substrates and encapsulation for bipv

16
NanoMarkets Report Substrates and Encapsulation for BIPV Nano-539 Published May 2012

Upload: n-tech-research

Post on 20-Aug-2015

533 views

Category:

Business


1 download

TRANSCRIPT

NanoMarkets Report

Substrates and Encapsulation

for BIPV

Nano-539

Published May 2012

Page | i

Table of Contents

Executive Summary ........................................................................................................................1

E.1 Emerging Opportunities for Rigid BIPV Encapsulation? .................................................1

E.1.1 Glass Will Continue to Dominate .....................................................................................1

E.1.2 Advanced Encapsulation Systems Will Increasingly be Needed ....................................1

E.2 What Changes in Demand for Flexible BIPV Encapsulation Will Occur in the Next

Five Years? ..................................................................................................................................2

E.2.1 The Growing Importance of Atomic Layer Deposition .....................................................3

E.2.2 Trends Towards Advanced Substrates ...........................................................................4

E.3 Future Trends and Opportunities in BIPV Glass Encapsulation .....................................5

E.4 Niche Opportunities for Encapsulating CIGS, OPV, and DSC BIPV products ...............6

E.5 Key Firms to Watch ..............................................................................................................7

E.5.1 Glass Firms ......................................................................................................................7

E.5.2 Multilayer and ALD Barrier Firms ....................................................................................7

E.6 Reducing Costs and Creating Value in BIPV with Encapsulation Technology .............8

E.7 Summary of the Eight-Year Forecasts of Encapsulation and Substrate Materials for

BIPV ..............................................................................................................................................8

E.7.1 Rigid BIPV Substrates and Encapsulation ................................................................... 10

E.7.2 Flexible BIPV Encapsulation and Substrates ............................................................... 11

E.7.3 BIPV Glass Encapsulation and Substrates .................................................................. 12

Chapter One: Introduction .......................................................................................................... 13

1.1 Background to this Report ................................................................................................ 13

1.1.1 Flexible Module Encapsulation Opportunities ............................................................... 13

1.1.2 Rigid Module Encapsulation Opportunities ................................................................... 16

1.2 Objectives and Scope of this Report ............................................................................... 17

1.3 Methodology of this Report .............................................................................................. 18

1.4 Plan of this Report ............................................................................................................. 18

Chapter Two: Current and Evolving Encapsulation Technologies for BIPV Markets .......... 19

2.1 Alternatives to Glass Encapsulation: Metals and Polymers ......................................... 19

2.1.1 Polymer Films: How Costs Can Come Down ............................................................... 19

2.1.2 Metal Options: Steel and Aluminum .............................................................................. 20

2.1.3 Ceramic Films: Advantages and Disadvantages .......................................................... 21

2.2 Flexible Encapsulants for BIPV ........................................................................................ 22

2.3 The Dyad Option: Best of Both Worlds, But at What Cost? .......................................... 22

2.4 The Special Needs of CIGS and OPV/DSC BIPV ............................................................. 24

Page | ii

2.4.1 CIGS and OPV/DSC in BIPV ........................................................................................ 25

2.4.2 Current and Future Encapsulation Trends in CIGS and OPV/DSC BIPV .................... 26

2.5 Key Points Made in this Chapter ...................................................................................... 29

Chapter Three: Current and Evolving Encapsulation Technologies for BIPV Markets ........ 31

3.1 The Limits of Glass Encapsulation for BIPV ................................................................... 31

3.1.1 Changing Requirements for Rigid BIPV Encapsulation ................................................ 31

3.1.2 Changing Requirements for Flexible BIPV Encapsulation ............................................ 34

3.1.3 Changing Requirements for BIPV Glass Encapsulation ............................................... 37

3.2 New Opportunities for Glass in BIPV Encapsulation ..................................................... 37

3.2.1 Opportunities for Flexible Glass in BIPV ....................................................................... 40

3.3 The Future of Plastic Film and Other Advanced Encapsulation Systems in BIPV ..... 40

3.4 Encapsulation of BIPV on Sheet Steel and Aluminum ................................................... 41

3.5 Encapsulation of BIPV on Other Roofing and Siding Materials .................................... 43

3.6 A Roadmap for Encapsulation in BIPV ............................................................................ 43

3.7 Key Points Made in this Chapter ...................................................................................... 44

Chapter Four: Eight-Year Forecasts of Encapsulation and Substrate Markets for Building

