stinger buoyancy

214
A COMPREHENSIVE ARTICULATED STINGER OPTIMIZATION STUDY by Surapluet Menkham A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering in Offshore Technology and Management Examination Committee: Dr. Gregory L.F. Chiu (Chairperson) Dr. Pornpong Asavadorndeja (Co-chairperson) Assoc. Prof. Dr. Pennung Warnitchai (Member) Nationality: Thai Previous Degree: Bachelor of Engineering in Civil Engineering Kasetsart University, Thailand Scholarship Donor: PTT Exploration and Production Public Co. Ltd. (PTTEP) Asian Institute of Technology School of Engineering and Technology Thailand May 2010

Upload: sethgrace

Post on 24-Mar-2015

748 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: Stinger Buoyancy

A COMPREHENSIVE ARTICULATED STINGER OPTIMIZATION STUDY

by

Surapluet Menkham

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering in

Offshore Technology and Management

Examination Committee: Dr. Gregory L.F. Chiu (Chairperson) Dr. Pornpong Asavadorndeja (Co-chairperson) Assoc. Prof. Dr. Pennung Warnitchai (Member) Nationality: Thai Previous Degree: Bachelor of Engineering in Civil Engineering Kasetsart University, Thailand Scholarship Donor: PTT Exploration and Production Public Co. Ltd. (PTTEP)

Asian Institute of Technology School of Engineering and Technology

Thailand May 2010

Page 2: Stinger Buoyancy
Page 3: Stinger Buoyancy

ii

ACKNOWLEDGEMMENTS This thesis could not be fulfilled if there is no help and support from several people. The author wishes to express his appreciation to Dr. Pornpong Asavadorndeja for his experienced guidance, valuable knowledge and kind encouragement throughout the period of this study. The extended appreciation and gratitude are expressed to his examination committees, Dr. Gregory L.F. Chiu and Assoc. Prof. Dr. Penneng Warnitchai, for their valuable guidance and recommendations. More appreciation is expressed to all faculty members, all staffs in Offshore Technology and Management (OTM) program, and all friends in Asian Institute of Technology (AIT) for many supports and their friendship during his study. His true gratitude is given to PTT Exploration and Production Public Company Limited (PTTEP) for giving a great study opportunity and providing the scholarship to complete his master degree at AIT. Finally, the author would like to dedicate this report to his family for their continuing supports, encouragement and love.

Page 4: Stinger Buoyancy
Page 5: Stinger Buoyancy

iii

ABSTRACT This thesis presents the articulated stinger optimization design. The goal of the study is to develop the suitable optimal stinger model under verifying the recommended practice. The three objectives are to perform the stinger optimization in terms of stinger structural design, evaluations of stinger performance under regulation and standard code design and to develop the stinger model to be primary concept selection of stinger design. This study proposes the considerations of the stinger structural arrangement and stinger design variation through the stinger structural configurations. The stinger optimization with the scoring approach is applied to find out the suitable stinger structure for the crane capacity, wave height, tensioner capacity and current velocity requirements. The stinger cross-section configurations and stinger aspect ratio are the stinger structural arrangement which is developed to design the stinger model. Additionally, the stinger design variations consisting of the length of stinger, the diameter of tubular, wave height, current velocity and material grade are considered into pipelay performance evaluation, stinger stability evaluation and fatigue life evaluation. All of the stinger structural configurations are implemented in the stinger optimization by scoring and created the stinger concept selections. The solutions of the stinger structural configurations present that the stinger structure of Type 1 comes up with the maximum of the net buoyancy and weight ratio. For the pipelay performance evaluation, only the increasing of the stinger length has an effect with stinger performance directly. However, the no. of case which the stinger could be laid mostly will be controlled by the use of tensioner. As the stinger stability is evaluated, the stinger structure of Type 1 comes up with the maximum of the tilting angle. For the fatigue life evaluation, the applied force and the joint can thickness were an important factor that controlled the stinger’s life. Finally, the stinger optimization table selections are utilized to be a general guidance of stinger design for stinger configurations with specified stinger length.

Page 6: Stinger Buoyancy
Page 7: Stinger Buoyancy

iv

TABLE OF CONTENTS

CHAPTER TITLE PAGE Title page i Acknowledgemments ii Abstract iii Table of contents iv List of tables vi List of figures vii 1 Introduction 1 1.1 General 1 1.2 Problem statements 1 1.3 Objectives 1 1.4 Scope of study 1 2 Literature review 3 2.1 Introduction 3 2.2 Stinger 3 2.2.1 Fixed stinger 4 2.2.2 Articulated stinger 4 2.3 Barge specifications 5 2.4 Simplified pipelay configuration analysis method 5 2.4.1 Curvature in overbend 5 2.4.2 Curvature in sagbend 5 2.5 Standard code for stinger structural design 7 2.5.1 Preliminary simplify criteria for structural steel design 7 2.5.2 Unity criteria for structural steel design 9 2.5.3 Strength of tubular joints 10 2.6 Standard code for pipelay evaluation 13 2.6.1 Simplified laying criteria 13 2.7 Waves 14 2.7.1 Significant wave height and mean zero crossing period 14 2.7.2 Wave theories 15 2.7.3 Hydrodynamic loading 15 2.7.4 Wave spectrum 16 2.7.5 Random sea surface for linear wave theory 17 2.7.6 Rainflow counting method 17 2.8 Standard code for Fatigue life evaluation 18 3 Methodology 19 3.1 Introduction 19 3.2 Design basis and assumptions 19 3.3 Stinger structural arrangements and stinger design variations 20 3.3.1 Stinger structural arrangements 20 3.3.2 Stinger design variations 20 3.4 Design procedures 21 3.4.1 Stinger structural design 21 3.4.2 Evaluations of stinger performance 22

Page 8: Stinger Buoyancy

v

3.5 Stinger optimization 24 3.5.1 The scoring for stinger structure 24 3.5.2 The scoring for stinger performance evaluation 24 4 Results and discussions 25 4.1 Design results 25 4.1.1 Stinger structural design results 25 4.1.2 Pipelay performance evaluation results 26 4.1.3 Stinger stability evaluation results 26 4.1.4 Fatigue life evaluation results 27 4.2 Stinger optimization 28 5 Conclusions 29 5.1 Conclusions 29 References 31 Tables 33 Figures 51 Appendix A: 66 Appendix B: 111 Appendix C: 142 Appendix D: 161 Appendix E: 198

Page 9: Stinger Buoyancy

vi

LIST OF TABLES TABLE DESCRIPTION PAGE 2.1 Specification summary of Subsea 7 lay barge (I) (Subsea 7, 2009) 35 2.2 Specification summary of Subsea 7 lay barge (II) (Subsea 7, 2009) 36 2.3 Specification summary of Mcdermott lay barge (I) (Mcdermott, 2009) 37 2.4 Specification summary of Mcdermott lay barge (II) (Mcdermott, 2009) 38 2.5 Specification summary of GustoMSC lay barge (GustoMSC, 2009) 39 2.6 Specification summary of Clough lay barge (Clough, 2009) 40 2.7 Specification summary of Hyundai lay barge (Hyundai, 2009) 40 2.8 Specification summary of NorCE lay barge (NorCE, 2009) 41 2.9 Specification summary of lay barge 42 2.10 Effective length factor and reduction factor (API RP 2A-WSD, 2000) 43 2.11 Safety factor to compute allowable stress (API RP 2A-WSD, 2000) 43 2.12 Value for Qu (API RP 2A-WSD, 2000) 44 2.13 Value for C1, C2, and C3 (API RP 2A-WSD, 2000) 44 2.14 API material grades 45 2.15 Simpilfied criteria, overbend (DNV-OS-F101, 2007) 45 2.16 Relationships between various statistical measures of wave height

and the significant wave height (Barltrop N.D.P. and Adams A.J., 1991) 45 2.17 Transition water properties of Airy wave theory

(Barltrop N.D.P. and Adams A.J., 1991) 46 2.18 Shallow water and deep water properties of Airy wave theory

(Barltrop N.D.P. and Adams A.J., 1991) 47 3.1 Pipelay matrixes 47 3.2 The stinger aspect ratio 48 3.3 Stinger design variations 48 3.4 Pipe ramp configuration 48 3.5 Wave counting 49 5.1 Design results summary 50

Page 10: Stinger Buoyancy

vii

LIST OF FIGURES FIGURE DESCRIPTION PAGE 2.1 The S-lay method (Miesner T. et al., 2006) 53 2.2 The J-lay method (Miesner T. et al., 2006) 53 2.3 The reel barge method (Rienstra, 1987) 54 2.4 Typical pipe-laying operation with a straight stinger in a fixed depth of water, (Langner C., 1969) 54 2.5 Capability of laying pipe in any depth of water using an articulated stinger, (Langner C., 1969) 54 2.6 Stinger components (DA, 2008d) 55 2.7 Sketch of the pipelay problem (Rienstra, 1987) 55 2.8 The angle of pipelay configuration (AIT lecturing document) 55 2.9 Joint classification (API RP 2A-WSD,2000) 56 2.10 In-Plane Detailing (API RP 2A-WSD,2000) 57 2.11 Out-of-Plane joint detailing (API RP 2A-WSD,2000) 58 2.12 Terminology and geometry parameters (API RP 2A-WSD,2000) 59 2.13 Chord length, Lc (API RP 2A-WSD,2000) 59 2.14 Definition of wave symbols (N.D.P. Barltrop and A.J. Adams, 1991) 60 2.15 Regular wave theory selection diagram (API RP 2A-WSD,2000) 61 2.16 Rainflow analysis for tensile peaks 62 2.17 Rainflow analysis for compressive troughs 62 3.1 Stinger design procedure 63 3.2 Two rectangular Types of the stinger 64 3.3 Definition of Metacentric height 64 3.4 Free body diagram of tilting angle 64 3.5 Critical joint selection (black line circle) 65

Page 11: Stinger Buoyancy

1

CHAPTER 1

INTRODUCTION

1.1 General

Offshore pipelines are an important tool of hydrocarbon transportation to connect subsea wellheads to platforms and offshore oil and gas production platforms to onshore facilities. Pipelines are sized to control the expected pressure and fluid flow (Miesner et al., 2006). Subsea pipelines commonly vary from 12 in. to 30 in. To balance with the pressure both inside and outside the pipeline, wall thicknesses of the pipe is varied from ¾ in. to 2 in. of steel depending on water depth. In shallow water, the most cost of pipe is concrete coating to add weight. In deeper water, the wall thickness required to resist hydrostatic pressure is frequently sufficient to provide the needed weight. The current stinger design process is iterative procedure. The designer shall consider stinger structure, pipelay performance, and free floating stability during the design simultaneously. The designer shall create a structure configuration with sufficient buoyancy to resist vertical load from pipelay. This structure must have compatibility to withstand external loads from environmental. The structure shall also provide hydrodynamic stability during installation.

1.2 Problem statements

A stinger will be designed to perform pipelay operation at a specified water depth and pipe size. A stinger structure shall be designed:

• To sustain the load generating from environment and pipelines during operation and abandonment

• To provide sufficient buoyancy generating from pipeline during operation • To possess enough stability of the stinger during installation • To provide sufficient stinger’s life during stinger’s operation

The stinger design procedure is iterative as engineers shall design the stinger to satisfy the above-mentioned above goals simultaneously. It is clearly that that a general guidance to design a stinger will reduce their effort in design process. In addition, the stinger optimization of above criteria will provide an ultimate benefit to engineer to select an appropriate stinger to fit above requirements.

1.3 Objectives

The overall objective of this study is to thoroughly understand and suitable optimal stinger model. This objective is divided into two parts:

• To perform the stinger optimization in terms of stinger structural design, evaluations of stinger performance under regulation and standard code design.

• To create the option for concept selection in stinger design.

1.4 Scope of study

• Only two Types of stinger models from stinger structural arrangements will be analyzed into stinger structural design and evaluations of stinger performance.

• Only static analysis is considered in this study.

Page 12: Stinger Buoyancy
Page 13: Stinger Buoyancy

3

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provided the literature review in order to develop the knowledge about stinger, pipeline and relevant standard code. The chapter was divided into three main sections. The first section gave the detail of stinger providing Types and components. The second section dealt with required standard code for this study including API RP 2A-WSD and DNV-RP-F101. The last section gave the detail of wave providing wave component, wave theory and hydrodynamic loading.

2.2 Stinger

Pipeline installation techniques have been considered to install pipeline from vessel into seabed. Principal techniques of pipeline installation have three methods namely; (1) S-lay, (2) J-lay, and (3) Reel-lay. In S-lay method, pipelines are formed as an S-curve during the pipe is laid out from the stern of barge across stinger pipe support to seawater (Figure 2.1). This method is able to install pipeline in water depths from shallow water (15 meters) to deepwater (over 1000 meters). The S-lay vessel is able to lay at the maximum of 6.5 kilometers per day of pipeline (Miesner et al., 2006). This results on fast speed pipeline installation which become main advantage of S-lay. The curvature of the upper section namely overbend is controlled by a supporting structure namely a stinger. The curvature in the lower section namely sagbend is controlled by use of tension on the vessel. The pipeline designer has to analyze the pipelay configuration to verify that correct tension capability is checked and the pipe will not be damaged or overstressed during the pipe laying. In J-lay method, the pipeline is vertically installed in J-shape (Figure 2.2). The barge ramp is much steeper than in J-lay (less than 15 degrees to the vertical), and thus there is no over-bend and need for a stinger of any length. With the simpler pipeline shape, the J-lay method is utilized in deeper water than the S-lay method (greater than 2000 meters) depended on tensioner capacity on the barge (DA, 2002). In reel-lay method, the pipeline is welded and coated at onshore by lower cost reasonable before the pipeline is loaded into reel-barge (Figure 2.3). Lay rates of reel barges are about 1.6 to 3.2 kilometers per hour (Mousselli, 1981). These rates are very fast offshore installation time. The capacity of pipe on the reel barge depends on the reel size and pipe diameter. Normally, large diameter reels are approximately 8 to 9 meters. Due to the requirement to reel the pipeline onto a small diameter drum, the permissible amount of strain limited the maximum diameter of the pipeline. For example, the outside diameter is 4-inches for 80.77 kilometers pipe length to 16-inch for 9.14 kilometers pipe length (Bai Y. and Bai Q., 2005). Stinger was a primary pipelay tool using for S-lay operation. The structure provided a support to control the stresses developed in overbend region. The tensioner contributed for a stress control in sagbend region. The stinger and tensioner should be set up to prevent the pipeline from overstressing during pipelay operation

Page 14: Stinger Buoyancy

4

The stinger structure was subdivided into 2 Types namely (1) fixed stinger and (2) articulated stinger. The details of each stinger Type were as follows: 2.2.1 Fixed stinger The fixed stinger was a long straight and stiff structure (Figure 2.4). This Type of stinger had its limitations on the water depth capability and vulnerability to water currents and wave-induced barge motions (Lammert et al., 1977).The maximum feasible length of a fixed stinger was about 180 meters. A longer fixed stinger tended to break frequently due to experiencing severe loads arising from water current and motions. The articulated stinger was developed to eliminate the limitation of fixed stinger (Figure 2.5) (Langner, 1969). This Type of stinger had several segments which were connected in sequence by hinge connections. The articulated stingers were able to lay pipeline in water depth greater than 305 meters based on the lay-barge performance and stinger design. 2.2.2 Articulated stinger Articulated stinger components were separated into main structures, braces, ballast tanks, hinge connections, hitch joints, drawbars, and rollers (Figure 2.6). Firstly, the main structures were the largest pipe at corner of stinger cross-section (DA, 2008e). These components withstood the environmental loads from traverse direction and resisted the reaction loads from pipelay. These main pipe structures were connectedly welded by tubular braces to be unmovable stinger frameworks. Internal forces of stinger were transferred by main structures and braces to protect over bending in main structures. For the ballast tanks, these parts located in the main structure to control radius and buoyancy of stinger. The buoyancy of stinger was adjusted by filled seawater and compressed air from water and air plant on vessel. Forth, the hinge connection was a point link between each stinger section to be articulated stinger. The strength of hinge connections must adequately rigid for internal loads transference from section to section. Hitch joint was a junction to be utilized with the total internal force transference from the articulated stinger to the stern of the barge. An equipment of this joint must strongly withstand the total internal load transference. Therefore, thick steel plates were designed to be the drawbar of singer. Lastly, rollers were a pipe support to resist vertical load of pipeline along with articulated stinger. The roller characteristics had U-shape and V-shape. The roller height was based on the lay radius and stinger configuration during pipeline installation. The buoyancy of the stinger was controlled by ballasting of the compartment of the stinger (DA, 2008c). For ballasting into stinger, the stinger could be ballasted using the seawater to achieve the required stinger orientation during the pipelay operation. On the contrary, the stinger could be de-ballasted using a compressed air to remove the seawater from the ballasted tank. With the existing ballast controlling system, the ballasting operation was controlled by ballast control room to adjust stinger radius for specific pipelay operation condition.

Page 15: Stinger Buoyancy

5

2.3 Barge specifications

The variations that were used in this study were collected and compared from many companies such as Subsea 7, Mcdermott, GustoMSC, Clough, NorCE and Hyundai to properly select the range of the parameters as were shown in Table 2.1 to Table 2.9.

2.4 Simplified pipelay configuration analysis method

There were two regions of pipelay to be identified; the overbend region and sagbend region. The overbend commonly extended from the tensioner on the vessel deck and down to the lift-off point at the end of the stinger. While pipelay was not being supported by the stinger, the sagbend region commonly extended from the inflection to the touch-down point (TDP) on the seabed. 2.4.1 Curvature in overbend The configuration and curvature in the overbend region were controlled by stinger (Mousselli, 1981). The result of these occurred a bending moment and strain in the pipeline. Generally, the overbend radius of curvature (including stinger) was selected that maximum bending stress in the pipe did not exceed the Specified Minimum Yield Stress (SMYS in Table 2.14). The bending strain, εoverbend, and minimum overbend radius, Roverbend, were determined from:

overbendoverbend R

D2

=ε (1)

DFFDER

y

soverbend ⋅

⋅=

2 (2)

Where; D = Outside steel diameter of pipe, m Roverbend= Overbend radius of curvature, m Es = Elastic modulus of steel = 207000 MPa Fy = Minimum specified yield stress of pipe, kPa DF = Design factor, usually 0.85 for static and dynamic criteria The above analysis assumed that the pipe had a uniform bending radius over the barge and stinger support. In fact, the overbend stress of pipe usually increased at supports and decreased between the supports. Actually, pipe was allowed to exceed the yield stress in the overbend, and strain criteria (since deflection could be controlled) were used in place of the limiting-stress criteria. 2.4.2 Curvature in sagbend The sagbend stress analysis is mainly done to determine the tension and stinger-length requirement for safe laying. In general, the higher the tension is, the shorter the stinger that can be used (Mousselli, 1981). The simplest model for the calculation of the relationship between tension and curvature was the natural catenary method and this method is applicable where the pipe stiffness is very small, although the boundary condition on pipe span are not satisfied. Therefore,

Page 16: Stinger Buoyancy

6

another approach, stiffened catenary method, is based in a small (relative) flexural rigidity, giving the pipe a shape close to a catenary (Rienstra, 1987) (Figure 2.7 and 2.8). The equation that used to formulate the solution for the pipelay problem:

)sin)((cos2)cos)sin)((cos4( 2/12

2

αλμαααλμα

−−−−++

=rrAAx (3)

The deparing angle, ψ(1) should be determined from:

The free pipe length, L should be determined from:

QHL ×

=μ (5)

The bottom reaction force, V should be determined from:

HV ×= λ (6)

with; 1)/(21)cos( 2 −+−= rdrA dh εφ

4/12 ))(1( −−+= λμx

3

2

HQEI ×

HQRr ×

=

)(

431

5

ε

ελ O++

=

HQD

d shsh

×=

)(εα O= Where; EI = Flexural rigidity Q = Pipe weight per unit length H = Horizontal tension R = Stinger radius D = Height of the pipe end Dsh = Height of the stinger hinge φ = Angle at the hinge This theory provides accurate results of the pipe configuration, including pipe regions near the ends. However, the theory is applicable where the pipe stiffness is small or in deep water (Mousselli, 1981).

)arctan()1( λμαψ −= (4)

)))(sin((1

0∫= dssL ψ

Page 17: Stinger Buoyancy

7

2.5 Standard code for stinger structural design

API RP 2A-WSD (American Petroleum Institute, 2000) was preferred to be the recommended practice for planning, designing, and constructing fixed offshore platforms. The stinger structural design was verified in cases of simplified and unity criteria of this structural design. The simplify criteria was used as preliminary simplify criteria of structural design check during design stages in each member. For the unity criteria, this criterion was required to verify the combined loads or stresses which occured in the structural members such as combined axial compression and bending, combined axial tension and bending, and etc. 2.5.1 Preliminary simplify criteria for structural steel design The primary requirement of stinger structural design was allowable stresses to sustain stresses from loads. The axial and shear stresses should not exceed from axial and shear stress criteria.

1. Axial tension For cylindrical members, the allowable tensile stress, Ft, should be determined from:

yt FF 6.0= (7) Where; Fy = Yield strength, MPa

2. Axial compression

• Column buckling The allowable axial compressive stress, Fa, should be determined for members

with 60≤tD :

( )

( ) ( )3

3

2

2

8/

8/3

35

2/1

cc

yc

a

CrlK

CrlK

FC

rlK

F⋅

−⋅

+

⋅⎥⎦

⎤⎢⎣

⎡ ⋅−

= ; cCr

lK<

⋅ (8)

( )22

/2312

rlKEFa ⋅⋅

=π ; cC

rlK≥

⋅ (9)

yc F

EC ⋅⋅=

22 π (10)

Where; E = Young’s Modulus of elasticity, MPa

K = Effective length factor, Table 2.11 l = Unbraced length, m r = Radius of gyration, m

Page 18: Stinger Buoyancy

8

For members with 60>tD , Fy in determining Cc and Fa was replaced with the critical

local buckling stress (Equation 11 and 12).

• Local buckling When the value of D/t ratio was between 60 and 300 and wall thickness t > 6 mm, both the elastic (Fxe) and inelastic local buckling stress (Fxc) should be determined from Equation 11 and Equation 12. Overall column buckling should be calculated by replacing the critical local buckling stress.

a) Elastic local buckling stress The elastic local buckling stress, Fxe, was determined from:

DtECFxe⋅⋅

=2 (11)

Where; C = Critical elastic buckling coefficient

D = Outside diameter, m t = Wall thickness, m

The C value was theoretically 0.6. But, a reduced value of C = 0.3 was proposed to determine in Equation 11.

b) Inelastic Local Buckling Stress The inelastic local buckling stress, Fxc, was determined from:

[ ] xeyxc FtDFF ≤−⋅= 4/1)/(23.064.1 (12)

yxc FF = ; 60≤tD (13)

3. Bending

The allowable bending stress, Fb, was determined from:

yb FF 75.0= ; )unit SI(340,10

yFtD≤ (14)

yy

b FtEDF

F ⋅⎥⎦

⎤⎢⎣

⎡⋅

⋅−= 74.184.0 ;

yy FtD

F680,20340,10

≤< (SI Units) (15)

yy

b FtEDF

F ⋅⎥⎦

⎤⎢⎣

⎡⋅

⋅−= 58.072.0 ; 300680,20

≤<tD

Fy

(SI Units) (16)

Page 19: Stinger Buoyancy

9

4. Shear

• Beam shear

The maximum beam shear stress, fv, was determined from:

AVfv 5.0

= (17)

Where; fv = Maximum shear stress, MPa

V = Transverse shear force, MN A = Cross sectional area, m2

The allowable beam shear stress, Fv, was determined from:

yv FF 4.0= (18)

• Torsion shear The maximum torsion shear stress, fvt, was determined from:

( )p

tvt I

DMf

2/⋅= (19)

Where; fvt = Maximum torsional shear stress, MPa

Mt = Torsional moment, MN-m Ip = Polar moment of inertia, m4

The allowable torsion shear stress, Fvt, was determined from:

yvt FF 4.0= (20) 2.5.2 Unity criteria for structural steel design The secondary requirement of stinger structural design was combined stresses to sustain stresses from combined loads. The combined stresses should not exceed from unity stress criteria.

1. Combined axial compression and bending The combined compression and bending of cylindrical members should be proportioned to satisfy both the following requirements at all point along their length.

Page 20: Stinger Buoyancy

10

0.1

'1

22

⎟⎟⎠

⎞⎜⎜⎝

⎛−

++

be

a

bybxm

a

a

FFf

ffCFf (21)

0.16.0

22

≤+

+b

bybx

y

a

F

ff

Ff

(22)

When 15.0≤a

a

Ff

, the following formula might be used in stead of Equation 21 and 22.

0.122

≤+

+b

bybx

a

a

F

ff

Ff

(23)

Equation 21 assumed that the same value of Cm and Fe΄ were appropriate for fbx and fby. If different values were applicable, the following formula or other rational analysis should be used in stead of Equation 21 by:

0.1'

1'

1

22

≤⎥⎥⎥⎥

⎢⎢⎢⎢

−+

⎥⎥⎥⎥

⎢⎢⎢⎢

+b

ey

a

bymy

ex

a

bxmx

a

a

F

FffC

FffC

Ff

(24)

• Reduction factor

The reduction factor values, Cm, referred to in Table 2.10 were as follows:

1. 0.85 2. 0.6-0.4(M1/M2), but not less than 0.4, nor more than 0.85 3. 1-0.4(fa/Fe΄), or 0.85, whichever was less

2. Combined axial tension and bending

The combined tension and bending of cylindrical members were proportioned to satisfy Equation 22 at all point along their length, where fbx and fby were the calculated bending tensile stresses. 2.5.3 Strength of tubular joints This section concerned with tubular joint design which was formed by the connection of two or more tubular members. The strength of tubular joint considerations was presented in this section. (i.e. the yield stress for the chord in the calculation of joint was limited to 0.8 times of the tensile strength) The wall thickness at the tubular joint was adequate for environmental load resistance.

Page 21: Stinger Buoyancy

11

1. Joint classification The tubular and brace connection was classified into K, X, and Y components depending on loading (Figure 2.9). Only a component of tubular joint Types was considered in one plane. For K- joint, the axial load in the brace should be balanced within 10% by loads in other braces in the same plane and on the same side of the joint. For Y- joint, the axial load in the brace was reacted as beam shear in the chord. For X- joint, the axial load in the brace was transferred through the chord to the opposite side.

2. Joint detailing The joint detailing was an important portion of joint design and was separated into in-plane and out-of-plane joint detailing (Figure 2.10 and 2.11). If a chord wall thickness was required to increase, the tubular joint length from brace to the edge of joint was a minimum of one quarter of the chord diameter or 12 inches (300 mm), whichever was greater. If a brace wall thickness was required to increase, the brace joint length from chord to the edge of joint was a minimum of one brace diameter or 24 inches (600 mm), whichever was greater. For the clearance gap, the minimum gap between braces of in-plane and out-of-plane was 2 inches (50 mm). When the braces were overlapped, the amount of overlap was at least d/4 or 6 inches (150 mm). Where the overlapping of braces was necessary, the nominal wall thickness of this joint should be increased by more than 10% of its joint thickness.

3. Validity range The validity range for application was as follow:

0.2 ≤ β ≤ 1.0 10 ≤ γ ≤ 50 30˚ ≤ θ ≤ 90˚ Fy ≤ 72 ksi (500 MPa) g/D > -0.6 (for K-joint)

Where; Dd /=β , TD2

θ = Angle between chord and brace, Figure 2.12 g = Gap between braces, mm t = Brace wall thickness at intersection, mm T = Chord wall thickness at intersection, mm d = Brace outside diameter, mm D = Chord outside diameter, mm

Page 22: Stinger Buoyancy

12

4. Allowable capacity

The allowable capacity of brace axial load and bending moment was designed from:

θsin

2

⋅⋅

⋅=FS

TFQQP yc

fua (25)

θsin

2

⋅⋅⋅

⋅=FS

dTFQQM yc

fua (26)

Where; Pa = Allowable capacity for brace axial load Ma = Allowable capacity for brace bending moment Fy = The yield stress of chord at joint, MPa (Or 0.8 of the tensile strength, if less) FS = Safety factor = 1.6 Qu = Strength factor, Table 2.12 Qf = Chord load factor

⎥⎥⎦

⎢⎢⎣

⎡⋅−

⋅⋅−⎟

⎟⎠

⎞⎜⎜⎝

⎛ ⋅⋅+= 2

321 )(1 ACM

MFSC

PPFSCQ

p

ipb

y

cf (27)

5.0

22 )()(⎥⎥⎦

⎢⎢⎣

⎡ ⋅+

⋅=

p

ipb

y

c

MMFS

PPFSA (28)

Where; Py = The yield axial capacity of chord Mp = The plastic moment capacity of chord = chordy SF ⋅⋅27.1 Schord = Section modulus of chord Pc, Mc = The nominal axial load and bending moment resultant (i.e. 222

opbipbc MMM += ) Mipb = In-plane bending moment of chord Mopb = Out-of-plane bending moment of chord FS = Safety factor = 1.2

C1, C2, and C3 were coefficients depending on joint and load Type, Table 2.13

Page 23: Stinger Buoyancy

13

5. Joints with thickened cans

When thickened joint cans were specified, the joint allowable capacity was calculated as follow:

[ ] cavna PTTrrP )()/()1( 2 ⋅⋅−+= (29) Where; (Pa)c = Pa from Equation 25 Tn = Nominal chord member thickness Tc = Chord can thickness r = Lc/2.5D for joints with β ≤ 0.9 = (4β-3) Lc/1.5D for joints with β > 0.9 Lc = Effective total length, Figure 2.13

6. Combined strength check The combined axial loads and bending moments in the brace members should be calculated to satisfy the following requirements:

0.12

≤+⎟⎟⎠

⎞⎜⎜⎝

⎛+

opbaipbaa MM

MM

PP (30)

2.6 Standard code for pipelay evaluation

DNV-OS-F101 (DET NORSKE VERITAS, 2007) was the offshore standard for submarine pipeline system. This standard provided technical provisions and acceptance criteria for general use by the offshore industry as well as the technical basis for DNV offshore services. 2.6.1 Simplified laying criteria These simplified laying criteria were used as an initial simplified criterion of the local buckling checking during early design stages.

1. Overbend region There were two criterion to be satisfied the local buckling checking of overbend. Criterion I in Table 2.15 was satisfied in the determined strain for static loading which included effects of bending, axial force and local roller loads. For static added to dynamic loading, the determined strain should be satisfied with Criterion II in Table 2.15. The strain should include all effects, including varying stiffness due to field joint or buckle arrestors.

2. Sagbend region For combined static and dynamic loads, the equivalent stress in the sagbend and the stinger tip should be less than 0.87 times fy with all loads factors set to unity.

Page 24: Stinger Buoyancy

14

2.7 Waves

The nomenclature and definitions of symbols associated with waves was given in Figure 2.14(Barltrop N.D.P. and Adams A.J., 1991). Wave properties were described by the following:

• Period, T, was the time taken of wave crests to pass a stationary point (second). Wave frequency = 1/TZ was sometime used instead of period.

• Height, H, was the vertical distance between wave crest and wave trough.

• Surface elevation, η, was the height of the surface above mean water level (MWL).

• Water depth, d, was the depth of water from MWL to the seabed.

