summary session 9b polarized electron (positron) sources

41
Summary Summary Session 9B Session 9B Polarized electron (positron) sources

Upload: elmer-powell

Post on 13-Jan-2016

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Summary Session 9B Polarized electron (positron) sources

SummarySummarySession 9BSession 9B

Polarized electron (positron) sources

Page 2: Summary Session 9B Polarized electron (positron) sources

Session 9B : Polarized electron (positron) sources

Presentationsoral : 15poster : 6

JLAB, SLAC, Univ. of Mainz, Univ. of Bonn, CERN, DESY, St. Petersburg., KEK, Osaka Electro-Communication Univ.,Rikkyo Univ., and Nagoya Univ.,

11 groups

Page 3: Summary Session 9B Polarized electron (positron) sources

Topics Pol.e- source operation

High average current operation High current density test

Photocathodes Development strained super-lattice photocathode gridded photocathode, pyramidal shape photocathode

Low Emittance Beam Production Polarized electron source for SPLEEM Pol.e±   Source for ILC

Polarized electron beam injector Polarized positron beam production

Page 4: Summary Session 9B Polarized electron (positron) sources

Topics : Pol.e- source operation

Page 5: Summary Session 9B Polarized electron (positron) sources

Load lock(GaAs on puck)

NEG pipe

Laser(1 W @ 532 nm)

Faraday Cup

High Voltage(100 kV)

Activation(Cs/NF3, 5 mm)

Experimental Setup

350 m 1500 m

Spot SizeAdjustment

High average current test :High average current test : JLAB pol.e- JLAB pol.e- sourcesource

J.Grames (JLAB)

Page 6: Summary Session 9B Polarized electron (positron) sources

(Best Solution – Improve Vacuum, but this is not easy)

Can increasing the laser spot size improve charge lifetime?

Bigger laser spot, same # electrons, same # ions

electron beam OUT

residual gas

cathodeIonized residual gas strikes photocathode

anode

laser light IN

Ion damage distributedover larger area

J.Grames (JLAB)

Page 7: Summary Session 9B Polarized electron (positron) sources

Tough to measure >1000 C lifetimes with 100-200 C runs!

5

15

1500350

2≈ 18

Expectation:

High average current test :High average current test : JLAB pol.e- JLAB pol.e- sourcesource

J.Grames (JLAB)

Page 8: Summary Session 9B Polarized electron (positron) sources

High average current test High average current test Mainz pol.e- source Mainz pol.e- source

Current density is presently limited to 1.6 A/cm2.

57 mA in 100 s long pulses at 100 Hz repetition rate.

Q=5.7 C per Impulse

emitted area *(1.05mm)2~3.5 mm2

hole concentration 2*1019 cm-3

Power, WPower, W 1515

Wavelength, nmWavelength, nm 808 (fixed)808 (fixed)

Pulse length, msPulse length, ms 0.1-100.1-10

Frequency, HzFrequency, Hz 100100

Beam divergence, N.A.Beam divergence, N.A. 0.160.16

K.Aulenbacher (Mainz)

Page 9: Summary Session 9B Polarized electron (positron) sources

Non-linear effectsNon-linear effects1: Cathode heating

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250

Laser power, mW

Vac

uum

life

time

Photocathode vacuum lifetime normalized to the vacuum lifetime at the laser power 23 mW (>300h) (no current drawn

during ill.).

We are here at

I=1mA (QE=20mA/W)

K.Aulenbacher (Mainz)

Page 10: Summary Session 9B Polarized electron (positron) sources

Bunch width (FWHM): 1.6ns Bunch charge : 8nCLaser spot size :~20mm,

Peak current density ~18 mA/mm2

  No Charge Limit

bunch charge : 3.3pC/bunch

Laser Spot size~1.6mm(2)  

bunch width : ~30ps (estimate)

Peak current density (estimate) :

~240 mA/mm2

High current density testHigh current density test Nagoya pol.e- source Nagoya pol.e- sourceM.Yamamoto (Nagoya)