Integrated Photovoltaics ............................................................................................................. 47

4.1 Forecasting Methodology ................................................................................................. 47

4.1.1 Information Sources ...................................................................................................... 48

4.1.2 Scope of the Forecast ................................................................................................... 49

4.2 Forecasts for BIPV Substrates and Encapsulation ........................................................ 49

4.2.1 Forecast for Rigid BIPV Module Substrates ................................................................. 50

4.2.2 Forecast for Rigid BIPV Module Encapsulation ............................................................ 58

4.2.3 Forecast for Flexible BIPV Module Substrates ............................................................. 64

4.2.4 Forecast for Flexible BIPV Module Encapsulation ........................................................ 70

4.2.5 Forecasts of BIPV Glass Substrates and Encapsulation .............................................. 72

4.3 Summary of Forecasts ...................................................................................................... 81

Acronyms and Abbreviations Used In this Report ............................................................... 85

About the Author ...................................................................................................................... 86

List of Exhibits

Exhibit E-1: Total BIPV Substrate and Encapsulant Revenues by BIPV Module Type ...................9

Exhibit 4-1: Substrate Materials for Crystalline Silicon Rigid BIPV Cells ....................................... 51

Exhibit 4-2: Cost for Substrates Used in PV ($ per square meter) .. Error! Bookmark not defined.

Exhibit 4-3: Substrate Materials for TF-Si Rigid BIPV Cells .......................................................... 53

Page | iii

Exhibit 4-4: Substrate Materials for TF CdTe Rigid BIPV Cells ..................................................... 54

Exhibit 4-5: Substrate Materials for TF CIGS Rigid BIPV Cells ..................................................... 55

Exhibit 4-6: Substrate Materials for TF OPV/DSC Rigid BIPV Cells ............................................. 56

Exhibit 4-7: Total Rigid BIPV Substrate Material Revenues by Material Type ............................. 57

Exhibit 4-8: Encapsulation Materials for Rigid BIPV c-Si PV Cells ............................................... 58

Exhibit 4-9: Encapsulation Materials for Rigid BIPV Thin-Film Si PV Cells .................................. 59

Exhibit 4-10: Encapsulation Materials for Rigid BIPV CdTe PV Cells ........................................... 60

Exhibit 4-11: Encapsulation Materials for Rigid BIPV CIGS PV Cells ........................................... 61

Exhibit 4-12: Encapsulation Materials for Rigid BIPV OPV/DSC PV Cells .................................... 62

Exhibit 4-13: Total Rigid BIPV Encapsulation Material Revenues by Material Type ..................... 63

Exhibit 4-14: Substrate Materials for TF Si Flexible BIPV Cells .................................................... 66

Exhibit 4-15: Substrate Materials for TF CdTe Flexible BIPV Cells .............................................. 67

Exhibit 4-16: Substrate Materials for TF CIGS Flexible BIPV Cells ............................................... 68

Exhibit 4-17: Substrate Materials for TF OPV/DSC Flexible BIPV Cells ....................................... 69

Exhibit 4-18: Total flexible BIPV Substrate Material Revenues by Material Type ........................ 70

Exhibit 4-19: Total Flexible BIPV Encapsulation Material Revenues by Material Type ................ 71

Exhibit 4-20: Substrate Materials for BIPV Glass Cells by Absorber Type .................................... 74

Exhibit 4-21: Encapsulation Materials for BIPV Glass c-Si PV Cells ............................................ 75

Exhibit 4-22: Encapsulation Materials for BIPV Glass Thin-Film Si PV Cells ................................ 76

Exhibit 4-23: Encapsulation Materials for BIPV Glass CdTe PV Cells .......................................... 77

Exhibit 4-24: Encapsulation Materials for BIPV Glass CIGS PV Cells .......................................... 78

Exhibit 4-25: Encapsulation Materials for BIPV Glass OPV/DSC PV Cells ................................... 79

Exhibit 4-26: Total BIPV Glass Encapsulation Material Revenues by Material Type .................... 80

Exhibit 4-27: Total BIPV Substrate and Encapsulation Revenue by BIPV Module Type ............. 82

Page | 1

Executive Summary

E.1 Emerging Opportunities for Rigid BIPV Encapsulation?

Building-integrated photovoltaics (BIPV) represent an emerging opportunity for developers and

providers of encapsulation and substrate materials. BIPV comes in three flavors:

Rigid modules that integrate as part of the building skin or roofing materials;

Flexible BIPV modules that function much in the same manner as rigid modules,

but can be fitted to curved surfaces or are attractive for their being low weight;

and

BIPV glass, which consists of architectural glasses used in building construction

that have PV functionality integrated within them.