• Wavelength, L, was the horizontal distance between wave crests. For small

amplitude waves which were solved iteratively for L by:

⎟⎠⎞

⎜⎝⎛ ⋅⋅

=L

dTgL ππ

2tanh2

2

(31)

For d/L > 0.5, tanh 2πd/L was very close to 1 and:

2

2

56.12

TTgL =⋅

; SI unit (32)

• Celerity, C, was the propagation speed of the wave crests.

⎟⎠⎞

⎜⎝⎛ ⋅⋅

==L

dTgTLC π

ρ2tanh

2

π2TgC ⋅

= ; In deep water (33)

• Steepness, H/L, was the ratio of wave height to length.

• Vertical position, z, was the height measured positively above MWL.

⎥⎦⎤

⎢⎣⎡ ⋅

=T

tHz π2sin2

(34)

The maximum vertical particle velocity

2.7.1 Significant wave height and mean zero crossing period The random nature of the ocean’s water surface could be quantified statistically. Over an interval of about 3 hours, the statistics did not very much and the sea state might be described by significant wave height (Hs) and mean zero crossing period (Tz). Some useful relationships were given in Table 2.16.

Page 25: Stinger Buoyancy

15

2.7.2 Wave theories The wave theories were derived from incompressibility and continuity, inviscidity, dynamic equilibrium and mathematic manipulation in order to predict water surface profile such as surface elevation, wavelength, particle velocity, particle acceleration and hydrostatic pressure. There were many wave theories to be capable of satisfying the various boundary conditions: linear wave theory, stokes’ wave theory, stream function wave theory, etc. These wave theories could be selected from regular wave theory selection diagram (Figure 2.15). The most commonly used of these was linear wave theory which based on the superposition of linear wave theory.

• Linear wave theory The theory was developed for 2-D plane. A potential function was of the form:

( )( )( ) ( )tkx

dkdzkTHg ω

πφ −⎟⎟

⎞⎜⎜⎝

⎛⋅+⋅⋅

= sincosh

cosh4

(35)

Where; Lk π2= and Tπω 2= The linear wave theory was shown in Table 2.17. For shallow and deep water, the equations in Table 2.18 might be used. 2.7.3 Hydrodynamic loading Hydrodynamic loading on offshore structures might be classified as:

a) Drag loading, vortex was generated in the flow while it was passing the members. Drag force was proportional to incident velocity squared.

b) Inertia loading, inertia force was proportional to the acceleration of the fluid.

c) Diffraction loading, a Type of inertia loading was in which the presence of the

structure modified the wave pattern and changes the loading on the structure. The computation of the force applied by waves on a cylindrical object depended on the ratio of the wavelength to the member diameter. If the wavelength to the member diameter was less than 5, the water particle motions were only locally affected by the member. The forces could be calculated from the drag and inertia components using the Morison equation. When the wavelength was greater than about 5 times of the member size, refraction effects were important.

Page 26: Stinger Buoyancy

16

• Morison’s equation Morison's equation (API RP 2A-WSD, 2000) was commonly used for the wave force calculation of drag and inertia force on marine structures as follows:

tUV

gCUUA

gCFFF w

mw

DID δδρρ⋅⋅⋅+⋅⋅⋅⋅=+=

2 (36)

cw UUU += θcos (37)

Where; F = Hydrodynamic force, N/m

FD = Drag force, N/m FI = Inertia force, N/m Cd = Drag coefficient; Cd = 0.65 (smooth), Cd = 1.05 (rough) ρw = Weight density of water, N/m3 g = Gravitational acceleration, m/sec2 A = Cross-sectional area (= D for circular cylinders), m V = Displaced volume (= πD2/4 for circular cylinders), m2 D = Effective diameter including marine growth, m U = Velocity of the water normal to the axis of the member,

m/sec |U| = Absolute value of U, m/sec Uw = Particle velocity due to wave Uc = Particle velocity due to current Cm = Inertia coefficient; Cm = 1.6 (smooth) Cm = 1.2 (rough)

= Acceleration of the water normal to the axis of the member,

m/sec2 θ = Wave phase angle

2.7.4 Wave spectrum In the Pierson-Moskowitz spectrum, the wave components with significant amount energy cover a well defined band of frequency, f (ATKINS, 1977). The energy density was calculated as follow:

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⋅−⋅⋅⋅⋅=

−−

4542 74.0exp)2(0081.0)(

mfffgfS πηη (38)

Where; g = Gravitational acceleration, m/sec2

fm = The frequency at the peak of the spectrum (Hz) [=g/(2πU19.5) for fully developed sea only]Drag force, N/m

U19.5 = The wind velocity at 19.5 m above the sea surface (m/s)

tUδδ

Page 27: Stinger Buoyancy

17

2.7.5 Random sea surface for linear wave theory To simulate the sea surface,η, the components are added together with a randomly generated phase lag (φn is between 0 and 2π). For linear wave theory

∑ +=n

nnn tfat ))(2cos()( φπη (39)

In this method the wave spectrum is divided into either a number of equal frequency bands or equal area bands, usually about 50 components being sufficient (ATKINS, 1977). The amplitude for a frequency band f1 to f2 was as follow:

∫⋅=1

2

)(2f

f

dffSa ηη (40)

2.7.6 Rainflow counting method The time series consist of several data ranges which can be counted and presented in groups with the same data ranges. The most common counting method is rainflow counting method. The results can be given in a histogram or a diagram (Lassen, 2006). The algorithm for the rainflow counting method was given by Rychlik (1987) as follow:

1. Reduce the time history to a sequence of tensile peaks (Figure 2.16) and compressive troughs Figure (2.17).

2. Imagine that the time history is a template for a rigid sheet (pagoda roof). 3. Turn the sheet clockwise 90° (earliest time to the top). 4. Each tensile peak is imagined as a source of water that "drips" down the

pagoda. 5. Count the number of half-cycles by looking for terminations in the flow

occurring when either: 1. It reaches the end of the time history; 2. It merges with a flow that started at an earlier tensile peak; or 3. It flows opposite a tensile peak of greater magnitude. 6. Repeat step 5 for compressive troughs. 7. Assign a magnitude to each half-cycle equal to the stress difference between its

start and termination. 8. Pair up half-cycles of identical magnitude (but opposite sense) to count the

number of complete cycles. Typically, there are some residual half-cycles.

Page 28: Stinger Buoyancy

18

2.8 Standard code for Fatigue life evaluation

The offshore standard for fatigue design of offshore steel structures DNV-RP-C203 (DET NORSKE VERITAS, 2005) provided technical provisions and acceptance criteria for general use by the offshore industry as well as the technical basis for DNV offshore services. The predicted number of cycles to failure for stress range Δσ (N) was calculated as follow:

⎟⎟

⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅Δ−=

k

refttmaN σlogloglog (41)

Where; Δσ = Stress range

m = Negative inverse slop of S-N curve log a = Intercept of log N-axis by S-N curve tref = Reference thickness equal 25 mm for welded connection

= For tubular joints the reference thickness is 32 mm = For bolts reference thickness is 25 mm.

t = Thickness through which a crack will most likely grow t = tref is used for thickness less than tref k = Thickness exponent on fatigue strength

Accumulated fatigue damage, D was determined from:

∑=

=k

i i

i

Nn

D1

(42)

Where; k = Number of stress blocks

ni = Number of stress cycles in stress block i

Page 29: Stinger Buoyancy

19

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, the methodology covered optimization of articulated stinger. It described each step in detail and justifies the stinger optimization methodology.

3.2 Design basis and assumptions

The following assumptions were used in this study: • ISO International System of Units (SI) was used for all analyses and calculations. • Sea water density was 1025 kg/m3.

Pipe material properties:

• Concrete coating density was 3040 kg/m3. • Steel density was 7850 kg/m3. • Young’s modulus was 200 GPa. • Material grade of pipeline was X65.

Stinger and pipeline geometry:

• Maximum width of the stinger was 5 m. • Maximum height of stinger was 5 m. • Two tensioners capacity was varied in the range of 100 – 250 M.T. • Capacity of pipe size was varied in the range of 6 – 60 in. • Water depth was varied in the range of 30 – 150 m. • The pipelay matrixes of pipe size, wall thickness, and concrete coating were shown

in Table 3.1. Mass:

• The following lump mass of an element were used in this study: • E&I weight was 50 kg/m. • Ballast pipe weight was 100 kg/m. • Tank partition weight was 300 kg/location. • Drawbar weight was 14 M.T. • Hinge weight was 1 M.T./point. • Roller weight was 3 M.T./roller.

Load:

• Friction effects of pipeline on roller were neglected. • Wind loads were neglected. • Maximum wave height (Hmax) was varied in the range of 2 – 5 m. • Wave period (t) was 12 second. • Current velocity (vc) was varied in the range of 0 – 1 m/s. • No marine growth. (smooth: Cd = 0.65, Cm = 1.6)

Page 30: Stinger Buoyancy

20

3.3 Stinger structural arrangements and stinger design variations

3.3.1 Stinger structural arrangements The stinger was designed as 4 section articulated stinger with 2 rollers per section. Two aspects of structural arrangements including stinger cross section arrangements and aspect ratio were considered in this study. The study considered 6 configurations in total including:

• Two rectangular Types of stinger cross section arrangements • Three aspect ratio for rectangular section

The details of each aspect were as follows:

1. Stinger cross-section arrangements Stinger cross-section depicted a perpendicular projection of the stinger along the stern of the barge direction. The stinger cross-section arrangements were designed to withstand its environmental load resistance and provide its stability. Two rectangular Types of the stinger cross-section were considered in this study (Figure 3.2).

2. Aspect ratio The aspect ratio of a shape is the ratio of its longer dimension to its shorter dimension (Wikipedia, 2009). It was able to be applied to two characteristic dimensions of a three-dimensional shape, such as the ratio of the longest and shortest axis, or for symmetrical objects that are described by just two measurements, such as the length and diameter of a rod. The stinger aspect ratio was applied to each stinger cross-section Types. Its stinger shape was varied in Table 3.2. These variations of stinger aspect ratio were evaluated a suitable dimension for environmental loads resistance and stability of stinger. 3.3.2 Stinger design variations The stinger design variations were also considered for each stinger structural configuration.

• Three lengths of stinger per section including 16 m, 18 m, and 20 m. • Four diameters of tubular including 42”, 46”, 52”, and 56”. • Two material grades of tubular including X52 and X60. • Five ranges of water depth including 30 m, 60 m, 90 m, 120 m, and 150 m. • Seven ranges of tensioners capacity including 100 M.T, 125 M.T, 150 M.T,

175 M.T, 200 M.T, 225 M.T, and 250 M.T. • Four ranges of wave height including 2 m, 3 m, 4 m, and 5 m. • Five ranges of current velocity including 0 m/s, 0.25 m/s, 0.5 m/s, 0.75 m/s,

and 1 m/s. The total load combinations for this study were 100,800 cases (Table 3.3).

Page 31: Stinger Buoyancy

21

3.4 Design procedures

The design procedures were separated into two stages as follow (Figure 3.1):

• Stinger structural design: Two Types of stinger designed as shown in Figure 3.2. Variations of stinger tubular size, material grades and section length were also considered. These variations provided a variety of structural design for stinger performance evaluation.

• Evaluations of stinger performances: In the case that the designed stinger possessed the positive buoyancy, the stingers were assessed its pipelay performance, stability under free floating condition and fatigue life.

3.4.1 Stinger structural design The stinger structural was performed to verify a stinger modeling from environmental loads in accordance with API RP 2A standard. The stinger structure had to be checked the combined stress for axial stress and bending stress, tubular joint design, and buoyancy checking. The stinger design was evaluated under the environmental condition of 12 sec of wave period. The external force from the environmental condition which impacted directly with stinger structure was computed by Morrison’s equation. The articulated stinger was connected with the stern of the barge at stinger section no.1. The amount of stinger section should be increased by the stinger section no. 2, 3, and 4, when the required buoyancy was insufficient. Moreover, the stinger geometry with 2 configurations was considered to be design parameters. Structural analysis was conducted base on the static procedure to determine the adequacy of stinger section under the load combination. Static analysis was focused base on the 90 degree case which environmental loads perpendicular with the pipe direction. The loads applied on each stinger section were classified as show below. Dead loads:

• Tubular members self weight • Roller boxes and their appurtenances self weight

Live loads:

• Wave & current loads • Inertia loads and drag force

Both dead and live loads were transferred into stinger model in unit per length. The steps of stinger analysis evaluation were followed by:

1. Environmental parameter and stinger geometry were added into input parameter. 2. The origin point was set in stinger cross-section. 3. For hydrodynamic force on stinger structure, the drag force and inertia force were

calculated by Morrison’s equation. 4. The force, moment, and shear designs of bracing members and tubular were

calculated.

Page 32: Stinger Buoyancy

22

5. The structural verification was performed in each member including column buckling, shear, combined stress, and joint wall thickness.

6. The buoyancy of stinger was checked with respect to the following formula: asB WWF +≥

Where; FB = Required buoyancy Ws = Stinger structural weight

Wa = Appurtenances weight In the case that the buoyancy was the negative value, the evaluations of stinger performance was not performed in the further development. 3.4.2 Evaluations of stinger performance The stinger performance was evaluated under two considerations including pipelay performance evaluation and stinger stability evaluation. The details of assessment were as follows:

1. Pipelay performance evaluation The pipelay analysis was performed under static load cases. This analysis adopted the Stiffened Catenary’s equation to evaluate stinger performance in pipeline according to the standard code of DNV-OS-F101. Water depth and pipe size had to be taken into stinger structure calculation for evaluating the stinger’s capability. The water depth was varied in the range of 30 to 150 meter. The outside diameter of pipeline was varied from 6 to 60 in. The buoyancy requirement of stinger was not only determined but also pipelay configuration, pipelay radius, and pipelay tension were design and checked in pipelay analysis. The steps of pipelay performance analysis were followed by:

1. The information of pipe parameter, water depth, material data, stinger data, and pipe ramp configuration were required to be inputted parameter (Pipe ramp data was fixed in Table 3.4).

2. The net of force or submerged weight per unit length of pipeline, wpipe, were calculated from gravitational force (wg) and buoyancy force (Fb), as follow by:

wpipe = wg - Fb 3. To calculate allowable tension force, Tmax1, st AFDFT ⋅⋅=max was determined;

As was the cross-section area of pipeline, DF was design factor. 4. The design factors of overband and sagband were selected from Chapter 2.6.1 and

Table 2.15. 5. The minimum and maximum overbend radiuses were required to check from

Equation 2 (Rmin ≤ Rrequired ≤ Rmax). The outside diameter of pipeline was varied in this equation.

6. The span length of pipeline support was determined by Equation 5 7. The Stiffened catenary angle of pipeline was determined by Equation 4. 8. To find number of stinger section, the minimum tension of pipeline was applied at

the first section of stinger. The tension was increased by the rate with in the range of 0.01 – 1 kN until stiffened catenary angle (θcat) was equals to departing angle (θdept). The number of stinger section was counted from this acceptance criterion.

Page 33: Stinger Buoyancy

23

9. If the applied tension exceeded Tmax1 and Tmax2 (but θdep < θcat), the stinger section had to be added the increment for its departing angle.

10. This acceptance criterion was terminated from given number of section in design assumption.

11. The buoyancy requirement of pipeline had to be less than the buoyancy of stinger; otherwise, the number of stinger section had to be added and returned to check from step 8 to 10. The buoyancy requirement of pipeline was able to be found out from net force multiplied by span length.

12. Pipelay configuration, lay radius on stinger, pipelay tension, and buoyancy requirement were shown in pipelay static analysis results.

2. Stinger stability evaluation

The stinger stability was conducted as the part of the stinger cross-section arrangement in order to calculate the maximum of tilting angle to maintain the overturning stability. It was necessary to maintain the declined stinger from wave and current during installation. The stinger stability was not required in the installation process because the stinger was tightly connected by drawbar of stinger section 1 with the stern of the barge. The stinger stability was determined by metacentric height calculation at weight and buoyancy balance. At the static flotation condition, the metacentric height (GM) should be always positive. The metacentric height was the distance between the Center of Gravity and the Metacenter point illustrated in Figure 3.3 showing Center of Gravity (C.G.), Center of Buoyancy (C.B.), and Metacenter (G.M.). The steps of stinger stability were followed by:

1. The stinger geometry and relevant parameters were inputted into calculation sheet. 2. The Center of Gravity (C.G.) of the stinger was determined (point G in Figure 3.4). 3. The Center of Buoyancy (C.B.) of stinger was determined by variation of water

level. 4. The tilting angles were applied to check the stinger stability in the range of 0

degree to 40 degree which was referred to y-axis. 5. The metacentric height was calculated at stinger buoyancy and stinger weight

balance. 6. The GM line and tilting angles were plotted.

3. Fatigue life evaluation

The fatigue analysis was performed to determine the stinger’s life in accordance with DNV-RP-C203. Wave height and wave period had to be taken into fatigue analysis for evaluating the stinger’s life. The wave height was varied in range of 2 to 5 meter. The wave period was varied in range of 1 to 15 second. The steps of fatigue life analysis were followed by:

1. The wave spectrum was calculated by Equation 38. 2. The random sea surface was created by Equation 40. 3. The number of occurrence in each wave height and wave period was counted

(Table 3.5) by rainflow counting method (Orcaflex program).

Page 34: Stinger Buoyancy

24

4. Critical joint was selected by the joint that obtain more force than the other (Figure 3.5).

5. The force and moment for each wave height and wave period were calculated. 6. The predicted number of cycles to failure for stress range Δσ (N) was calculated by

Equation 41. 7. Accumulated fatigue damage, D was determined by Equation 42. 8. The fatigue life was calculated as follow:

DLife η

=

Where; Life = Fatigue life, year η = 1 / Design fatigue factor from OS-C101

D = Accumulated fatigue damage

3.5 Stinger optimization

The purpose of the stinger optimization was performed in order to obtain the optimal stinger structure for providing the sufficient buoyancy, pipelay’s capability, adequate stability for laying pipeline and stinger’s life. The stinger optimization will be evaluated by scoring. The scoring will be given as followed by: 3.5.1 The scoring for stinger structure The stinger structure was scored in the range of 0 to 1 depending on the ratio of net buoyancy and stinger weight. 3.5.2 The scoring for stinger performance evaluation

1. Pipelay performance The pipelay’s capability was scored in the range of 0 to 1 depending on the proportions of the pipelay matrix envelope.

2. Stinger stability The stability was scored in the range of 0 to 1 depending on the maximum of tilting angle.

3. Fatigue life The fatigue analysis was scored in the range of 0 to 1 depending on fatigue life of stinger. From the scoring, the stinger optimization chart was plotted to create the option for concept selection in stinger design.

Page 35: Stinger Buoyancy

25

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Design results

The design results consisted of stinger structural design, pipelay performance evaluation, stinger stability evaluation and fatigue life evaluation. The calculations of the articulated stinger design were calculated on MATHCAD program. The detail results are presented in APPENDIX A. The summaries of results are presented in APPENDIX B. 4.1.1 Stinger structural design results The results obtained from stinger structural design consisting of stinger weight and net buoyancy are presented in APPENDIX B. The details of stinger structural design are presented in APPEXDIX E. The trends of stinger weight and net buoyancy are as follows (Figure C.1 to C.18):

1. Effect of Geometry (cross-sections) The design results show that Type 2 has not only less weight but also net buoyancy than Type 1. The contribution of less weight and net buoyancy are due to Type 1 has more number of brace than Type 2 by 4 to 6 members per section. Type 2 has weight and net buoyancy less than 5% and 20% to Type 1, respectively.

2. Effect of Geometry (aspect ratio) The design results show that they are a slightly different from each other because of the constant volume replacement of buoyancy. No significant difference between each other.

3. Effect of Material grade The design results show that the stinger using X60 yield better design results. The weight and net buoyancy of stinger is better than the design using X52. The stinger design with X60 has more strength than the design using X52 by 15%. The stinger using X 60 has weight less than 2.5% and has net buoyancy more than 5% to the design using X52.

4. Effect of Stinger length The design results show that the increase of weight and net buoyancy are a direct variation with stinger length. The contribution of increase is due to the increase of the volume replaceable. The different of volume replaceable between each stinger length is around 12%. The different of weight between each stinger length is around 10% and the different of net buoyancy between each stinger length is around 10% to 20%.

5. Effect of Outside diameter The design results show that the increase of weight and net buoyancy are a direct variation with outside diameter. The contribution of increase is due to the increase of the volume replaceable. The different of volume replaceable between each outside diameter is around

Page 36: Stinger Buoyancy

26

20%. The different of weight between each outside diameter is around 5% to 15% and the different of net buoyancy between each outside diameter is around 30%. 4.1.2 Pipelay performance evaluation results The results obtained from pipelay performance evaluation consisting of the tension of pipeline and no. of case which the stinger could be laid are presented in APPENDIX B. The trends of the no. of case that stinger could be laid are as follows (Table C.1 to C.2):

1. Effect of Stinger length The design results show that the increasing of no. of case that could be laid is a direct variation with stinger length. The contribution of increase is due to the increase of the volume replaceable. The different of volume replaceable between each stinger length is around 12%. The different of no. of case that could be laid between each stinger length is around 5% to 10%.

2. Effect of Tensioner capacity The design results show that the increasing of no. of case that could be laid is a direct variation with tensioner capacity. The contribution of increase is due to the higher tensioner capacity is, the higher the no. of case that could be laid. The different of capacity between each tensioner capacity is 25 ton. The different of no. of case that could be laid between each tensioner capacity is around 5% to 15%. The no. of case that could be laid mostly will be controlled by the use of tensioner (Table C.1 – C.3) but for the higher wave height and current velocity some configuration will be controlled by the buoyancy and pipeline weight. 4.1.3 Stinger stability evaluation results The results obtained from stinger stability evaluation are the maximum tilting angle are presented in APPENDIX B. The trends of the maximum tilting angle were as follows (Figure C.19):

1. Effect of Geometry (cross-sections) The design results show that the stinger cross-sections related to the increase of outside that is considered into two parts which are lower than 46 in. and higher than 52 in. The first part of tilting angle is mainly decreased. The second part of tilting angle is mainly increased. The different between each stinger cross-sections is around 20% to 50%.

2. Effect of Geometry (aspect ratio) The design results show that the specified aspect ratio is mainly increased because of the inconstant volume replacement of buoyancy. The different between each aspect ratio is around 15% to 50%.

Page 37: Stinger Buoyancy

27

3. Effect of Stinger length The design results show that the stinger length related to the increase of outside that is considered into two parts which are lower than 46 in. and higher than 52 in. The first part of tilting angle is mainly decreased. The second part of tilting angle is mainly increased. The different between each stinger length is around 10% to 50%.

4. Effect of Outside diameter The design results show that the increase of outside diameter is considered into two parts which are lower than 46 in. and higher than 52 in. The first part of tilting angle is mainly decreased. The second part of tilting angle is mainly increased. The different between each other is around 40% to 70%. 4.1.4 Fatigue life evaluation results The results obtained from fatigue life evaluation were fatigue life of the stinger as shown in APPENDIX B. As results of the fatigue life evaluation in APPENDIX C (Figure C.20 – C.28), the trends of the fatigue life were as follows:

1. Effect of Geometry (aspect ratio) The design results show that they are a slightly different from each other because of the joint that subject to wave load are the same positions. No significant difference between each other.

2. Effect of Stinger length The design results show that the increasing of fatigue life was a reverse variation with stinger length. The contribution of increase is due to the increase of wave load that applied to the structure. The different of wave load between each stinger length is around 12.5%. The different of fatigue life between each stinger length is around 30% to 50%.

3. Effect of Outside diameter The design results show that the increasing of fatigue life were a direct variation with outside diameter. The contribution of increase is due to the increase of wave load that applied to the structure. The different of wave load between each outside diameter is around 18%. The different between each outside diameter and the next to one is around 20% to 40%.

Page 38: Stinger Buoyancy

28

4.2 Stinger optimization

The optimization tables were shown by the specified crane capacity, wave height and tensioner capacity (APPENDIX D). The advantages of optimization tables are utilized to identify the most suitable options for the requirement’s customer. The instruction of the stinger optimization chart is presented as below:

1. The crane capacity, wave height and tensioner capacity are required. 2. Searching for the tables from the requirements which provided top 5 of the stinger

configurations in each current velocity.

3. In each stinger configuration, it showed the stinger cross-section, stinger length, aspect ratio, outside diameter and material grade that should be used. Moreover, the stinger weight, net buoyancy, no. of case that can be laid, maximum tilting angle and stinger’s life were also show.

Page 39: Stinger Buoyancy

29

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

The articulated stinger in this study was performed in terms of stinger structural design, evaluations of stinger performance under regulation and standard code design. The structural arrangements and stinger design variations are considered into stinger structural configurations to create the stinger model. Stinger configurations are evaluated by pipelay performance, stinger stability and fatigue life. All of the stinger configurations are optimized to be primary concept selection by scoring. The conclusions from the design results of the stinger (Table 5.1) are as follows:

• In the stinger structural design, the buoyancy of stinger Type 1, aspect ratio 4:4, material grade X60, stinger length 20 m and outside diameter 56 inch are better than the other.

• In the pipelay performance evaluation, only stinger length has an effect with

pipelay performance to increase. The performance of stinger length 20 m is better than the other. However, the no. of case that the stinger could be laid mostly will be controlled by the use of tensioner.

• In the stinger stability evaluation, the stability of stinger Type 1, aspect ratio 4.5:3,

stinger length 16 m and outside diameter 42 inch are better than the other.

• In the fatigue life evaluation, the fatigue life of stinger aspect ratio 5:2.5, stinger length 16 m and outside diameter 42 inch are better than the other.

• The stinger length mostly has an influence in the stinger structural design, pipelay

performance, stinger stability and fatigue life.

• To be primary concept selection, there are 70 tables of stinger optimization depending on crane capacity, wave height and tensioner capacity.

Page 40: Stinger Buoyancy
Page 41: Stinger Buoyancy

31

REFERENCES American Petroleum Institute (2000). Recommended Practice for Planning, Designing and

Constructing Fixed Offshore Platforms: Working Stress Design (API RP 2A-WSD). (21st ed.). Washington DC: API.

Atkins Research and Development (1977). Dynamics of Marine Structures. London: Ciria

Underwater Engineering Group. Bai, Yong and Bai, Qiang (2005). Subsea Pipeline and Risers. London: ELSEVIER Ltd. Barltrop, N.D.P and Adams, A.J (1991). Dynamics of fixed marine structures. (3rd ed.).

Great Britain: Thomsom Litho Ltd. Chakrabarti, S. (2005). Handbook of offshore engineering. Oxford: Elsevier Ltd. Clough (2009). Marine Assets. Retrieved October, 2009, from http://www.clough.com.au

/index.php?option=com_content&task=view&id=41&Itemid=56 Dawson, Thomas H. (1983). Offshore structural engineering. United States of America:

Prentice-Hall Inc. DET NORSKE VERITAS, 2004. Offshore Standard DNV-OC-C101: Design of Offshore

Steel Structures General (LRFD Method). Norway: DNV. DET NORSKE VERITAS, 2005. Offshore Standard DNV-RP-C203: Fatigue design of

Offshore Steel Structures. Norway: DNV. DET NORSKE VERITAS, 2007. Offshore Standard DNV-OS-F101: Submarine Pipeline

Systems. Norway: DNV. DET NORSKE VERITAS, 2007. Offshore Standard DNV-RP-C205: Environmental

Conditions and environmental loads. Norway: DNV. GustoMSC (2009). Reference list & download center. GustoMSC. Retrieved October,

2009, from http://www.gustomsc.nl/pagina.php?id=86&lang=uk Hyundai (2009). Resources and Capabilities. Hyundai. Retrieved October, 2009, from

http://english. hhi.co.kr / Biz/ Offshore/Resources.asp Lammert, Wanyne F., Simpson, Dayton M., and Desai, Ardeshir R. (1978). Articulated

stinger. Langner, C.G. (1969). The articulated stinger: A new tool for laying offshore pipelines. In

Proceedings of the 1st annual Offshore Technology Conference, (Paper number: OTC 1073). Texas.

Mcdermott (2009). Vessels & Support Equipment. Mcdermott. Retrieved October, 2009,

from http:// www. jraymcdermott.com/services/marine.htm

Page 42: Stinger Buoyancy

32

Miesner, Thomas O. and Leffler, William L. (2006). Oil&gas pipelines in nontechnical language. Oklahoma: PennWell Corporation.

Mousselli, A.H (1981). Offshore Pipeline Design, Analysis, and Method. Oklahoma:

PennWell Corporation. NorCE (2009). Vessels and Equipment. NorCE. Retrieved October, 2009, from

http://www. norceoffshore.com/vessels.html Rienstra, S.W (1987). Analytical Approximations For Offshore Pipelaying Problems.

Proceedings of ICIAM 87, Paris-La Villette. Netherland. Rychlik, I. (1987). A New Definition of the Rainflow Cycle Counting Method. Int. J.

Fatigue, 9:2, 119-121. Wikipedia (2009). Aspect ratio. Wikipedia, The free encyclopedia. Retrieved October,

2009, from http://en.wikipedia.org/wiki/Aspect_ratio. Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 5,

161–215. Subsea 7 (2009). Vessel specifications. Subsea 7. Retrieved October, 2009, from

http://www. subsea7.com/v_specs.php

Page 43: Stinger Buoyancy

33

TABLES

Page 44: Stinger Buoyancy

34

Page 45: Stinger Buoyancy

Ta

ble

2.1:

Spe

cific

atio

n su

mm

ary

of S

ubse

a 7

lay

barg

e (I

) (Su

bsea

7, 2

009)

N

ame

Kom

man

dor 3

000

Loch

naga

r N

orm

and

Seve

n Se

ven

Nav

ica

Gen

eral

Info

rmat

ion

C

lass

ifica

tion

B

uilt

C

onve

rsio

n

Flag

Sta

te A

utho

rity

Po

rt of

Reg

istry

LR, 1

00 A

1, O

SV D

P(A

A),

UM

S, L

MC

N

itero

i (19

84)

Fred

erik

shav

n (1

998)

& R

ijeka

(199

9)

Bah

amas

Mar

itim

e A

utho

rity

Nas

sau

DN

V, D

YN

POS

AU

TR

1982

19

98

Isle

of M

an

Dou

glas

DN

V 1

A1,

DY

NPO

S A

UTR

O

Pola

nd, N

orw

ay

- Nor

weg

ian

(NIS

) Sk

uden

esha

vn, N

orw

ay

DN

V, 1

A1,

SF,

DY

NPO

S A

UTR

A

ker-

Bra

ttvaa

g, N

orw

ay (1

999)

- Is

le o

f Man

Gov

ernm

ent

Dou

glas

D

imen

sion

s

Ove

rall

Leng

th (m

)

Bre

adth

(m)

D

epth

(m)

D

raft

(m)

D

eadw

eigh

t (t)

G

ross

Ton

nage

(t)

N

et T

onna

ge (t

)

118.

4 21

10

.08

4.9

3241

77

31

2319

105

23

10

5.7

6700

64

09

1923

130

28

12

8.8

8.2

14,0

00

10,0

00

108.

53

22

9 7.16

5 95

60

6083

18

59

Tan

k C

apac

ities

(100

%)

Fu

el O

il (m

3)

Fr

esh

Wat

er (m

3)

B

alla

st W

ater

(m3)

Lub.

Oil

(m3)

860

365

2421

8

1622

.5

655.

2 37

14.5

20

.1

2420

90

0 69

20

2683

12

18

2203

40

.4

Acc

omm

odat

ion

(per

sons

) 73

73

10

0 73

Pi

pela

y Sy

stem

s •

The

vess

el

has

an

exte

nsiv

e pi

pela

y sy

stem

fitt

ed a

s st

anda

rd.

