stochastic versus uncertainty modelingdswc09/contributions/friederichs... · 2009-09-10 ·...

21
Introduction Analytical Solutions The Cloud Model Conclusions Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien, Andreas Hense Meteorological Institute, University of Bonn Dynamics and Statistic in Weather and Climate Dresden, July 29-31 2009 P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 1 / 21

Upload: others

Post on 19-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Stochastic versus Uncertainty Modeling

Petra Friederichs, Michael Weniger, Sabrina Bentzien,

Andreas Hense

Meteorological Institute, University of Bonn

Dynamics and Statistic in Weather and Climate

Dresden, July 29-31 2009

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 1 / 21

Page 2: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

MotivationOutline

Uncertainty Modeling

I Initial conditions – aleatoric uncertainty

Ensemble with perturbed initial conditions

I Model error – epistemic uncertainty

Perturbed physic and/or multi model ensembles

Simulations solving deterministic model equations!

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 2 / 21

Page 3: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

MotivationOutline

Stochastic Modeling

I Stochastic parameterization – aleatoric uncertainty

Stochastic model ensemble

I Initial conditions – aleatoric uncertainty

Ensemble with perturbed initial conditions

I Model error – epistemic uncertainty

Perturbed physic and/or multi model ensembles

Simulations solving stochastic model equations!

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 3 / 21

Page 4: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

MotivationOutline

Outline

Contrast both concepts

I Analytical solutions of simple damping equation

dv(t) = −µv(t)dt

I Simplified, 1-dimensional, time-dependent cloud model

I Problems

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 4 / 21

Page 5: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

Equation of Motion

Small particle of mass m with velocity v(t)

Subject to damping force F (t) = −µm · v(t)

dv(t) = −µv(t)dt

Solution of deterministic problem

v(t) = v0 exp(−µt)

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 5 / 21

Page 6: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

’Perturbed Physics’

γ is random variable

dv(t) = −γv(t)dt.

Solutions for different γ0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

t

v

deterministicnormaluniformgamma

γN ∼ N (µ, σ2) E [vN (t)] = v0 exp(− µt +

σ2

2t2)

γU ∼ U(µ±√

3σ)

E [vU (t)] = v0 exp(−µt)sinh(

√3σt)√

3σt

γΓ ∼ Γ(µ2

σ2,σ2

µ

)E [vΓ(t)] = v0

(1− −µt

µ2/σ2

)−µ2/σ2

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 6 / 21

Page 7: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

Stochastic Model

Damping from small-scale stochastic process

dv(t) = −µv(t)dt + v(t)σξdt,

ξt : Langevin force with

E [ξt ] = 0 and Cov[ξs , ξt ] = δ(t − s)

Stratonovich calculus

dvt = −µvtdt + σvt ◦ dWt

Solution

vt = v0 exp(− µt + σWt

)(exponential Brownian motion)

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 7 / 21

Page 8: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

Exponential Brownian motion

E[vt ] = v0 exp(−(µ− σ2

2

)t)

Var(vt

)= v2

0

[exp

(− 2(µ− σ2

)t)− exp

(− 2(µ− σ2

2

)t)]

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2Three realisation of an exponential Brownian motion with µ=2, σ2=1

Time t

v t

det. solutionmean value

0 1 2 3 4 5 60

1

2

3

4

5

6Three realisation of an exponential Brownian motion with µ=2, σ2=3

Time t

v t

det. solutionmean value

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 8 / 21

Page 9: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

Non-delta Correlated Gaussian Noise

dv(t) = −µdt + v(t)εtv(t)dt

Solutionvt = v0 exp

(− µt +

∫ t

0εsds

)Noise εt with

E[εt ] = 0, Cov[εs , εt ] =D

2kexp(−k|t − s|).

is an Ornstein-Uhlenbeck process solving

dεt = −kεtdt +√

DdWt

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 9 / 21

Page 10: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

Non-delta Correlated Gaussian Noise

E[vt ] = v0 exp(− µt +

D

2k2

(t − 1− e−kt

k

))

D = 2k D = k2

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

t

v

deterministicdet. normalExpon. BrownianOU(k=0.01)OU(k=1)OU(k=100)

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

t

v

deterministicdet. normalExpon. BrownianOU(k=0.01)OU(k=1)OU(k=100)

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 10 / 21

Page 11: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

D = 2k D = k2

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 11 / 21

Page 12: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Perturbed PhysicsStochastic ModelConclusions

’Perturbed physics’