E.1.1 Glass Will Continue to Dominate

For rigid and glass modules, glass will be the dominate substrate material. The key opportunity

here is adding PV to the building materials, which enhances the final product, but is relatively low

in cost compared to the cost of the final product. For flexible modules, there are development

opportunities for new flexible materials with improved barrier properties to moisture and oxygen

beyond those commonly available today for integration of CIGS and OPV/DSC absorber

materials.

The near-term market for rigid BIPV encapsulation will be dominated by the same material used

in the rigid modules of today, namely glass. Glass will continue to be the king for the foreseeable

future. Compared to other options, it is inexpensive and provides a hermetic seal, and thick

tempered modules are robust to weather and wear.

Over the period covered by this report, BIPV and its associated encapsulation/substrates will

complete their transformation to truly integrated cells within roofing panels or siding materials.

Because the cells will be fully integrated and not replaceable without replacing the entire building

material, encapsulation such as glass will need to be thicker and tempered to reduce breakage to

meet a 30-year outdoor lifetime specification.

E.1.2 Advanced Encapsulation Systems Will Increasingly be Needed

BIPV also provides a higher margin market for both advanced absorber materials and the high

performance barriers and substrates that will be required as CIGS and OPV/DSC enter the BIPV

marketplace. BIPV modules that function as both a building skin and a PV module are an

example where encapsulation returns can be much more attractive compared to commodity panel

markets.

Currently, the encapsulation requirements are not that great for the c-Si modules and a-Si BIPV

modules on the market. As CIGS gains traction in the marketplace, however, BIPV tiles that can

create attractive monolithic high-end facades and attractive roofing materials will require

enhanced barriers.

Page | 2

Rigid BIPV encapsulation: Four factors will be the keys to success for rigid BIPV:

Aesthetics,

Overall building cost,

Image, and

Product marketing emphasis.

The encapsulation roadmap of improved dyad-based or atomic layer deposition (ALD)-based

barriers will help enable three of these areas.

First, from an aesthetics point of view, advanced barriers will allow high efficiency thin-film

CIGS to be a viable rigid module absorber for use in monolithic panels of any shape.

From an overall cost perspective, CIGS-based thin-film modules will be lighter than

current options, particularly if thinner, laminated glasses can be used as the top

encapsulation material.

Finally, the ability to produce monolithic panels of any shape will improve the image of

BIPV solar from one of slapping ugly rack panels on walls or roofs to one of an attractive

building material that architects can integrate into striking building facades.

OPV/DSC issues and opportunities: One additional trend that will be seen as OPV begins to

ramp to volume and become used in the rigid BIPV space will be an opportunity for glass

manufacturers to add specialty coatings.

Already, ITO and AZO coated glass can be purchased to relieve module manufacturers

from the cost of adding these materials.

As time goes on, the extreme barrier requirements of OPV/DSC for BIPV applications will

challenge the barrier properties of glass. NanoMarkets predicts that it will be common for

glass substrates for OPV/DSC BIPV to be pre-coated with an ALD barrier before the clear

conductor layer, and this enhanced value material will then be sold to BIPV module

manufacturers.

E.2 What Changes in Demand for Flexible BIPV Encapsulation Will Occur in the Next Five Years?

New and improved encapsulation solutions for integrated BIPV products based on CIGS

absorbers will be the biggest change in the landscape for flexible BIPV over the next five years.

Currently, a-Si is the absorber of choice for flexible BIPV modules, precisely because

encapsulation solutions for flexible CIGS have not been available in large volumes in the past,

and are now just entering the market at a level necessary and at a cost point that makes

economic sense.

Flexible PV modules with CIGS as the absorber, and flexible CIGS BIPV modules, have been

"just around the corner" for almost a decade now.

Page | 3

The initial factor that slowed development and commercial production was identification of

CIGS deposition processes that were manufacturable.

The second gating factor that kept flexible CIGS of all types, and not just BIPV, from

widespread adoption was the encapsulation/substrate question. While a-Si modules

encapsulation requirements for moisture are in the 1E-3 to 1E-4 g/m2/day range, the

water transmission rate for CIGS needs to be on the order of 1E-5 to 1E-6 g/m2 day. All

of the single-layer polymeric flexible solutions available that are acceptable for a-Si

absorbers prove to be less than adequate from a barrier perspective for CIGS and OPV

absorbers.