The

pipe

lay

stys

tem

com

pris

es o

f th

e fo

llow

ing

mai

n co

mpo

nent

s:

• C

arou

sels

(for

flex

ible

pip

e)

1

x (1

4.78

m in

ner d

iam

eter

)

2 x

(11.

90 m

inne

r dia

met

er)

• Pi

pe T

ensi

oner

s (lin

ear)

2 x

75 t

& 1

x 5

5 t

• C

arou

sel (

for u

mbi

lical

) •

Um

bilic

al T

ensi

oner

s (lin

ear)

1 (1

1.90

m in

ner d

iam

eter

)

2 x

15 t

capa

city

Gen

eral

Pur

pose

Win

ches

5

x 10

t •

Gen

eral

Pur

pose

Cap

stan

s 2

x 10

t •

Ret

ract

able

rolle

rs

2

x 10

t •

Pede

stal

Cra

ne

30

t •

Knu

ckle

Boo

m C

rane

6

t •

Sepa

rate

hy

drau

lic

pow

er

pack

s ar

e in

stal

led

for

the

A-F

ram

e, f

lexi

ble

pipe

te

nsio

ners

, um

bilic

al t

ensi

oner

s an

d th

e A

&R

w

inch

es.

A

com

mon

sy

stem

is

in

stal

led

for t

he g

ener

al p

urpo

se w

inch

es,

caps

tans

, ret

ract

able

dec

k an

d re

tract

able

ro

llers

.

• Th

e ve

ssel

is

fitte

d w

ith t

wo

4-tra

ck

tens

ione

rs w

ith a

max

imum

top

ten

sion

ca

paci

ty

of

255

t an

d fo

r fle

xibl

e pr

oduc

ts u

p to

16

inch

dia

met

er.

• Tw

o un

derd

eck

caro

usel

s ar

e pr

ovid

ed,

each

with

a d

iam

eter

of

16m

with

a

hold

ing

capa

city

of 1

500

t. •

Two

aban

donm

ent a

nd r

ecov

ery

win

ches

(7

5 t

and

255

t) ar

e bo

th

rate

d fo

r op

erat

ions

in w

ater

dep

ths u

p to

200

0 m

.

• Th

e ve

ssel

is

fit

ted

with

a

layd

eck

syst

em,

suita

ble

for

flexi

ble

prod

uct

depl

oym

ent a

nd w

ith a

max

imum

tens

ion

capa

city

of

300

t at

500

m/h

r pa

ying

in

and

700

m/h

r pay

ing

out.

Two

tens

ione

rs,

each

rat

ed a

t 150

t, a

re in

stal

led,

cap

able

of

han

dlin

g fle

xibl

e pi

pe f

rom

96m

m t

o 50

0mm

. •

Flex

ible

pro

duct

is

stor

ed o

n 10

ree

ls,

each

with

a c

apac

ity o

f 21

0 t.

Ree

ls c

an

be 7

.8 m

, 8.6

m o

r 9.

2 m

dia

met

er. T

he

vess

el c

an a

ccep

t a

19.0

m

dia

met

er

caro

usel

(not

cur

rent

ly fi

tted)

in th

e ca

rgo

hold

for f

lexi

ble

pipe

. •

Ther

e is

one

A&

R w

inch

of 3

00 t

and

an

auxi

liary

whi

ch o

f 65

t, b

oth

fitte

d w

ith

2,50

0 m

of

wire

. The

re is

als

o an

act

ive

heav

e co

mpe

nsat

ed w

inch

0f

20 t

, fitt

ed

with

2,5

00 m

of

wire

. A

n A

-fra

me

is

inst

alle

d at

the

ster

n an

d fit

ted

with

a 3

00

t win

ch fo

r ove

rboa

rdin

g.

• Th

e ve

ssel

is

fitte

d w

ith o

ne 2

200

t (a

ppro

x -

depe

ndin

g on

ove

rall

vess

el

payl

oad)

mai

n de

ck m

ount

ed s

tora

ge a

nd

depl

oym

ent

reel

. A

n op

tiona

l 25

0 t

pigg

ybac

k re

el c

an b

e fit

ted

as r

equi

red.

A

la

y ra

mp

syst

em

is

perm

anen

tly

inst

alle

d fo

r de

ploy

men

t of

a r

ange

of

prod

ucts

at

vary

ing

lay

angl

es f

rom

23o

to

90o

. Th

e la

y ra

mp

syst

em c

ompr

ises

of

a g

uide

chu

te,

pigg

ybac

k ch

ute,

pip

e st

raig

hten

er,

205

t te

nsio

ner,

hold

bac

k cl

amp,

rol

ler

box,

two

aban

donm

ent a

nd

reco

very

shea

ves a

nd tw

o ra

mp

elev

ator

s. O

ne 2

50 t

and

one

50 t

aban

donm

ent a

nd

reco

very

syst

ems a

re p

rovi

ded.

35

Page 46: Stinger Buoyancy

Ta

ble

2.2:

Spe

cific

atio

n su

mm

ary

of S

ubse

a 7

lay

barg

e (I

I) (S

ubse

a 7,

200

9)

Nam

e Se

ven

Oce

ans

Seve

n Se

as

Seve

n Pa

cific

To

isa

Pers

eus

Gen

eral

Info

rmat

ion

Cla

ssifi

catio

n B

uilt

Con

vers

ion

Flag

Sta

te A

utho

rity

Port

of R

egis

try

Lloy

ds R

egis

ter,

+100

A1,

+LM

C, U

MS,

M

erw

ede,

Hol

land

- Is

le o

f Man

Gov

ernm

ent

Dou

glas

Lloy

ds R

egis

ter,

+100

A1,

M

erw

ede

Ship

yard

, The

Net

herla

nds 2

008

- Isle

of M

an G

over

nmen

t D

ougl

as

Lloy

ds R

egis

ter,

+100

A1,

+LM

C, U

MS

Mer

wed

e Sh

ipya

rd, T

he N

ethe

rland

s - Is

le o

f Man

D

ougl

as

DN

V, +

1A1,

SF,

EO

, DY

NPO

S A

UTR

O

Van

der

Gie

ssen

, Net

herla

nds (

1998

) - M

CA

(Brit

ish)

Lo

ndon

D

imen

sion

s

O

vera

ll Le

ngth

(m)

Bre

adth

(m)

Dep

th (m

) D

raft

(m)

Dea

dwei

ght (

t) G

ross

Ton

nage

(t)

Net

Ton

nage

(t)

157.

3 28

.4

12.5

7.

5 10

930

1820

1 54

60

153.

24

28.4

12

.5

7.5

1013

0 18

250

5475

133.

15

24.0

0 10

.00

6.50

73

00

113.

57

22

9.5

6.75

63

50

6948

20

85

Tan

k C

apac

ities

(100

%)

Fuel

Oil

(m3)

Fr

esh

Wat

er (m

3)

Bal

last

Wat

er (m

3)

Lub.

Oil

(m3)

1200

60

0 45

00

42

1227

45

30

1500

60

0 31

00

1305

46

4 18

68

15

Acc

omm

odat

ion

(per

sons

) 12

0 12

0 10

0 10

6 Pi

pela

y Sy

stem

s •

The

vess

el is

fitt

ed w

ith o

ne 3

500

tonn

e m

ain

deck

m

ount

ed

stor

age

and

depl

oym

ent r

eel.

An

optio

nal 2

50 t

pigg

y ba

ck r

eel c

an b

e fit

ted

as r

equi

red.

A la

y ra

mp

syst

em is

per

man

ently

inst

alle

d fo

r de

ploy

men

t of

a

rang

e of

fle

xibl

e pr

oduc

ts a

nd h

as a

top

tens

ion

capa

city

of

400

t. Th

e m

ain

reel

can

sto

w p

rodu

cts

from

6 to

16

inch

es in

dia

met

er. T

he la

y ra

mp

syst

em

com

pris

es

of

an

alig

ner

whe

el,

pipe

stra

ight

ener

, te

nsio

ner,

hold

ba

ck

clam

p,

(600

t)

rolle

r bo

x,

two

aban

donm

ent

and

reco

very

she

aves

and

tw

o ra

mp

elev

ator

s. 1

x 45

0 t a

nd 1

x 8

0 t

aban

donm

ent

and

reco

very

win

ches

are

pr

ovid

ed.

• Th

e ve

ssel

is f

itted

with

a p

ipel

ay to

wer

de

sign

ed

for

flexl

ay,

J-La

y an

d m

oonp

ool

depl

oym

ent

oper

atio

ns.

The

tow

er c

onsi

sts

of tw

o al

igne

r chu

tes

(one

po

rt, o

ne s

tarb

oard

), a

retra

ctab

le e

lect

ric

driv

en

uppe

r 17

0 t

flex

tens

ione

r, a

retra

ctab

le e

lect

ric d

riven

mai

n te

nsio

ner

(260

t fle

x ra

ted,

400

t rig

id ra

ted)

and

an

encl

osed

w

eldi

ng

stat

ion

for

J-La

y op

erat

ions

. •

Two

hold

ca

rous

els

with

a

stor

age

capa

city

of 1

250

t eac

h ar

e pr

ovid

ed.

• A

450

t a

nd a

125

t A

+R w

inch

are

pr

ovid

ed

• Th

e m

oonp

ool h

atch

es h

ave

a ca

paci

ty o

f 75

0 t S

WL.

• Th

e ve

ssel

is

fitte

d w

ith t

wo

unde

rdec

k st

orag

e ca

rous

els,

each

with

a c

apac

ity

for

1,20

0t o

f pr

oduc

t. Pr

ovis

ion

is a

lso

avai

labl

e fo

r fiv

e 30

0t r

eels

on

deck

. A

ve

rtica

l la

y sy

stem

(2

60t

top-

tens

ion

capa

city

) is

pe

rman

ently

in

stal

led

for

depl

oym

ent

of

a ra

nge

of

flexi

ble

prod

ucts

. The

car

ouse

l can

sto

w p

rodu

cts

from

100

mm

to

600m

m d

iam

eter

with

th

e te

nsio

ner

allo

win

g a

min

imum

of

50m

m.

• Th

e ve

ssel

has

a w

ork

moo

npoo

l (7.

5m x

7.

05m

).

• Th

e ve

ssel

is

fitte

d w

ith t

wo

unde

rdec

k st

orag

e ca

rous

els,

each

with

a c

apac

ity

for

1,20

0t o

f pr

oduc

t. Pr

ovis

ion

is a

lso

avai

labl

e fo

r fiv

e 30

0t r

eels

on

deck

. A

ve

rtica

l la

y sy

stem

(1

10t

capa

city

) is

pe

rman

ently

ins

talle

d fo

r de

ploy

men

t of

a

rang

e of

flex

ible

pro

duct

s. Th

e ca

rous

el

can

stow

pr

oduc

ts

from

10

0mm

to

60

0mm

di

amet

er

with

th

e te

nsio

ner

allo

win

g a

min

imum

of 5

0mm

. •

The

vess

el h

as a

n af

ter

wor

k m

oonp

ool

(5.6

m

x 5.

6m)

and

a fo

rwar

d w

ork

moo

npoo

l (5.

1m x

5.1

m).

36

Page 47: Stinger Buoyancy

Ta

ble

2.3:

Spe

cific

atio

n su

mm

ary

of M

cder

mot

t lay

bar

ge (I

) (M

cder

mot

t, 20

09)

Nam

e D

erric

k B

arge

16

Der

rick

Bar

ge 2

6 D

erric

k B

arge

27

Der

rick

Bar

ge 3

0 R

egis

trat

ion

Ow

ner

Ope

rato

r O

ffic

ial F

lag

Bui

lt/Y

ear

Cla

ss

J. R

ay M

cDer

mot

t Hol

ding

s, In

c.

J. R

ay M

cDer

mot

t, In

c.

USA

U

SA -

1967

A

BS

USC

G, D

P 2

Bar

mad

a M

cDer

mot

t Lim

ited

J. R

ay M

cDer

mot

t, In

c.

Pana

ma

Japa

n - 1

975

AB

S A

1

Hyd

ro M

arin

e Se

rvic

es, I

nc.

J. R

ay M

cDer

mot

t, In

c.

Pana

ma

Japa

n - 1

974

AB

S A

1

Hyd

ro M

arin

e Se

rvic

es, I

nc.

J. R

ay M

cDer

mot

t, In

c.

Pana

ma

Japa

n - 1

975

AB

S A

1 H

ull

LOA

(m)

Bea

m (m

) D

epth

(m)

Ope

ratin

g D

raft

(m)

122

30.5

8.

7 4.

3

122

32

8.8

4.3

- 5.5

128

39

8.5

4.7

128

48.2

8.

5 4.

6 T

ow &

moo

ring

St

orm

Anc

hor

Anc

hor S

yste

m

1 to

mee

t reg

ulat

ory

body

app

rova

l 8

@ 9

,071

.8 k

g an

chor

; 1,

097.

3 m

of

2”

wire

1 to

mee

t reg

ulat

ory

body

app

rova

l 12

@ 9

,071

.8 k

g an

chor

; 1,

265

m o

f 2”

w

ire

1 to

mee

t reg

ulat

ory

body

app

rova

l 12

@ 1

1,33

9.8

kg a

ncho

r; 1,

676.

4 m

of

2.5”

wire

1 to

mee

t reg

ulat

ory

body

app

rova

l 12

@ 1

1,33

9.8

kg a

ncho

r; 1,

676.

4 m

of

2.5”

wire

T

anks

Fu

el (L

) B

alla

st W

ater

(L)

Pota

ble

Wat

er (L

) Fr

esh

Wat

er (L

) Lu

be O

il (L

)

1,51

4,16

5 8,

611,

812

439,

107.

80

2,27

1,24

7 8,

327.

90

1,48

0,09

6 6,

889,

203

431,

536.

90

2,24

4,74

9 15

,141

.70

1,29

5,64

0 10

,253

,320

53

5,74

9.30

2,

086,

837

75,7

08.2

0

1,32

4,89

4 14

,248

,290

52

2,38

6.80

2,

649,

788

37,8

54.0

0 Pi

pela

y

M

in O

D (i

nch)

M

ax O

D (i

nch)

Te

nsio

n M

achi

ne

Tens

ion

Cap

acity

(kip

) A

& R

Hoi

st (k

ip)

Wire

Rop

e R

amp

Stat

ions

D

avits

M

in W

ater

Dep

th (m

) M

ax W

ater

Dep

th (m

) A

utom

atic

wel

ding

equ

ipm

ent

4 48

3 @

100

kip

30

0 30

0 1,

219.

2 m

@ 3

” w

eldi

ng (

5) f

or s

ingl

e jo

int;

x-ra

y (1

); fie

ld jo

int (

2)

- 4.6

914.

4 pr

ovid

ed a

s req

uire

da

4 48

1 @

100

kip

; 1 @

150

kip

25

0 33

0 1,

226.

8 m

@ 2

” w

eldi

ng (

5);

repa

ir (1

); x-

ray

(1);

field

jo

int (

1)

3 @

54.

4 M

T; 3

@ 4

5.4

MT

5.5

case

by

case

pr

ovid

ed a

s req

uire

d

4 72

2 @

150

kip

30

0 30

0 97

5.4

m @

2.2

5”

wel

ding

(5)

; re

pair

(1);

ND

T (1

); fie

ld

join

t (1)

7

@ 4

5.36

MT

(VM

W)

6.1

case

by

case

pr

ovid

ed a

s req

uire

d

4 60

2 @

275

kip

55

0 55

0 97

5.4

m @

2.2

5”

wel

ding

(5)

; re

pair

(1);

x-ra

y (1

); fie

ld

join

t (1)

3

@ 5

4.4

MT;

3 @

45.

4 M

T 5.

2 ca

se b

y ca

se

prov

ided

as r

equi

red

37

Page 48: Stinger Buoyancy

Ta

ble

2.4:

Spe

cific

atio

n su

mm

ary

of M

cder

mot

t lay

bar

ge (I

I) (M

cder

mot

t, 20

09)

N

ame

Der

rick

Bar

ge 5

0 D

erric

k B

arge

60

KP1

R

egis

trat

ion

O

wne

r O

pera

tor

Off

icia

l Fla

g B

uilt/

Yea

r C

lass

J. R

ay M

cDer

mot

t Int

erna

tiona

l Ves

sels

, Ltd

. J.

Ray

McD

erm

ott,

Inc.

Pa

nam

a U

K -

1988

A

BS

A1,

FIF

I Cla

ss 1

, AM

S, A

CC

U, D

P 2

Hyd

ro M

arin

es S

ervi

ce In

c.

J. R

ay M

cDer

mot

t, In

c.

2681

8-00

/ Pa

nam

a G

erm

any

- 197

4 +1

3/3

E +

BV

Sel

f Pro

pelle

d

Hyd

ro M

arin

e Se

rvic

es, I

nc.

J. R

ay M

cDer

mot

t, In

c.

Pana

ma

Japa

n - 1

974

AB

S A

1 H

ull

LO

A (m

) B

eam

(m)

Dep

th (m

) O

pera

ting

Dra

ft (m

)

151.

5 46

12

.5

7.5-

9.4

185.

93

35.0

5 15

.03

8.53

-10.

06

139

30.2

9.

1 4.

6 T

ow &

moo

ring

Stor

m A

ncho

r A

ncho

r Sys

tem

1

to m

eet r

egul

ator

y bo

dy a

ppro

val

8 @

12,

002

kg a

ncho

r; 2,

350

m o

f 2.8

75”

wire

2

ea.S

tock

less

Mod

el, w

/ 29,

348

lb a

ncho

r 14

Bru

ce @

18,

000

lb.

& 1

2 D

anfo

rth @

36

,000

lb.;

12 @

9,9

00 ft

x 3

.0”

wire

1 to

mee

t reg

ulat

ory

body

app

rova

l 10

@ 9

,071

.8 k

g an

chor

; 1,5

24 m

of 2

.25”

wire

Tan

ks

Fu

el (L

) B

alla

st W

ater

(L)

Pota

ble

Wat

er (L

) Fr

esh

Wat

er (L

) Lu

be O

il (L

)

3,15

2,99

8 29

,409

,990

1,

760,

001

63,3

41.3

0

1,48

0,00

0 6,

632,

208

783,

552

544,

632

17,2

22

1,70

3,93

5 7,

077,

550

679,

485.

20

1,67

0,23

7 60

,566

.60

Pipe

lay

M

in O

D (i

nch)

M

ax O

D (i

nch)

Te

nsio

n M

achi

ne

Tens

ion

Cap

acity

(kip

) A

& R

Hoi

st (k

ip)

Wire

Rop

e R

amp

Stat

ions

Dav

its

Min

Wat

er D

epth

(m)

Max

Wat

er D

epth

(m)

Aut

omat

ic w

eldi

ng e

quip

men

t

J-La

y: 4

”; R

eel L

ay: 2

” J-

Lay:

20”

; Ree

l Lay

: 12”

- J-

Lay:

775

kip

; Ree

l Lay

: 200

kip

77

5 3,

698.

1 m

@ 4

.5”

(for

A&

R)

- - - J-La

y: 2

,209

.8 m

; Ree

l Lay

: cas

e by

cas

e pr

ovid

ed a

s req

uire

d

8 60

3 x

Wes

tern

Gea

r LPT

45

0 - 40

00 ft

x 3

” A

utom

atic

wel

ding

( 6

for s

ingl

e jo

int a

nd 4

for

doub

le jo

int )

; ND

T x-

ray

( 1 );

fiel

d jo

int (

2)

- case

by

case

8.

534

prov

ided

as r

equi

red

4 60

2 @

150

kip

30

0 30

0 1,

524

m @

2.5

” w

eldi

ng (5

); re

pair

(1);

x-ra

y (1

); fie

ld jo

int (

1)

6 @

54.

4 M

T 5.

5 ca

se b

y ca

se

prov

ided

as r

equi

red

38

Page 49: Stinger Buoyancy

Ta

ble

2.5:

Spe

cific

atio

n su

mm

ary

of G

usto

MSC

lay

barg

e (G

usto

MSC

, 200

9)

Nam

e La

n Ji

ang

D

PV 7

500

4000

MT

Der

rick

Lay

Bar

ge

5000

T D

ual-D

raug

ht

Cla

ssifi

catio

n A

BS

A I

(P) H

eavy

Der

rick

/ La

y B

arge

A

I E

Pipe

- La

y C

rane

Ves

sel,

A

MS,

DPS

-3

AB

S A

1 (P

) Hea

vy d

erric

k /

Lay

barg

e 1

A1

CR

AN

E V

ESSE

L C

LEA

N

DK

(+) H

ELD

K-S

H D

YN

POS

AU

TRO

Pr

inci

pal d

imen

sion

s and

mai

n pa

rtic

ular

s

Leng

th o

vera

ll (m

) Le

ngth

bet

wee

n pe

rpen

dicu

lars

(m

) B

read

th m

ould

ed (m

) D

epth

at s

ide

(m)

Ope

ratio

nal d

raug

ht (m

) D

ispl

acem

ent a

t sca

ntlin

g dr

augh

t (t)

157.

5 - 48

12

.5

8 54,0

00

195

185

39.2

14

7.

00 –

8.0

0

-

160

156.

5 44

12

.6

7.7

25,7

00

183

171.

6 37

.8 /

47.0

18

.2

8.5

- T

anks

and

stor

age

capa

citie

s

Fu

el o

il M

DO

(m3)

Po

tabl

e w

ater

(m3)

Fr

esh

wat

er (m

3)

Lubr

icat

ion

oil

(m3)

B

alla

st w

ater

(m3)

2,00

0 1,

500

2,60

0 25

0 30

,000

3,00

0 - 3,

000

- 20,0

00

2,70

0 1,

500

2,10

0 40

28

,300

3,80

0 - 2,

300

- 50,5

00

Max

imum

ope

ratin

g co

nditi

ons

pipe

layi

ng

Sign

ifica

nt w

ave

heig

ht (H

s,m)

Wav

e pe

riod

(Tp,

s)

Win

d sp

eed

1 m

in. s

usta

ined

(Vw

,m/s

) W

ind

spee

d 1

hour

mea

n (V

w,m

/s)

Cur

rent

spee

d (V

c,m

/s)

2.5

6.4

- 8.5

15

.433

- 2.

058

8.2

10 –

15

- 25.7

22

1.54

3

< 3

7 –

9

20

- 1.02

9

4 7.5

– 9.

5

- 12.5

1

Pipe

-lay

syst

ems

• W

ork

deck

are

a

o

2,25

0 m

2 •

Pipe

stor

age

capa

city

o

400

- 600

sing

le jo

ints

Pipe

lay

capa

city

(sin

gle

join

ts)

o

4 in

- 48

inch

Tens

ion

capa

city

o

2

x 74

t •

A&

R c

apac

ity

o

I 65

t •

Stor

age

capa

city

o

1,

500

m

• D

eckl

oad

o

10

t/m

2 •

Stin

ger

o

flo

atin

g Ty

pe

• Pi

pe tr

ansf

er c

rane

s 2,

eac

h 40

t •

Pipe

dav

its

6, e

ach

50 t

• M

ain

firin

g lin

e •

4 au

tom

atic

wel

ding

stat

ions

1 X

-ray

stat

ion

• 2

field

coa

ting

stat

ions

2 do

uble

join

ting

lines

1 en

d pr

epar

atio

n st

atio

n fo

r sin

gles

3 su

bmer

ged

arc

wel

ding

stat

ions

1 X

-ray

stat

ion

• 1

end

prep

arat

ion

stat

ion

for d

oubl

es

• Pi

pe te

nsio

ners

2

x 27

5 t

• Pi

pela

y ca

paci

ty

o

6”

to

48”

oute

r di

amet

er (

stee

l),

max

imum

60”

incl

udin

g co

atin

g •

Mai

n fir

ing

line

o

6x

w

eldi

ng,

1x

com

bine

d N

DT/

repa

ir an

d 2

coat

ings

tatio

ns

laid

ou

t fo

r ha

ndlin

g of

si

ngle

jo

ints

(40

’) V

esse

lis s

uita

ble

for

conv

ersi

on

to

doub

le

join

ting

(80’

) •

Tens

ione

r cap

acity

o

24

0 t

with

3x

80

t

two-

track

te

nsio

ners

A&

R c

apac

ity

o

27

0 t

with

200

0 m

wire

sto

rage

ca

paci

ty

• St

inge

r

o

Fixe

d (m

echa

nica

lly

adju

stab

le)

stin

ger,

90

m

long

in

th

ree

sect

ions

• M

ain

firin

g lin

e be

low

m

aind

eck

leav

ing

unob

stru

cted

mai

ndec

k •

Pipe

dia

met

er ra

nge

o

6"

- 60

" •

A &

R sy

stem

cap

acity

o

67

5 t

• Fi

xed

Type

st

inge

r w

ith

stin

ger

adju

stm

ents

syst

em

39

Page 50: Stinger Buoyancy

Ta

ble

2.6:

Spe

cific

atio

n su

mm

ary

of C

loug

h la

y ba

rge

(Clo

ugh,

200

9)

N

ame

Ow

ner

Yea

r of

Bui

ld

Cla

ss

Flag

A

rea

of O

pera

tion

Java

Con

stru

ctor

Der

rick

Pipe

lay

Bar

ge

Clo

ugh

Sing

apor

e C

onst

ruct

or P

te L

td

1982

(200

9 up

grad

e)

AB

S (

) A1

Bar

ge

Pana

ma

Aus

trala

sia

Clo

ugh

Cha

lleng

e Sh

allo

w W

ater

Lay

barg

e C

loug

h O

ffsh

ore

Mer

mai

d M

arin

e 19

96

AB

S (

)A1

Bar

ge

Aus

tralia

A

ustra

lasi

a M

ain

Dim

ensi

ons

Leng

th o

vera

ll (m

) B

eam

(m)

Dep

th (m

) D

raft

light

(m)

Dra

ft lo

aded

(m)

GR

T (t)

N

RT

(t)

Dea

dwei

ght (

appr

ox.,

t)

129.

14

31.9

3 7.

62

2.73

5.

35

1030

5 30

91

8221

55

21.3

4 - - 12

66

367

3000

A

ccom

mod

atio

n (p

erso

ns)

188

44

Moo

ring

syst

em

Win

ches

Fo

rwar

d St

ern

Cap

acity

A

ncho

rs

• C

entra

lly c

ontro

lled

• 2

x 66

t dou

ble

drum

, var

iabl

e sp

eed,

inde

pend

ent e

lect

ric d

rive

with

w

ater

coo

led

drag

bra

kes

• 4

x 66

t sin

gle

drum

, var

iabl

e sp

eed,

ele

ctric

driv

e w

ith w

ater

coo

led

drag

bra

kes

• 14

00m

x Ø

52m

m IW

RC

8 x

20,0

00lb

Moo

rfas

t anc

hors

or 8

x 7

.5 to

nne

Stev

shar

k

• -

• 2

x 20

t (no

m) w

inch

es, 1

000m

x 3

2mm

dia

wire

, 5t S

tevs

hark

anc

hors

2

x 10

t (no

m) w

inch

es, 4

50m

x 2

8mm

dia

wire

, 2t S

tevs

hark

anc

hors

4 x

10t (

nom

) win

ches

, 450

m x

28m

m d

ia w

ire, 2

t Ste

vsha

rk a

ncho

rs

• -

• -

Pipe

lay

Equ

ipm

ent

• Fu

lly e

nclo

sed

and

air c

ondi

tione

d w

eldi

ng tu

nnel

(7 st

atio

ns) s

uita

ble

for 4

2” O

D p

ipel

ine

(inc.

coa

ting)

Man

ual,

sem

i-aut

omat

ic a

nd a

utom

atic

wel

ding

2 x

60 te

nsio

ner a

nd 1

20t A

+R w

inch

41m

bal

last

able

arti

cula

ted

stin

ger (

2 se

ctio

ns)

• M

axim

um p

ipel

ay w

ater

dep

th: 4

00m

3 of

f 20t

Luf

fing

davi

ts (o

ptio

nal)

• 15

t hyd

raul

ic te

nsio

ner

• 15

t aba

ndon

& re

cove

ry w

inch

Rea

dy ra

ck &

pip

e tra

nsfe

r sys

tem

Bow

ext

ensi

on p

latfo

rm

• H

ydra

ulic

ally

ope

rate

d lin

e up

stat

ion

• N

DT

stat

ion

with

ove

rhea

d m

onor

ail c

ontro

lled

lead

shie

ld

• St

inge

r with

hyd

raul

lic w

inch

adj

ustm

ent

• El

ectri

c w

eldi

ng m

achi

nes

• C

raw

ler c

rane

Tabl

e 2.

7: S

peci

ficat

ion

sum

mar

y of

Hyu

ndai

lay

barg

e (H

yund

ai, 2

009)

Nam

e Si

ze

Acc

omm

odat

ion

(per

sons

) T

ensi

oner

Pi

pe la

ying

Cap

a. (i

nch)

C

rane

Cap

acity

(ton

)

Hyu

ndai

-250

0 13

0m(L

) x 3

6.0m

(B) x

10.

5m(D

) 27

4 (2

)200

Kip

s + (1

)100

Kip

s = 5

00 K

ips

66

2,50

0

Hyu

ndai

-60

186m

(L) x

35m

(B) x

14m

(D)

370

(3)1

50K

ips =

450

Kip

s 60

1,

800

Hyu

ndai

-423

18

6m(L

) x 3

5m(B

) x 1

4m(D

) 37

0 (3

)150

Kip

s = 4

50 K

ips

60

-

Hyu

ndai

-289

10

6.7m

(L) x

21.

6m(B

) x 6

.9m

(D)

184

(2)7

0 K

ips =

140

Kip

s 48

-

40

Page 51: Stinger Buoyancy

Ta

ble

2.8:

Spe

cific

atio

n su

mm

ary

of N

orC

E la

y ba

rge

(Nor

CE,

200

9)

M

ain

Part

icul

ars

O

wne

r/ O

pera

tor

Flag

Y

ear B

uilt

AB

S C

lass

ifica

tion

Tonn

age

Wor

king

Dra

ft Le

ngth

W

idth

D

epth

D

eck

stre

ngth

C

lear

dec

k O

ther

stor

age

area

s B

elow

dec

k st

orag

e ar

eas

Nor

CE

Off

shor

e Pt

e Lt

d Pa

nam

a 20

09

A1,

BA

RG

E, (M

) HA

B, A

MC

C, C

RC

, ES,

PO

T, R

CM

(FIR

E)

Gro

ss 2

5,10

0, N

et 1

6,00

0 6.

60 m

14

6.30

m

42.0

0 m

10

.00

m

17 m

t / m

2 3,

300

m2

1,40

0 m

2 ab

ove

p/la

y tu

nnel

90

0 m

2 Po

wer

Mai

n G

ener

ator

Em

erge

ncy

Gen

erat

or

Pow

er M

anag

emen

t

5 x

1480

kW

die

sel w

/ AV

K D

SG 9

9 M

1/8W

Alte

rnat

or

1 x

MTU

12V

200

0 M

50 5

50 k

W G

ener

ator

c/w

St

amfo

rd M

CH

643

G A

ltern

ator

W

arts

ila In

tegr

ated

Aut

omat

ion

Syst

em w

ith in

terf

ace

to M

60

Mac

hine

ry a

nd e

quip

men

t

Air

Com

pres

sors

W

eldi

ng S

yste

m

Ant

i Hee

ling

Syst

em

3 x

1,00

0 C

FM, 1

0 ba

r Com

p A

ir C

ompr

esso

rs

To m

eet p

roje

ct re

quire

men

ts

2 x

Fran

k M

ohn,

2,3

00 m

3/hr

pum

ps

Moo

ring

Equ

ipm

ent

A

ncho

rs

Stor

m A

ncho

rs

Moo

ring

Win

ches

A

ncho

r Wire

s

8 x

12 m

t Del

ta F

lippe

r Anc

hors

1

x 9.