E [v(t)]→∞ for t →∞ for all parameter distributions with

non-positive support

Stochastic model

Exponential Brownian motion:

I Non-stable solutions (σ2 > 2µ), increasing variance (σ2 > µ)

OU noise:

I Noise induced drift increases with 1/k (D = 2k)

I ’Perturbed physics’ solution for k → 0 (D = 2k)

I Exponential Brownian motion for k →∞ (D = k2)

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 12 / 21

Page 13: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

1-dimensional Cloud Model

I Cylinder - constant radius

I Horizontally homogen in

constant environment

I Prognostic equations for

w(z), T (z), qv (z), qc(z),

qr (z)Fig: Dynamics of Multiscale Earth Systems,

C.Simmer(Eds.)

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 13 / 21

Page 14: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

Koeln 04.07.1994 RR=11,723mm

Zeit in min

Hoe

he in

km

0.2

0.2

0.4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40mm/h

g/kg

0

1

2

3

4

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 14 / 21

Page 15: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

0 = −1

ρ

∂(ρw)

∂z−

2

Ru

∂w

∂t=−w

∂w

∂z+

2

Rα2|we − w |(we − w) +

2

R(w − w)u +

„Tv − Tv,e

Tv,e

«g − (qc + qr )g

∂T

∂t=−w

∂T

∂z+

2

Rα2|we − w |(Te − T ) +

2

R(T − T )u − Γdw + SST

∂qv

∂t=−w

∂qv

∂z+

2

Rα2|we − w |(qv,e − qv ) +

2

R(qv − qv )u−

dqv

dt

∂qc

∂t=−w

∂qc

∂z+

2

Rα2|we − w |(qc,e − qc ) +

2

R(qc − qc )u −

dqc

dt

∂qr

∂t=−w

∂qr

∂z| {z }advection

+2

Rα2|we − w |(qr,eqr )| {z }turbulent entrainment

+2

R(qr − qr )u| {z }

dynamical entr.

−dqr

dt+ VR

∂r

∂z+

qr

ρ

∂(ρVR)

∂z| {z }sources

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 15 / 21

Page 16: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

Micro-physical

processes after

Kessler (1969)...

Fig: von der Emde, Kahlig (1989)

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 16 / 21

Page 17: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

Condensation:

qv → qc

− dqv

dt

VC

=qv − qvws

1 + εL2cqvws

cpRaT 2

· 1

∆tfor qv > qvws

Conversion:

qc → qr

− dqc

dt

CRAU

= kc(qc − qc,0) for qc > qc,0

qc,0 = 1ρ , kc = 10−3

Accretion:

qc → qr

− dqc

dt

CRAC

4Eαrn0,rqc · λ−(3+βr ) · Γ(3 + βr )

E = 1 collection efficiency, αr , βr ;n0,r : Marshall-Palmer

λ−(3+βr ) =(

ρqr

πρpsn0,r

) (3+βr )4

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 17 / 21

Page 18: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

Perturbed Physics

kc → kc (1 + η) E → E (1 + η)ra

in in

mm

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

−1 0 1 2

Conversion

rain

in m

m

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

−1 0 1 2

Accretion

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 18 / 21

Page 19: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

Perturbed Physics

rain in mm

dens

ity

0.00

0.01

0.02

0.03

0.04

0.05

11.4 11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4

Conversion

rain in mm

dens

ity0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Accretion

=

IntroductionAnalytical Solutions

The Cloud ModelConclusions

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 19 / 21

Page 20: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Model DescriptionPerturbed PhysicsStochastic Parameterization

Stochastic Parameterization

(solved with Milstein Scheme)

kc → kc (1 + ξt) E → E (1 + ξt)

rain in mm

dens

ity

0.00

0.02

0.04

0.06

0.08

11.64 11.68 11.72 11.76 11.8

Conversion

rain in mm

dens

ity

0.00

0.01

0.02

0.03

0.04

0.05

11.2 11.4 11.6 11.8 12 12.2 12.4

Accretion

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 20 / 21

Page 21: Stochastic versus Uncertainty Modelingdswc09/CONTRIBUTIONS/friederichs... · 2009-09-10 · Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien,

IntroductionAnalytical Solutions

The Cloud ModelConclusions

Conclusions and Outlook

I ’Perturbed physics’ ensembles do not represent realizations

from real process

I Stochastic parameterization may provide realistic distributions

I Solutions strongly depend on covariance function of noise (in

time and in space)

I Stochastic parameterizations should be derived from

microphysical processes

P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 21 / 21