structural elucidation

41
NIDHI JADHAV Structural elucidation

Upload: nidhiyj

Post on 16-Jul-2015

171 views

Category:

Education


3 download

TRANSCRIPT

N I D H I J A D H A V

Structural elucidation

Introduction nicotine

Introduction Nicotine was isolated from tobacco leaves (Nicotiana tabacum) in 1828, but the powerful effects of nicotine were already well recognized

The tobacco plant is native to the Americas and its use as a medicine and stimulant goes back at least 2000 years and most likely many millennia before that.

Tobacco appears to part of the healing arts and sacred rituals of many of the native peoples of the Americas. Codex, 16th century.)

Nicotine is a potent parasympathomimetic alkaloid found in the nightshadefamily of plants (Solanaceae) and a stimulant drug

It is a nicotinic acetylcholine agonist receptor.

It constitutes approximately 0.6–3.0% of the dry weight of tobacco and is present in the range of 2–7 µg/kg of various edible plants.

It functions as an antiherbivore chemical; consequently, nicotine was widely used as an insecticide in the past and nicotine analogs such as imidaclopridare currently widely used.

Nomenclature

Chemical names:-

Nicotinamide :- Pyridine-3-crboxamide; nicotinic acid amide; 3-pyridine carboxylic acid amide; 3- pyridine carboxamide

Nicotinic acid:- pyridine -3- crboxamide;3-pyridine crboxamide; pyridine-β- carboxylic acid.

Generic name :- nicotinamide; niacinamide; nicotylamide; nicotinamidum; vitamin PP; vitamine B3 ; aminocotin; dipegyl; pilonin amide; amide PP.

Trade name:- nicotinamide: nicamina; nicobion; nicosedine; nicovel; nicovit; nicamindon; nicotamide; nicofort; niozymin;pelmine; benicot; vinietyl; amisyl; farmabion

colour:- Nicotinamide exists as colourless crystal or white crystalline powder.

odor :- faint characteristic

Taste: salty and better.

while nicotinic acid appears as needle or white to creamy- white crystals or crystalline powder

Optical activity:-

both the drug substance are optically inactive because of the absences of chemical asymmetry.

Solubility:-

Nicotinamideis highly soluble in water and alcohol 1g dissolves in about 1ml of water in about 1.5ml alcohol and in 10 ml glycerol.

it is slightly soluble in ether and chloroform , while it is soluble in solution of alkali.

nicotinic acid 1g is soluble in 55 to 60 ml of water and 100 ml of ethanol, very slightly in chloroform.

practically insoluble in ether.

soluble in alkaline solution of hydroxides and carbonates.

Moisture content and hygroscopity:-

Nicotinamide absorbs insignificant amount of moisture at 250 c at relative humidities up to about 90%

Stability:-

nicotinamide is stable in air, light, and at certain PH-changes

Storage:-

both drug substances should be stored in air-tight container

Identification :-

Color test:-

to 2ml 0.1% solution of nicotinamide or nicotinic acid add 6ml of cyanogenbromide solution and 1 ml of a 2.5% v/v solution of aniline golden yellow i.ekonigs reaction. Nicotinamide gives brown- orange color with nesslerreagent.

Microcrystal test:

Nicotinamide yield with gold chloride solution dense rosettes and with platinic iodide solution a mass of hair – like needles

NicotinamideNicotinic acid

Spectral properties

Ultraviolet spectrum:-

The Ultraviolet scanning of ethanolic solution of nicotinamide.

1) Ultraviolet spectrum: The Ultraviolet spectrum of nicotinamide in ethanol .

2) The spectrum of the drug exhibits a maximum at 261nm .

3) The UV-running of methnolic maximum at about 263nm.

Infrared spectrum

The Infrared spectrum of nicotinamide in KBr disc, is presented . the frequencies had nicotinic acid are shown in table

Frequency (cm-1) assignment

1600-1630 C=C (stretch ,amide and acid)

1700 C=O (amide)

1710 C=O ( acid)

3200 N-H (stretch ,amide)

3100 O-H (stretch ,acid)

Proton nuclear spectrum (1H-NMR)

The 1H-NMR running were undertaken for each drug substances . the 1H-NMR spectrum of nicotinamide.

