sune wolff dissertation

Download Sune Wolff Dissertation

Post on 10-Nov-2014

34 views

Category:

Documents

1 download

Embed Size (px)

TRANSCRIPT

Methodological Guidelines for Modelling and Design of Embedded Systems

PhD Dissertation Sune WolffApril, 2013

AU

AARHUS UNIVERSITYDEPARTMENT OF ENGINEERING

Methodological Guidelines for Modelling and Design of Embedded Systems

A Dissertation Presented to the Faculty of Science and Technology of the University of Aarhus in Partial Fullment of the Requirements for the PhD Degree

by Sune Wolff April 12th , 2013

Abstract

The development of heterogeneous embedded systems is a demanding discipline. Technical challenges arise from the need to develop complex, featurerich products that take the constraints of the physical world into account. This thesis shows how a modelling approach to embedded systems development can address some of these challenges. Methodological guidelines supporting various levels of modelling delity are presented. These range from: mono-disciplinary modelling, where the embedded controller as well as its environment are modelled in a single formalism, to multi-disciplinary modelling where separate formalisms are used to describe the controller and environment. The use of the guidelines is demonstrated by means of several industrial case studies from the electronic warfare domain. To support the project management aspect of using a modelling approach to embedded systems development, the integration of formal modelling and agile methods is described. The result is a collection of lightweight methodological guidelines which can be integrated into industry strength development processes.

i

Resume

Udviklingen af heterogene indlejrede systemer er en krvende disciplin. Udviklingen af komplekse, funktionalitets-rige produkter der skal tage hjde for fysiske begrnsninger skaber mange tekniske udfordringer. Denne PhD afhandling viser hvordan en modelleringstilgang til udviklingen af indlejrede systemer kan lse nogle af disse udfordringer. Metodiske retningslinjer der guider brugeren i konstruktionen af modeller med forskellige detaljegrader er beskrevet. Disse retningslinjer spnder fra: modellering hvor den indlejrede controller samt dens fysiske omgivelser er modelleret i en enkelt formalisme, til tvrfaglig modellering, hvor srskilte formalismer bruges til at beskrive controlleren samt de fysiske omgivelser. Anvendelsen af retningslinjerne demonstreres ved hjlp af ere industrielle cases indenfor domnet: elektronisk krigsfrelse. Til at understtte integrationen af denne modelleringstilgang til udviklingen af indlejrede systemer, beskrives en kombination af formel modellering og agil udvikling. Resultatet er en samling af metodologiske retningslinjer, som kan integreres i udviklingsprocesser der bruges i industrien.

iii

Acknowledgements

I would like to thank my supervisor and mentor professor Peter Gorm Larsen from the Department of Engineering, University of Aarhus. It was been a pleasure and a great source of inspiration working with Peter. His professionalism, dedication and work-ethics never seizes to amaze me. I thank Terma A/S for taking on this Industrial PhD in these nancially trying times, and for providing interesting and challenging case studies. I would also like to thank my industrial supervisor Henning Staun Nielsen for his help the last three years. Many of my termite colleagues deserve thanks: Troels Lund Rasmussen, Mikael Kallese, Erling sterg ard, Kristian Hennings, my former section leader Jrgen Jakobsen as well as my present sections leaders Preben Schmidt Nielsen and Martin Lkke Nielsen. Andrew Thomas Gittins deserves special thanks for his great interest in my work and for seeing business opportunities in the results. I thank The Danish Agency for Science, Technology and Innovation for providing parts of the funding for the Industrial PhD. I would also like to express my gratitude to all of my co-authors: Peter Gorm Larsen, Tammy Noergaard, John Fitzgerald, Ken Pierce, Marcel Verhoef, and Patricia Derler. I have learned a lot from working with this talented bunch of people, and they have helped improve my dissemination skills as well as my general skills as a researcher. I owe many thanks to Peter Gorm Larsen, Joey W. Coleman Stefan Hallerstede and Marcel Verhoef for providing valuable feedback during the preparation of this PhD thesis. They have provided many detailed corrections, suggestions and questions which have greatly improved the nal version of the thesis. I would also like to thank the assessment committee: Professor Mark Lawford, Department of Computing and Software, McMaster University; Professor Anders P. Ravn, Department of Computer Science, Aalborg University; and Professor Henrik Myhre Jensen, Department of Engineering, Aarhus University.