Page 11: Summary Session 9B Polarized electron (positron) sources

Load-lock gun operation at Load-lock gun operation at Univ.BonnUniv.Bonn

P = 80% @ 830 nmQE = 0.2 %

M.Eberhardt and J.Wittschen(Bonn)

Page 12: Summary Session 9B Polarized electron (positron) sources

New Load-Lock at New Load-Lock at Univ.BonnUniv.Bonn

M.Eberhardt and J.Wittschen(Bonn)

Page 13: Summary Session 9B Polarized electron (positron) sources

Topics : Photocathodes Development

Page 14: Summary Session 9B Polarized electron (positron) sources

Composition Thickness Doping

As cap

GaAs QW 60 A 71018 cm-3 Be

Al0.36Ga0.64As

SL

23 A

31017 cm-3 BeIn 0.155Al 0.2Ga 0.645As

51 A

Al0.4Ga0.6As Buffer 0.3 m 61018 cm-3 Be

p-GaAs substrate

MBE grown InAlGaAs/AlGaAs strained-well superlattice

Eg=1.543eV, Valence band splitting Ehh1 - Elh1 = 60 meV, Pmax=92%, QE=0.6%.

Y.Mamaev (St.Petersburg)

Page 15: Summary Session 9B Polarized electron (positron) sources

550 600 650 700 750 800 850 900

10-5

10-4

10-3

10-2

10-1

100

101

0

20

40

60

80

100

QEQ

E,

%

, nm

Polarization

Pol

ariz

atio

n,

%

SL In0.155Al 0.2Ga0.645As(5.1nm)/Al0.36Ga0.64As(2.3nm), 4 pairs

Y.Mamaev (St.Petersburg)

The optimization of DBR – superlattice structures is underway.

polarization(max.) : 92%, Quantum efficiency : 0.6%

Page 16: Summary Session 9B Polarized electron (positron) sources

Material specific depolarizationMaterial specific depolarization

emitemit = 3-5 ps (Mainz)= 3-5 ps (Mainz) If If ss < 35 ps, the spin relaxation time has a significant effect on < 35 ps, the spin relaxation time has a significant effect on

polarization.polarization. D’yakonov-Perel (DP) mechanism is dominant in low doped SL.D’yakonov-Perel (DP) mechanism is dominant in low doped SL.

DP mechanism comes from the spin-orbit interaction.DP mechanism comes from the spin-orbit interaction. Find materials with a smaller spin-orbit interaction.Find materials with a smaller spin-orbit interaction. GaN GaP GaAs GaSbGaN GaP GaAs GaSb SO SO (eV) 0.01 0.08 0.34 0.76(eV) 0.01 0.08 0.34 0.76 Try GaAs/InGaP strained-superlatticeTry GaAs/InGaP strained-superlattice

0PPPemits

sBBR

PP00: Initial polarization: Initial polarization ss : spin relaxation time : spin relaxation time emitemit : photoemission time : photoemission time PPBBRBBR: depolarization at BBR: depolarization at BBR

T.Maruyama (SLAC)

Page 17: Summary Session 9B Polarized electron (positron) sources

Spin relaxation rate based on Spin relaxation rate based on D’yakonov-Perel mechanismD’yakonov-Perel mechanism

: spin-orbit-induced spin splitting coefficient: spin-orbit-induced spin splitting coefficient EE1e1e: confinement energy: confinement energyp

eB

s

ETmk

5

21

3* )(161

Narrower well has a larger confinement energy.Narrower well has a larger confinement energy. Larger confinement energy Larger confinement energy

Less vertical transport, thus lower QELess vertical transport, thus lower QE More scattering, thus lower polarization. More scattering, thus lower polarization.

s ~ 10 pss ~ 2 ps

T.Maruyama (SLAC)

Page 18: Summary Session 9B Polarized electron (positron) sources

Superlattice structure affects dramaticallySuperlattice structure affects dramatically

