stromingsleer_college5 [compatibility mode]

17
1 Fluid Mechanics – Lecture 5 Fluid mechanics (wb1225) Lecture 5: energy equation

Upload: lykien

Post on 02-Jan-2017

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stromingsleer_college5 [Compatibility Mode]

1Fluid Mechanics – Lecture 5

Fluid mechanics(wb1225)

Lecture 5:energy equation

Page 2: Stromingsleer_college5 [Compatibility Mode]

2Fluid Mechanics – Lecture 5

Snapping shrimp

[1]

Page 3: Stromingsleer_college5 [Compatibility Mode]

3Fluid Mechanics – Lecture 5

The energy equation

Page 4: Stromingsleer_college5 [Compatibility Mode]

4Fluid Mechanics – Lecture 5

The energy equation (cont’d)

small

Page 5: Stromingsleer_college5 [Compatibility Mode]

5Fluid Mechanics – Lecture 5

One-dimensional stationary energy flux equation

enthalpy:

Page 6: Stromingsleer_college5 [Compatibility Mode]

6Fluid Mechanics – Lecture 5

Bernoulli’s equation

Daniel Bernoulli(1700-1782)

conservation of energy for stationaryflow in a stream tube:• stationary flow• no mechanical work• no viscous frictionand:• incompressible fluid • motion along streamline• no heat transfer

Page 7: Stromingsleer_college5 [Compatibility Mode]

7Fluid Mechanics – Lecture 5

Example 3.21

[2]

Page 8: Stromingsleer_college5 [Compatibility Mode]

8Fluid Mechanics – Lecture 5

Validity of Bernoulli equation

[2]

Page 9: Stromingsleer_college5 [Compatibility Mode]

9Fluid Mechanics – Lecture 5

Cavitation

sonoluminescence

[2]

Page 10: Stromingsleer_college5 [Compatibility Mode]

10Fluid Mechanics – Lecture 5

Example 3.23

A constriction in a pipe will cause the velocity to rise and the pressure to fall atsection 2 in the throat. The pressure difference is a measure of the flow rate through the pipe.

The smoothly necked-down system shown is called a venturi tube.

Find an expression for the mass flux in the tube as a function of the pressurechange

[2]

Page 11: Stromingsleer_college5 [Compatibility Mode]

11Fluid Mechanics – Lecture 5

Page 12: Stromingsleer_college5 [Compatibility Mode]

12Fluid Mechanics – Lecture 5

Wind turbine

[3]

Page 13: Stromingsleer_college5 [Compatibility Mode]

13Fluid Mechanics – Lecture 5

Wind turbine

V

V

V

f VCA A

P Q RO

Page 14: Stromingsleer_college5 [Compatibility Mode]

14Fluid Mechanics – Lecture 5

Page 15: Stromingsleer_college5 [Compatibility Mode]

15Fluid Mechanics – Lecture 5

Wind turbineV

V

V

f VCA A

P Q RO

Power:

See Sect. 11-6 in White

Page 16: Stromingsleer_college5 [Compatibility Mode]

16Fluid Mechanics – Lecture 5

Summary• Chapter 3: 3.6, 3.7

• Examples: 3.20, 3.21, 3.23, 3.24

• Problems: (see BlackBoard)

• Study guideline:

• practice …

• practice …

• practice …

Page 17: Stromingsleer_college5 [Compatibility Mode]

17Fluid Mechanics – Lecture 5

Source

1. Snapping shrimp, http://youtu.be/ONQlTMUYCW42. Frank M. White, Fluid Mechanics, McGraw-Hill Series in Mechanical Engineering3. Wind turbines of Horns Rev wind farm, Denmark, photo courtesy of Vattenfall