature below 50mK uncertain, thermometer not on the torsional cell

Ortho concentration is most likely less than 0.5%

HD concentration uncertain

NCRIF ~ 0.015%

Page 47: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04

0.05

NC

RIF

[%]

Temperature [K]

83% filling, x1~2.0%

68% filling, x1<0.5%

88% filling, x1<0.5%

InsideMg bob:

Hydrogen space (h=3.5mm w=2.3mm)

Mg

Q = 350,000P0 = 709,700nsP <0.1ns

Hydrogen in an annular cell

Samples contain < 50ppm HD

BeCu wall

X is the ortho conc,

Page 48: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

InsideMg bob:

Hydrogen space

BeCu wall

Mg

Hydrogen in an annular cell

Comparison of 50 and 200ppm HD

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04

0.05

NC

RIF

[%

]

Temperature [K]

88% filling, x1<0.5%

68% filling, x1<0.5%

94% filling, x1<1.0%**

83% filling, x1~2.0%

**200ppm HD

Page 49: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

SummarySummary Superflow is seen in solid helium confined in Vycor glass Superflow is seen in solid helium confined in Vycor glass

with pores diameter of 7nm and also in bulk. Results in with pores diameter of 7nm and also in bulk. Results in bulk have been replicated in three other labs.bulk have been replicated in three other labs.

Supersolid fraction is on the order of 1% for He-4 sample Supersolid fraction is on the order of 1% for He-4 sample with 0.3ppm of He-3 impurities. For ultra-high purity with 0.3ppm of He-3 impurities. For ultra-high purity sample (1ppb He-3) the supersolid fraction is on the sample (1ppb He-3) the supersolid fraction is on the order of 0.03% and the transition temp. is depressed.order of 0.03% and the transition temp. is depressed.

There is preliminary evidence of a heat capacity peak at There is preliminary evidence of a heat capacity peak at the transition.the transition.

Superflow is also seen in para-hydrogen.Superflow is also seen in para-hydrogen. The supersolid fraction is on the order of The supersolid fraction is on the order of 0.05%0.05%

Page 50: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

We are grateful for many informative We are grateful for many informative discussions with many colleagues, too discussions with many colleagues, too numerous to acknowledge all of them. numerous to acknowledge all of them. P.W. AndersonP.W. Anderson J. R. Beamish, J. R. Beamish, D.D. J. Bishop, J. Bishop, D. M. Ceperley, D. M. Ceperley, J. M. Goodkind, J. M. Goodkind, T. L. Ho,T. L. Ho, J. K. Jain, J. K. Jain, A. J. Leggett,A. J. Leggett, E. Mueller, E. Mueller, M. A. Paalanen, M. A. Paalanen, J. D. Reppy, J. D. Reppy, W. M. Saslow,W. M. Saslow, D.S. WeissD.S. Weiss

Page 51: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn

Xi, Tony, Eunseong, Josh

Page 52: Superfluidity in solid helium and solid hydrogen E. Kim*, A. Clark, X. Lin, J. West, E. Kim*, A. Clark, X. Lin, J. West, M. H. W. Chan M. H. W. Chan Penn