structure formation in void universes
Embed Size (px)
DESCRIPTION
Structure formation in Void Universes. ?. Osaka City University (OCU) Ryusuke Nishikawa. collaborator Ken- ichi Nakao (OCU) , Chul -Moon Yoo (YITP). Dark Energy & Copernican Principle. Standard cosmological model. General Relativity + Copernican Principle + Observations. - PowerPoint PPT PresentationTRANSCRIPT
1
Structure formation in Void UniversesOsaka City University (OCU)Ryusuke NishikawacollaboratorKen-ichi Nakao (OCU) ,Chul-Moon Yoo (YITP)
?1/15Dark Energy & Copernican PrincipleStandard cosmological modelGeneral RelativityCopernican PrincipleObservationsDark Energy(homogeneous and isotropic spacetime)Inhomogeneous cosmological modelTomita (2000) , Celerier (2000) We live close to the center in spherically symmetric spacetime. General RelativityCopernican PrincipleObservationsDark Energy(inhomogeneous and isotropic spacetime)2/15
Void cosmological modelsdust, spherically symmetricLemaitre-Tolman-Bondi (LTB) solutionsHomogeneous Big Bang time
only growing modetwo functional degree (growing mode and decaying mode)We consider homogeneous Big Bang Void models.
large voidClarkson, Regis (2010)
3/15Observational TestsCMB acoustic peak positions
Radial BAO
redshift drift
kSZ effect
etc.consistency
?Tests using the large-scale structure evolution have not been performed. Clarkson, Regis (2010), Yoo, Nakao, Sasaki (2010) Zibin, Moss, Scott (2008), Garcia-Bellido, Haugbolle (2008)Yoo, Kai, Nakao (2008)Yoo, Nakao, Sasaki (2011)The symmetry of the background LTB is less than FLRW.4/15
Void structureClarkson, Regis model (2010)
nonlinear
density contrast :5/15density contrast on past light-coneThis was first pointed out by Enqvist, Mattsson, Rigopoulos (2009).
We can use perturbative analysis for void structure inside the past light-cone.6/15
Linear approximation for the void universe
background FLRWThe relative error is within 20%.linear perturbationlinear growing factor
density7/15FLRWREDSHIST7Hubble parameter
blue line : linear approximationblack line : exact LTB8/15Perturbation in the approximated void universe
Second order perturbations in homogeneous and isotropic spacetimeWe can solve.Spherically symmetric
synchronous comoving gauge
We assume and neglect terms.Tomita (1967), (we consider only scalar-scalar coupling)Non-spherically symmetric
9/159Non-spherically symmetric density perturbation
sub-horizon scale :
Fourier transform
10/15Angular power spectrum & Effective growth rate
3D power spectrum in FLRW.
effective growth rate
We assumeIn linear approximation,
11/15
Effective growth rateIf we observe the growth rate of , we can test the void model. summaryVoid model (CR model)CDMOpen FLRW
12/15Future work13/15
redshift space distortionsGuzzo et al. (2005)Kaiser (1987)Matsubara, Suto (1996)14/15
redshift spacereal space2-parameter
redshift space distortions15/15
redshift spacereal spacevoid>015
redshift space distortions
redshift space distortions
redshift space distortions19/15
FLRWFLRW + void effect
LTB solution LTB (Lemaitre-Tolman-Bondi) .
known function
second-order perturbation
linear perturbation equations
second-order perturbation
second-order perturbation equation
density contrast on past light-cone
Garcia-Bellido & Haugbolle model (2008)Einstein de-Sitter universevoid modelLTBZibin (2008)silent approximationneglecting the coupling between density perturbations and gravitational waves Dunsby et al. (2010)RedshiftFLRWredshiftredshiftdistortions
->redshift space