v

vi Acknowledgements I would like to thank the entire consortium behind the DESTECS project for many stimulating discussions, and for providing feedback on my work. Special thanks go out to Controllab Products for providing frequent 20-sim support. For the many cups of coffee and fun lunch break with interesting talks, I thank my fellow PhD students and colleagues: Kenneth Lausdahl, Augusto Ribeiro, Joey W. Coleman, Claus Balleg ard Nielsen, Anders Kaels Malmos, Rasmus W. Lauritsen, Luis D. Couto and Martin Peter Christiansen. I want to thank Mette Stig Hansen and Annie Thomsen from the administration of the Department of Engineering for guiding me through the bureaucratic jungle a life at the University can be. I thank my parents, Hanne and Hans-Werner Wolff for raising me, and for giving me a solid set of values to live by. I also thank my brother Ebbe Wolff the constant encouragement and support from my family has been priceless. Last, but certainly not least, I would like to express my deepest and most sincere gratitude to my beautiful wife, Maria Schnack Wolff for her love, patience and support. I thank her for reminding me that there is more to life than work, and for giving me two strong sons: Adam and Carl my pride and joy in life. This thesis is dedicated to the three of them.

Contents

Abstract Resum e Acknowledgements

i iii v

I1

ContextIntroduction 1.1 Embedded Systems Introduction . . . 1.2 Embedded Systems Design Challenges 1.3 Modelling of Embedded Systems . . . 1.4 Scope of the Thesis . . . . . . . . . . 1.5 Objectives of the Thesis . . . . . . . . 1.6 Evaluation Criteria . . . . . . . . . . 1.7 Thesis Structure . . . . . . . . . . . . Application Domain: Electronic Warfare 2.1 Introduction . . . . . . . . . . . . . . 2.2 The Electromagnetic Spectrum . . . . 2.3 Threats . . . . . . . . . . . . . . . . 2.4 Missile Guidance . . . . . . . . . . . 2.5 Electronic Support Measures . . . . . 2.6 Electronic Countermeasures . . . . . 2.7 Electronic Protective Measures . . . . 2.8 Movement and Rotation in 3D Space .

13 3 4 6 8 10 10 11 15 15 16 18 18 20 21 23 24

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

2

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

vii

viii Contents

II3

Mono-Disciplinary ModellingFormal Methods for Embedded Systems Development 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 3.2 Formal Methods in Industry . . . . . . . . . . . . . 3.3 Formal Modelling in VDM . . . . . . . . . . . . . . 3.4 Incremental Formal Methods and Agile Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2527 27 28 30 35 39 39 40 42 44 47 48 50 51 53 53 54 60 62 64 67 67 68 72 79 81 83

4

Guidelines for Stepwise Development of VDM-RT Models 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 4.2 An Incremental Approach to Model Construction . . . 4.3 System Boundary Denition . . . . . . . . . . . . . . 4.4 Sequential Design Modelling . . . . . . . . . . . . . . 4.5 Concurrent Design Modelling . . . . . . . . . . . . . 4.6 Distributed Real-Time Design Modelling . . . . . . . 4.7 Validation Technology . . . . . . . . . . . . . . . . . 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . Formal Methods Meet Agile Development 5.1 Introduction . . . . . . . . . . . . . . . . . . 5.2 The Agile Manifesto Meets Formal Methods . 5.3 Agile Development Scrum . . . . . . . . . 5.4 Formal Methods in a Scrum Setting . . . . . 5.5 Summary . . . . . . . . . . . . . . . . . . . Mono-Disciplinary Case Study 6.1 Introduction . . . . . . . . . . . . . . . . 6.2 Case Study Design . . . . . . . . . . . . 6.3 Case Description: VDM Model of ECAP 6.4 Case Study Discussion . . . . . . . . . . 6.5 Lessons Learned . . . . . . . . . . . . . 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

6

III7

Multi-Disciplinary ModellingMulti-Disciplinary Modelling 7.1 Introduction to Multi-Disciplinary Modelling . . . . . . . . 7.2 Multi-Disciplinary Modelling in DESTECS . . . . . . . . . 7.3 Alternative Multi-Disciplinary Modelling Approaches . . . .

8587 87 88 95

Contents ix

8

Multi-Disciplinary Modelling Tool Comparison 8.1 Tool Comparison Introduction . . . . . . . 8.2 Related Comparisons of Simulation Tools . 8.3 Case Study Description . . . . . . . . . . . 8.4 Comparison Criteria . . . . . . . . . . . . . 8.5 Results of the Tool Comparison . . . . . .