9mt S

peck

Anc

hor

8 x

Am

clyd

e 30

00 1

20 t

Elec

tric

Win

ches

15

30 m

x 6

5 m

m d

ia

Pipe

lay

Pi

pe D

iam

eter

N

o. o

f Sta

tions

Te

nsio

n M

achi

nes

A &

R w

inch

D

avits

6” to

max

60”

Dia

met

er

8 2 x

75m

t SA

S H

oriz

onta

l Ten

sion

ers

1 x

150

mt S

AS

win

ch

5 x

50 m

t SA

S da

vits

St

inge

r 90

m 3

Sec

tions

Arti

cula

ted

(Bal

last

able

). R

ever

sibl

e H

itch

Sect

ion

and

Inte

rcha

ngea

ble

Sled

Sec

tion

41

Page 52: Stinger Buoyancy

Ta

ble

2.9:

Spe

cific

atio

n su

mm

ary

of la

y ba

rge

H

ull

Pipe

lay

Lay

bar

ge

LOA

(m)

Bea

m (m

) D

epth

(m)

Ope

ratin

g D

raft

(m)

Min

OD

(in

ch)

Max

OD

(in

ch)

Tens

ion

Cap

acity

(kip

) M

in W

ater

D

epth

(m)

Max

Wat

er

Dep

th (m

) St

inge

r Typ

e

Asc

ot -

Forc

ados

1

Clo

ugh

- Jav

a C

onst

ruct

or

Gus

toM

SC -

DPV

750

0 G

usto

MSC

- L

an Ji

ang

Hyu

ndai

- 25

00

Hyu

ndai

- 28

9 H

yund

ai -

423

Hyu

ndai

- 60

M

cder

mot

t - D

B16

M

cder

mot

t - D

B26

M

cder

mot

t - D

B27

M

cder

mot

t - D

B30

M

cder

mot

t - D

B60

M

cder

mot

t - K

P1

Nor

CE

- DLB

V

alen

tine

- DLB

1600

V

alen

tine

- MC

V

alen

tine

- Reg

ina2

50

91.4

4 12

9.14

19

5 15

7.5

130

106.

7 18

6 18

6 12

2 12

2 12

8 12

8 18

5.93

13

9 14

6.3

120

89.9

94

27.4

3 31

.93

39.2

48

36

21

.6

35

35

30.5

32

39

48

.2

35.0

5 30

.2

42

31.7

29

26

6.09

6 7.

62

14

12.5

10

.5

6.9 14

14

8.7

8.8

8.5

8.5

15.0

3 9.

1 10

9 6 6.78

3.05

5.

35

7.00

- 8.

00

8 - - - - 4.3

4.3

- 5.5

4.

7 4.

6 8.

53 -

10.0

6 4.

6 6.

6 6.

5 4 3.83

4 - 6 4 - - - - 4 4 4 4 8 4 6 - - -

24

42

60

48

66

48

60

60

48

48

72

60

60

60

60

- - -

110

260

1200

32

0 50

0 14

0 45

0 45

0 30

0 25

0 30

0 55

0 45

0 30

0 33

0 40

0 12

0 62

.5

- - - - - - - - 4.6

5.5

6.1

5.2

8.5

5.5 - - - -

- 400

2500

10

0-15

0 - - - -

914.

4 ca

se b

y ca

se

case

by

case

ca

se b

y ca

se

case

by

case

ca

se b

y ca

se

- - - -

Arti

cula

ted

Arti

cula

ted

Trus

s Tr

uss

- - - - Tr

uss

Arti

cula

ted

Arti

cula

ted

Arti

cula

ted

Arti

cula

ted

Arti

cula

ted

Arti

cula

ted

Arti

cula

ted

Arti

cula

ted

Arti

cula

ted

42

Page 53: Stinger Buoyancy

43

Table 2.10: Effective length factor and reduction factor (API RP 2A-WSD, 2000)

Situation Effective length factor, K

Reduction factor, Cm(1)

Superstructure legs • Braced • Portal (unbraced)

1.0

K(2)

(a) (a)

Jacket legs and piling • Grouted comprise section • Ungrouted jacket legs • Ungrouted piling between

shim point

1.0 1.0 1.0

(c) (c) (b)

Deck truss web members • In-plane action • Out-of-plane action

0.8 1.0

(b)

(a) or (b)(4) Jacket braces

• Face-to-face length of main diagonals

• Face of lag to centerline of joint length of K brace

0.8

0.8

(b) or (c) (4)

(c)

Longer segment length of

• X brace • Secondary horizontals

0.9 0.7

(c) (c)

Deck truss chord members 1.0 (a), (b) or (c)(4)

Table 2.11: Safety factor to compute allowable stress (API RP 2A-WSD, 2000)

Loading Design condition Axial

tension Bending Axial

compressive Hoop

compressive 1. Where the basic allowable stresses would be used, e.g., pressures which will definitely be encountered during the installation or life of the structure.

1.67 Fy/Fb 1.67 to 2.0 2.0

2. Where the one-third increase in allowable stresses is appropriate, e.g., when considering interaction with storm loads

1.25 Fy/1.33Fb 1.25 to 1.5 1.5

Page 54: Stinger Buoyancy

44

Table 2.12: Value for Qu (API RP 2A-WSD, 2000)

Brace load Joint classification Axial tension Axial compression In-Plane

Bending Out-of-Plane Bending

K g

. Qγ)β. 2121(16+

but g. Qβ 2140≤

T/Y 30β 61802082 .γ)β.(. ++

but 613682 .β. +≤

X

23β for β≤0.9 ( )90720 .β. −+

17γ-220 for β>0.9

( )[ ] βQβγ.. 101282 ++

21705 .γ)β.( + 62205452 .γ)β..(. ++

Note: a) Qβ is a geometric factor defined by:

β).β(

.Qβ 8330130

−= for β>0.6

Qβ = 1.0 for β≤0.6

b) Qg is the gap factor defined by: [ ]3/8.212.01 DgQg −+= for g/D≥0.05

5.065.013.0 φγ+=gQ for g/D≤-0.05 where )/( yyb TFtF=φ The overlap should preferably not be less than 0.25βD. Linear interpolation between the limiting values of the above two Qg expressions may be used for -0.05<g/D<0.05 when this otherwise permissible or unavoidable. Fyb = Yield stress of brace or brace stub of present (or 0.8 times the tension the tensile strength if less), MPa

c) The Qu term for tension loading is based on limiting the capacity to first crack.

d) The X joint, axial tension, Qu term for >0.9 applies to coaxial braces (i.e., e/D ≤0.2 where e is the eccentricity of the two braces). If the braces are not coaxial (e/D>0.2) then 23β should be used over the full range of β.

Table 2.13: Value for C1, C2, and C3 (API RP 2A-WSD, 2000)

Joint Type C1 C2 C3

K joint under brace axial loading 0.2 0.2 0.3 T/Y joint under brace axial loading 0.3 0 0.8 X joint under brace axial loading*

• β≤0.9 • β=1.0

0.2 -0.2

0 0

0.5 0.2

All joint under brace moment loading 0.2 0 0.4 * Linearly interpolated values between β≤0.9 and β=1.0 for X joint under brace axial loading

Page 55: Stinger Buoyancy

45

Table 2.14: API material grades

SMYS SMTS API Grade ksi MPa ksi MPa X42 42 289 60 413 X46 46 317 63 434 X52 52 358 66 455 X56 56 386 71 489 X60 60 413 75 517 X65 65 448 77 530 X70 70 482 82 565 X80 80 551 90 620

ksi = 6.895 MPa; 1 MPa = 0.145 ksi; ksi = 1000 psi (lb/in2)

Table 2.15: Simpilfied criteria, overbend (DNV-OS-F101, 2007)

Criterion X70 X65 X60 X52 I 0.27 % 0.25 % 0.23 % 0.205 % II 0.325 % 0.305 % 0.29 % 0.26 %

Table 2.16: Relationships between various statistical measures of wave height and the

significant wave height (Barltrop N.D.P. and Adams A.J., 1991)

Standard deviation of free surface 0m 0.250 Hs

Mode height 0.499 Hs Median height 0.588 Hs Mean height 0.626 Hs Root mean square

22

nHΣ 0.706 Hs

Power weighted mean wave heights (These are of ten useful for fatigue studies)

33

nHΣ 0.776 Hs

5.45.4

nHΣ 0.869 Hs

66

nHΣ 0.952 Hs

Maximum height in a sea-state 1.800 Hs Average highest wave in 1000 waves 1.930 Hs Most probable highest wave in 1000 waves 1.860 Hs

Page 56: Stinger Buoyancy

46

Table 2.17: Transition water properties of Airy wave theory (Barltrop N.D.P. and Adams A.J., 1991)

Transitional Water ⎟⎠⎞

⎜⎝⎛ ≤<

21

251

Ld

Surface elevation: AH

Tt

LxH cos

22cos

2=⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −= πη

d = water depth z = distance above mean water level

Wavelength: L

It is useful to define L

k π2=

⎟⎠⎞

⎜⎝⎛=

LdgTL π

π2tanh

2

2

Horizontal particle velocity: u ( )[ ]( ) AkdT

dzkHu cossinh

cosh +=π

Vertical particle velocity: w ( )[ ]( ) AkdT

dzkHw sinsinh

sinh +=π

Horizontal particle acceleration: dtdu

( )[ ]( ) AkdT

dzkHdtdu sin

sinhcosh22

2 +=

π

Vertical particle acceleration: dtdw

( )[ ]( ) AkdT

dzkHdtdw cos

sinhsinh2

2

2 +−=

π

Pressure = hydrostatic and excess: P ( )[ ]( ) Akd

dzkHggzP coscosh2

cosh ++−= ρρ

Page 57: Stinger Buoyancy

47

Table 2.18: Shallow water and deep water properties of Airy wave theory (Barltrop N.D.P.

and Adams A.J., 1991)

Shallow water ⎟⎠⎞

⎜⎝⎛ ≤

251

Ld Deep water ⎟

⎠⎞

⎜⎝⎛ >

21

Ld

Surface elevation: AHTt

LxH cos

22cos

2=⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −= πη

Validity: 0025.02 <gTd 08.02 >

gTd

Wavelength: It is useful to

define L

k π2=

( ) 5.0gdTL = π2

2gTL =

Horizontal particle velocity: A

dgHu cos

2

5.0

⎟⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛= Ae

THu kz cos⎟⎠⎞

⎜⎝⎛=π

Vertical particle velocity:

Adz

THw sin1 ⎟

⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛=π Ae

THw kz sin⎟⎠⎞

⎜⎝⎛=π

Horizontal particle acceleration:

Adg

TH

dtdu sin

5.0

⎟⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛=π Ae

TH

dtdu kz sin2

2

2

⎟⎟⎠

⎞⎜⎜⎝

⎛=

π

Vertical particle acceleration:

Adz

TH

dtdw cos12

2

2

⎟⎠⎞

⎜⎝⎛ +⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

π AeT

Hdtdw kz cos2

2

2

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

π

Pressure = hydrostatic and excess:

AHggzP cos2

ρρ +−= AeHggzP kz cos2

ρρ +−=

Table 3.1: Pipelay matrixes

No. Outside diameter, in. Wall thickness, in. Concrete coating, in. 1 6 0.432 0 2 12 0.500 0 3 18 0.688 0 4 24 0.938 1.0 5 30 0.938 1.5 6 36 0.938 2.0 7 42 1.000 2.5 8 48 1.000 3.5 9 56 1.125 4.0 10 60 1.125 4.5

Page 58: Stinger Buoyancy

48

Table 3.2: The stinger aspect ratio

Stinger shape Aspect ratio Variation

2 Rectangular stinger w : h 1. 1 : 1

2. 1.5 : 1 3. 2 : 1

Table 3.3: Stinger design variations

Design variations Number of case Stinger Types 2

Stinger aspect ratio 3 Material grades of stinger 2

Stinger length (m) 3 Stinger diameter (inch) 4

Water depth (m) 5 Tensioners capacity (M.T) 7

Wave height (m) 4 Current velocity (m/s) 5

Summary 100,800

Table 3.4: Pipe ramp configuration

Ramp Radius of curvature (m)

Initial departing angle(θ) (m)

Ramp level (a) (m)

1 100 10.07 2.089 2 150 9.50 2.109 3 200 8.98 2.125 4 250 8.75 2.134 5 300 8.26 2.136 6 350 8.50 2.139 7 400 8.44 2.142 8 450 8.40 2.145 9 500 8.33 2.146

Page 59: Stinger Buoyancy

Tabl

e 3.

1: W

ave

coun

ting

H

eigh

t (m

)

15

14

13

1 2

3 2

1 12

4

15

18

11

4 11

3 29

81

94

61

27

10

1

23

164

377

412

276

135

9

8

162

770

1459

15

03

1041

56

0 8

1

85

883

2948

46

77

4564

32

56

1908

7

28

64

6 37

89

9134

12

336

1146

3 83

97

5305

6

7 35

9 35

73

1257

4 22

638

2649

8 23

585

1768

0 11

930

5

2 19

3 29

81

1410

9 31

635

4414

0 45

657

3916

6 29

944

2136

8 4

1 14

1 27

97

1535

6 38

332

5856

0 65

951

6154

3 51

207

3978

8 29

729

3

1 21

7 39

15

1951

1 45

660

6758

9 75

826

7201

9 61

964

5033

7 39

610

3067

6 2

13

1148

10

350

3235

9 56

141

6890

6 69

139

6184

3 51

900

4211

0 33

623

2669

9 21

215

1 25

281

2921

9 38

130

4956

2 57

947

5725

6 49

787

4034

0 31

650

2457

3 19

097

1494

4 11

806

9427

76

10

Perio

d (s

)1

2 3

4 5

6 7

8 9

10

11

12

13

14

15

Tota

l num

ber o

f occ

urre

nce

is 3

0,67

1,26

3,67

7

49

Page 60: Stinger Buoyancy

50

Table 5.1: Design results summary

Structure Pipelay Stability Fatigue Type 1 - 1 -

Aspect ratio 4 : 4 - 4.5 : 3 5 : 2.5 Material grade X60 - - - Stinger length 20 20 16 16

Outside diameter 56 - 42 42

Page 61: Stinger Buoyancy

51

FIGURES

Page 62: Stinger Buoyancy

52

Page 63: Stinger Buoyancy

53

Figure 2.1: The S-lay method (Miesner T. et al., 2006)

Figure 2.2: The J-lay method (Miesner T. et al., 2006)

Page 64: Stinger Buoyancy

54

Figure 2.3: The reel barge method (Rienstra, 1987)

Figure 2.4: Typical pipe-laying operation with a straight stinger in a fixed depth of water,

(Langner C., 1969)

Figure 2.5: Capability of laying pipe in any depth of water using an articulated stinger,

(Langner C., 1969)

Page 65: Stinger Buoyancy

55

Figure 2.6: Stinger components (DA, 2008d)

Figure 2.7: Sketch of the pipelay problem (Rienstra, 1987)

LAY BARGE

Barge thrust ≈ F

Maximum pipe strain in the over-bendεR = d/2R

Maximum pipe strain in the sag-bendερ = d/2ρ

Ramp angle α

SEA BOTTOM

Wat

er d

epth

H Tip

dept

h Y

Stin

ger r

adiu

s R

Tip angle β

Sag-bend radius ρ

Bottom tension

F

Stinger Length L

Figure 2.8: The angle of pipelay configuration (AIT lecturing document)

Hinge connection Brace

Roller

Ballast tank

Main Structure Hitch joint& Drawbar

Page 66: Stinger Buoyancy

56

Figure 2.9: Joint classification (API RP 2A-WSD,2000)

Page 67: Stinger Buoyancy

57

Figure 2.10: In-Plane Detailing (API RP 2A-WSD,2000)

Page 68: Stinger Buoyancy

58

Figure 2.11: Out-of-Plane joint detailing (API RP 2A-WSD,2000)

Page 69: Stinger Buoyancy

59

Figure 2.12: Terminology and geometry parameters (API RP 2A-WSD,2000)

Figure 2.13: Chord length, Lc (API RP 2A-WSD,2000)

Page 70: Stinger Buoyancy

60

Figure 2.14: Definition of wave symbols (N.D.P. Barltrop and A.J. Adams, 1991)

Page 71: Stinger Buoyancy

61

Figure 2.15: Regular wave theory selection diagram (API RP 2A-WSD,2000)

Page 72: Stinger Buoyancy

62

Figure 2.16: Rainflow analysis for tensile peaks

Figure 2.17: Rainflow analysis for compressive troughs

Page 73: Stinger Buoyancy

63

Figure 3.1: Stinger design procedure

Stinger Design VariationTo vary material grade, stinger diameter, and stinger length

Stinger Structure ArrangementTo trial structure arrangement including stinger cross-section, aspect ratio and hinge connection position

Stinger Structure DesignHydrodynamic force on structureMember force analysis and checkingStinger cross-section analysis and checking

Buoyancy Check

Pipelay Performance EvaluationStinger configurationBuoyancy requirement of stingerPipelay radiusPipelay tension

Buoyancy Check

Stinger Stability Evaluation

Fatigue DesignCritical joint selectionAccumulated fatigue damageFatigue life

No Further Development

Fail

Fail

Pass

Pass

Eval

uatio

n of

stin

ger

perf

orm

ance

Stinger Performance Chart

Page 74: Stinger Buoyancy

64

Figure 3.2: Two rectangular Types of the stinger

Figure 3.3: Definition of Metacentric height

Figure 3.4: Free body diagram of tilting angle

Type 1 Type 2

Page 75: Stinger Buoyancy

65

Section 1

Section 2

Section 3

Section 4

Connection joint

Figure 3.5: Critical joint selection (black line circle)

Page 76: Stinger Buoyancy

66

APPENDIX A

STINGER CALCULATION SHEETS

Page 77: Stinger Buoyancy

67

Page 78: Stinger Buoyancy

 

Calculation Sheet : Stinger Structure Design  

The stinger structure design is performed to determine the stinger modeling from load combinationan environmental loads by simplify and unity check in accordance with API‐RP‐2A WSD. The stingerstructure desing will provide the following infomation :

Input parameterStinger cross‐section designTubular joint designStinger buoyancy checking

1. INPUT PARAMETER

 1.1 Material data Water Concrete Steel

Unit weight ρw 1025kg

m3:= ρc 3040

kg

m3:= ρs 7850

kg

m3:=

Density γw ρw g⋅:= γc ρc g⋅:= γs ρs g⋅:=

Yield strength Fstr52

66

60

75⎛⎜⎝

⎞⎟⎠

ksi:= Fy.str st( ) Fstrst⟨ ⟩⎛

⎝⎞⎠1

:=

Ultimate strength Fu.str st( ) Fstrst⟨ ⟩⎛

⎝⎞⎠2

:=

Modulus of elasticity Es 200 GPa:=

 1.2 Environmental parameter

Water depth (use the most shallow)

dwater 30 m:=

Wave period

Twave 12 s:=

Wave height

Hmax 3m:=

Current velocity

VI 0.5ms

:=

Drag coefficient

Cd 0.65:=

Innertia coefficient

Cm 1.6:=

Stinger Structure Design 1 of 1968

Page 79: Stinger Buoyancy

 1.3 S nger data

Stinger length, m

Stinger16 18 2016 18 20

16 18 20

16 18 20

:=

No. of stinger sections

ii rows Stinger( ):= ii 4=

Section length

Lsection i p, ( ) Stingeri p, m⋅:=

Stinger length

Lstinger i p, ( )

1

i

i

Lsection i p, ( )∑=

:=

No. of rollers per section

Nor 2:=

No. of tank partition per section

Not 2:=

No. of hinge connection per section

Noh 4:=

Drawbar weight

Wd 14 tonne:=

Roller weight

Wr 3 tonne:=

Ballast pipe weight

Wbal 100kgm

:=

Tank partition weight

Wtank 300 kg:=

E&I weight

WEI 50kgm

:=

Hinge weight

Whinge 1 tonne:=

Stinger Structure Design 2 of 1969

Page 80: Stinger Buoyancy

2. STINGER CROSS SECTION DESIGN

h

B

1 2

34

Origin

 2.1 Define s nger geometry

Number of tubulars

n 4:=

Width of the stinger

Bstinger 4 m:=

Height of the stinger

hstinger 4 m:=

Length of stinger per section

Lengths p( )

LLi Lsection i p, ( )←

i 1 ii..∈for:=

No. of brace

nbrace1

4

5

5

5

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

:= nbrace2

5

6

6

6

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

:= nbrace3

5

6

6

6

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

:=

nbrace p( ) nbrace1 p 1=if

nbrace2 p 2=if

nbrace3 p 3=if

:=

Stinger Structure Design 3 of 1970

Page 81: Stinger Buoyancy

Brace distance from section 1 to section 4

Lbrace p( )

3.25

1.75

1.75

1.75

7.25

4.75

4.75

4.75

11.25

8

8

8

14.25

11.25

11.25

11.25

0

14.25

14.25

14.25

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

m p 1=if

4.25

1.75

1.75

1.75

7.25

4.75

4.75

4.75

10.25

7.583

7.583

7.583

13.25

10.416

10.416

10.416

16.25

13.25

13.25

13.25

0

16.25

16.25

16.25

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

m p 2=if

3.25

1.75

1.75

1.75

7.25

4.75

4.75

4.75

11.25

8.25

8.25

8.25

15.25

11.75

11.75

11.75

18.25

15.25

15.25

15.25

0

18.25

18.25

18.25

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

m p 3=if

:=

Diameter of tubular

Dmain D( )

D

D

D

D

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

:=

Wall thickness of tubular

tw.min D( ) CeilDmain D( )

1

1250.125 in,

⎛⎜⎝

⎞⎟⎠

:=

Diameter of brace

Dbrace.h 30 in:= Dbrace.v 30 in:=

Wall thickness of brace

tw.h.min CeilDbrace.h

850.125 in,

⎛⎜⎝

⎞⎟⎠

:= tw.h.min 0.375 in⋅=

tw.v.min CeilDbrace.v

850.125 in,

⎛⎜⎝

⎞⎟⎠

:= tw.v.min 0.375 in⋅=

 2.2 Calculate force applied on structures

Apparent wave period

Tapp Twave 1VI

g dwater⋅+

⎛⎜⎜⎝

⎞⎟⎟⎠

⋅:= Tapp 12.35 s=

Dimensionless wave steepess

DwsHmax

g Tapp2

⋅:= Dws 0.002=

Stinger Structure Design 4 of 1971

Page 82: Stinger Buoyancy

Dimensionless relative depth

Dredwater

g Tapp2

⋅:= Dre 0.02=

Shallow water wave length

L1 Tapp g dwater⋅⋅:= L1 211.827 m=

Transitional water wave length

f λ0( )g Tapp

2⋅

2π λ0⋅ m⋅tanh

2π dwater⋅

λ0 m⋅

⎛⎜⎝

⎞⎟⎠

⋅ 1−:= λ0 100:=

L2 root f λ0( ) λ0, ( ) m:= L2 183.8 m=

Deep water wave length

L3g Twave

2⋅

2π:= L3 224.752 m=

Wave length

Lwave

L1

L2

L3

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

:= Lwave

211.827

183.800

224.752

⎛⎜⎜⎝

⎞⎟⎟⎠

m=

Relative depth

Rd 1dwater

L1

125

≤if

2125

dwaterL2

<12

≤if

3dwater

L3

12

>if

:=dwater

L10.142= Rd 2=

dwaterL2

0.163=

dwaterL3

0.133=

Wave length

λ LwaveRd:= λ 183.8 m=

Angular frequency

ω2π

Tapp:= ω 0.509 Hz⋅=

Wave number

k2π

λ:= k 0.034

1m

=

Stinger Structure Design 5 of 1972

Page 83: Stinger Buoyancy

Wave particle velocity in horzontal direction

u z t, ( )Hmax

2g

dwater⋅ cos k− 0⋅ ω t⋅+( )⋅ VI+ Rd 1=if

π Hmax⋅

Tapp

cosh k z dwater+( )⋅⎡⎣ ⎤⎦sinh k dwater⋅( )

⋅ cos k− 0⋅ ω t⋅+( )⋅ VI+ Rd 2=if

π Hmax⋅

Tappe k z⋅( )

⋅ sin k− 0⋅ ω t⋅+( )⋅ Rd 3=if

:=

Wave particle velocity in vertical direction

w z t, ( )π Hmax⋅

Tapp1

zdwater

+⎛⎜⎝

⎞⎟⎠

⋅ sin k− 0⋅ ω t⋅+( )⋅ Rd 1=if

π Hmax⋅

Tapp

sinh k z dwater+( )⋅⎡⎣ ⎤⎦sinh k dwater⋅( )

⋅ sin k− 0⋅ ω t⋅+( )⋅ Rd 2=if

π Hmax⋅

Tappe k z⋅( )

⋅ sin k− 0⋅ ω t⋅+( )⋅ Rd 3=if

:=

Wave particle acceleration in horzontal direction

ax z t, ( )π Hmax⋅

Tapp

gdwater

⋅ sin k− 0⋅ ω t⋅+( )⋅ Rd 1=if

2π Hmax⋅

Tapp2

cosh k z dwater+( )⋅⎡⎣ ⎤⎦sinh k dwater⋅( )

⋅ sin k− 0⋅ ω t⋅+( )⋅ Rd 2=if

2 Hmax⋅π

Tapp

⎛⎜⎝

⎞⎟⎠

2⋅ e k z⋅( )

⋅ sin k− 0⋅ ω t⋅+( )⋅ Rd 3=if

:=

Wave particle acceleration in vertical direction

w z t, ( ) 2− Hmax⋅π

Tapp

⎛⎜⎝

⎞⎟⎠

2⋅ 1

zdwater

+⎛⎜⎝

⎞⎟⎠

⋅ cos k− 0⋅ ω t⋅+( )⋅ Rd 1=if

2π Hmax⋅

Tapp2

−sinh k z dwater+( )⋅⎡⎣ ⎤⎦

sinh k dwater⋅( )⋅ cos k− 0⋅ ω t⋅+( )⋅ Rd 2=if

2− Hmax⋅π

Tapp

⎛⎜⎝

⎞⎟⎠

2⋅ e k z⋅( )

⋅ cos k− 0⋅ ω t⋅+( )⋅ Rd 3=if

:=

Reference depth

zref 0 m:=

Drag force

FD z t, D, ( )

1

4

n

Cdρw2g

⋅ Dmain D( )n 1,

⋅ u z t, ( )⋅ u z t, ( )⋅⎛⎜⎝

⎞⎟⎠∑

=

⎡⎢⎢⎣

⎤⎥⎥⎦

g:=

Stinger Structure Design 6 of 1973

Page 84: Stinger Buoyancy

Inertia force

FI z t, D, ( )

1

4

n

Cmρwg

π Dmain D( )n 1,

⎛⎝

⎞⎠

2⋅

4⋅ ax z t, ( )⋅

⎡⎢⎢⎣

⎤⎥⎥⎦∑

=

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

g⋅:=

Morrison equation

FM z t, D, ( ) FD z t, D, ( ) FI z t, D, ( )+:=

Maximum unit lateral force

Fmax D( ) Max 0kNm

Ref FM zref t sec⋅, D, ( )←

Max Ref← Max Ref<if

t 1 20..∈for

Max

:=

DD 42in:= Fmax DD( ) 3.231kNm

⋅= t 0s 0.5s, 3 Twave⋅..:=

0 10 20 301−

0

1

2

3

4Drag forceInertia forceTotal force

Time, sec

Forc

es, k

N/m

 2.3 Member force analysis

i ‐ stinger section indicatorj ‐ brace section indicatork ‐ member indicatorp ‐ stinger length indicator

Calculate member coordinate

X coordinate

X k( ) 0m k 1= k 4=∨if

Bstinger k 2= k 3=∨if

:=

Y coordinate

Y k( ) 0m k 1= k 2=∨if

hstinger k 3= k 4=∨if

:=

Stinger Structure Design 7 of 1974

Page 85: Stinger Buoyancy

Z coordinate (Reference hint position)

Z p( )

Li j, Lbrace p( )i j,

← i 1=if

Li j, Lstinger i 1− p, ( ) Lbrace p( )i j,

+← i 1>if

j 1 nbrace p( )i

..∈for

i 1 ii..∈for

Lreturn

:=

Design factor

Fpipelay 1:=

Design force

Fdesign i j, p, D, ( ) Fmax D( ) Fpipelay⋅ Lstinger ii p, ( ) Z p( )i j, −( )⋅:=

Design moment

Mdesign i j, p, D, ( ) Fdesign i j, p, D, ( )Lstinger ii p, ( ) Z p( )i j, −

2⋅:=

 2.4 S nger cross sec on proper es

Certer line of stinger

X coordinate

XcenBstinger

2:= Xcen 2 m=

Y coordinate

Ycenhstinger

2:= Ycen 2 m=

X axis moment of inertia

Iy.stinger D tw, ( )1

4

k

π Dmain D( )k

⎛⎝

⎞⎠

4⋅ π Dmain D( )

k2tw−⎛

⎝⎞⎠

4⋅−

64

π Dmain D( )k

⎛⎝

⎞⎠

2⋅ π Dmain D( )

k2tw−⎛

⎝⎞⎠

2⋅−

4Xc(⋅+

⎡⎢⎢⎣∑

=

:=

Xcen X k( )−( )2

Y axis moment of inertia

Ix.stinger D tw, ( )1

4

k

π Dmain D( )k

⎛⎝

⎞⎠

4⋅ π Dmain D( )

k2tw−⎛

⎝⎞⎠

4⋅−

64

π Dmain D( )k

⎛⎝

⎞⎠

2⋅ π Dmain D( )

k2tw−⎛

⎝⎞⎠

2⋅−

4Yc(⋅+

⎡⎢⎢⎣∑

=

:=

Ycen Y k( )−( )2

Stinger Structure Design 8 of 1975

Page 86: Stinger Buoyancy

Total area

As.stinger D tw, ( )1

4

k

π Dmain D( )k

⎛⎝

⎞⎠

2⋅ π Dmain D( )

k2tw−⎛

⎝⎞⎠

2⋅−

4

⎡⎢⎢⎣

⎤⎥⎥⎦∑

=

:=

Radius of gyration

Ry.stinger D tw, ( )Iy.stinger D tw, ( )As.stinger D tw, ( )

:=

Rx.stinger D tw, ( )Ix.stinger D tw, ( )As.stinger D tw, ( )

:=

The first moment of area

Qy.stinger D tw, ( )1

4

k

π Dmain D( )k

⎛⎝

⎞⎠

2⋅ π Dmain D( )

k2tw−⎛

⎝⎞⎠

2⋅−

4Xcen X k( )−⋅

⎡⎢⎢⎣

⎤⎥⎥⎦∑

=

:=

Shear force of tubular

Vdesign i j, p, D, tw, ( )Dbrace.h Fdesign i j, p, D, ( )⋅

Qy.stinger D tw, ( )2

Iy.stinger D tw, ( ):=

Vdesign 1 1, 1, DD, tw.min DD( ), ( ) 36.132 kN⋅=

 2.5 Brace and tubular proper es

Area of brace

Acircle D tw, ( ) π

4D2 D 2tw−( )2

−⎡⎣

⎤⎦⋅:=

Moment of inertia of tubular

Icircle D tw, ( )π D4

π D 2tw−( )4⋅−

64:=

Radius of gyration

Rcircle D tw, ( )Icircle D tw, ( )Acircle D tw, ( )