Grain boundaries in plasma deposited nitride and pinholes in polymeric films are the root cause of

the unacceptable barrier/encapsulation performance of present single-layer encapsulation. The

initial solution to this problem was the introduction of dyad barrier systems. These systems

combine layers of two different types of materials—generally a polymer and a ceramic—in

alternating fashion, typically for multiple dyads or layer pairs. The idea is for the ceramic to plug

pinholes in and slow diffusion through the polymer, while the polymer seals the defects in the

ceramic.

The more layers that are built up, the more the moisture penetration is reduced. Three or four

layers are necessary for CIGS PV. The high cost of dyad films comes mainly from the multiple

vacuum depositions required for the ceramic layers, and for the large number of process steps

that are added. Vacuum deposition requires costly equipment and high energy levels and suffers

from low throughput. Costs are similar to transparent conducting electrodes such as aluminum-

doped zinc oxide (AZO) for CIGS PV, but need to be done multiple times.

E.2.1 The Growing Importance of Atomic Layer Deposition

Because of the inherent cost of the dyadic solutions, alternatives are actively being explored. The

latest trend is to move from plasma-enhanced chemical vapor deposition (PECVD) systems with

many layers to Atomic Layer Deposition (ALD) barrier films with one or two layers of alternating

polymer and inorganic ceramic layer.

ALD is widely used in the semiconductor industry to produce barrier materials. Two issues need

to be overcome, however, to make ALD processing economically viable for BIPV applications.

First is the deposition rate. As an atomic layer deposition technique, the deposition rate is

low.

The second issue is scaling up the process from one that is currently dominated by tools

designed for batch deposition on a 12-inch silicon wafer with few thermal budget

requirements to one viable for roll-to-roll (R2R) processing on low thermal budget polymer

substrates.

Recent work reported by the DOE and DuPont have demonstrated that a single 10- to 25- nm

ALD film deposited on polyethylene terephthalate (PET) at 125°C achieved 1E-4 g/m2/day barrier

performance for moisture. The films showed less than 2 percent degradation in efficiency of

CIGS flexible modules at 1,000 hrs in 85°C/85 percent humidity. The 85/85 requirement is part of

the international IEC61646 standard for package level reliability.

Page | 4

The long-term trend for the encapsulation stack of flexible BIPV, in NanoMarkets' opinion, will

consist of a heavy weathering film on top, a thin barrier layer based on one or two ALD layers, a

thick polymer encapsulation layer, the active PV layers, and finally a flexible substrate. Target

materials include a 2-mil fluorinated ethylene propylene (FEP) for the weathering layer, a 25-nm

ALD Al2O3 layer on a UV-PET encapsulant, and a CIGS cell on either a polyimide or steel

substrate.

For the encapsulant under the barrier layer, the trend is towards ionomer films and away from

polyvinyl butyral (PVB) and ethyl vinyl acetate (EVA):

The ionomer films in general show much better resistance to moisture ingress compared

to the other film types

Future work in the encapsulant area is focusing on optimizing transmission, UV stability,

adhesion, and moisture transport

The next generation of advanced ionomers is currently undergoing prototype evaluations

with both CIGS and organic PV absorber layers.

E.2.2 Trends Towards Advanced Substrates

For flexible BIPV modules, in addition to advances in barrier technology, there will also be

opportunities for advanced substrates.

Metal substrates: Metal substrates, which were the first widely adopted flexible substrates for

thin-film PV, will continue to dominate flexible BIPV substrates:

Stainless steel and aluminum are favored for their strength, inertness, thermal budget to

withstand absorber deposition conditions, and relatively low cost

Metal foils for flexible thin-film PV substrates also provide better encapsulation than

polymers for the back side of the cell.

Because of the temperature deposition requirements of CIGS, cost reductions and the

improvement of current stainless steel substrates are being evaluated. Glass-coated stainless

steel provides many attractive features from an integration standpoint:

It is thermally stable, dimensionally stable, flexible for BIPV applications, an ion barrier

because of the glass coating, and has good surface smoothness for subsequent

depositions

The latest generation of glass-coated steel also allows monolithic integration

Molybdenum back conductors can be deposited on the glass for growth of CIGS with

current deposition methods.

