supercoiling of dna 1.topology a. right handed supercoiling = negative supercoiling (underwinding)...

29
Supercoiling of DNA 1. Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling C. Relaxed state is with no bends D. DNA must be constrained: plasmid DNA or by proteins E. Unraveling the DNA at one position changes the superhelicity - F. Topology only defined for continuous deformation - no strand breakage

Upload: debra-morrison

Post on 26-Dec-2015

235 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA1. Topology

A. Right handed supercoiling = negative supercoiling (underwinding)B. Left handed supercoiling = positive supercoilingC. Relaxed state is with no bendsD. DNA must be constrained: plasmid DNA or by proteinsE. Unraveling the DNA at one position changes the superhelicity -F. Topology only defined for continuous deformation - no strand breakage

Page 2: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 3: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA1. Topology

A. Right handed supercoiling = negative supercoiling (underwinding)B. Left handed supercoiling = positive supercoilingC. Relaxed state is with no bends D. DNA must be constrained: plasmid DNA or by proteinsE. Unraveling the DNA at one position changes the superhelicity -F. Topology only defined for continuous deformation - no strand breakage

Page 4: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 5: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

2. Numerical expression for degree of supercoilingA. Equation Lk=Tw+WrB. L:linking number, # of times that one DNA strand winds about the others strands, is always an integer C. T: twist,# of revolutions about the duplex helix D. W: writhe, # of turns of the duplex axis about the superhelical axis by definition the measure of the degree of supercoilingE. specific linking difference or superhelical density=Lk/Lk0

Page 6: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 7: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 8: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

2. Numerical expression for degree of supercoilingA. Equation Lk=Tw+WrB. L:linking number, # of times that one DNA strand winds about the others strands, is always an integer C. T: twist,# of revolutions about the duplex helix D. W: writhe, # of turns of the duplex axis about the superhelical axis by definition the measure of the degree of supercoilingE. specific linking difference or superhelical density=Lk/Lk0

Page 9: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 10: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 11: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

2. Numerical expression for degree of supercoilingA. Equation Lk=Tw+WrB. L:linking number, # of times that one DNA strand winds about the others strands, is always an integer C. T: twist,# of revolutions about the duplex helix D. W: writhe, # of turns of the duplex axis about the superhelical axis by definition the measure of the degree of supercoilingE. specific linking difference or superhelical density=Lk/Lk0

Page 12: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 13: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 14: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 15: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA1. Topology

A. Right handed supercoiling = negative supercoiling (underwinding)B. Left handed supercoiling = positive supercoilingC. Relaxed state is with no bends D. DNA must be constrained: plasmid DNA or by proteinsE. Unraveling the DNA at one position changes the superhelicity -F. Topology only defined for continuous deformation - no strand breakage

Page 16: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 17: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 18: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 19: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

3. DNA compaction requires special form of supercoiling

A. Interwound: supercoiling of DNA in solution

B. Toroidal- tight left handed turns, packing of DNA both forms are interconvertible

Page 20: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 21: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

4. Methods for measuring supercoiling - based on how compact the DNA is

A. Gel electrophoresisi. 1 dimensional ii. 2 dimensional

B. Density sedimentation

Page 22: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 23: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 24: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

4. Topoisomerases are required to relieve torsional strainA. Topoisomerases I :

breaks only one strand B. Topoisomerase II :

breaks both strands

Page 25: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 26: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling
Page 27: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

4. Topoisomerases are required to relieve torsional strainA. Topoisomerases I - breaks only one strand

i. monomeric proteinii. after nicking DNA the 5'-PO4 is covalently linked

to enzyme (prokaryotes) or the 3' end is linked to the enzyme (eukaryotes)

iii. evidence is the formation of catenatesiv. E. coli Topo I relaxes negatively supercoiled DNAv. introduces a change of increments of 1 in writhe

Page 28: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling

Supercoiling of DNA

4. Topoisomerases are required to relieve torsional strainB. Topoisomerase II - breaks both strands

i. supercoils DNA at the expense of ATP hydrolysis

ii. two subunits: (alpha)2 and (beta)2iii. becomes covalently linked to the alpha

subunitiv. relaxes both negative and positively

supercoiled DNAv. introduces a change in increments of 2

in writhe.

Page 29: Supercoiling of DNA 1.Topology A. Right handed supercoiling = negative supercoiling (underwinding) B. Left handed supercoiling = positive supercoiling