:=

 2.6 Allowable stresses

2.6.1 Axial compression ‐ Local buckling

Critical elastic buckling coefficient

Cco 0.3:=

Stinger Structure Design 9 of 1976

Page 87: Stinger Buoyancy

Allowable local buckling stress

Fx st D, tw, ( ) min2Cco Es⋅ tw⋅

DFy.str st( ) 1.64 0.23

Dtw

⎛⎜⎝

⎞⎟⎠

0.25⋅−

⎡⎢⎢⎣

⎤⎥⎥⎦

⋅, ⎡⎢⎢⎣

⎤⎥⎥⎦

:=

Yield stress

Fy st D, tw, ( ) Fy.str st( )Dtw

60≤if

Fx st D, tw, ( ) otherwise

:=

2.6.2 Axial compression ‐ Column buckling

Cc st D, tw, ( )2π

2 Es⋅

Fy st D, tw, ( )⎛⎜⎜⎝

⎞⎟⎟⎠

0.5

:=

Allowable axial compressive stress

Fa st K, r, l, D, tw, ( )

1

K l⋅r

⎛⎜⎝

⎞⎟⎠

2

2 Cc st D, tw, ( )2⋅

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

Fy st D, tw, ( )⋅

53

3K l⋅r

⎛⎜⎝

⎞⎟⎠

8 Cc st D, tw, ( )⋅+

K l⋅r

⎛⎜⎝

⎞⎟⎠

3

8 Cc st D, tw, ( )3⋅

K l⋅r

Cc st D, tw, ( )<if

12 π2

⋅ Es⋅

23K l⋅r

⎛⎜⎝

⎞⎟⎠

2⋅

K l⋅r

Cc st D, tw, ( )≥if

:=

2.6.3 Axial compression ‐ Bending

Allowable bending stress

Fbb st D, tw, ( ) 0.75 Fy.str st( )Dtw

10340MPaFy.str st( )

≤if

0.84 1.74Fy.str st( ) D⋅

Es 0.625⋅ in⋅−

⎛⎜⎝

⎞⎟⎠

Fy.str st( )⋅10340MPaFy.str st( )

Dtw

<20680MPaFy.str st( )

≤if

0.72 0.58Fy.str st( ) D⋅

Es 0.625⋅ in⋅−

⎛⎜⎝

⎞⎟⎠

Fy.str st( ) otherwise

:=

Stinger Structure Design 10 of 1977

Page 88: Stinger Buoyancy

2.7 Bracing member design

2.7.1 Clearence between bracing member

Minimum gap at tubular joint

gmin D( ) 0.05D:=

Arc length of brace

sb D( )π D4

gmin D( )−:=

Minimum angle of arc length segment

θb.min D( )sb D( )

0.5D:=

Maximum angle of arc length segment

θb.max D( )sb D( ) 0.25D+

0.5D:=

Minimum diameter of brace

Db.min D( ) D sin 0.5 θb.min D( )⋅( )⋅:=

Maximum diameter of brace

Db.max D( ) D sin 0.5 θb.max D( )⋅( )⋅:=

2.7.2 Bracing clearence check

Check1 D( ) "Pass" Dbrace.h Dbrace.v∧( )in Db.min D( )>if

"Pass" Dbrace.h Dbrace.v∧( )in Db.max D( )<if

"Fail" otherwise

:=

Check1 42in( ) "Pass"=

2.7.3 Combined stress check

Axial compressive stress

fa.brace i j, p, D, tw, ( )Fdesign i j, p, D, ( )

Acircle D tw, ( ):=

Bending stress

fb.brace i j, p, D, tw, ( )Vdesign i j, p, D, tw, ( ) Bstinger⋅ 0.5⋅ Dbrace.h

Icircle D tw, ( ):=

Stinger Structure Design 11 of 1978

Page 89: Stinger Buoyancy

2.7.4 Brace check

Unity check

Unityb st i, j, p, D, tw, ( )fa.brace i j, p, D, tw, ( )

Fa st 1, Rcircle D tw, ( ), 3m, D, tw, ( )fb.brace i j, p, D, tw, ( )

Fbb st D, tw, ( )+:=

Check2 st p, ( )

Checki j, "Pass" Unityb st i, j, p, Dbrace.h, tw.v.min, ( ) 1≤if

"Fail" otherwise

j 1 nbrace p( )i

..∈for

i 1 ii..∈for:=

Check2 1 1, ( )

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

0

"Pass"

"Pass"

"Pass"

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

=

2.8 S nger cross sec on design

2.8.1 Combine stresses design

Axial compressive stresses

fa i j, p, D, tw, ( )Fdesign i j, p, D, ( )

2

3

k

π Dmain D( )k

⎛⎝

⎞⎠

2⋅ π Dmain D( )

k2tw−⎛

⎝⎞⎠

2⋅−

4

⎡⎢⎢⎣

⎤⎥⎥⎦∑

=

:=

Benging stresses

fb i j, p, D, tw, ( )Mdesign i j, p, D, ( ) Ycen⋅

Iy.stinger D tw, ( ):=

2.8.2 S nger cross‐sec on check

Unity check

Unity st i, j, p, D, tw, ( )fa.brace i j, p, D, tw, ( )

Fa st 1, Rcircle D tw, ( ), 4m, D, tw, ( )fb.brace i j, p, D, tw, ( )

Fbb st D, tw, ( )+:=

Check3 st p, D, ( )

Checki j, "Pass" Unity st i, j, p, Dmain D( )3

, tw.min D( ), ⎛⎝

⎞⎠

1≤if

"Fail" otherwise

j 1 nbrace p( )i

..∈for

i 1 ii..∈for:=

Check3 1 1, 42in, ( )

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

"Pass"

0

"Pass"

"Pass"

"Pass"

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

=

Stinger Structure Design 12 of 1979

Page 90: Stinger Buoyancy

3. TUBULAR JOINT DESIGN

 3.1 Tubular joint geometry

Yield stress of tubular joint

Fyc st( ) min Fu.str st( )23

Fu.str st( ), ⎛⎜⎝

⎞⎟⎠

:=

Safety factor

FS 1.2:=

Angle between tubular and brace

θc 90deg:=

Joint can thickness

twc 1in:=

 3.2 Force and moment

Horizontal external force

Fx.e p D, ( )

Fi j, Fdesign i j, p, D, ( )←

j 1 nbrace p( )i

..∈for

i 1 ii..∈for:=

Fx.e 1 42in, ( )

196.298

149.445

97.745

46.045

183.373

139.751

88.051

36.351

170.448

129.25

77.55

25.85

160.754

118.748

67.048

15.348

0

109.054

57.355

5.655

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

kN⋅=

External moment

Me p D, ( )

Fi j, Mdesign i j, p, D, ( )←

j 1 nbrace p( )i

..∈for

i 1 ii..∈for:=

Me 1 42in, ( )

5962.547

3455.913

1478.393

328.072

5203.206

3022.119

1199.699

204.477

4495.564

2584.992

930.597

103.4

3998.761

2181.996

695.625

36.452

0

1840.292

509.021

4.948

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

kN m⋅⋅=

Total Ix

Ix D tw, ( ) Ix.stinger D tw, ( ) Icircle Dbrace.h tw.h.min, ( ) Acircle Dbrace.h tw.h.min, ( ) Ycen2

⋅+⎛⎝

⎞⎠+ 2 Icircle Dbrace(⋅+:=

Dbrace.v tw.v.min, ( )Total Iy

Iy D tw, ( ) Iy.stinger D tw, ( ) 2 Icircle Dbrace.v tw.v.min, ( ) Acircle Dbrace.v tw.v.min, ( ) Xcen2

⋅+⎛⎝

⎞⎠+ 2 Icircle Dbrac(+:=

Dbrace.h tw.h.min, ( )Stinger Structure Design 13 of 1980

Page 91: Stinger Buoyancy

Lspace i j, p, ( ) Lbrace p( )i j,

Lbrace p( )i j 1+,

Lbrace p( )i j,

2+ j 1=if

Lbrace p( )i j,

Lbrace p( )i j 1−,

2

Lbrace p( )i j 1+,

Lbrace p( )i j,

2+ 2 j≤ nbrace p( )

i1−≤if

Lbrace p( )i j,

Lbrace p( )i j 1−,

2Lsection 1 p, ( ) Lbrace p( )

i j, −⎛

⎝⎞⎠

+ j nbrace p( )i

=if

:=

Total vertical force at tubular joint

Py.opb i j, p, D, tw, ( )Fdesign i j, p, D, ( )

Iy D tw, ( )tw Bstinger⋅ hstinger⋅

2⋅ Lspace i j, p, ( )⋅:=

Total horizontal force at tubular joint

Px.opb i j, p, D, tw, ( )Fdesign i j, p, D, ( )

Ix D tw, ( )tw Bstinger⋅ hstinger⋅

2⋅ Lspace i j, p, ( )⋅:=

Axial load

Pc i j, p, D, tw, ( ) max Px.opb i j, p, D, tw, ( ) Py.opb i j, p, D, tw, ( ), ( ):=

In‐Plane bending moment

Mipb i j, p, D, tw, ( ) Fdesign i j, p, D, ( ) Bstinger⋅:=

Out‐of‐Plane bending moment

Mopb i j, p, D, tw, ( ) Py.opb i j, p, D, tw, ( ) Bstinger⋅ Px.opb i j, p, D, tw, ( ) hstinger⋅+:=

 3.3 Constant parameter

Geometric parameter

β D( )Dbrace.h

D:=

γ D tw, ( ) D2 tw⋅

:=

τ tw( )tw.v.min

tw:=

ϕ st tw, ( )tw.v.min Fyc st( )⋅

tw Fu.str st( )⋅:=

Stinger Structure Design 14 of 1981

Page 92: Stinger Buoyancy

Coefficient C

Condition 1:= 1 = K joint2 = T/Y joint3 = X joint

C1 0.2 Condition 1=if

0.3 Condition 2=if

0.2 otherwise

:=

C2 0.2 Condition 1=if

0 otherwise

:=

C3 0.3 Condition 1=if

0.8 Condition 2=if

0.5 otherwise

:=

Geometric factor

Qβ D( )0.3

β D( ) 1 0.833 β D( )⋅−( )⋅β D( ) 0.6>if

1.0 otherwise

:=

Gap factor

Qg D tw, ( ) 1 0.2 1 2.8gmin D( )

D⋅−

⎛⎜⎝

⎞⎟⎠

3

+:=

 3.4 Tubular joint calcula on

Section modulus of tubular

Stubular D tw, ( )Icircle D tw, ( )

0.5D:=

A parameter

Ashear st i, j, p, D, tw, ( )FS Pc i j, p, D, tw, ( )⋅

Fu.str st( ) Acircle D tw, ( )⋅

⎛⎜⎝

⎞⎟⎠

2 FS Mipb i j, p, D, tw, ( )⋅

1.27 Fu.str st( ) Stubular D tw, ( )⋅

⎛⎜⎝

⎞⎟⎠

2

+:=

Chord load factor

Qf st i, j, p, D, tw, ( ) 1.0 C1FS Pc i j, p, D, tw, ( )⋅

Fu.str st( ) Acircle D tw, ( )⋅⋅+ C2

FS Mipb i j, p, D, tw, ( )⋅

1.27 Fu.str st( ) Stubular D tw, ( )⋅⋅− C3 Ashear st i, j, p, (⋅−:=

Qu value for axial load

Qu.a p D, tw, ( ) min 16 1.2 γ D tw, ( )+( ) β D( )1.2⋅ Qg D tw, ( )⋅ 40 β D( )1.2 Qg D tw, ( )⋅, ⎡

⎣⎤⎦ Condition 1=if

30 β D( ) Fx.e p D, ( ) 0<if

min 2.8 20 0.8 γ D tw, ( )+( ) β D( )1.6⋅+ 2.8 36 β D( )1.6

+, ⎡⎣

⎤⎦ otherwise

Condition 2=while

:=

Stinger Structure Design 15 of 1982

Page 93: Stinger Buoyancy

Qu value for bending

Qu.ipb D tw, ( ) 5 0.7 γ D tw, ( ) β D( )1.2⋅+:=

Qu.opb D tw, ( ) 2.5 4.5 0.2 γ D tw, ( )+( ) β D( )2.6⋅+:=

Chord can axial load

Pac st i, j, p, D, tw, ( ) Qu.a p D, tw, ( ) Qf st i, j, p, D, tw, ( )⋅Fyc st( ) tw

2⋅

FS sin θc( )⋅⋅:=

Brace bending moment

Ma.ipb st i, j, p, D, tw, ( ) Qu.ipb D tw, ( ) Qf st i, j, p, D, tw, ( )⋅Fyc st( ) tw

2⋅ Dbrace.v⋅

FS sin θc( )⋅⋅:=

Ma.opb st i, j, p, D, tw, ( ) Qu.opb D tw, ( ) Qf st i, j, p, D, tw, ( )⋅Fyc st( ) tw

2⋅ Dbrace.h⋅

FS sin θc( )⋅⋅:=

Effective total length

Lc D( ) 2 max 30cm 0.25D, ( ) Dbrace.v+ θc 90deg=if

2 max 30cm 0.25D, ( )Dbrace.vsin θc( )

+ otherwise

:=

r paramter

rL.c D( )Lc D( )

2.5Dβ D( ) 0.9≤if

4 β D( )⋅ 3−( )Lc D( )

1.5Dotherwise

:=

Axial load with thickness can

Pa st i, j, p, D, tw, ( ) rL.c D( ) 1 rL.c D( )−( )tw.min D( )

tw

⎛⎜⎝

⎞⎟⎠

2

⋅+⎡⎢⎢⎣

⎤⎥⎥⎦

Pac st i, j, p, D, tw, ( )⋅ tw.min D( ) tw<if

Pac st i, j, p, D, tw, ( ) otherwise

:=

 3.5 tubular joint thickness requirement

Unity check

Unityjoint st i, j, p, D, tw, ( )Pc i j, p, D, tw, ( )

Pa st i, j, p, D, tw, ( )Mipb i j, p, D, tw, ( )

Ma.ipb st i, j, p, D, tw, ( )⎛⎜⎝

⎞⎟⎠

2

+Mopb i j, p, D, tw, ( )

Ma.opb st i, j, p, D, tw, ( )+:=

Stinger Structure Design 16 of 1983

Page 94: Stinger Buoyancy

tcan st i, j, p, D, ( ) tw tw.min D( )←

UC Unityjoint st i, j, p, D, tw, ( )←

UC Unityjoint st i, j, p, D, tw, ( )←

tw tw 0.125in+←

UC 1>while

twreturn

:=

tw.can st p, D, ( )

ti j, tcan st i, j, p, D, ( )←

j 1 nbrace p( )i

..∈for

i 1 ii..∈for:=

tw.can 1 1, 42in, ( )

1.5

1.125

0.875

0.625

1.375

1

0.75

0.375

1.25

1

0.75

0.375

1.125

1

0.625

0.375

0

0.875

0.625

0.375

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

in⋅=

4. STINGER BUOYANCY CHECKING

Brace length in each line

Lbrac D( )

Bstinger 0.5 Dmain D( )1

− 0.5 Dmain D( )2

Bstinger 0.5 Dmain D( )3

− 0.5 Dmain D( )4

hstinger 0.5 Dmain D( )2

− 0.5 Dmain D( )3

hstinger 0.5 Dmain D( )4

− 0.5 Dmain D( )1

⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

:=

Total brace length

Ltot.brace i p, D, ( )

1

i

i

nbrace p( )i∑

= 1

rows Lbrac D( )( )

q

Lbrac D( )q∑

=

⋅:=

Ballast zone

Lb i p, ( ) Lsection i p, ( ) i 1.75⋅ m−:=

Volume changed by joint cans thickness

Vjc st i, p, D, tw, ( )1

i

i 1

nbrace p( )i

j 1

4

k

π Dmain D( )k

2tw−⎛⎝

⎞⎠

2⋅ π Dmain D( )

k2 tcan st i, j, p, D, ( )−⎛

⎝⎞⎠

2⋅−

4

⎡⎢⎢⎣

⎤⎥⎥⎦∑

=∑=

∑=

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

1.4⋅ m:=

1.4m

Vjc 1 4, 1, 42in, 0.375in, ( ) 4.084 m3⋅=

Stinger Structure Design 17 of 1984

Page 95: Stinger Buoyancy

 4.1 S nger buoyancy

Buoyancy area of tubular

Ab.t D tw, ( )1

4

k

0.25π Dmain D( )k

2tw−⎛⎝

⎞⎠

2⋅⎡⎢

⎣⎤⎥⎦∑

=

:=

Buoyancy area of brace

Ab.b tw.b( ) 0.25π Dbrace.v 2.tw.b−( )2⋅:=

Available buoyancy force

Fb.a st i, p, D, tw, tw.b, ( ) Ab.t D tw, ( ) Lstinger i p, ( )⋅ Ab.b tw.b( ) Ltot.brace i p, D, ( )⋅+ Vjc st i, p, D, tw, ( )−( ) γw⋅:=

 4.2 Load

4.2.1 Dead load

Tubular member self weight

Wt.self st i, p, D, tw, ( ) ρs As.stinger D tw, ( ) Lstinger i p, ( )⋅ Vjc st i, p, D, tw, ( )+( )⋅:=

Brace member self weight

Wb.self i p, D, tw.b, ( ) ρs Acircle Dbrace.h tw.b, ( )⋅ Ltot.brace i p, D, ( )⋅:=

Drawbar weight

Wtot.d i( ) Wd i⋅:=

Roller weight

Wtot.r i( ) Nor Wr⋅ i⋅:=

Total dead load

DLtot st i, p, D, tw, tw.b, ( ) Wt.self st i, p, D, tw, ( ) Wb.self i p, D, tw.b, ( )+ Wtot.d i( )+ Wtot.r i( )+:=

4.2.2 Live load

Lateral load

Wtot.lat i p, D, ( )0.2 Fmax D( )

gLstinger i p, ( )⋅:=

Ballast pipe weight

Wtot.bal i p, ( ) Lb i p, ( ) Wbal⋅ i⋅:=

Tank partition weight

Wtot.tank i( ) Not Wtank⋅ i⋅:=

Stinger Structure Design 18 of 1985

Page 96: Stinger Buoyancy

E&I weight

Wtot.EI i p, ( ) WEI Lstinger i p, ( )⋅:=

Hinge weight

Wtot.hinge i( ) Noh Whinge⋅ i⋅:=

Total live load

LLtot i p, ( ) Wtot.bal i p, ( ) Wtot.tank i( )+ Wtot.EI i p, ( )+ Wtot.hinge i( )+:=

Total buoyancy requirement per section

Fb.req st i, p, D, tw, tw.b, ( ) DLtot st i, p, D, tw, tw.b, ( ) LLtot i p, ( )+( ) g⋅:=

Fs st D, ( )

Fp i, Fb.req st i, p, D, tw.min D( ), tw.h.min, ( )←

i 1 ii..∈for

p 1 3..∈for:=

Fs 1 42in, ( )

632.308

714.432

758.307

1260.401

1416.212

1508.562

1836.663

2057.478

2189.893

2355.947

2619.526

2783.324

⎛⎜⎜⎝

⎞⎟⎟⎠

kN⋅=

Net buoyancy

Fb.net st i, p, D, tw, tw.b, ( ) Fb.a st i, p, D, tw, tw.b, ( ) Fb.req st i, p, D, tw, tw.b, ( )−:=

Fb st D, ( )

Fp i, Fb.net st i, p, D, tw.min D( ), tw.h.min, ( )←

i 1 ii..∈for

p 1 3..∈for:=

Fb 1 42in, ( )

109.627

142.824

165.482

277.356

353.288

393.403

503.234

631.72

698.798

793.082

999.264

1103.124

⎛⎜⎜⎝

⎞⎟⎟⎠

kN⋅=

Stinger Structure Design 19 of 1986

Page 97: Stinger Buoyancy

 

Calculation Sheet : Pipelay Performance Evaluation  

The pipelay performance evaluation is performed to determine the pipelay capability of the stinger byadopting Stiffenced Catenary's equation. The pipelay performance evaluation will provide thefollowing infomation :

Input parameterPipelay performance calculationPipelay static analysis results

1. INPUT PARAMETER

1.1 Material data Water Steel Concrete

Unit weight ρw 1025kg

m3:= ρs 7850

kg

m3:= ρc 3040

kg

m3:=

Density γw ρw g⋅:= γs ρs g⋅:= γc ρc g⋅:=

Yield strength Fy.pipe 65 ksi:=

Ultimate strength Fu.pipe 77 ksi:=

Modulus of elasticity Es 200 GPa:=

1.2 Pipeline and water depth data

OD(inch)

Wall thickness(inch)

Concretethickness (inch)

Water depth(m)

Pipe6 0.432 0

12 0.5 0

18 0.688 0

24 0.938 1

30 0.938 1.5

36 0.938 2

42 1 2.5

48 1 3.5

56 1.125 4

60 1.125 4.5

:= Depth3060

90

120

150

:=

No. of water depth ii rows Depth( ):= ii 5=

Water depth WD i( ) Depthi 1, m⋅:=

No. of pipes jj rows Pipe( ):= jj 10=

Pipelay Performance Evaluation 1 of 787

Page 98: Stinger Buoyancy

Outer diameter OD j( ) Pipej 1, in⋅:=

Wall thickness tw j( ) Pipej 2, in⋅:=

Conrete thickness tc j( ) Pipej 3, in⋅:=

1.3 S nger data 

Outsidediameter (inch)

Stinger length(m)

Meterialgrade

Buoyancy(kN)

Type42 16 "X 52" 169.18 476.93 773.48 1073.45

:=

No. of stinger sections kk 4:=

Net bouyancy of stinger Fstinger r n, ( ) Typer n, kN⋅:=

Section length Lsection r( ) Typer 2, m⋅:=

Stinger length Lstinger r k, ( )

1

k

k

Lsection r( )∑=

:=

1.4 Pipe ramp configura on

Radius of curvature(m)

Initial departingangle (deg)

Ramp level(m)

Ramp100 10.07 2.089150 9.5 2.109

200 8.98 2.125

250 8.75 2.134

300 8.26 2.136

350 8.5 2.139

400 8.44 2.142

450 8.4 2.145

500 8.33 2.146

:=

Initial departing angle θramp Rover( ) linterp Ramp 1⟨ ⟩Ramp 2⟨ ⟩

, Rover

m,

⎛⎜⎝

⎞⎟⎠

deg⋅:=

Ramp level Hramp Rover( ) linterp Ramp 1⟨ ⟩Ramp 3⟨ ⟩

, Rover

m,

⎛⎜⎝

⎞⎟⎠

m⋅:=

Pipelay Performance Evaluation 2 of 788

Page 99: Stinger Buoyancy

1.5 Pipeline proper es

Steel area As j( ) 0.25π OD j( )2 OD j( ) 2 tw j( )−( )2−⎡⎣

⎤⎦:=

Concrete area Ac j( ) 0.25π OD j( ) 2 tc j( )⋅+( )2 OD j( )2−⎡⎣

⎤⎦:=

Total area Atot j( ) 0.25π OD j( ) 2 tc j( )+( )2:=

Moment of inertia I j( )π OD j( ) 2 tc j( )⋅+( )4 OD j( ) 2 tw j( )−( )4

−⎡⎣

⎤⎦

64:=

Gravitational force Fg j( ) As j( ) γs⋅ Ac j( ) γc⋅+:=

Buoyancy force Fb j( ) Atot j( ) γw⋅:=

Net force Fpipe j( ) Fg j( ) Fb j( )−:=

Allowalbe tension force(material property)

Tmax.1 j( ) 0.85 0.6Fy.pipe( )⋅ As j( )⋅:=

Allowable bending strain εb75% Fy.pipe⋅

Es:=

2. PIEPLAY PERFORMANCE CALCULATION

2.1 Installa on parameters

Design factor of overbend criteria DFover 0.85:=

Design factor of sagbend criteria DFsag 0.72:=

Minimum radius of curvature Rmin 100 m:=

Maximum radius of curvature Rmax 500 m:=

Allowalbe tension force(tensioner capacity)

Ttensioner

100

125

150

175

200

225

250

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

tonnef:=

Tmax.2 s( ) Ttensioners:=

Pipelay Performance Evaluation 3 of 789

Page 100: Stinger Buoyancy

2.2 Installa on parameter calcula on

Minimum overbend radius Rover j( ) Ceil RminEs OD j( )⋅

2 DFover⋅ Fy.pipe⋅Rmin<if

RmaxEs OD j( )⋅

2 DFover⋅ Fy.pipe⋅Rmax>if

Es OD j( )⋅

2 DFover⋅ Fy.pipe⋅otherwise

10 m⋅, ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

Minimum required tension Tre j L, ( ) Fpipe j( ) L⋅OD j( )2 εb⋅ L⋅

⎛⎜⎝

⎞⎟⎠

21+

⎡⎢⎢⎣

⎤⎥⎥⎦

0.5

⋅:=

2.3 Geometrical check

Inflection point(ref. to seabed)

INF r i, j, k, ( ) WD i( ) Hramp Rover j( )( )+ Rover j( ) 1 cosLstinger r k, ( )

Rover j( )

⎛⎜⎝

⎞⎟⎠

−⎛⎜⎝

⎞⎟⎠

⋅−:=

Departing angle θdep r i, j, k, ( ) acosINF r i, j, k, ( ) WD i( )− Rover j( ) cos θramp Rover j( )( )( )⋅+

Rover j( )

⎛⎜⎝

⎞⎟⎠

:=

2.4 Parameter of S ffened catenary method

ε j H, ( )Es I j( )⋅ Fpipe j( )( )2

H3:= rr j H, ( )

Rover j( ) Fpipe j( )⋅

H:= dsh i j, H, ( )

WD i( ) Fpipe j( )⋅

H:=

A i j, H, ( ) rr j H, ( ) cos θramp Rover j( )( )( )⋅ dsh i j, H, ( )−12

ε j H, ( )rr j H, ( )

⎛⎜⎝

⎞⎟⎠

2⋅+ 1−:= α j H, ( ) ε j H, ( )−:=

λ j H, ( )ε j H, ( )

134

ε j H, ( )( )2⋅+

ε j H, ( )( )5−:=

Hstart

5

10

20

200

300

400

600

1000

1400

1600

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

kN:= Hinterval

0.01

0.01

0.01

0.1

0.1

0.1

1

1

1

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

kN:= μstart

1.25

1.4

1.2

0.9

0.8

0.7

0.6

0.6

0.6

0.6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

Hst j( ) Hstartj:= Hin j( ) Hintervalj

:= μst j( ) μstartj:=

Pipelay Performance Evaluation 4 of 790

Page 101: Stinger Buoyancy

2.5 Installa on parameter es ma on

INST r s, i, j, ( ) μ μst j( )←

H Hst j( )←

θcat 100deg←

k 1←

n 4←

LHS 2←

RHS 1←

LHS 1 μ λ j H, ( )−( )2+⎡⎣ ⎤⎦

1−

4⎡⎢⎢⎣

⎤⎥⎥⎦

2

RHSA i j, H, ( ) A i j, H, ( )( )2 4 rr j H, ( ) cos α j H, ( )( ) μ λ j H, ( )−( ) sin α j H, ( )( )⋅−[ ]⋅ cos α j((⋅+⎡⎣+

2 rr j H, ( ) cos α j H, ( )( ) μ λ j H, ( )−( ) sin α j H, ( )( )⋅−[ ]⋅←

H H Hin j( )+←

LHS RHS− 0.001≥while

θcat atan μ λ j H, ( )−( )←

Lμ H⋅

Fpipe j( )Lstinger r k, ( )−←

μ μ 0.001−←

k k 1+←

n n 1+←

break k kk>if

μ μst j( )←

H Hst j( )←

θcat 100deg←

H Tmax.1 j( )> H Tmax.2 s( )>∨ L Fpipe j( )⋅ Fstinger r n, ( )>( )∨if

θcat θdep r i, j, k, ( )>while

INST1 k←

break k kk>if

H Tre j L, ( )←

θcat atan μ λ j H, ( )−( )←

Lμ H⋅

Fpipe j( )Lstinger r k, ( )−←

H Tre j L, ( )<if

INST2

Lstinger r k, ( )

m←

INST3

Rover j( )

m←

INST4HkN

:=

...( )... ...+ ... cos α j H, ( )( )⋅−⎡⎣ ⎤⎦0.5

Pipelay Performance Evaluation 5 of 791

Page 102: Stinger Buoyancy

INST5

θdep r i, j, k, ( )

deg←

INST6

θcatdeg

INST7INF r i, j, k, ( )

m←

INST8Lm

INST9

L Fpipe j( )⋅

kN←

INST10

Fstinger r n, ( )

kN←

INST11 μ←

INSTreturn

INST1 ‐ No. of stinger sectionINST2 ‐ Length of stinger, mINST3 ‐ Overbend radius, mINST4 ‐ Top tension, kNINST5 ‐ Departing angle, degINST6 ‐ Stiffened catenary angle, degINST7 ‐ Inflection point ref. to seabed, mINST8 ‐ Free span length, mINST9 ‐ Buoyancy requirement, kNINST10 ‐ Buoyancy of stinger, kNINST11 ‐ μ

Param r s, a, ( )

Mati j, INST r s, i, j, ( )a← INST r s, i, j, ( )1 kk≤if

j 1 jj..∈for

i 1 ii..∈for

Matreturn

:=r = Stinger configulations = Tensioner capacitya = Interested parameter

3. PIPELAY STATIC ANALYSIS RESULTS

3.1 Overall pipelay performance envelope (No. of s nger sec ons)

Param 1 3, 1, ( ) =

1

2

2

2

2

1

1

2

2

2

1

1

2

2

2

2

4

4

0

0

3

4

0

0

0

2

4

0

0

0

2

0

0

0

0

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

3.2 Barge top tension

Param 1 3, 4, ( ) kN⋅

700

224

342

462

580

454

1043

269

370

471

447

1363

497

700

912

1425

819

1337

0

0

847

1218

0

0

0

1228

1427

0

0

0

1350

0

0

0

0

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

kN⋅=

Pipelay Performance Evaluation 6 of 792

Page 103: Stinger Buoyancy

3.3 Free span length 

Param 1 3, 8, ( ) m⋅

425

334

525

719

910

328

761

489

680

871

231

698

562

799

1042

184

194

330

0

0

135

230

0

0

0

149

243

0

0

0

150

0

0

0

0

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

m⋅=

3.4 Remaining buoyancy

Param 1 3, 10, ( ) Param 1 3, 9, ( )−( ) kN⋅

88

413

376

339

302

116

45

397

366

334

121

24

360

311

260

211

793

598

0

0

563

714

0

0

0

242

690

0

0

0

197

0

0

0

0

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

kN⋅=

Pipelay Performance Evaluation 7 of 793

Page 104: Stinger Buoyancy

Calculation Sheet : Stinger Stability Evaluation

The stinger stability evaluation is performed to verify the static flatation condition of stinger. The stinstability evaluation will provide the following information:

Inputa parameterCenter of gravity (CG) and stinger weight calculationCenter of buoyancy (CB) and buoyancy force calculationMetacentric height calculation (GM)