It will be exciting to watch the growth of BIPV modules based on advanced barriers and

substrates. The two most notable flexible, fully-integrated products in development are Dow

Chemical's new "Dow Powerhouse Solar Shingle"—based on CIGS PV cells from Global Solar

and targeted for volume sales in 2012, and Corus' steel roofing with incorporated DSC cells from

Page | 5

Dyesol. The Powerhouse shingle was first on sale in Colorado in 2011 and sales availability has

now expanded to California and Texas.

These two products produce some unique value propositions and opportunities that set them

apart from current BIPV shingle and metal roofing products that rely on a-Si PV. Given these

initial forays into the market, NanoMarkets predicts that, over the next five years, overall demand

for advanced flexible BIPV encapsulation and substrates will jump from 0.53 million square

meters in 2012 to 9.4 million square meters in 2017.

E.3 Future Trends and Opportunities in BIPV Glass Encapsulation

Because glass is such a good encapsulation material, it is, and will remain, the dominant BIPV

encapsulation material, with new opportunities as BIPV becomes more prevalent in the

marketplace.

From an encapsulation point of view, the changes for glass encapsulation will be slight over the

period covered by this report, but from a revenue perspective, the opportunity is extremely

inviting. Because the cost of architectural glass substrates is high, the added cost of PV is a

small, but the perceived enhancement of the product is large, and thus the outlook for BIPV

architectural glass is extremely bright.

While glass is an ideal choice for many BIPV encapsulation needs, it does have some limits with

respect to the advanced absorber materials on the horizon:

For c-Si, a-Si and CdTe, its barrier qualities are more than adequate.

With the 30-year life requirement for BIPV, it starts to become marginal with CIGS and its

moisture requirements, and begins to require additional protection in the case of OPV,

where both extreme moisture and oxygen barrier requirements are needed.

For robust BIPV solutions with CIGS, and especially OPV, additional barrier protection will likely

be needed to be added to current glass substrates.

Transparent integrated BIPV glass modules represent another significant trend for glass BIPV:

For current transparent glass applications, a-Si is the dominant material, and glass as

encapsulant and substrate is suitable for this application.

Further out, OPV is likely to dominate transparent BIPV applications. Here, new coatings

for glass will be necessary.

Coating architectural glass is nothing new; what is different about this technology is the type and

value of the coating. Dyad films, for instance, will be both new and high-value coatings for glass.

Their adoption will only occur, however, if they provide the solution that is required to enable the

longer lifetimes needed for OPV to access this market.

Another trend will be in the area of transparent substrates for CIGS. An opportunity exists to

integrate a transparent back conductor with a work function high enough for use with CIGS

(perhaps micrometallic mesh) with a glass or a polyimide as an integrated substrate material for

use as part of a CIGS semi-transparent BIPV cell.

Page | 6

E.4 Niche Opportunities for Encapsulating CIGS, OPV, and DSC BIPV products

While the entire market for encapsulation of BIPV CIGS, OPV, and DSC could be thought of as

niche at this point in time, within that niche market, rigid CIGS, glass CIGS and OPV/DSC, and

flexible CIGS for roofing and facades will be the dominant applications. For these applications,

the customer base will skew towards large office buildings, signature private and public spaces,

and large-scale roofing applications.

One likely niche area for encapsulation is heavy duty encapsulation for off-grid building

applications. The off-grid applications will require a higher level of robustness than normal

commercial BIPV, as the off-grid applications will need to function over the 30-year life span with

the expectation of no maintenance and likely in more extreme weather conditions than typical

BIPV materials.

Module weight is also critical in these off-grid applications, most of which are remote from divided

highways or paving at all. Many of these materials may need to be delivered by helicopter, and

therefore weight is a significant concern. Additionally, BIPV products type would be of a modular

variety to aid in construction at remote sites.

For weight considerations, compared to glass-based modules, off-grid encapsulation for

CIGS/OPV/DSC will likely trend almost exclusively towards flexible polyimide substrates, thick

ionomer encapsulation with a multi-layer dyadic ultra barrier with at least 1.5 times the number of

dyads as a typical barrier (UV-PET film). While normal BIPV flexible units are then covered with a

2-mil FEP final layer, off-grid application encapsulation would likely have a 3-4 mil final FEP

barrier.

Markets for such lightweight BIPV modules with enhanced encapsulation would be off-grid

homes, remote military outposts, and permanent oil and gas field operations buildings. One other

area where they may have some application is in regions of developing nations that currently

have no electricity.