1.5 nm GaAs + 4 nm In0.65Ga0.35P 4 nm GaAs + 1.5 nm In0.65Ga0.35P

QE ~ 0.002%Pol ~ 40%

QE ~ 0.01%Pol ~ 68%

T.Maruyama (SLAC)

Page 19: Summary Session 9B Polarized electron (positron) sources

Structure of gridded cathodeStructure of gridded cathode

Composition Thickness Doping

p- GaAs substrate, 5x1018cm-3 Zn doped

Al.3Ga.7As buffer 5x1018cm-3 Be doped

GaAs,AlGaAs,GaAsP/GaAsactive region 90nm 1014 - 1018 cm-3 Be doped

GaAs surface region 5-10nm 1- 5x1019cm-3 Be doped

MBE grown high surface/low

active doping gridded cathode

0.3um W film, Ohmic contact

Metal grid, Schottky contact

K.Ioakeimidi (SLAC)

Page 20: Summary Session 9B Polarized electron (positron) sources

Thin GaAs films with 4mm 2D grid and 48mm pitch Thin GaAs films with 4mm 2D grid and 48mm pitch

QE&Polarization - gridded samplesQE&Polarization - gridded samples

5x1016cm-3

K.Ioakeimidi (SLAC)

Monte Carlo simulations indicate that the QE-Polarization trade off can be broken by accelerating the electrons in the active region Preliminary experimental results indicate a 1% increase in polarization

Page 21: Summary Session 9B Polarized electron (positron) sources

M.Kuwahara (Nagoya)

Pol.e- extraction from Pyramid-shaped Photocathode

Extraction of polarized electrons by F.E.

Electrons extracted by F.E. have higher polarization than NEA’s.

long lifetime compared with NEA surface.

Page 22: Summary Session 9B Polarized electron (positron) sources

Topics : Low Emittance Beam Production

Page 23: Summary Session 9B Polarized electron (positron) sources

Low Emittance Beam extraction from GaAs-GaAsP superlattice photocathode

N.Yamamoto (Nagoya)

Page 24: Summary Session 9B Polarized electron (positron) sources

Low Emittance Beam extraction from GaAs-GaAsP superlattice photocathode

rms : 0.096±0.015 .mm.mradN.Yamamoto (Nagoya)

Page 25: Summary Session 9B Polarized electron (positron) sources

Topics : Polarized electron source for SPLEEM

Page 26: Summary Session 9B Polarized electron (positron) sources

Yasue (Osaka Elec.Comuni.Univ)

ReflectionDiffraction

sample

ElectronsLow energy electrons: strong interaction with surfaces - relatively high reflectivity - small penetration depth

SURFACE SENSITIVE

energy filter

electron optics

manipulator

20cm

CCD camera

sample

objectivelens

beamseparator

energyfilter

screen

e- source

HV

LEEM (Low Energy Electron Microscopy)

Page 27: Summary Session 9B Polarized electron (positron) sources

Co/W(110) 3.8eV FOV=25m in-plane

=0o =45o =90o=-45o=-90o

MM

P

M

CONTRAST: P·MP // M: maximum (minimum)

P M: 0

Yasue (Osaka Elec.Comuni.Univ)

Spin Polarized LEEM (SPLEEM)

Page 28: Summary Session 9B Polarized electron (positron) sources

Exchange Asymmetry A

II

II

P

1A

II

IISPLEEM Contrast: P HIGH POLARIZATION

FAST ACQUISITION OF SPLEEM IMAGE

For higher magnificationFor much faster acquisition

HIGH BRIGHTNESS (HIGH INTENSITY) SOURCE

Yasue (Osaka Elec.Comuni.Univ)

Page 29: Summary Session 9B Polarized electron (positron) sources

S.Okumi (Nagoya)

focusing length ~ 4mm

spot size ~ 3m

Concept of extracting high brightness beam

Page 30: Summary Session 9B Polarized electron (positron) sources

S.Okumi (Nagoya)