STEP I INPUT PARAMETER

1.1 Material data

Density

Specific weight

seawater steel

ρw 1025kg

m3:= ρs 7850

kg

m3:=

γw ρw g⋅:= γs ρs g⋅:=

1.2 Stinger coordianate

Type1.4.16...\4-4 Type 1.xls

:= Type2.4.16...\4-4 Type 2.xls

:= Type3.4.16...\4-4 Type 3.xls

:=

Type1.4.18...\4-4 Type 1.xls

:= Type2.4.18...\4-4 Type 2.xls

:= Type3.4.18...\4-4 Type 3.xls

:=

Type1.4.20...\4-4 Type 1.xls

:= Type2.4.20...\4-4 Type 2.xls

:= Type3.4.20...\4-4 Type 3.xls

:=

Type1.4.22...\4-4 Type 1.xls

:= Type2.4.22...\4-4 Type 2.xls

:= Type3.4.22...\4-4 Type 3.xls

:=

Type1.4.5.16...\4.5-3 Type 1.xls

:= Type2.4.5.16...\4.5-3 Type 2.xls

:= Type3.4.5.16....\4.5-3Type 3.xls

:=

Type1.4.5.18...\4.5-3 Type 1.xls

:= Type2.4.5.18...\4.5-3 Type 2.xls

:= Type3.4.5.18....\4.5-3Type 3.xls

:=

Type1.4.5.20...\4.5-3 Type 1.xls

:= Type2.4.5.20...\4.5-3 Type 2.xls

:= Type3.4.5.20....\4.5-3Type 3.xls

:=

Stinger Stability Evaluation 1 of 1194

Page 105: Stinger Buoyancy

Type1.4.5.22...\4.5-3 Type 1.xls

:= Type2.4.5.22...\4.5-3 Type 2.xls

:= Type3.4.5.22...\4.5-3Type 3.xls

:=

Type1.5.16...\5-2.5 Type 1.xls

:= Type2.5.16...\5-2.5 Type 2.xls

:= Type3.5.16...\5-2.5 Type 3.xls

:=

Type1.5.18...\5-2.5 Type 1.xls

:= Type2.5.18...\5-2.5 Type 2.xls

:= Type3.5.18...\5-2.5 Type 3.xls

:=

Type1.5.20...\5-2.5 Type 1.xls

:= Type2.5.20...\5-2.5 Type 2.xls

:= Type3.5.20...\5-2.5 Type 3.xls

:=

Type1.5.22...\5-2.5 Type 1.xls

:= Type2.5.22...\5-2.5 Type 2.xls

:= Type3.5.22...\5-2.5 Type 3.xls

:=

Type4.4.16...\4-4 Type 4.xls

:= Type4.5.16...\5-2.5 Type 4.xls

:= Type5.90.16...\90-5 Type 5.xls

:=

Type4.4.18...\4-4 Type 4.xls

:= Type4.5.18...\5-2.5 Type 4.xls

:= Type5.90.18...\90-5 Type 5.xls

:=

Type4.4.20...\4-4 Type 4.xls

:= Type4.5.20...\5-2.5 Type 4.xls

:= Type5.90.20...\90-5 Type 5.xls

:=

Type4.4.22...\4-4 Type 4.xls

:= Type4.5.22...\5-2.5 Type 4.xls

:= Type5.90.22...\90-5 Type 5.xls

:=

Type4.4.5.16....\4.5-3Type 4.xls

:= Type5.60.16...\60-5 Type 5.xls

:=

Type4.4.5.18....\4.5-3Type 4.xls

:= Type5.60.18...\60-5 Type 5.xls

:=

Type4.4.5.20....\4.5-3Type 4.xls

:= Type5.60.20...\60-5 Type 5.xls

:=

Type4.4.5.22....\4.5-3Type 4.xls

:= Type5.60.22...\60-5 Type 5.xls

:=

Stinger Stability Evaluation 2 of 1195

Page 106: Stinger Buoyancy

Origin x(m)

Origin y(m)

Origin z(m)

End x(m)

End y(m)

End z(m)

Outerdiamter(inch)

Wallthickness

(inch)

Type 1( )

4 5 6 7 8 9 10 11 12

12

3

4

5

6

7

8

9

10

11

12

13

14

0 "X1" "Y1" "Z1" "X2" "Y2" "Z2" 0 01 0 0.533 0 0 0.533 16 42 0.375

2 4 0.533 0 4 0.533 16 42 0.375

3 0 4.533 0 0 4.533 16 42 0.375

4 4 4.533 0 4 4.533 16 42 0.375

5 0.533 0.533 1.75 3.467 0.533 1.75 30 0.375

6 0.533 0.533 4.75 3.467 0.533 4.75 30 0.375

7 0.533 0.533 8 3.467 0.533 8 30 0.375

8 0.533 0.533 11.25 3.467 0.533 11.25 30 0.375

9 0.533 0.533 14.25 3.467 0.533 14.25 30 0.375

10 0.533 4.533 1.75 3.467 4.533 1.75 30 0.375

11 0.533 4.533 4.75 3.467 4.533 4.75 30 0.375

12 0.533 4.533 8 3.467 4.533 8 30 0.375

13 0.533 4.533 11.25 3.467 4.533 11.25 30 ...

=

Origin x

Origin y

Origin z

End x

End y

End z

Outer diamter

Wall thickness

x1 p i, ( ) Type p( )i 5, m⋅:=

y1 p i, ( ) Type p( )i 6, m⋅:=

z1 p i, ( ) Type p( )i 7, m⋅:=

x2 p i, ( ) Type p( )i 8, m⋅:=

y2 p i, ( ) Type p( )i 9, m⋅:=

z2 p i, ( ) Type p( )i 10, m⋅:=

OD p i, ( ) Type p( )i 11, in⋅:=

tw p i, ( ) Type p( )i 12, in⋅:=

1.3 Stinger data

Section length

Ballast zone

Lsection p( ) Type p( )2 10, m:= Lsection 1( ) 16 m=

Lb p( ) Lsection p( ) 1.75m−:=

No. of rollers per setion

No. of tank partition persection

Nor 2:=

Not 2:=

Stinger Stability Evaluation 3 of 1196

Page 107: Stinger Buoyancy

No. of hinge connectionper section

Noh 4:=

Drawbar weight

Roller weight

Ballast pipe weight

Tank partition weight

E&I weight

Hinge weight

Wd 14tonne:=

Wr 3tonne:=

Wbal 100kgm

:=

Wtank 300kg:=

WEI 50kgm

:=

Whing 1tonne:=

STEP II CENTER OF GRAVITY (CG) AND STINGER WEIGHT CALCULATION

Rotational matrices Rz θ( )

cos θ( )

sin θ( )

0

sin θ( )−

cos θ( )

0

0

0

1

⎛⎜⎜⎝

⎞⎟⎟⎠

:=

Start Coordinate P1 p i, θ, ( ) Rz θ( )

x1 p i, ( )

y1 p i, ( )

z1 p i, ( )

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

⋅:= P1x p i, θ, ( ) P1 p i, θ, ( )1

:=

P1y p i, θ, ( ) P1 p i, θ, ( )2

:=

P2 p i, θ, ( ) Rz θ( )

x2 p i, ( )

y2 p i, ( )

z2 p i, ( )

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

⋅:= P2x p i, θ, ( ) P2 p i, θ, ( )1

:=End coordinate

P2y p i, θ, ( ) P2 p i, θ, ( )2

:=

Centroid of members

Length of members

Stinger cross-section area

Stinger volume

Pg p i, θ, ( )12

P2 p i, θ, ( ) P1 p i, θ, ( )+( ):=

Lm p i, θ, ( ) Rz θ( ) x2 p i, ( ) x1 p i, ( )−( )2 y2 p i, ( ) y1 p i, ( )−( )2+ (+⎡

⎣⋅:=

Aste p i, ( ) 0.25 π⋅ OD p i, ( )2 OD p i, ( ) 2 tw p i, ( )−( )2−⎡

⎣⎤⎦:=

Vste p i, θ, ( )0

Lm p i, θ, ( )

LAste p i, ( )⌠⎮⌡

d:=

Roller weight Wtot.r Nor Wr⋅:=

Stinger Stability Evaluation 4 of 1197

Page 108: Stinger Buoyancy

Ballast pipe weight

Tank partition weight

E&I weight

Hinge weight

Weight

Wtot.bal p( ) Lb p( ) Wbal⋅:=

Wtot.tank Not Wtank⋅:=

Wtot.EI p( ) WEI Lsection p( )⋅:=

Wtot.hing Noh Whing⋅:=

Ww p( ) Wtot.r Wtot.bal p( )+ Wtot.tank+ Wtot.EI p( )+ Wtot.hing+( ) g⋅:=

Stinger weight

Total stinger weight

Center of gravity (C.G.)

Ws p i, θ, ( ) γs Vste p i, θ, ( )⋅:=

Ws.tot p i0, i, θ, ( )

i0

i

i

Ws p i, θ, ( )∑=

Ww p( )+:=

CG p i0, i, θ, ( )i0

i

i

Ws p i, θ, ( ) Pg p i, θ, ( )⋅( )∑=

i0

i

i

Ws p i, θ, ( )∑=

:=

STEP III CENTER OF BUOYANCY (CB) AND BUOYANCY FORCE CALCULATION

Stinger Stability Evaluation 5 of 1198

Page 109: Stinger Buoyancy

Status of submerged distance1 Fully float2 Bottom segment submerged3 Top segment submerged4 Fully sybmerged

Status p i, θ, z, ( ) 1 z P1y p i, θ, ( ) 0.5 OD p i, ( )−≤if

2 P1y p i, θ, ( ) 0.5 OD p i, ( )− z< P1y p i, θ, ( )≤if

3 P1y p i, θ, ( ) z< P1y p i, θ, ( ) 0.5 OD p i, ( )+<if

4 z P1y p i, θ, ( ) 0.5 OD p i, ( )+≥if

:=

The height of the triangle portion

Chord angle

Segment area

Submerged area

dg p i, θ, z, ( ) P1y p i, θ, ( ) z− Status p i, θ, z, ( ) 2=if

z P1y p i, θ, ( )− Status p i, θ, z, ( ) 3=if

0.5 OD p i, ( )( ) otherwise

:=

θg p i, θ, z, ( ) 2 acosdg p i, θ, z, ( )

0.5 OD p i, ( )

⎛⎜⎝

⎞⎟⎠

:=

Asegment p i, θ, z, ( )0.5 OD p i, ( ) sin 0.5 θg p i, θ, z, ( )( )⋅( )−

0.5 OD p i, ( ) sin 0.5 θg p i, θ, z, ( )( )⋅

x0.5 OD p i, ( ) cos 0.5 θg p i, θ, z, ( )( )⋅

0.5 OD p i, ( )( )2 x2−y1

⌠⎮⎮⌡

d⌠⎮⌡

d:=

Atubular p i, θ, z, ( ) 0m2 Status p i, θ, z, ( ) 1=if

Asegment p i, θ, z, ( ) Status p i, θ, z, ( ) 2=if

0.25π OD p i, ( )2⋅ Asegment p i, θ, z, ( )− Status p i, θ, ,(if

0.25π OD p i, ( )2⋅ Status p i, θ, z, ( ) 4=if

:=

Cross-section area of vertical brace

Cross-section area of horizontal brace

Tubular length

Abrace.v p i, ( ) 0.25π OD p i, ( )2⋅:=

Abrace.h p i, θ, z, ( ) Atubular p i, θ, z, ( ):=

Ltubular p i, θ, z, ( ) 0m z P1y p i, θ, ( ) 0.5 OD p i, ( )−<if

Lm p i, θ, ( ) otherwise

:=

Buoyancy of tubular Fb.tubular p i, θ, z, ( ) Atubular p i, θ, z, ( ) Ltubular p i, θ, z, ( )⋅ γw⋅:=

Start Coordinatefor horizontal brace

P1.h1 p i, θ, ( ) Rz θ( )

x1 p i, ( )

y1 p i, ( ) 0.5 OD p i, ( )⋅−

z1 p i, ( )

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

⋅:= P1.h2 p i, θ, ( ) Rz θ( )

x1 p i, ( )

y1 p i, ( ) 0.5 OD⋅+

z1 p i, ( )

⎛⎜⎜⎜⎝

⋅:=

End Coordinatefor horizontal brace

P2.h1 p i, θ, ( ) Rz θ( )

x2 p i, ( )

y2 p i, ( ) 0.5 OD p i, ( )⋅−

z2 p i, ( )

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

⋅:= P2.h2 p i, θ, ( ) Rz θ( )

x2 p i, ( )

y2 p i, ( ) 0.5 OD⋅+

z2 p i, ( )

⎛⎜⎜⎜⎝

⋅:=

Stinger Stability Evaluation 6 of 1199

Page 110: Stinger Buoyancy

Start Coordinatefor vertical brace

P1.v1 p i, θ, ( ) Rz θ( )

x1 p i, ( ) 0.5 OD p i, ( )⋅−

y1 p i, ( )

z1 p i, ( )

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

⋅:= P1.v2 p i, θ, ( ) Rz θ( )

x1 p i, ( ) 0.5 OD⋅+

y1 p i, ( )

z1 p i, ( )

⎛⎜⎜⎜⎝

⋅:=

End Coordinatefor vertical brace

P2.v1 p i, θ, ( ) Rz θ( )

x2 p i, ( ) 0.5 OD p i, ( )⋅−

y2 p i, ( )

z2 p i, ( )

⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠

⋅:= P2.v2 p i, θ, ( ) Rz θ( )

x2 p i, ( ) 0.5 OD⋅+

y2 p i, ( )

z2 p i, ( )

⎛⎜⎜⎜⎝

⋅:=

Volumn of horizontal cone

Vcone.h1 p i, θ, z, ( )16

π

z P1.h1 p i, θ, ( )2

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

z P1.h1 p i, θ, ( )2

sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅:=

Vcone.h2 p i, θ, z, ( )13

π 0.5 OD p i, ( )( )2⋅

0.5 OD p i, ( )sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅16

π

P1.h2 p i, θ, ( )2

z−

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

P1.h2 p i, θ, ( )2

z−

sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅−:=

Vcone.h3 p i, θ, z, ( ) Abrace.v p i, ( ) Lm p i, θ, ( )⋅13

π 0.5 OD p i, ( )( )2⋅

0.5 OD p i, ( )sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅−16

π

z P2.h1 p i, θ, ( )2

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

z −⎛⎜⎝

⋅+:=

Vcone.h4 p i, θ, z, ( ) Abrace.v p i, ( ) Lm p i, θ, ( )⋅16

π

P2.h2 p i, θ, ( )2

z−

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

P2.h2 p i, θ, ( )2

z−

sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅−:=

Vcone.h5 p i, θ, z, ( ) Abrace.h p i, θ, z, ( ) Lm p i, θ, ( )⋅:=

Vcone.h6 p i, θ, z, ( ) Abrace.v p i, ( ) min Lm p i, θ, ( ) z P1 p i, θ, ( )2

−, ⎛⎝

⎞⎠

⋅:=

Vcone.h7 p i, θ, ( ) Abrace.v p i, ( ) Lm p i, θ, ( )⋅( ):=

Fb.brace.h1 p i, θ, z, ( ) 0m3 z P1.h1 p i, θ, ( )2

<if

Vcone.h5 p i, θ, z, ( ) P1.h1 p i, θ, ( )2

P2.h1 p i, θ, ( )2

=if

Vcone.h1 p i, θ, z, ( ) P1.h1 p i, θ, ( )2

z≤ P1 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P2.h1 p i, θ, ( )2

<⎛⎝

⎞⎠

∧if

Vcone.h2 p i, θ, z, ( ) P1 p i, θ, ( )2

z≤ P1.h2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P2.h1 p i, θ, ( )2

<⎛⎝

⎞⎠

∧if

Vcone.h3 p i, θ, z, ( ) P2.h1 p i, θ, ( )2

z≤ P2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P1.h2 p i, θ, ( )2

>⎛⎝

⎞⎠

∧if

Vcone.h4 p i, θ, z, ( ) P2 p i, θ, ( )2

z≤ P2.h2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P1.h2 p i, θ, ( )2

>⎛⎝

⎞⎠

∧if

Vcone.h5 p i, θ, z, ( ) P1.h1 p i, θ, ( )2

z≤ P1.h2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P2.h1 p i, θ, ( )2

>⎛⎝

⎞⎠

∧if

Vcone.h7 p i, θ, ( ) z P2.h2 p i, θ, ( )2

>if

:=

Stinger Stability Evaluation 7 of 11100

Page 111: Stinger Buoyancy

Fb.brace.h2 p i, θ, z, ( ) 0m3 z P1.h1 p i, θ, ( )2

<if

Vcone.h6 p i, θ, z, ( ) P1.h1 p i, θ, ( )2

P1.h2 p i, θ, ( )2

=if

Vcone.h1 p i, θ, z, ( ) P1.h1 p i, θ, ( )2

z≤ P1 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.h2 p i, θ, z, ( ) P1 p i, θ, ( )2

z≤ P1.h2 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.h3 p i, θ, z, ( ) P2.h1 p i, θ, ( )2

z≤ P2 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.h4 p i, θ, z, ( ) P2 p i, θ, ( )2

z≤ P2.h2 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.h6 p i, θ, z, ( ) P1.h2 p i, θ, ( )2

z≤ P2.h1 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.h7 p i, θ, ( ) z P2.h2 p i, θ, ( )2

>if

:=

Buoyancy of horizontal brace

Fb.brace.h p i, θ, z, ( ) Abrace.h p i, θ, z, ( ) Lm p i, θ, ( )⋅ γw⋅ θ 0deg=if

Fb.brace.h1 p i, θ, z, ( ) γw⋅ P1.h2 p i, θ, ( )2

P2.h1 p i, θ, ( )2

>⎛⎝

⎞⎠

0deg θ< 90deg<( )∧if

Fb.brace.h2 p i, θ, z, ( ) γw⋅ P1.h2 p i, θ, ( )2

P2.h1 p i, θ, ( )2

≤⎛⎝

⎞⎠

0deg θ< 90deg<( )∧if

Abrace.v p i, ( ) min Lm p i, θ, ( ) max z P1 p i, θ, ( )2

− 0m, ⎛⎝

⎞⎠

, ⎛⎝

⎞⎠

⋅ γw⋅ θ 90deg=if

:=

Volumn of vertical cone

Vcone.v1 p i, θ, z, ( )16

π

z P1.v1 p i, θ, ( )2

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

z P1.v1 p i, θ, ( )2

sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅:=

Vcone.v2 p i, θ, z, ( )13

π 0.5 OD p i, ( )( )2⋅

0.5 OD p i, ( )sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅16

π

P1.v2 p i, θ, ( )2

z−

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

P1.v2 p i, θ, ( )2

z−

sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅−:=

Vcone.v3 p i, θ, z, ( ) Abrace.v p i, ( ) Lm p i, θ, ( )⋅13

π 0.5 OD p i, ( )( )2⋅

0.5 OD p i, ( )sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅−16

π

z P2.v1 p i, θ, ( )2

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

z −⎛⎜⎝

⋅+:=

Vcone.v4 p i, θ, z, ( ) Abrace.v p i, ( ) Lm p i, θ, ( )⋅16

π

P2.v2 p i, θ, ( )2

z−

cos θ( )

⎛⎜⎝

⎞⎟⎠

2

P2.v2 p i, θ, ( )2

z−

sin θ( )

⎛⎜⎝

⎞⎟⎠

⋅−:=

Vcone.v5 p i, θ, z, ( ) Abrace.h p i, θ, z, ( ) Lm p i, θ, ( )⋅:=

Vcone.v6 p i, θ, z, ( ) Abrace.v p i, ( ) min Lm p i, θ, ( ) z P1 p i, θ, ( )2

−, ⎛⎝

⎞⎠

⋅:=

Vcone.v7 p i, θ, ( ) Abrace.v p i, ( ) Lm p i, θ, ( )⋅( ):=

Stinger Stability Evaluation 8 of 11101

Page 112: Stinger Buoyancy

Fb.brace.v1 p i, θ, z, ( ) 0m3 z P1.v1 p i, θ, ( )2

<if

Vcone.v6 p i, θ, z, ( ) P1.v1 p i, θ, ( )2

P1.v2 p i, θ, ( )2

=if

Vcone.v1 p i, θ, z, ( ) P1.v1 p i, θ, ( )2

z≤ P1 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.v2 p i, θ, z, ( ) P1 p i, θ, ( )2

z≤ P1.v2 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.v3 p i, θ, z, ( ) P2.v1 p i, θ, ( )2

z≤ P2 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.v4 p i, θ, z, ( ) P2 p i, θ, ( )2

z≤ P2.v2 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.v6 p i, θ, z, ( ) P1.v2 p i, θ, ( )2

z≤ P2.v1 p i, θ, ( )2

≤⎛⎝

⎞⎠

if

Vcone.v7 p i, θ, ( ) z P2.v2 p i, θ, ( )2

≥if

:=

Fb.brace.v2 p i, θ, z, ( ) 0m3 z P1.v1 p i, θ, ( )2

<if

Vcone.v5 p i, θ, z, ( ) P1.v1 p i, θ, ( )2

P2.v1 p i, θ, ( )2

=if

Vcone.v1 p i, θ, z, ( ) P1.v1 p i, θ, ( )2

z≤ P1 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P2.v1 p i, θ, ( )2

<⎛⎝

⎞⎠

∧if

Vcone.v2 p i, θ, z, ( ) P1 p i, θ, ( )2

z≤ P1.v2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P2.v1 p i, θ, ( )2

<⎛⎝

⎞⎠

∧if

Vcone.v3 p i, θ, z, ( ) P2.v1 p i, θ, ( )2

z≤ P2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P1.v2 p i, θ, ( )2

>⎛⎝

⎞⎠

∧if

Vcone.v4 p i, θ, z, ( ) P2 p i, θ, ( )2

z≤ P2.v2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P1.v2 p i, θ, ( )2

>⎛⎝

⎞⎠

∧if

Vcone.v5 p i, θ, z, ( ) P1.v1 p i, θ, ( )2

z≤ P1.v2 p i, θ, ( )2

≤⎛⎝

⎞⎠

z P2.v1 p i, θ, ( )2

>⎛⎝

⎞⎠

∧if

Vcone.v7 p i, θ, ( ) z P2.v2 p i, θ, ( )2

≥if

:=

Buoyancy of vertical brace

Fb.brace.v p i, θ, z, ( ) Abrace.v p i, ( ) min Lm p i, θ, ( ) max z P1 p i, θ, ( )2

− 0m, ⎛⎝

⎞⎠

, ⎛⎝

⎞⎠

⋅ γw⋅ θ 0deg=if

Fb.brace.v1 p i, θ, z, ( ) γw⋅ P1.v2 p i, θ, ( )2

P2.v1 p i, θ, ( )2

≤⎛⎝

⎞⎠

0deg θ< 90deg<( )∧if

Fb.brace.v2 p i, θ, z, ( ) γw⋅ P1.v2 p i, θ, ( )2

P2.v1 p i, θ, ( )2

>⎛⎝

⎞⎠

0deg θ< 90deg<( )∧if

Abrace.h p i, θ, z, ( ) Lm p i, θ, ( )⋅ γw⋅ θ 90deg=if

:=

Stinger Stability Evaluation 9 of 11102

Page 113: Stinger Buoyancy

Fb p i, θ, z, ( ) Fb.tubular p i, θ, z, ( ) OD p i, ( ) 40in>if

0 OD p i, ( ) 40in<if

0 OD p i, ( ) 40in<if

:=

Total buoyancy Ftot p i0, i, θ, z, ( )

i0

i

i

Fb p i, θ, z, ( )∑=

:= Ftot 1 2, 25, 0deg, 3m, ( ) 287.508 kN⋅=

Centroid of submergedarea in y-axis

Cy1 p i, θ, z, ( ) 0.5 OD p i, ( )0.5 OD p i, ( ) sin 0.5 θg p i, θ, z, ( )( )⋅( )−

0.5 OD p i, ( ) sin 0.5 θg p i, θ, z, ( )( )⋅

0.5 OD p i, ( ) cos 0.5 θg p , ((⋅

0.5 OD p i, ( )( )2 x2−⌠⎮⎮⌡

⌠⎮⌡

Asegment p i, θ, z, ( )−:=

Cy2 p i, θ, z, ( )0.5 OD p i, ( ) sin 0.5 θg p i, θ, z, ( )( )⋅( )−

0.5 OD p i, ( ) sin 0.5 θg p i, θ, z, ( )( )⋅

0.5 OD p i, ( )( )2 x2−−

0.5 OD p i, ( ) cos 0.5 θg p i, θ, z, ( )( )⋅⌠⎮⎮⌡

⌠⎮⎮⌡

⎡⎢⎢⎢⎣

0.25 π⋅ OD p i, ( )2⋅ Asegment p i, θ, z, ( )−

:=

Y-Centroid of submergedtubular

Cy.tubular p i, θ, z, ( ) 0m( ) Status p i, θ, z, ( ) 1=if

P1y p i, θ, ( ) 0.5 OD p i, ( )− Cy1 p i, θ, z, ( )+ Status p(if

P1y p i, θ, ( ) Cy2 p i, θ, z, ( )+ Status p i, θ, z, ( ) 3=if

P1y p i, θ, ( ) Status p i, θ, z, ( ) 4=if

:=

Y-Centriod of submerged stinger Cy.tot p i, θ, z, ( ) Cy.tubular p i, θ, z, ( ) OD p i, ( ) 40in>if

0m OD p i, ( ) 40in<if

:=

Cy.tot1 p i0, i, θ, z, ( )i0

i

i

Fb p i, θ, z, ( ) Cy.tot p i, θ, z, ( )⋅( )∑=

Ftot p i0, i, θ, z, ( ):=

X-Centriod of submerged stinger Cx.tot1 p i0, i, θ, z, ( )i0

i

i

Fb p i, θ, z, ( ) P1 p i, θ, ( )1

⋅⎛⎝

⎞⎠∑

=

Ftot p i0, i, θ, z, ( ):=

STEP IV METACENTRIC HEIGHT CALCULATION

Weight and buoyancy balance z p i0, i, θ, ( ) root Ftot p i0, i, θ, z, ( ) Ws.tot p i0, i, θ, ( )− z, 1cm, 500cm, ( ):=

z 1 2, 25, 0deg, ( ) 4.392 m=

Center of buoyancy Cy.tot1 1 2, 25, 0deg, z 1 2, 25, 0deg, ( ), ( ) 1.457 m=

Stinger Stability Evaluation 10 of 11103

Page 114: Stinger Buoyancy

G.M. calculation GM1 p i0, i, θ, z, ( )CG p i0, i, θ, ( )1 Cx.tot1 p i0, i, θ, z, ( )−

sin θ( ):=

0 10 20 30 40

1−

1

2

3

Tilting angle, degree

GM

, met

er

Stinger Stability Evaluation 11 of 11104

Page 115: Stinger Buoyancy

 

Calculation Sheet : Fatigue Design  

The fatigue design is performed to determine fatigue life of the stigner in accordance with DNV RPC‐203. The fatigue desing will provide the following infomation :

Input parameterSCF calculationFatigue life calculation

1. INPUT PARAMETER

 1.1 Wave force and moment dataIn‐plane bendingstress

(max‐min)

Out of planebendingstress

(max‐min)

Waveheight

Waveperiod

Number ofOccurace

Axial force(max‐min)

Data2 1 0 0 0 02 2 0 0 0 0

2 3 0 0 0 0

2 4 7 974.888 42.961·10 42.961·10

2 5 262 623.476 41.894·10 41.894·10

2 6 31.232·10 432.331 41.313·10 41.313·10

2 7 32.343·10 310.644 39.436·10 39.436·10

2 8 32.888·10 282.32 38.575·10 38.575·10

2 9 32.861·10 265.423 38.062·10 38.062·10

2 10 32.528·10 253.846 37.711·10 37.711·10

2 11 32.104·10 245.597 37.46·10 37.46·10

2 12 31.699·10 239.498 37.275·10 37.275·10

2 13 31.355·10 234.841 37.133·10 37.133·10

2 14 31.076·10 231.187 37.022·10 37.022·10

2 15 856 228.257 36.933·10 36.933·10

:=

Number of analysis cases ss rows Data( ):= ss 15=

Wave height Hwave s( ) Datas 1, m⋅:=

Wave period Twave s( ) Datas 2, sec:=

Number of occoreance n s( ) Datas 3, :=

Forces Fx s( ) Datas 4, kN⋅:=

In‐plane bending moment My s( ) Datas 5, kN⋅ m⋅:=

Out of plane bending moment Mz s( ) Datas 6, kN⋅ m⋅:=

Fatigue Design 1 of 6105

Page 116: Stinger Buoyancy

 1.2 Joint type data

Joint type (1) T/Y joint (2) X joint i 1:=

Fixity (for joint type 1 only) (1) End fix (2) General fix k 2:=

 1.3 Structure member data

Chord member D 42 in:= T 1.75 in:= L 8 m:=

Brace dA 30 in:= tA 0.375 in:= θA 90 deg:= θ θA:=

Utilization factor η13

:=

2. SCF CALCULATION

 2.1  Structure geometrical constant

Geometrical constant α2LD

:= γD

2 T⋅:= α 14.998= γ 12=

Joint type 1 & 2 βdAD

:= τtAT

:= β 0.714= τ 0.214=

Validity check

Check if β 0.2≥( ) β 1≤( )∧ τ 0.2≥( )∧ τ 1.0≤( )∧ γ 8≥( )∧ γ 32≤( )∧ α 4≥( )∧ α 40≤( )∧[ ] "OK", "NG", [ ]:=