An example of a type of product that may benefit from BIPV with extra-duty encapsulation is one

similar to Panasonics' Life Innovation Container, which is basically a cargo container with solar

cells that has been adapted to have refrigeration for medicine and cellular/Internet

communication. It has enough electrical storage capacity to maintain the refrigeration and

communications 24 hours a day. The Life Innovation Container is designed to provide some level

of electricity to villages in developing countries that currently have no access to electricity or

communications.

An issue with the solar cells in these units is that they are typically rack-mounted cells that can be

damaged in harsh off-grid conditions and can easily be removed/stolen. Transitioning to building

integrated panels with enhanced encapsulation for such units would be a means of providing a

solar cell that is more resistant to the elements and abuse than glass cells and, being a building

integrated product, would be much less likely or impossible to steal without destroying the solar

cell itself.

While not a huge market, this application represents a niche end-use for custom-enhanced

encapsulation for CIGS in the near term, and OPV/DSC very late in the period covered by this

report.

Page | 7

E.5 Key Firms to Watch

E.5.1 Glass Firms

NanoMarkets projects that for the timeframe of this report, glass-based encapsulation will

continue to dominate. For this reason, opportunities for glass firms will be abundant, especially

for those that can provide significant improvements in getter/epoxy configurations, reduce weight

and cost, and improve manufacturing processes.

The big glass firms like Nippon Electric Glass (Japan), Nippon Sheet Glass (Japan), Asahi Glass

Company (Japan), Corning (U.S.), and Schott (Germany) clearly have the advantage in this

sector.

E.5.2 Multilayer and ALD Barrier Firms

Despite the apparent lack of progress in multilayer dyads over the last five years or so, their great

promise for reducing costs has meant that many firms have continued to pursue them. The firms

to watch are those that are focusing on reducing costs without sacrificing performance, such as

by reducing the number of dyads (or layers) required to hit the barrier performance targets.

In addition to GE, which makes its own (flexible) multilayer barrier encapsulation, the key firms to

watch in this space are 3M (U.S.), Tera-Barrier Films (Singapore), Beneq (Finland), Cambridge

NanoTech (U.S.) and DuPont (U.S.).

3M: 3M is pursuing bendable encapsulation films suitable for R2R manufacturing. The

company currently markets an Ultra Barrier solar film that is compatible for CIGS

applications, but does not have the moisture or barrier performance necessary for

OPV/DSC applications.

Tera-Barrier Films: Tera-Barrier Films has also been developing multilayer dyad films

with a development focus on R2R barrier coatings for flexible PV applications. At this

point in time, Tera's films have not been scaled commercially, but the company reports

that it is working with partners and customers in both Asia and Europe, and hopes to see

its films in commercial products within the next year.

The key differentiator of Tera-Barrier's technology is that it can achieve high barrier

performance with only a few layers, which keeps the anticipated costs low. Of course, this

performance is currently achieved using slow-speed sputtering, and it remains to be seen

whether Tera can translate its small-scale, pilot successes into faster, larger-scale, truly

low-cost production, which it hopes to be able to do using electron-beam technology.

Cambridge Nanotech: While the technical challenges of ultra barrier deposition in our

opinion tend to favor large multinationals with the capital resources to pay for fairly costly

development of both new tools and processes and wait for a payoff that is multiple years

down the road, there are some small companies that are successful today, and may be

able to expand in the ALD deposition tool space.

Cambridge Nanotech of Boston is one such firm. Even though it is small (less than 100

employees), it has delivered over 300 ALD systems worldwide since being founded in

2003. Most of these are small systems for university and industrial laboratory research,

Page | 8

but its level of expertise in the area may make it a firm to watch as ALD for CIGS and

OPV become mainstream solar technologies.

Beneq: Beneq of Finland is another smaller company that has a presence in ALD. The

company has around 200 employees and is focused on ALD barrier and TCO materials

deposition. Beneq has introduced a true roll-to-roll ALD deposition tool. In April of 2012,

it received a €25 million investment from RUSNANO. Sales for 2011 were about €18

million.

DuPont: DuPont is actively working on ALD solutions or BIPV CIGS and OPV/DSC

absorbers in collaboration with the DOE.

E.6 Reducing Costs and Creating Value in BIPV with Encapsulation Technology

The key to reducing costs for BIPV encapsulation technology is twofold:

The first goal is to develop a manufacturable ALD process. Then, the ultra barriers

necessary for CIGS and OPV can move from the current dyadic systems with four to eight

depositions of alternating ceramic nitride and polymers to ALD barriers that consist of one

layer of polymer and one layer of ALD aluminum oxide. This move will be key for cost

reduction from a technical point of view.