Page 31: Summary Session 9B Polarized electron (positron) sources

Topics : Pol.e±   Source for ILC

Page 32: Summary Session 9B Polarized electron (positron) sources

0

200

400

600

800

1000

0 100 200 300 400 500 600

Longitudinal position (cm)

Pha

se in

L-b

and

deg

(FW

HM

)

2nd SHB

1st SHB

L-band buncher

6.4 nC, 2 ns

ILC e- injectorILC e- injectorwith SLC gun and drift distance to SHB1with SLC gun and drift distance to SHB1

7575 202 33

20 bend

DC gun

SHB1 SHB2 Two 5-cell L-band

10 20 5

Two 50-cell NC L-band pre-acceleration

All units in cm

… …

J.E.Clendenin (SLAC)

ParameterParameter UnitsUnits At gun exit

After bunchers*

ChargeCharge nCnC 6.4 6.2

Bunch length Bunch length (FWHM)(FWHM)

pspsDeg. L-bDeg. L-bandand

2000932

146.8

Energy/Energy Energy/Energy spreadspread

MeVMeV 0.12 9.5/0.09(0.95%)

Normalized rms Normalized rms emittanceemittance

1010-6-6 m m n/a 43

PARMELA results

Page 33: Summary Session 9B Polarized electron (positron) sources

M.Yamamoto (Nagoya)

Solenoid

4.8nC,16mm

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

z [m]

-15

-10

-5

0

5

10

15

x [m

m]

0 0.15 0.5[m]

anode

Solenoid

200kV,1.0ns,4.8nC

SHB1 SHB2

0 1.0 3.0 3.4[m]

108MHz 433MHz

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Position [m]

0

20

40

60

80

100

120

bu

nch

len

gth

(rm

s) [

mm

]

200keV,4.8nC,1.0ns

Similar geometry of TESLA 2001-22 (Aline Curtoni et al).

rms ~ 9.7 pi.mm.mrad

Beam Simulation (Nagoya 200keV Gun)

Page 34: Summary Session 9B Polarized electron (positron) sources

A.Brachmann (SLAC)

Schematic Layout

Page 35: Summary Session 9B Polarized electron (positron) sources

A.Brachmann (SLAC)

Two 5-cell SW L-band108MHz SHB

433 MHz SHB 1st TW Structure 2nd TW Structure

matching triplet

Low Energy Beam Line and Bunching System Simulations including Space Charge

Page 36: Summary Session 9B Polarized electron (positron) sources

Spin Rotation using Spin Rotation using SolenoidsSolenoids

bendspin

GeVE *44065.0

)( T

B

dlBzspin 26

*0

5 GeV

Bend of n * 7.9312o

Odd Integer

Slongitudonal

~ 7.5 m

DR

Pair of Solenoids (SC)

Svertical

(Precession)

Stransverse

(Rotation)

ILC design: n = 7 55.51o

Depolarization in arc due to energy spread:

cos1

P

P

Arc bending angle θ = 55.51o

Spin precession angle =(7/2)Energy spread Δ/ = ±0.02 GeVDepolarization (analytic) ΔP/P = 0.024Particle tracking ΔP/P = 0.007

A.Brachmann (SLAC)

Page 37: Summary Session 9B Polarized electron (positron) sources

T.Omori (KEK)

Laser-Based Polarized ee++ Source for ILC

Page 38: Summary Session 9B Polarized electron (positron) sources

A = 0.90 ± 0.18 % Pol. = 73 %

M. Fukuda et al., PRL 91(2003)164801

T.Omori (KEK)

Page 39: Summary Session 9B Polarized electron (positron) sources

Electron storage ring

laser pulse stacking cavities

po

sitron

stacking

in m

ain D

RRe-use Concept

Compton ring

to main linac

T.Omori (KEK)

Page 40: Summary Session 9B Polarized electron (positron) sources

P.Shuler (DESY)

The E166 Experiment

Page 41: Summary Session 9B Polarized electron (positron) sources

P.Shuler (DESY)

Pol.e+ (max.) : ~80%