Check "OK"=

Chord end fixity parameters C 0.7:= C1 2 C 0.5−( )⋅:= C2 0.5 C⋅:= C3C5

:=

Fatigue Design 2 of 6106

Page 117: Stinger Buoyancy

 2.2 Sec on proper es

Area As D t, ( )π

4D2 D 2 t⋅−( )2

−⎡⎣ ⎤⎦⋅:=

Section modulus S D t, ( )π

64D4 D 2 t⋅−( )4

−⎡⎣ ⎤⎦⋅2D

⋅:=

 2.3 Brace member proper es

Area Amember b( ) As D T, ( ) b 1=if

As dA tA, ( ) b 2=if

:=

Section modulus Smember b( ) S D T, ( ) b 1=if

S dA tA, ( ) b 2=if

:=

 2.4 S‐N Curves data

S‐N curve parameter m mSN 3.00:=

S‐N curve parameter a aSN 11.764:=

Thickness correction tcor 1 T 1in≤if

T1in

⎛⎜⎝

⎞⎟⎠

0.25otherwise

:= tcor 1.15=

User define stress concetration factor

Chord Brace

SCFUSER

5.58

12.98

4.36

15.48

4.16

12.87

3.47

15.37

0

0

0

0

0

0

0

0

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

:=

Axial crown

Axial saddle

In plane bending crown

Out of plane bending sadlle

⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠

 2.5 Stress concetra on factors calcula on

Eq01 γ τ1.1

⋅ 1.11 3 β 0.52−( )2⋅−⎡⎣ ⎤⎦⋅ sin θ( )1.6

⋅:=

Eq02 γ0.2

τ 2.65 5 β 0.65−( )2⋅+⎡⎣ ⎤⎦⋅ τ β⋅ 0.25 α⋅ 3−( )⋅ sin θ( )⋅+:=

Eq03 1.3 γ τ0.52

⋅ α0.1

⋅ 0.187 1.25 β1.1

⋅ β 0.96−( )−⎡⎣ ⎤⎦⋅ sin θ( )2.7 0.01 α⋅−⋅+:=

Eq04 3 γ1.2 0.12 exp 4− β⋅( ) 0.011 β

2⋅+ 0.045−( )⋅+ τ β⋅ 0.1 α⋅ 1.2−( )⋅+:=

Eq05 Eq01 C1 0.8 α⋅ 6−( )⋅ τ β2

⋅ 1 β2

−⋅ sin 2 θ⋅( )2⋅+:=

Eq06 γ0.2

τ⋅ 2.65 5 β 0.65−( )2⋅+⎡⎣ ⎤⎦⋅ τ β⋅ C2 α⋅ 3−( )⋅ sin θ( )⋅+:=

Eq07 3 γ1.2 0.12 exp 4− β⋅( ) 0.011 β

2⋅+ 0.045−( )⋅+ τ β⋅ C3 α⋅ 1.2−( )⋅+:=

Fatigue Design 3 of 6107

Page 118: Stinger Buoyancy

Eq08 1.45 β⋅ τ0.85

⋅ γ1 0.68 β⋅−

⋅ sin θ( )0.7⋅:=

Eq09 1 0.65 β⋅ τ0.4

⋅ γ1.09 0.77 β⋅−

⋅ sin θ( )0.06 γ⋅ 1.16−⋅+:=

Eq10 γ τ⋅ β⋅ 1.7 1.05 β3

⋅−( )⋅ sin θ( )1.6⋅:=

Eq11 Eq10 τ0.54−

γ0.05−

⋅ 0.99 0.47 β⋅− 0.08 β4

⋅+( )⋅⎡⎣ ⎤⎦⋅:=

Eq12 3.78γ τ⋅ β⋅ 1.10 β1.8

−( )⋅ sin θ( )1.7⋅:=

Eq13 γ0.2

τ⋅ 2.65 5 β 0.65−( )2⋅+⎡⎣ ⎤⎦⋅ 3 τ⋅ β⋅ sin θ( )⋅−:=

Eq14 1 1.9 γ⋅ τ0.5

⋅ β0.9

⋅ 1.09 β1.7

−( )⋅ sin θ( )2.5⋅+:=

Eq15 3 γ1.2 0.12 exp 4− β⋅( )⋅ 0.011 β

2⋅+ 0.045−( )⋅+:=

Eq16 γ τ⋅ β⋅ 1.56 1.34 β4

⋅−( )⋅ sin θ( )1.6⋅:=

Eq17 τ0.54−

γ0.05−

⋅ 0.99 0.47 β⋅− 0.08 β4

⋅+( )⋅ Eq16⋅:=

Eq18 1 0.26 β3

⋅−( ) Eq05⋅:=

SCFAC i j, k, ( ) Eq02 i 1= j 1=∧ k 1=∧if

Eq04 i 1= j 2=∧ k 1=∧if

Eq06 i 1= j 1=∧ k 2=∧if

Eq07 i 1= j 2=∧ k 2=∧if

Eq13 i 2= j 1=∧if

Eq15 i 2= j 2=∧if

SCFUSER1 j, i 6= j 1=∧if

SCFUSER1 j, i 6= j 2=∧if

:= SCFAS i j, k, ( ) Eq01 i 1= j 1=∧ k 1=∧if

Eq03 i 1= j 2=∧ k 1=∧if

Eq05 i 1= j 1=∧ k 2=∧if

Eq03 i 1= j 2=∧ k 2=∧if

Eq12 i 2= j 1=∧if

Eq14 i 2= j 2=∧if

SCFUSER2 j, i 6= j 1=∧if

SCFUSER2 j, i 6= j 2=∧if

:=

SCFMIP i j, ( ) Eq08 i 1= j 1=∧if

Eq09 i 1= j 2=∧if

Eq08 i 2= j 1=∧if

Eq09 i 2= j 2=∧if

SCFUSER3 j, i 6= j 1=∧if

SCFUSER3 j, i 6= j 2=∧if

:= SCFMOP i j, ( ) Eq10 i 1= j 1=∧if

Eq11 i 1= j 2=∧if

Eq16 i 2= j 1=∧if

Eq17 i 2= j 2=∧if

SCFUSER4 j, i 6= j 1=∧if

SCFUSER4 j, i 6= j 2=∧if

:=

SCFMatrixSCF1 j, SCFAC i j, k, ( )←

SCF2 j, SCFAS i j, k, ( )←

SCF3 j, SCFMIP i j, ( )←

SCF4 j, SCFMOP i j, ( )←

j 1 2..∈for

SCFreturn

:= SCFMatrix1.285 2.4972.197 4.118

1.004 1.959

2.42 3.315

=

Fatigue Design 4 of 6108

Page 119: Stinger Buoyancy

3. FATIGUE LIFE CALCULATION

 3.1 Stresses on integra on points

Axial stress σx s j, ( )Fx s( )

Amember j( ):=

In plane bending stress σmy s j, ( )My s( )

Smember j( ):=

Out of plane bending stress σmz s j, ( )My s( )

Smember j( ):=

σ int i, s, j, ( ) SCFAC i j, k, ( ) σx s j, ( )⋅ SCFMIP i j, ( ) σmy s j, ( )− int 1=if

12

SCFAC i j, k, ( ) SCFAS i j, k, ( )+( )⋅ σx s j, ( )⋅2

2SCFMIP i j, ( )⋅ σmy s j, ( )⋅−

22

SCFMOP i j, ( )⋅ σmz s j, ( )⋅+

SCFAS i j, k, ( ) σx s j, ( )⋅ SCFMOP i j, ( ) σmz s j, ( )⋅+ int 3=if

12

SCFAC i j, k, ( ) SCFAS i j, k, ( )+( )⋅ σx s j, ( )⋅2

2SCFMIP i j, ( )⋅ σmy s j, ( )⋅+

22

SCFMOP i j, ( )⋅ σmz s j, ( )⋅+

SCFAC i j, k, ( ) σx s j, ( )⋅ SCFMIP i j, ( ) σmy s j, ( )+ int 5=if

12

SCFAC i j, k, ( ) SCFAS i j, k, ( )+( )⋅ σx s j, ( )⋅2

2SCFMIP i j, ( )⋅ σmy s j, ( )⋅−

2−

2SCFMOP i j, ( )⋅ σmz s j, (⋅+

SCFAS i j, k, ( ) σx s j, ( )⋅ SCFMOP i j, ( )− σmz s j, ( )⋅+ int 7=if

12

SCFAC i j, k, ( ) SCFAS i j, k, ( )+( )⋅ σx s j, ( )⋅2

2SCFMIP i j, ( )⋅ σmy s j, ( )⋅−

2−

2SCFMOP i j, ( )⋅ σmz s j, (⋅+

:=

σmz s j, ( ) int 2=if

σmz s j, ( ) int 4=if

σmz s j, ( ) int 6=if

σmz s j, ( ) int 8=if

Fatigue Design 5 of 6109

Page 120: Stinger Buoyancy

 3.2 Maximum damage

For each wave period

MaxDmax 0←

Dn s( )

σ int i, s, j, ( )MPa

tcor⋅⎛⎜⎝

⎞⎟⎠

mSN⋅

10aSN

max D← D max>if

int 1 8..∈for

j 1 2..∈for

Max1 s, max←

s 1 ss..∈for

Maxreturn

:=

MaxD 0 0 0 343 3356 5262 3712 3435 2828 2186 1647 1234 928 703 538( )=

 3.3 Joint life

Wave occurance factor fwave 2.97477146557861 10 7−×:=

Life sum 0←

sum sum MaxD1 s, +←

s 1 ss..∈for

Lifeη yr⋅

sum fwave⋅←

:= Life 42.81753 yr⋅=

Fatigue Design 6 of 6110

Page 121: Stinger Buoyancy

111

APPENDIX B

STINGER RESULTS

Page 122: Stinger Buoyancy

112

Page 123: Stinger Buoyancy

23

45

23

45

23

45

23

45

W :

H =

4 m

: 4

m X 52

210

221

233

246

115

103

8974

201

211

223

237

100

8875

59X

6021

022

022

924

211

510

493

7820

021

022

023

310

089

7863

X 52

217

231

244

259

150

135

120

102

208

221

235

250

135

120

105

88X

6021

622

724

125

515

113

912

310

720

721

823

124

513

712

410

993

X 52

249

264

279

295

187

171

153

135

240

255

270

286

173

157

140

122

X 60

249

259

274

289

187

176

159

142

240

250

265

280

173

162

146

129

X 52

257

273

292

310

232

213

193

172

248

265

283

301

218

200

180

159

X 60

256

270

287

304

233

217

198

179

247

261

278

295

220

204

185

166

X 52

218

230

242

256

106

9278

6320

822

123

324

691

7763

48X

6021

622

723

825

110

896

8468

206

217

228

241

9381

6953

X 52

227

241

255

270

139

123

107

9021

723

224

526

112

510

893

76X

6022

323

725

126

414

312

711

297

214

228

241

255

129

113

9883

X 52

257

274

292

308

177

159

138

120

248

265

283

299

164

146

125

106

X 60

253

270

285

300

182

163

146

129

244

261

276

291

168

149

132

115

X 52

269

287

305

325

219

198

177

154

260

278

297

317

205

185

164

141

X 60

264

283

301

317

223

203

182

164

256

274

292

309

210

190

169

151

X 52

227

240

253

267

9681

6751

217

230

243

081

6652

0X

6022

423

624

826

199

8572

5821

422

623

825

184

7157

43X

5223

725

226

728

312

711

194

7622

824

225

827

311

397

7962

X 60

233

247

262

276

132

116

100

8322

423

825

226

711

710

285

69X

5226

928

530

532

416

414

612

410

226

027

629

631

515

113

211

088

X 60

265

282

298

315

169

150

132

112

256

273

289

306

156

136

118

98X

5228

030

132

034

120

618

216

013

727

129

231

233

219

216

914

712

4X

6027

729

531

233

321

018

916

914

626

828

630

432

419

717

615

613

3X

5223

725

026

40

8570

540

227

240

00

7055

00

X 60

233

246

258

271

8974

6147

223

237

248

075

5946

0X

5224

926

327

929

411

599

8063

239

253

270

010

084

660

X 60

244

258

274

286

120

104

8672

234

248

264

277

106

9072

58X

5228

229

931

833

715

013

010

988

273

290

309

328

136

117

9674

X 60

277

293

310

329

155

137

118

9626

828

430

132

014

212

410

483

X 52

295

316

337

358

189

165

142

118

286

307

328

349

176

152

129

105

X 60

289

308

327

347

196

174

152

130

280

299

319

338

183

161

139

117

X 52

246

260

00

7459

00

237

250

00

5944

00

X 60

242

254

268

078

6550

023

324

50

063

500

0X

5226

027

629

10

102

8367

025

026

728

10

8769

530

X 60

255

270

284

299

107

9175

5724

526

027

40

9377

600

X 52

295

313

332

350

135

114

9372

286

304

323

012

210

180

0X

6028

930

732

534

214

212

110

181

280

298

316

333

129

107

8868

X 52

309

329

351

371

173

150

126

102

300

320

342

363

160

137

113

89X

6030

332

134

236

118

015

913

611

529

431

333

335

216

714

612

310

2

1

42 46 52 56

0.75

42 46 52 56

0.5

42 46 52 56

0.25

42 46 52 5642 46 52 56

0

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

16

m

113

Page 124: Stinger Buoyancy

23

45

23

45

23

45

23

45

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

W :

H =

4.5

m :

3 m X

5220

721

822

936

210

998

8469

196

206

218

232

9280

6751

X 60

207

216

226

239

110

9988

7319

520

521

522

893

8270

56X

5221

422

724

025

514

513

011

598

203

216

229

244

128

113

9881

X 60

213

224

237

251

146

133

118

103

202

213

226

240

129

117

101

86X

5224

625

827

429

118

216

715

013

123

524

826

328

016

615

113

311

5X

6024

425

627

028

518

417

015

413

823

324

526

027

416

815

413

812

2X

5225

427

028

830

722

620

818

816

724

326

027

829

621

119

217

215

1X

6025

326

528

330

022

821

319

417

424

225

527

229

021

219

817

815

8X

5221

422

723

925

310

287

7358

202

216

228

241

8469

5640

X 60

213

223

234

248

103

9179

6320

121

222

323

686

7461

46X

5222

323

725

226

613

511

810

286

211

226

240

255

118

101

8569

X 60

220

234

247

261

139

122

107

9220

822

323

625

012

210

590

75X

5225

327

028

930

517

315

413

311

524

326

027

829

415

713

811

799

X 60

250

266

282

297

177

159

141

124

239

255

271

286

161

143

125

108

X 52

263

283

301

321

216

194

173

150

253

272

291

311

200

178

157

134

X 60

260

277

295

314

219

200

180

159

250

267

284

304

203

184

164

143

X 52

223

237

249

263

9176

6246

212

225

238

074

5844

0X

6022

123

224

425

794

8167

5320

922

123

30

7763

500

X 52

234

248

264

279

122

106

8971

223

237

253

268

105

8972

54X

6023

024

425

827

312

711

195

7821

923

324

726

211

094

7861

X 52

265

282

302

321

160

141

118

9725

427

129

131

014

412

510

281

X 60

261

278

295

311

164

145

127

108

251

267

284

300

148

129

110

92X

5227

729

731

733

720

017

715

513

226

628

730

632

718

516

214

011

6X

6027

229

130

832

720

618

416

514

426

228

129

831

619

016

915

012

8X

5223

324

626

00

8065

490

221

235

00

6348

00

X 60

229

243

255

084

6956

021

823

124

30

6752

380

X 52

244

259

275

291

111

9375

5823

324

826

40

9477

590

X 60

240

254

270

282

116

100

8167

229

243

259

099

8365

0X

5227

829

631

433

314

512

510

483

267

285

304

323

129

109

8867

X 60

273

290

307

325

151

132

113

9226

227

929

631

413

511

697

76X

5229

131

233

335

418

416

113

711

328

130

232

334

416

914

512

197

X 60

285

304

324

343

191

169

147

125

275

294

314

333

175

154

132

110

X 52

243

255

00

6955

00

232

00

051

00

0X

6023

925

126

40

7360

450

228

240

00

5642

00

X 52

255

273

288

098

7861

024

426

20

081

610

0X

6025

126

528

00

103

8770

024

025

426

90

8671

530

X 52

291

310

329

349

131

109

8765

280

299

319

011

593

710

X 60

285

303

321

340

138

117

9676

274

292

311

012

210

180

0X

5230

632

634

736

916

814

512

197

295

315

336

358

152

130

106

81X

6029

931

933

835

817

515

313

110

928

930

832

834

716

013

811

693

1

42 46 52 56

0.75

42 46 52 56

0.5

42 46 52 56

0.25

42 46 52 56

0

42 46 52 56

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

16

m

114

Page 125: Stinger Buoyancy

23

45

23

45

23

45

23

45

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

W :

H =

5 m

: 2

.5 m X

5220

821

823

124

410

897

8368

195

205

217

230

8877

6348

X 60

207

216

227

240

110

9987

7319

320

321

422

690

7967

53X

5221

422

824

225

714

512

911

396

201

215

229

245

125

110

9476

X 60

213

225

238

252

146

133

118

102

200

212

225

239

126

113

9883

X 52

246

260

276

292

182

165

148

129

233

248

263

280

163

147

129

110

X 60

245

256

270

286

183

170

154

136

233

243

258

274

164

152

135

117

X 52

254

270

289

307

226

208

186

167

242

258

277

295

208

190

168

148

X 60

253

267

283

301

228

211

193

173

241

255

271

289

210

193

175

155

X 52

215

227

240

254

101

8672

5720

221

422

70

8166

520

X 60

213

224

236

249

103

9076

6219

921

122

323

683

7056

42X

5222

423

825

326

913

411

710

183

211

226

240

256

115

9881

64X

6022

223

424

826

213

612

210

690

209

222

235

249

117

102

8771

X 52

254

270

289

307

172

154

133

113

242

258

276

294

154

135

115

94X

6025

126

728

230

117

615

714

012

023

925

527

028

815

713

812

210

1X

5226

528

330

332

321

319

317

114

825

327

129

131

119

517

515

213

0X

6026

127

929

831

621

819

817

715

624

926

728

630

420

018

015

913

8X

5222

423

725

10

9075

600

211

224

237

070

5540

0X

6022

123

424

625

994

7966

5020

822

123

30

7459

460

X 52

234

249

265

281

122

105

8770

222

236

252

268

102

8668

50X

6023

024

525

927

512

710

993

7621

723

224

726

210

790

7457

X 52

266

284

304

323

159

139

116

9425

327

129

231

114

012

097

76X

6026

227

929

631

316

414

512

510

524

926

628

330

114

512

610

787

X 52

277

299

319

340

200

175

153

129

265

287

307

328

182

157

135

111

X 60

273

292

312

332

205

183

161

138

261

280

300

320

186

165

142

120

X 52

234

248

262

079

6347

022

123

50

059

430

0X

6023

124

325

50

8369

550

217

230

00

6349

00

X 52

245

262

277

010

991

730

232

249

264

090

7154

0X

6024

125

627

228

711

497

8063

228

243

259

094

7860

0X

5227

929

731

533

714

512

410

379

266

284

303

325

126

105

8460

X 60

274

292

309

328

150

130

110

8926

228

029

731

513

111

191

70X

5229

231

333

635

618

315

913

411

128

030

132

434

416

514

111

693

X 60

286

307

326

346

190

167

145

122

274

295

314

334

172

148

127

104

X 52

244

259

00

6851

00

230

00

048

00

0X

6024

025

30

073

580

022

60

00

530

00

X 52

257

274

290

096

7759

024

526

10

076

580

0X

6025

226

728

20

102

8569

023

925

426

90

8366

490

X 52

293

312

331

012

810

785

028

130

031

90

110

8867

0X

6028

730

532

434

113

511

594

7427

429

331

10

117

9675

0X

5230

732

735

137

316

714

311

692

295

315

339

361

148

125

9874

X 60

300

320

341

361

174

151

128

106

288

308

329

349

156

133

110

87

1

42 46 52 56

0.75

42 46 52 56

0.5

42 46 52 56

0.25

42 46 52 56

0

42 46 52 56

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

16

m

115

Page 126: Stinger Buoyancy

23

45

23

45

23

45

23

45

W :

H =

4 m

: 4

m X 52

229

242

258

275

145

130

112

9321

723

024

626

312

711

294

75X

6022

724

125

327

014

713

211

899

215

229

241

258

129

114

9981

X 52

238

255

272

289

183

164

145

125

226

243

260

278

166

147

128

108

X 60

237

250

267

284

184

169

151

131

225

239

255

273

167

152

133

113

X 52

272

290

311

330

226

205

182

161

262

280

300

319

209

189

166

144

X 60

270

285

303

323

229

211

191

169

259

275

292

312

212

194

175

152

X 52

284

303

325

349

273

251

226

199

274

293

315

338

257

235

210

183

X 60

279

299

320

341

278

256

232

209

269

288

310

330

262

240

216

193

X 52

239

255

270

287

133

116

9980

227

243

258

275

115

9781

62X

6023

525

126

527

913

812

110

489

223

239

253

267

120

103

8671

X 52

248

268

286

305

171

150

129

108

237

256

274

293

154

132

112

90X

6024

726

327

929

717

315

513

611

723

525

226

828

515

613

711

999

X 52

285

303

325

347

211

191

166

141

275

292

315

337

194

175

149

124

X 60

279

299

319

341

219

196

172

148

268

288

309

330

202

179

156

132

X 52

296

320

343

369

259

232

206

177

286

310

332

359

243

216

190

161

X 60

292

313

336

358

264

240

214

189

281

303

325

348

248

224

198

173

X 52

251

267

283

299

121

102

8466

239

255

271

010

384

660

X 60

247

262

277

293

125

107

9173

235

250

265

281

107

8973

54X

5226

328

030

032

115

513

611

389

252

268

288

310

137

118

9671

X 60

258

276

293

311

161

140

120

101

246

265

282

299

143

122

103

83X

5229

832

134

336

619

617

114

612

028

731

033

235

518

015

412

910

3X

6029

331

433

535

820

317

915

412

828

230

332

534

718

616

213

811

2X

5231

233

736

138

824

121

318

515

530

132

735

137

722

519

717

014

0X

6030

633

035

437

824

722

019

316

729

632

034

436

723

220

417

715

1X

5226

227

929

60

107

8970

025

026

70

089

710

0X

6025

827

428

930

511

294

7759

246

262

277

094

7659

0X

5227

629

531

533

514

011

896

7426

528

430

30

122

101

790

X 60

271

289

307

325

146

125

105

8526

027

829

531

412

810

888

67X

5231

433

736

238

517

915

312

599

303

326

351

374

162

136

108

82X

6030

932

935

237

318

416

213

611

229

931

834

136

216

714

511

995

X 52

330

355

381

406

220

193

163

134

320

344

371

396

204

177

147

119

X 60

323

347

373

397

228

201

173

145

313

337

362

387

212

186

157

129

X 52

275

293

00

9373

00

263

281

00

7555

00

X 60

270

285

301

099

8164

025

827

30

081

630

0X

5228

931

032

90

125

102

800

278

298

317

010

884

630

X 60

284

302

322

013

111

188

027

329

131

00

113

9371

0X

5233

035

538

00

160

133

104

032

034

436

90

144

116

880

X 60

323

345

367

389

169

144

119

9431

233

435

637

815

212

710

277

X 52

348

374

401

428

200

171

140

110

338

364

391

417

184

155

124

94X

6034

036

438

941

520

918

315

412

532

935

337

840

519

416

713

810

9

1

42 46 52 56

0.5

42 46 52 56

0.75

42 46 52 56

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

0.25

42 46 52 56

0

42 46 52 56

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

18

m

116

Page 127: Stinger Buoyancy

23

45

23

45

23

45

23

45

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

W :

H =

4.5

m :

3 m X

5222

523

825

427

113

912

410

687

211

224

240

257

118

103

8566

X 60

223

236

249

266

141

126

111

9320

922

223

525

212

010

590

72X

5223

425

126

728

517

715

813

911

922

023

725

427

215

713

711

999

X 60

231

246

263

280

180

163

145

125

218

233

249

267

159

143

124

104

X 52

267

286

306

326

221

199

177

154

254

273

293

313

201

179

157

134

X 60

266

281

299

319

223

205

185

163

253

268

286

306

203

185

166

143

X 52

280

298

320

345

267

246

221

193

267

286

308

332

248

227

202

174

X 60

274

293

316

336

273

251

226

203

262

281

303

323

254

233

207

184

X 52

235

250

266

282

127

110

9374

221

236

252

268

106

8972

53X

6023

124

626

127

513

211

598

8221

723

224

726

111

194

7761

X 52

244

263

281

301

165

145

124

102

231

249

268

287

145

124

103

81X

6024

225

927

529

316

814

813

011

022

824

626

228

014

812

811

089

X 52

281

299

321

343

205

185

159

135

268

286

309

330

185

166

140

115

X 60

274

295

315

336

213

190

167

143

261

282

302

323

193

170

147

124

X 52

292

316

339

364

253

226

199

172

280

303

327

351

234

207

180

153

X 60

287

308

331

354

259

235

209

183

274

295

319

342

240

216

190

164

X 52

246

263

279

295

115

9677

5923

224

926

50

9475

560

X 60

242

258

273

289

119

101

8466

228

244

259

098

8063

0X

5225

827

629

631

715

013

010

783

244

262

282

303

130

109

8763

X 60

254

272

289

307

155

134

115

9424

025

827

529

413

411

494

74X

5229

431

633

936

219

116

614

011

428

130

332

634

917

114

612

094

X 60

289

309

331

354

196

173

149

122

276

296

318

341

177

154

129

103

X 52

307

333

357

384

236

207

179

149

295

320

345

371

217

188

160

130

X 60

301

326

350

374

243

214

188

161

288

314

337

361

224

195

169

142

X 52

259

275

292

010

183

630

245

261

00

8062

00

X 60

254

270

286

010

688

700

240

256

272

085

6749

0X

5227

229

131

233

113

411

289

6725

827

829

80

114

9269

0X

6026

728

530

332

114

011

999

7825

327

228

90

119

9978

0X

5230

933

335

838

117

314

611

892

296

320

345

368

154

127

9873

X 60

304

325

348

369

179

156

129

105

291

312

335

356

160

136

109

86X

5232

635

137

740

421

418

715

712

631

433

836

539

219

516

813

810

7X

6031

934

236

939

222

219

616

613

930

733

035

738

020

317

714

712

0X

5227

128

90

087

670

025

70

00

660

00

X 60

266

282

298

093

7457

025

226

80

072

530

0X

5228

530

632

60

119

9673

027

229

20

099

750

0X

6028

129

931

70

124

104

830

267

285

304

010

483

620

X 52

327

350

375

015

312

798

031

433

736

20

134

108

790

X 60

319

341

363

386

163

137

113

8730

632

835

00

143

118

930

X 52

344

370

397

424

195

164

134

104

331

358

385

017

614

611

50

X 60

335

360

385

411

204

176

148

118

323

347

372

398

185

158

129

100

0.75

42 46 52 56

1

42 46 52 56

0.25

42 46 52 56

0.5

42 46 52 56

0

42 46 52 56

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

18

m

117

Page 128: Stinger Buoyancy

23

45

23

45

23

45

23

45

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

W :

H =

5 m

: 2

.5 m X

5222

724

025

527

213

712

210

485

211

224

239

256

113

9780

61X

6022

323

725

026

614

112

611

092

207

221

234

250

117

101

8668

X 52

234

251

268

287

177

158

138

116

218

235

252

272

154

134

115

93X

6023

224

726

428

117

916

214

312

421

723

224

826

615

513

811

910

0X

5226

828

630

832

721

919

917

415

325

327

129

331

219

717

615

213

1X

6026

628

330

232

122

320

318

115

925

126

828

730

620

018

015

913

7X

5228

030

032

534

826

724

421

619

026

528

531

033

324

522

219

416

8X

6027

629

631

733

927

124

922

520

026

228

130

232

424

922

720

317

8X

5223

625

226

728

412

610

892

7222

023

625

126

810

284

6848

X 60

232

247

263

277

131

113

9680

216

231

247

261

107

8972

56X

5224

526

428

330

216

514

312

299

229

248

267

287

141

119

9876

X 60

243

261

276

295

167

147

129

108

227

245

261

279

143

123

105

85X

5228

130

232

434

720

518

115

713

126

628

730

933

218

215

913

410

8X

6027

629

531

733

821

118

916

414

126

128

030

232

318

816

614

211

8X

5229

331

734

036

925

222

519

916

627

830

232

635

523

020

317

714

4X

6028

830

933

435

725

723

420

618

027

429

431

934

223

521

218

415

8X

5224

726

428

129

911

495

7556

231

248

265

090

7151

0X

6024

325

927

529

111

810

083

6422

724

325

90

9476

590

X 52

259

278

299

320

148

127

104

8024

426

228

30

125

104

800

X 60

254

272

291

310

155

133

112

9123

825

727

629

413

111

088

68X

5229

531

934

236

519

016

313

611

028

030

432

735

016

714

011

487

X 60

289

309

334

356

196

173

146

120

274

294

319

341

173

151

123

97X

5230

833

536

238

923

420

517

414

329

432

034

737

421

218

315

212

1X

6030

332

835

137

624

121

318

615

828

831

333

736

221

919

116

413

6X

5225

927

629

50

100

8160

024

326

00

076

570

0X

6025

527

128

90

104

8767

023

925

50

080

620

0X

5227

329

331

30

133

110

880

257

278

297

010

986

640

X 60

268

287

306

324

138

118

9675

252

271

290

011

594

720

X 52

311

336

359

384

171

143

117

8829

732

134

40

148

121

940

X 60

305

327

349

375

178

153

128

9929

031

233

436

015

513

110

676

X 52

328

354

381

410

213

183

153

120

313

339

366

395

191

161

131

98X

6031

934

637

139

722

219

216

413

430

533

135

638

320

017

014

211

2X

5227

229

10

085

640

025

60

00

610

00

X 60

266

283

00

9273

00

250

267

00

6849

00

X 52

287

308

329

011

694

700

272

292

00

9370

00

X 60

281

301

321

012

410

278

026

628

50

010

078

00

X 52

327

354

380

015

312

294

031

233

90

013

110

00

0X

6032

134

336

70

159

135

108

030

632

835

20

137

112

860

X 52

347

374

401

429

191

161

130

9833

235

938

70

169

139

108

0X

6033

736

339

141

520

217

314

111

432

334

937

640

018

015

011

992

1

42 46 52 56

0.5

42 46 52 56

0.75

42 46 52 56

0

42 46 52 56

0.25

42 46 52 56

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

18

m

118

Page 129: Stinger Buoyancy

23

45

23

45

23

45

23

45

W :

H =

4 m

: 4

m X 52

242

257

273

293

160

142

125

103

230

246

261

281

142

124

106

84X

6023

925

527

028

616

314

512

911

022

724

325

827

514

512

711

191

X 52

252

270

288

310

203

183

162

137

240

258

277

299

185

165

144

119

X 60

251

266

283

303

204

187

168

145

239

255

271

291

187

169

150

128

X 52

291

313

333

356

249

225

203

176

280

302

322

345

233

209

186

159

X 60

287

307

328

349

254

232

208

185

276

296

317

338

237

215

192

168

X 52

304

327

352

377

302

276

248

220

294

317

341

366

286

260

233

204

X 60

301

321

345

368

306

284

257

230

290

310

334

358

290

268

241

214

X 52

253

270

287

305

147

128

109

8924

125

827

529

312

911

091

71X

6024

926

528

229

815

113

411

497

237

253

271

286

133

116

9679

X 52

264

284

305

325

189

167

143

120

253

272

293

314

171

149

125

103

X 60

261

279

298

317

192

172

151

129

250

268

287

305

175

154

133

112

X 52

305

328

352

375

234

208

181

154

294

317

341

364

218

192

164

138

X 60

299

323

344

367

240

213

190

164

288

312

333

356

224

197

174

147

X 52

319

345

371

398

286

257

226

196

308

334

361

388

270

241

210

180

X 60

314

337

362

388

291

265

236

207

303

326

352

378

275

249

220

191

X 52

265

284

301

320

134

112

9371

253

272

289

011

694

750

X 60

261

278

295

312

138

120

100

8024

926

628

330

012

010

181

62X

5227

930

132

134

117

214

812

410

226

828

931

033

015

413

010

784

X 60

274

293

313

333

178

156

134

111

263

282

301

321

160

139

117

94X

5232

034

637

139

521

618

815

913

231

033

536

038

420

017

114

311

5X

6031

533

836

238

522

219

617

014

330

532

735

137

420

618

015

312

7X

5233

636

339

242

026

723

620

317

132

535

338

140

925

122

018

715

5X

6032

935

538

341

027

424

421

318

331

834

537

339

925

822

919

716

7X

5227

829

831

70

119

9775

026

628

630

50

101

7957

0X

6027

329

131

032

612

510

483

6526

127

929

80

106

8665

0X

5229

431

533

635

815

513

110

883

283

304

325

013

711

390

0X

6028

830

932

934

916

213

811

593

276

297

318

337

145

121

9876

X 52

339

364

389

416

196

167

139

109

328

353

378

405

179

151

122

92X

6033

235

537

840

320

317

815

112

332

134

436

739

218

716

113

510

6X

5235

538

441

344

124

421

217

914

834

537

340

343

022

919

616

313

2X

6034

937

640

243

025

122

219

216

033

936

539

141

923

520

617

614

4X

5229

331

10

010

281

00

281

300

00

8463

00

X 60

287

304

321

010

990

700

275

292

00

9172

00

X 52

310

332

353

013

711

288

029

932

034

20

119

9571

0X

6030

332

434

536

614

512

298

7429

131

233

30

128

104

800

X 52

356

383

409

017

614

511

70

345

373

398

015

912

910

00

X 60

349

373

397

421

185

157

130

103

338

362

386

410

168

141

113

86X

5237

640

643

546

422

118

715

412

236

639

642

545

320

517

113

810

6X

6036

639

442

144

923

220

117

013

835

638

341

143

921

618

515

412

2

1

42 46 52 56

0.5

42 46 52 56

0.75

42 46 52 56

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

0.25

42 46 52 56

0

42 46 52 56

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

20

m

119

Page 130: Stinger Buoyancy

23

45

23

45

23

45

23

45

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

W :