The second goal is to move the ALD processes from the laboratory and prototyping

phase, where most are still batch depositions, to roll-to-roll processes on wide flexible

substrates.

The first step is to finalize on an ALD process for the ultra barrier and ionomer encapsulation

stack that is suitable for OPV and CIGS. Once this process is established, it becomes a matter of

transitioning from batch processing and developing the tools to take R2R deposition of such films

from current prototypes of over a few inches to ones with a width of 2-4 feet.

E.7 Summary of the Eight-Year Forecasts of Encapsulation and Substrate Materials for BIPV

Exhibit E-1 summarizes the overall market for BIPV substrates and encapsulation materials

through 2019. From a revenue perspective, this market is dominated by PV integrated in high-

end architectural glass. The value proposition here is that, by adding PV to expensive

architectural glass, where the cost of the PV integrated product is similar to the architectural glass

alone, the PV module that would be difficult to justify as an add on to a structure can be viewed as

a premium product for application to Green/LEED certified facilities.

From a new materials perspective, while the revenue is not as great as the BIPV glass space, the

flexible module BIPV space provides an economic model that justifies the development of new

deposition methods and processing equipment to support high-volume manufacturing of dyadic

and ALD ultra barrier materials.

The development of manufacturable ultra barrier dyadic, multilayer systems and ALD ceramic

barriers are both gates to widespread use of CIGS and OPV/DSC in flexible applications, as

these barriers are the only flexible encapsulation solutions on the horizon that have the barrier

properties necessary for providing CIGS and OPV/DSC with adequate protection against moisture

Page | 9

and oxygen. If these barriers and encapsulation materials are not developed in a timely manner,

it could severely retard CIGS and OPV/DSC flexible module growth.

Exhibit E-1: Total BIPV Substrate and Encapsulant Revenues by BIPV Module Type 2012 2013 2014 2015 2016 2017 2018 2019

Sq meters rigid BIPV substrates Sq meters flexible BIPV substrates Sq meters glass BIPV substrates Total sq meters BIPV substrates Substrate Revenues from BIPV ($ Millions): Revenue from rigid BIPV substrates Revenue from flexible BIPV substrates Revenue from glass BIPV substrates Total revenue from BIPV substrates Encapsulation Revenues from BIPV ($ Millions): Revenue from rigid BIPV encapsulation Revenue from flexible BIPV encapsulation Revenue from glass BIPV encapsulation Total BIPV encapsulation revenue Total market for BIPV Substrates and Encapsulation ($ Millions)

© NanoMarkets 2012

0

1,000

2,000

3,000

4,000

5,000

6,000

2012 2013 2014 2015 2016 2017 2018 2019

$ M

illio

ns

© NanoMarkets 2012

Substrate Revenues from BIPV

Glass BIPV substrates

Flexible BIPV substrates

Rigid BIPV substrates

Page | 10

E.7.1 Rigid BIPV Substrates and Encapsulation

Rigid BIPV products are the "classic" form of BIPV; the first kind developed as a more aesthetic

way to mount PV panels on buildings. And they continue to be the most popular "off-the-shelf"

type of BIPV installed worldwide. We include in this category the substrate and encapsulation

predictions for panels that are designed specifically for flush mounting on rooftops for visual

integration.

In the near-term, the encapsulation needs will be less demanding for this type of module, as they

will be dominated by c-Si and use rigid glass for substrates and encapsulation. For most of the

period under consideration in this report, only one material, c-Si, will have significant penetration

in the rigid BIPV area. By 2018, however, all of the materials will begin to make inroads, with

CdTe rising to the second best results, with the successful launch of new products anticipated in

the 2012-2013 timeframe.

From a substrate and encapsulation point of view, the rigid module space is most like the

commodity panel space, and is dominated by glass with c-Si and CdTe absorbers. Because

these absorbers are the least sensitive to moisture and oxygen and are not required to be flexible,

current glass technology is more than adequate for substrate and encapsulation use. From that

perspective, there is less of a high value opportunity in this area than in the flexible module and

BIPV glass space.