Each drug substances was dissolved in deuterium oxides and its spectrum determined on a varian T6A NMR spectrometer using DSS ( sodium-2,2-dimethyl-2-silapentane-5-sulfonate) as the internal standard . the structural assignments are

Chemical shift (δ,ppm) Multiplicity Proton assignment

7.69 Multiplicity H(3)

8.25 Multiplicity H(2)

8.72 Multiplicity H(4)

8.93 Doublet H(1)

9.16 singlet H(5) ) (amide)

9.14 Singlet H(6) (acid)

Carbon-13 NMR SPECTRUM ( 13C-NMR)

The ( 13C-NMR) spectrum of nicotinamide in deuterium oxide using DSS as the internal reference were obtained using jeo1 FX 100 MHZ spectrometer at an ambient temperature .

Represents the 1H- decoupled spectrum of nicotinamideChemical shift (δ,ppm) Multiplicity Carbon assignment

Acid

amide

150.3

150.2

Doublet C(1)

133.5

131.3

singlet C(2)

138.6

138.7

Doublet C(3)

124.6

126.8

Doublet C(4)

151.5

154.3

Doublet C(5)

173.8

172.0

singlet C(6)

Pilocarpine

Dried leaves of pilocarpus jaborandi ; Fam: rutaceae.

Origin of the Drug

-South American Shrub

- Pilocarpus jaborandi

-Isolated in 1875

Pilocarpine binds to muscarinic receptor

Activates receptor binds G-protein

Removal of GDP and addition of GTP to G-protein

Dissociation of G-protein from muscarinic receptor

Separation of G-protein into alpha and beta-gamma subunits

Alpha subunit interacts with and activates Phospholipase C - Phosphatidylinositol biphosphate (PIP) complex

Phospholipase breaks down PIP into inositol 1,4,5-triphosphate (IP3)and diacylglycerol (both 2o)

IP3 interacts with ER membrane which releases Ca2

Chemical Structure:-

Chemical name:-

2-ethyl1-3-(1-methyl1-5-imidazolyl)methyl) -4 butanolide.

(3s-cis-3-ethyldihydro-4-(methyl-1H-imidazole-5-yl)-2-(3H)-furanone.

Generic name:-

Pipocarpine

Pilocarpine hydrochloride; pilocarpine muriate;almocarpine.

Pilocarpine nitrate; licarpin .

Trade name

For base: OCUSERT pilo.

For nitrate : PV cerpine

Formula :-

C11 H16 N2O2 (base)

C11 H17Cl N2O2 (hcl.salt)

C11 H17 N3O5 (nitrate salt)

Molecular weight:-

208.25 (base)

244.72 (HCl salt)

271.30 ( nitrate salt)

Appearance, color, odor:-

Pilocarpine base : Colorless oil or crystal.

Pilocarpine hydrochloride: colorless crystal or white , crystalline powder; odorless. Hydroscopic.

Pilocarpine nitrate: colorless crystal or a white ,crystalline powder; odorless.

Physical properties:

Melting point:

Pilocarpine base: 340

Pilocarpine hydrochloride 195-198o

Pilocarpine nitrate 173.5-1740

Pka value:-

Pilocarpine base shows two ionization costants, pk1=7.15 and pk2 =12.57 at 200

Specific rotation :-

The specific rotation for Pilocarpine and its official salts are shows on the following table and this constant is used to differentiate and identify Pilocarpine, the cis- isomer and the pharmacologically active one, from its tran-isomer, isoPilocarpine.

Moisture content and hygroscopicity: 8.7-14.1%,crude piperine:- 2.8-9.0%,crude fibre:-8.7-18.1%

Storage: Store in a cool, dry place,

Identification Color test :- Pilocarpine hydroclorid: dissolve 10 mg into 5 ml of water add 0.1 ml of M

sulphuric acid 0.1 ml of H2O2 solution, 1 ml toluene and 0.5 ml of potassium chromate solution. Shake well and allow to separate; the touene layer is colored bluish violet and the aqueous laye remains yellow

Pilocarpine nitrate: dissolve 10 mg into 2 ml h2o, add 0.1 ml of 5%w/v solution and 2ml of chloroform and shake ; the chloroform layer turns violet.

Crystal test:- Pilocarpine can be identified by forming characteristic crystals, with the following

reagents: 1) gold bromide solution; feathering rosettes. 2) platonic chloride solution plates in cluster.

Degradation test : the following tests were cited by the WHO in the international pharmacopeia . if the substances does not pass this test, this indicates that gross ,Degradation of both Pilocarpine hydrochloride and Pilocarpine nitrate had occurred.

Stability:-

Pilocarpine possessesseveral pharmacological properties, e.g., it possesses amoticaction and lowers the intraocular pressure. Its chief clinical application in opthomology has been for the treatment of glaucoma in buffered iisotonic silutionrenging from 0.5 to 6% as Pilocarpine nitrate or hydrocholoride . however, pilocarpine in aq. Solution decomposes through two major pathways which are both base catalysed .

Spectral properties:

Ultraviolet spectrum:

Pilocarpine HCl in H2O exhibits maximum at 215 nm as shown in figure clarke reported the UV absorption spectrum of Pilocarpine in 0.2N H2SO4

to show a maximum at 215nm

Ben bassat and lavis reported the ultraviolet spectroscopic propirties of V and the eefect of quaternization of this drug among other characteristic changes in the NMR and IR properties

Infrared spectrum

The IR spectrum of pilocarpine HCl in KBr disc. The major assignments are

Frequency cm-1 Assignments

3080,3020 N-CH3 quaternary and

aromatic CH stretch

1770 C=O(five membered α-

lactone ring)

1620 C=C aromatic stretch

Proton magnetic resonance spectrum

A typical PMR spectrum of pilocarine HCl is shown in figure .

The spectrum was determined on varian T60A spectrometer.

The smple was dissolve in D2O with 3-(trimethylsilyl)-propionic acid) sodium salt as an internal standard.

The following structural assignments have been made for figure .

Chemical shift (δ) Assignment

Triplet at 1.1 CH3 CH2

Quartet at 1.7 CH3 CH2

Complex multiplet centered

at 3.00

-CH2 at C8 and CH at C4

Singlet 3.9

Complex multiplet Between 4

and 4.6

CH2 at C5 and CH at C3

Singlet at 7.4 Aromatic proton at c4

Singlet at 9.4 Aromatic proton at c2

Mass spectrum

The mass spectrum of pilocarpine hydrochloride obtained by electron ionization is shown in figure

Chromatographic analysis

Paper chromatography

Clarke described a solvent system used for the paper chromatography of pilocarpine consisting of citric acid; water; n- butanol. The deug can detected by several agents such as bromocresol green speay or iodoplatinatespray

Solvent system Absorbant Localizing agent

Strong ammonia solution: methanol(

1.5: 100) should be changed after

two hours

Silica gel G. Acidified iodoplatinate spray

Chloroform : acetone : diethylamine

( 5:4:1.)

Kiesel gel GF 254 Dragendorff reagent

Chloroform : acetone : diethylamine

( 9:1.)

Silica gel G Iodoplatinate spray or Dragendorff

reagent

Butanol: anhydrous ACOH:

water,(4:1:5.)

Hydrolysed cotton wool prepared

specially for this purpose + CaSO4

UV light

Butanol: acetic acid: water(4:1:5.) Silufol

UV sheets.

Iodine or Dragendorff reagent

Piperine

Piperine is commercially available.

If desired, it may be extracted from black pepper using dichloromethane.

Aqueous hydrotopes can also be used in the extraction to result in high yield and selectivity.

The amount of piperine varies from 1-2% in long pepper, to 5-10% in commercial white and black peppers.