0

1,000

2,000

3,000

4,000

5,000

6,000

2012 2013 2014 2015 2016 2017 2018 2019

$ M

illio

ns

© NanoMarkets 2012

Total Market for BIPV Substrates and Encapsulation

Page | 11

Later in the reporting period, there will be some volumes of CIGS and a little of OPV/DSC, which

will need improved encapsulation technologies. Within the next few years, CIGS PV will begin to

target the rigid BIPV market in a meaningful way, beginning with flush panels that overlay existing

roofing. CIGS will require some of the more advanced dyad and ALD barrier and encapsulation

technologies that will be used in higher volumes for flexible modules and will represent an

opportunity for advanced encapsulation manufacturers.

E.7.2 Flexible BIPV Encapsulation and Substrates

Flexible BIPV products are the newest type of BIPV on the scene, and in many ways the most

exotic. Because of their flexible nature, standard glass is not a viable substrate or encapsulation

material. Flexible BIPV, therefore, is an area where the biggest opportunities are from the

perspective of developing and integrating new encapsulation and substrate materials.

While current flexible substrate and encapsulation options are relatively expensive compared to

commodity panels, which limits their attractiveness as standalone options, when flexible PV is

integrated in building materials, the cost is less of the overall bill of materials, and thus is

attractive where flexible building materials can be taken advantage of, as in the case of roofing

and siding/facade construction materials.

While part of the appeal of flexible BIPV products is their novelty, they also provide more

fundamental benefits:

Resiliency,

Compatibility with many types of building materials that are inherently flexible

The ability to be delivered and installed in long strips or rolls without the risk of breakage.

In the near term, flexible modules that can be rolled out on flat roofs will be an early market.

Shingles with integrated PV is also an area where several manufacturers are introducing

products.

We have reduced our initial volume forecasts for fully-integrated flexible BIPV products compared

to last year's forecasts because of continued poor construction markets; the standalone

laminates—better suited to retrofits—have taken up some of the slack. However, later in the

forecast period, we have increased our projections for volumes of the fully-integrated products, in

large part because CIGS PV products are looking more serious.

The most rapid growth opportunities here are for the CIGS and DSC PV technologies. CdTe PV

may also turn toward flexible BIPV, although it will be the last of the three BIPV routes that the

industry will take. However, if First Solar chooses to get into the flexible BIPV space, such a move

would dramatically alter the current forecast.

Among the flexible thin-films, CIGS BIPV laminates and shingles appear best positioned in the

market. Also of note is the trend toward using building materials as actual flexible substrates for

BIPV, led by DSC maker Dyesol and its partner Corus. Corus was a major German steel

company that was acquired by Tata Corp., and lends substantial weight to the prospects for this

standing-seam roofing project.

Page | 12

One other thing that needs to happen in order for BIPV and the underlying substrate materials

suppliers to be successful is some modification of UL1703, which currently requires retesting of

every different-sized module, and is currently an impediment to manufacturing custom-sized

modules for covering building facades of different sizes and shapes.

E.7.3 BIPV Glass Encapsulation and Substrates

The market for glass-based BIPV substrates will grow tremendously over the next eight years, as

incentives grow for green certifications, and as the standards for achieving them become more

demanding. Current encapsulation is not a challenge, with current glass and polymer solutions

being more than adequate to encapsulate current c-Si and a-Si BIPV glass modules.

While c-Si dominates the market, thin-film silicon will experience steady growth, but CIGS, CdTe

and OPV/DSC really won't hit their stride in this space until about the 2014-2015 timeframe, due

to the development costs of ultra barriers in the case of CIGS, and both absorber development

and barrier development in the case of OPV/DSC.

For the forecasts to be realized for CIGS and OPV/DSC, there is still work to be done both in

process development and equipment development for the manufacture of high volumes of dyadic

and/or ALD ultra barriers on large substrates. While the revenue for emerging advanced barriers

and substrates compared to the glass substrates is not large, when one looks at the overall

demand for CIGS and OPV ultra barriers for both BIPV and non-BIPV applications, the value

proposition for the development of high volume processes for depositing these films becomes

quite attractive.

In addition to the encapsulation needs for CIGS, for transparent modules to flourish, CIGS back

conductors will need to transition from molybdenum as the industry standard for the back contact

to a transparent back conductor that will allow transparent module integration. OPV and DSC are

likely to see some action in the BIPV glass market segment, precisely because they will be first to

produce truly transparent BIPV glass.

To obtain a full copy of this report please contact NanoMarkets at [email protected]

or via telephone at (804) 938-0030 or visit us at www.nanomarkets.net.