Further, it may be prepared by treating the solvent-free residue from an alcoholic extract of black pepper, with a solution of potassium hydroxide to remove resin (said to contain chavicine, an isomer of piperine) and solution of the washed, insoluble residue in warm alcohol, from which the alkaloid crystallises on cooling.

Piperine, along with its isomer chavicine, is the alkaloid responsible for the pungency of black pepper and long pepper.

It has also been used in some forms of traditional medicine and as an insecticide.

Piperine forms monoclinic needles, is slightly soluble in water (1 g/25 L (18 °C)), and is highly soluble in alcohol (1 g/15 mL), ether (1 g/36 mL) and chloroform (1 g/1.7 mL).

The solution in alcohol has a pepper-like taste

Nomenclature

Chemical names:-

1) 1-[5-(1,3-Benzodioxol-5-yl)-1-oxo-2,4- pentadienyl]piperidine

2) 5-(3,4-Methylenedioxyphenyl)-2,4-pentadienoyl-2- piperidine

3) Piperoylpiperidine

4)Bioperine

structure:-

Molecular formula C17H19NO3

Molar mass 285.34 g·mol−1

Boiling point decomposes Melting point 130 °C (266 °F; 403 K) Color: Black Odour :Aromatic Taste: Aromatic and Pungent

Generic Name: Diavita Total Power, Ferrous Ascorbate With Vitamins, Minerals & Amino Acids Syrup, Calcium, Piperine & Lycopene Capsules, Foot Repair Cream, Sunscreen Lotion. Lovon Capsule,

Trade name:- Diavita Total Power, Femyfit Tablets, METH 5, NutricanCapsules, Ferolax Syrup, L-Vita, Bioma Oil, Verasoft Lotion, Diavita Powder, Ulite Cream, Parasoft Cream, Kozicare, Baclean, Bactocid, Eyederm Lotion, Sunnycare Lotion:, Olivera Lotion, FRC Cream, TAM 20, THALEP 100, Cleanz Syrup, Lovon Capsule

Solubility:-

Petroleum ether :Soluble

Chloroform :Soluble

Ethanol: Soluble

Methanol: Soluble

Water : Insoluble

Identification test

The piperine (in mcL) was subjected on to the precoated and activated (kept the plates in oven for 1hr at 700C) silica gel TLCplates.

The mobile phase is Toluene: Ethyl acetate in 70:3 ratios and the detecting agent is Vanillin- Sulphuric acid reagent. After the

TLC run and spraying the detecting agent the yellow spots of piperine were identified

visually. Rf value was calculated8.

High Performance Liquid Chromatography (HPLC) Analysis

HPLC Analysis of extract

File name: H piperine 50 ppm

MP: water: MeOH [30:70]

Column: HiQ Sil C18W

Flow rate: 1 ml/min

UV spectroscopy

Preparation of standard calibrationCurveThe calibration curve is obtained bydissolving piperine in distilled water andfurther dilutions were made using distilledwater and absorbance measured spectrophotometrically at 343 nm.

FTIR studies

FTIR spctra of selected pure piperine, pure sodium alginate and piperinealong with sodium alginate were recorded on a spectrometer using conventional KBr pellet method

THIN LAYER CHROMATOGRAPHY

After isolation, Piperine is identified by TLC.

The standard Rf- value of Piperine from the literature was 0.25.

The Rf- value of purified Piperine from TLC was found to be 0.245. Data is given in fig

Thin layer chromatography of isolated Piperine

Thin layer chromatography of isolated PiperineThin layer chromatography of isolated PiperineThin layer chromatography of isolated Piperine

DETERMINATION OF UV MAXIMA OF ISOLATED PIPERIN

maxima of isolated Piperine was taken in 30 parts of ethanol and UV maxima obtained at 343nm

Determination of UV maxima of isolated Piperine

DIFFERENTIAL SCANNING COLORIMETRY

Thermal analysis of the isolated Piperine was done by using Differential Scanning Colorimeter and the result obtained shown below

Thermogram of Isolated Piperine