H =

4.5

m :

3 m X

5223

725

326

928

815

513

611

897

223

239

255

274

133

115

9776

X 60

235

250

265

282

157

140

123

104

221

236

251

268

136

119

102

83X

5224

826

628

430

619

717

715

513

123

425

227

129

217

615

613

511

1X

6024

526

227

929

820

018

116

113

923

124

826

528

518

016

014

111

9X

5228

630

632

835

224

422

219

717

027

329

331

533

922

520

217

815

1X

6028

330

232

234

524

822

620

317

827

028

931

033

222

820

618

415

9X

5229

932

334

837

329

727

124

221

428

631

033

536

027

825

222

319

5X

6029

531

634

036

330

227

825

022

528

230

432

835

128

325

923

120

6X

5224

826

628

330

114

212

210

383

234

252

269

287

121

101

8261

X 60

245

261

278

294

145

127

108

9023

124

726

428

012

410

687

69X

5226

027

930

132

118

316

113

711

424

726

628

730

716

214

011

694

X 60

256

275

294

313

187

166

144

123

243

261

280

299

167

145

124

103

X 52

300

323

346

371

229

203

177

148

287

310

333

358

209

183

157

129

X 60

295

317

339

362

235

209

185

159

282

305

326

349

215

189

165

139

X 52

313

340

366

393

281

250

221

191

301

328

354

381

262

231

203

172

X 60

308

333

358

384

287

259

230

201

295

320

346

371

268

240

211

183

X 52

261

279

297

316

127

107

8665

247

265

283

010

686

650

X 60

257

273

291

308

132

114

9374

243

259

277

294

111

9372

53X

5227

429

631

733

816

614

211

895

261

282

304

324

146

122

9875

X 60

269

289

309

329

173

150

128

105

255

276

295

315

152

129

107

85X

5231

534

036

639

121

218

315

412

630

232

735

337

819

316

413

510

6X

6031

133

435

738

021

719

116

413

829

832

134

436

819

717

114

511

8X

5233

235

838

841

626

123

019

716

531

934

637

540

324

221

117

814

6X

6032

435

137

840

526

923

920

817

831

133

836

539

225

022

018

915

9X

5227

429

331

30

113

9169

026

027

90

092

700

0X

6026

928

730

60

118

9877

025

527

329

20

9777

560

X 52

290

311

332

354

149

125

101

7627

629

731

90

129

105

800

X 60

283

305

325

345

156

132

109

8727

029

231

233

113

611

188

66X

5233

435

938

641

219

116

213

210

332

134

637

339

917

114

211

283

X 60

327

351

374

399

198

172

145

116

314

338

361

386

179

152

126

97X

5235

138

040

943

723

920

617

314

133

836

739

642

522

018

715

412

2X

6034

237

139

742

524

821

618

615

533

035

838

541

222

919

716

713

6X

5228

930

80

096

750

027

529

40

075

540

0X

6028

230

031

70

103

8464

026

828

60

082

620

0X

5230

632

734

90

131

107

820

292

314

00

111

860

0X

6029

831

934

00

139

116

920

285

306

326

011

995

720

X 52

352

378

405

017

014

011

00

339

365

392

015

112

191

0X

6034

536

939

341

717

815

112

497

332

356

380

015

913

210

40

X 52

372

402

431

460

215

181

148

115

360

389

418

448

196

162

129

96X

6036

238

941

744

622

619

516

413

134

937

740

543

320

717

714

511

2

0.75

42 46 52 56

1

42 46 52 56

0.25

42 46 52 56

0.5

42 46 52 56

0

42 46 52 56

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

20

m

120

Page 131: Stinger Buoyancy

23

45

23

45

23

45

23

45

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

Type

1Ty

pe 2

Stin

ger

wei

ght,

ton

Net

buo

yanc

y,to

nSt

inge

r w

eigh

t, t

onN

et b

uoya

ncy,

ton

W :

H =

5 m

: 2

.5 m X

5223

825

427

028

915

413

611

795

222

238

254

273

130

111

9371

X 60

235

251

266

283

157

139

122

103

219

235

250

267

133

115

9879

X 52

248

267

286

307

197

175

153

130

232

251

271

291

173

151

130

106

X 60

247

263

280

300

198

180

160

137

231

247

265

285

174

156

136

114

X 52

287

309

331

354

243

219

194

168

272

294

316

339

221

196

171

145

X 60

283

303

324

345

248

225

201

178

268

288

309

330

225

203

179

155

X 52

299

324

348

376

297

269

242

211

284

309

334

361

275

247

220

189

X 60

296

317

340

365

300

277

250

222

282

303

326

351

278

255

228

200

X 52

249

267

285

302

141

121

100

8223

325

126

928

611

797

7657

X 60

245

261

279

295

145

127

107

8922

924

526

327

912

110

383

65X

5226

128

230

232

318

215

813

511

224

626

628

730

715

813

511

188

X 60

257

276

295

314

186

164

143

121

242

261

280

299

162

141

119

98X

5230

132

434

937

322

820

117

314

628

630

933

435

820

517

915

112

3X

6029

531

934

036

423

420

818

315

728

030

432

534

921

218

516

113

4X

5231

534

036

839

728

025

021

918

730

032

635

438

225

822

819

716

5X

6031

033

535

938

628

525

722

919

929

532

034

437

226

323

520

717

7X

5226

128

030

031

812

710

684

6324

526

428

40

103

8259

0X

6025

727

429

331

113

211

392

7124

125

827

70

108

8968

0X

5227

529

731

934

116

514

011

691

260

282

304

325

142

117

9268

X 60

270

291

310

331

171

148

126

102

254

276

294

316

148

124

103

78X

5231

734

436

939

620

917

915

112

030

332

935

438

118

615

612

997

X 60

311

335

359

385

216

189

162

133

296

320

344

370

193

166

140

110

X 52

333

362

389

418

259

226

195

163

318

347

375

404

237

204

173

140

X 60

325

353

380

408

268

236

206

174

310

338

365

393

246

214

184

152

X 52

274

295

315

011

289

670

258

279

00

8865

00

X 60

270

289

307

011

796

760

254

273

291

093

7251

0X

5229

131

333

50

148

123

980

276

298

320

012

499

740

X 60

284

306

327

347

155

131

107

8526

929

031

20

132

108

830

X 52

335

362

389

416

189

159

128

9832

034

737

40

166

137

105

0X

6032

835

337

740

319

716

814

111

231

333

836

238

817

414

611

990

X 52

353

383

413

441

236

203

168

136

338

368

398

427

214

181

146

114

X 60

345

373

402

430

245

213

181

149

331

359

387

416

223

191

159

127

X 52

289

309

00

9573

00

273

00

071

00

0X

6028

330

132

00

103

8261

026

728

50

079

580

0X

5230

733

035

20

130

104

790

291

315

00

106

800

0X

6030

132

234

30

137

113

890

285

306

328

011

389

650

X 52

354

380

409

016

713

810

60

339

366

394

014

511

583

0X

6034

637

139

842

117

714

811

892

331

356

383

015

512

696

0X

5237

440

543

446

521

317

714

410

935

939

142

00

191

155

122

0X

6036

439

241

944

922

319

216

112

835

037

740

543

420

117

013

910

6

1

42 46 52 56

0.5

42 46 52 56

0.75

42 46 52 56

0

42 46 52 56

0.25

42 46 52 56

Stru

ctur

al d

esig

n fo

r st

inge

r le

ngth

20

m

121

Page 132: Stinger Buoyancy

12

34

56

71

23

45

67

12

34

56

71

23

45

67

W :

H =

4 m

: 4

m X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

2920

2123

2425

2727

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

X 60

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

2920

2123

2424

2525

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

250

00

00

00

X 60

2021

2324

2628

2920

2123

2426

2829

2021

2324

2425

2520

2122

2222

2222

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

2920

2123

2424

2525

00

00

00

00

00

00

00

X 60

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

250

00

00

00

X 52

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

270

00

00

00

X 60

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

2920

2123

2424

2525

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

0.75

42 46 52 56

1

42 46 52 56

0.25

42 46 52 56

0.5

42 46 52 56

0

42 46 52 56

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

No.

of

case

23

45

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 1

6 m

)

122

Page 133: Stinger Buoyancy

12

34

56

71

23

45

67

12

34

56

71

23

45

67

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

No.

of

case

23

45

W :

H =

4.5

m :

3 m X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

27X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

2021

2324

2425

25X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

2021

2324

2527

27X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2829

2021

2324

2628

2920

2123

2425

2626

2021

2222

2222

22X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

25X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

28X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

00

00

00

0X

6020

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2425

25X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

27X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2425

2727

2021

2324

2425

250

00

00

00

00

00

00

0X

6020

2123

2426

2829

2021

2324

2425

2520

2122

2222

2222

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

2920

2123

2425

2626

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2828

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

27X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30

1

42 46 52 56

0.5

42 46 52 56

0.75

42 46 52 56

0

42 46 52 56

0.25

42 46 52 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 1

6 m

)

123

Page 134: Stinger Buoyancy

12

34

56

71

23

45

67

12

34

56

71

23

45

67

Curr

ent

velo

city

,m

/s

Out

side

diam

eter

,in

Mat

eria

lgr

ade

No.

of

case

23

45

W :

H =

5 m

: 2

.5 m X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

27X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

2021

2324

2425

25X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

2021

2324

2526

26X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2829

2021

2324

2628

2920

2123

2424

2525

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

25X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

27X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2829

2021

2324

2527

2720

2122

2222

2222

00

00

00

0X

6020

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

27X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2425

2727

2021

2324

2425

250

00

00

00

00

00

00

0X

6020

2123

2426

2829

2021

2324

2425

250

00

00

00

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

2920

2123

2424

2525

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30

0.75

42 46 52 56

1

42 46 52 56

0.25

42 46 52 56

0.5

42 46 52 56

0

42 46 52 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 1

6 m

)

124

Page 135: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

W :

H =

4 m

: 4

m X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

42 46

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

42

052 56

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

0.25

46 52 56

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

0.5

42 46 52 56X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

2123

2426

2626

26X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

30X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

0.75

42 46 5256

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2728

3030

00

00

00

00

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

290

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

56

1

42 46

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 1

8 m

)

125

Page 136: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

4.5

m :

3 m X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

42 46X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

30X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

052 56 42

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

3021

2325

2727

2828

0.25

46 52 56

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

3021

2325

2727

2828

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

0.5

42 46 52 56X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

29X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

31X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

56

0.75

42 46 52X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2829

290

00

00

00

00

00

00

0X

6021

2325

2729

3132

2123

2527

2830

3021

2324

2626

2626

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

00

00

00

01

42 4656

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 1

8 m

)

126

Page 137: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

5 m

: 2

.5 m X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

42 46X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

30X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3242

052 56

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

3021

2324

2626

2626

0.25

46 52 56

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

3021

2324

2626

2626

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

0.5

42 46 52 56X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2727

2828

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

30X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

0.75

42 46 5256

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2728

2929

00

00

00

00

00

00

00

X 60

2123

2527

2931

3221

2325

2728

3030

00

00

00

00

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

290

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

310

00

00

00

56

1

42 46

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 1

8 m

)

127

Page 138: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

W :

H =

4 m

: 4

m X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

42 46

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

42

052 56

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3132

0.25

46 52 56

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3132

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

0.5

42 46 52 56X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

29X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

0.75

42 46 5256

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3234

00

00

00

00

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3234

2224

2829

3131

320

00

00

00

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

340

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

56

1

42 46

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 2

0 m

)

128

Page 139: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

4.5

m :

3 m X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

42 46X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

052 56 42

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

0.25

46 52 56

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

0.5

42 46 52 56X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3132

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

33X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

56

0.75

42 46 52X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

330

00

00

00

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

00

00

00

01

42 4656

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 2

0 m

)

129

Page 140: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

5 m

: 2

.5 m X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

42 46X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3442

052 56

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

0.25

46 52 56

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3132

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

0.5

42 46 52 56X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

0.75

42 46 5256

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3233

00

00

00

00

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

290

00

00

00

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

340

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

340

00

00

00

56

1

42 46

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 1

(sti

nger

leng

th 2

0 m

)

130

Page 141: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

W :

H =

4 m

: 4

m X 52

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

2920

2123

2424

2525

X 60

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

2920

2123

2425

2727

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

42 46

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

X60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

2920

2123

2426

2829

2021

2324

2527

2720

2122

2323

2323

X 60

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

42

052 56

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X52

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

250

00

00

00

0.25

46 52 56

X52

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

250

00

00

00

X 60

2021

2324

2628

2920

2123

2426

2828

2021

2324

2425

2520

2122

2222

2222

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2626

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

0.5

42 46 52 56X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2828

2021

2324

2425

250

00

00

00

00

00

00

0X

6020

2123

2426

2829

2021

2324

2425

2520

2122

2222

2222

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

2021

2324

2425

25X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29

0.75

42 46 5256

X60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2425

2520

2122

2222

2222

00

00

00

00

00

00

00

X 60

2021

2324

2527

2720

2123

2424

2525

00

00

00

00

00

00

00

X 52

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

250

00

00

00

X 60

2021

2324

2628

3020

2123

2426

2829

2021

2324

2425

250

00

00

00

56

1

42 46

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

290

00

00

00

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 1

6 m

)

131

Page 142: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

4.5

m :

3 m X

5220

2123

2426

2829

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

25X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2828

2021

2324

2425

25X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29

42 46X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

2021

2222

2222

22X

6020

2123

2426

2829

2021

2324

2628

2920

2123

2425

2626

2021

2222

2222

22

052 56 42

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X52

2021

2324

2628

2920

2123

2424

2525

2021

2222

2222

220

00

00

00

0.25

46 52 56

X52

2021

2324

2628

2920

2123

2424

2525

2021

2222

2222

220

00

00

00

X 60

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

250

00

00

00

X 52

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

2920

2123

2424

2525

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2626

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

0.5

42 46 52 56X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2425

2727

2021

2223

2323

230

00

00

00

00

00

00

0X

6020

2123

2425

2727

2021

2324

2425

2520

2121

2121

2121

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

2920

2123

2424

2525

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

27X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29

56

0.75

42 46 52X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2424

2525

00

00

00

00

00

00

00

00

00

00

0X

6020

2123

2424

2525

2021

2222

2222

220

00

00

00

00

00

00

0X

5220

2123

2426

2829

2021

2324

2526

260

00

00

00

00

00

00

0X

6020

2123

2426

2829

2021

2324

2628

2820

2123

2424

2525

00

00

00

01

42 4656

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

280

00

00

00

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

290

00

00

00

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 1

6 m

)

132

Page 143: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

5 m

: 2

.5 m X

5220

2123

2426

2829

2021

2324

2628

2920

2123

2425

2727

2021

2223

2323

23X

6020

2123

2426

2829

2021

2324

2628

2920

2123

2425

2727

2021

2324

2425

25X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29

42 46X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

29X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

00

00

00

0X

6020

2123

2426

2829

2021

2324

2628

2820

2123

2424

2525

2021

2222

2222

2242

052 56

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2425

2727

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2828

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X52

2021

2324

2628

2820

2123

2424

2525

2021

2222

2222

220

00

00

00

0.25

46 52 56

X52

2021

2324

2628

2820

2123

2424

2525

2021

2222

2222

220

00

00

00

X 60

2021

2324

2628

2920

2123

2424

2525

2021

2222

2222

220

00

00

00

X 52

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

2720

2123

2424

2525

X 60

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

2920

2123

2424

2525

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

0.5

42 46 52 56X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

30X

5220

2123

2424

2525

2021

2222

2222

220

00

00

00

00

00

00

0X

6020

2123

2425

2727

2021

2324

2424

240

00

00

00

00

00

00

0X

5220

2123

2426

2829

2021

2324

2628

2820

2123

2424

2525

00

00

00

0X

6020

2123

2426

2830

2021

2324

2628

2920

2123

2424

2525

00

00

00

0X

5220

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2425

25X

6020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

2021

2324

2628

28

0.75

42 46 5256

X60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

2920

2123

2426

2828

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2830

X 52

2021

2223

2323

230

00

00

00

00

00

00

00

00

00

00

X 60

2021

2324

2425

250

00

00

00

00

00

00

00

00

00

00

X 52

2021

2324

2628

2920

2123

2424

2525

00

00

00

00

00

00

00

X 60

2021

2324

2628

2920

2123

2425

2727

2021

2324

2424

240

00

00

00

56

1

42 46

X 52

2021

2324

2628

3020

2123

2426

2829

2021

2324

2527

270

00

00

00

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

290

00

00

00

X 52

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

X 60

2021

2324

2628

3020

2123

2426

2830

2021

2324

2628

3020

2123

2426

2829

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 1

6 m

)

133

Page 144: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

W :

H =

4 m

: 4

m X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

42 46

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

42

052 56

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

290

00

00

00

0.25

46 52 56

X52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

290

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

3021

2324

2626

2626

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

0.5

42 46 52 56X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2829

290

00

00

00

00

00

00

0X

6021

2325

2729

3132

2123

2527

2830

3021

2325

2727

2828

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

29X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

0.75

42 46 5256

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2830

3021

2324

2626

2626

00

00

00

00

00

00

00

X 60

2123

2527

2931

3221

2325

2728

2929

00

00

00

00

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

290

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

290

00

00

00

56

1

42 46

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 1

8 m

)

134

Page 145: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

4.5

m :

3 m X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

29X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

30X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

42 46X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

2123

2425

2525

25X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

2123

2527

2728

28

052 56 42

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X52

2123

2527

2931

3221

2325

2728

3030

2123

2426

2626

260

00

00

00

0.25

46 52 56

X52

2123

2527

2931

3221

2325

2728

3030

2123

2426

2626

260

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

290

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

0.5

42 46 52 56X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2829

290

00

00

00

00

00

00

0X

6021

2325

2729

3132

2123

2527

2829

2921

2324

2525

2525

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

3031

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

30X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

56

0.75

42 46 52X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2728

2929

00

00

00

00

00

00

00

00

00

00

0X

6021

2325

2728

3030

2123

2425

2525

250

00

00

00

00

00

00

0X

5221

2325

2729

3132

2123

2527

2830

300

00

00

00

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

00

00

00

01

42 4656

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 1

8 m

)

135

Page 146: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

5 m

: 2

.5 m X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

29X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2829

29X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32

42 46X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

2123

2425

2525

25X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

2123

2426

2626

2642

052 56

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X52

2123

2527

2931

3221

2325

2728

2929

2123

2425

2525

250

00

00

00

0.25

46 52 56

X52

2123

2527

2931

3221

2325

2728

2929

2123

2425

2525

250

00

00

00

X 60

2123

2527

2931

3221

2325

2728

3030

2123

2426

2626

260

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

0.5

42 46 52 56X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

32X

5221

2325

2728

3030

2123

2426

2626

260

00

00

00

00

00

00

0X

6021

2325

2729

3132

2123

2527

2829

290

00

00

00

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2728

2929

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

00

00

00

0X

5221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

00

00

00

0X

6021

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

2123

2527

2830

30

0.75

42 46 5256

X60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2728

3030

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

X 52

2123

2527

2829

290

00

00

00

00

00

00

00

00

00

00

X 60

2123

2527

2829

2921

2324

2525

2525

00

00

00

00

00

00

00

X 52

2123

2527

2931

3221

2325

2728

2929

00

00

00

00

00

00

00

X 60

2123

2527

2931

3221

2325

2728

3031

00

00

00

00

00

00

00

56

1

42 46

X 52

2123

2527

2931

3221

2325

2729

3132

00

00

00

00

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 52

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

320

00

00

00

X 60

2123

2527

2931

3221

2325

2729

3132

2123

2527

2931

3221

2325

2729

3132

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 1

8 m

)

136

Page 147: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

W :

H =

4 m

: 4

m X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

42 46

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3132

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

42

052 56

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

330

00

00

00

0.25

46 52 56

X52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

330

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

0.5

42 46 52 56X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3422

2427

2828

2828

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3422

2427

2829

2929

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

33X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

0.75

42 46 5256

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3422

2427

2829

2929

00

00

00

00

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3233

00

00

00

00

00

00

00

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3131

320

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

340

00

00

00

56

1

42 46

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 2

0 m

)

137

Page 148: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

4.5

m :

3 m X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

33X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

42 46X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

29X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

2224

2829

3131

32

052 56 42

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X52

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

290

00

00

00

0.25

46 52 56

X52

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

290

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3322

2427

2828

2828

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

0.5

42 46 52 56X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3131

320

00

00

00

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3422

2427

2828

2828

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

29X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

56

0.75

42 46 52X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3233

2224

2728

2828

280

00

00

00

00

00

00

0X

6022

2428

2931

3234

2224

2728

2929

290

00

00

00

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

340

00

00

00

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

00

00

00

01

42 4656

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 2

0 m

)

138

Page 149: Stinger Buoyancy

Curr

ent

Out

side

M

ater

ial

No.

of

case

12

34

56

71

23

45

67

12

34

56

71

23

45

67

velo

city

,m

/sdi

amet

er,

in

Mat

eria

lgr

ade

23

45

W :

H =

5 m

: 2

.5 m X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

33X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35

42 46X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

2224

2728

2828

28X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

2942

052 56

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X52

2224

2829

3132

3522

2428

2931

3234

2224

2728

2828

280

00

00

00

0.25

46 52 56

X52

2224

2829

3132

3522

2428

2931

3234

2224

2728

2828

280

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3234

2224

2829

3030

300

00

00

00

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2930

3030

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

0.5

42 46 52 56X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

35X

5222

2428

2931

3234

2224

2728

2929

290

00

00

00

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3322

2427

2727

2727

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3233

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

00

00

00

0X

5222

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

00

00

00

0X

6022

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

34

0.75

42 46 5256

X60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3234

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

X 52

2224

2829

3132

330

00

00

00

00

00

00

00

00

00

00

X 60

2224

2829

3132

3422

2427

2828

2828

00

00

00

00

00

00

00

X 52

2224

2829

3132

3522

2428

2931

3234

00

00

00

00

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3234

2224

2728

2929

290

00

00

00

56

1

42 46

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

340

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 52

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

350

00

00

00

X 60

2224

2829

3132

3522

2428

2931

3235

2224

2829

3132

3522

2428

2931

3235

152 56

Pip

elay

per

form

ance

for

sti

nger

typ

e 2

(sti

nger

leng

th 2

0 m

)

139

Page 150: Stinger Buoyancy

16 m 18 m 20 m 16 m 18 m 20 mW : H = 4 m : 4 m

42 26.56 24.93 18.25 21.589 19.293 12.88946 9.6 8.55 4.57 5.134 3.761 052 3.99 4.77 7.77 8.341 9.607 12.6856 11.7 12.56 15.63 16.624 17.965 20.927W : H = 4.5 m : 3 m

42 28 28 22.82 25.164 21.72 13.77446 11.51 9.87 4.51 3.686 1.475 3.06952 7.92 9.25 13.6 16.249 18.484 22.63956 19.21 20.58 24.72 26 26 26W : H = 5 m : 2.5 m

42 22 22 20 20 20 16.20346 15.2 13.06 6 3.225 0 5.90852 10.51 12.25 18 18 18 1856 18 18 20 20 20 20

16 m 18 m 20 m 16 m 18 m 20 mW : H = 4 m : 4 m

42 0.8 0.8 0.6 0.7 0.6 0.446 0.3 0.3 0.2 0.2 0.2 052 0.2 0.2 0.3 0.3 0.3 0.456 0.4 0.4 0.5 0.5 0.6 0.6W : H = 4.5 m : 3 m

42 0.8 0.8 0.7 0.8 0.7 0.446 0.4 0.3 0.2 0.2 0.1 0.152 0.3 0.3 0.4 0.5 0.6 0.756 0.6 0.6 0.8 0.8 0.8 0.8W : H = 5 m : 2.5 m

42 0.7 0.7 0.6 0.6 0.6 0.546 0.5 0.4 0.2 0.1 0 0.252 0.4 0.4 0.6 0.6 0.6 0.656 0.6 0.6 0.6 0.6 0.6 0.6

Outsidediameter,

in

StabilityType 1 Type 2

Outsidediameter,

in

ScoreType 1 Type 2

Stability performance evaluation

140

Page 151: Stinger Buoyancy

2 3 4 5 2 3 4 5 2 3 4 5Stinger length = 16 m

42 7.3 46.8 72.6 67.7 7.3 46.8 72.6 67.7 7.3 46.8 72.6 67.746 3.3 34.5 51.7 47.8 3.3 34.5 41.1 40.4 3.3 34.5 51.7 47.852 2.4 20.5 31.1 29.6 2.4 20.5 25.1 25.2 2.4 20.5 31.1 29.656 1.4 12.4 20.5 20.2 1.4 12.4 20.5 20.2 1.4 12.4 20.5 20.242 19.0 48.5 48.7 48.3 10.8 48.5 48.7 48.3 19.0 48.5 48.7 48.346 8.8 33.0 33.6 33.0 8.8 33.0 33.6 33.0 8.8 33.0 33.6 33.052 5.1 18.6 20.1 19.6 5.1 18.6 20.1 19.6 5.1 18.6 20.1 19.656 3.0 11.7 15.9 15.3 3.0 11.7 13.5 15.3 3.0 11.7 15.9 15.342 35.4 38.2 29.3 29.3 25.4 38.2 29.3 29.3 35.4 38.2 29.3 29.346 17.3 26.3 20.3 20.0 17.3 26.3 20.3 20.0 17.3 26.3 20.3 20.052 9.1 15.5 12.3 13.5 9.1 15.5 12.3 12.1 9.1 15.5 12.3 13.556 5.4 12.2 9.8 9.5 5.4 10.2 9.8 9.5 5.4 12.2 9.8 9.542 44.7 32.2 21.3 20.8 44.7 27.3 18.7 18.9 44.7 32.2 21.3 20.846 23.3 19.0 14.7 14.3 23.3 19.0 13.0 14.3 23.3 22.2 14.7 14.352 12.5 11.5 9.0 8.7 12.5 11.5 9.0 8.7 12.5 13.3 9.0 8.756 9.3 9.1 6.4 6.8 9.3 9.1 6.4 6.8 9.3 9.1 7.1 6.842 42.8 21.7 14.0 14.0 42.8 21.7 14.0 14.0 42.8 21.7 14.0 14.046 28.1 15.0 9.7 9.6 23.7 15.0 9.7 9.6 28.1 15.0 9.7 9.652 15.6 9.1 5.9 6.4 13.2 9.1 5.9 6.4 15.6 9.1 5.9 6.456 10.0 7.2 4.7 4.6 10.0 6.4 4.7 4.6 10.0 7.2 4.7 5.0

Stinger length = 18 m42 3.8 36.7 47.3 41.5 3.8 36.7 47.3 41.5 3.8 36.7 47.3 41.546 3.3 25.9 33.1 29.1 3.3 25.9 33.1 29.1 3.3 25.9 33.1 29.152 2.2 14.2 19.6 17.9 2.2 14.2 19.6 17.9 2.2 14.2 19.6 17.956 1.3 8.6 15.6 14.1 1.3 8.6 13.0 14.1 1.3 8.6 15.6 14.142 9.9 32.5 30.4 32.7 9.9 32.5 30.4 28.8 9.9 32.5 30.4 32.746 6.9 21.6 20.7 22.1 6.9 21.6 20.7 19.6 6.9 21.6 20.7 22.152 3.8 12.0 12.3 13.0 3.8 12.0 12.3 13.0 3.8 12.0 12.3 13.056 2.2 9.2 9.6 10.1 2.2 7.6 9.6 9.0 2.2 9.2 9.6 10.142 23.7 29.1 20.3 19.1 18.4 29.1 20.3 19.1 23.7 29.1 20.3 19.146 11.7 19.6 13.9 12.9 11.7 16.5 13.9 12.9 11.7 19.6 13.9 12.952 6.0 11.3 8.4 8.6 6.0 9.6 8.4 7.8 6.0 11.3 8.4 8.656 4.4 7.5 6.6 6.0 3.6 7.5 6.6 6.0 3.6 7.5 6.6 6.642 28.5 19.5 12.4 13.0 28.5 19.5 12.4 13.0 28.5 19.5 13.8 13.046 18.0 13.3 9.5 8.9 14.9 13.3 8.5 8.9 18.0 13.3 9.5 8.952 9.4 8.0 5.8 5.8 7.9 8.0 5.8 5.4 9.4 8.0 5.8 5.856 5.8 6.2 4.5 4.2 5.8 6.2 4.1 4.2 5.8 6.2 4.5 4.542 26.3 14.4 8.8 8.5 26.3 12.8 8.8 8.5 26.3 14.4 8.8 9.146 17.1 9.9 6.1 6.3 17.1 8.8 6.1 6.3 17.1 9.9 6.1 6.352 9.4 6.0 4.0 3.8 9.4 6.0 3.7 3.8 9.4 6.0 4.0 4.156 7.0 4.7 2.9 3.0 7.0 4.2 2.9 3.0 7.0 4.7 2.9 3.0

Stinger length = 20 m42 3.5 17.4 22.4 22.9 1.8 17.4 22.4 22.9 3.5 17.4 22.4 22.946 1.6 12.3 15.7 15.9 1.6 12.3 15.7 13.8 1.6 12.3 15.7 15.952 1.1 6.7 9.3 9.7 1.1 6.7 9.3 8.5 1.1 6.7 9.3 9.756 0.6 5.2 7.4 6.7 0.6 4.1 7.4 6.7 0.6 5.2 7.4 6.742 7.1 19.3 17.0 15.5 4.7 19.3 17.0 15.5 7.1 19.3 17.0 15.546 3.3 10.2 11.5 10.5 3.3 10.2 11.5 10.5 3.3 10.2 11.5 10.552 1.8 5.7 6.7 6.2 1.8 5.7 6.7 6.2 1.8 5.7 6.7 6.956 1.1 4.4 5.3 4.8 1.1 4.4 4.6 4.8 1.1 4.4 5.3 4.842 11.2 13.8 9.6 10.0 11.2 13.8 9.6 10.0 11.2 13.8 10.9 10.046 7.0 9.3 6.6 6.8 5.5 9.3 6.6 6.8 7.0 9.3 7.4 6.852 2.9 5.4 4.5 4.1 2.9 5.4 4.0 4.1 2.9 5.4 4.5 4.456 2.1 4.1 3.1 3.1 2.1 3.6 3.1 3.1 2.1 4.1 3.1 3.142 13.5 10.6 6.6 6.1 13.5 9.2 6.6 6.1 13.5 10.6 6.6 6.746 8.5 7.2 4.5 4.5 8.5 6.3 4.5 4.5 8.5 7.2 4.5 4.552 4.4 4.3 2.7 2.8 4.4 4.3 2.7 2.8 4.4 4.3 3.0 3.056 3.2 3.0 2.1 2.1 2.7 3.0 2.1 2.1 3.2 3.0 2.1 2.142 14.5 6.8 4.6 4.3 14.5 6.8 4.2 4.3 14.5 6.8 4.6 4.646 9.4 4.7 3.1 3.0 8.1 4.7 3.1 3.0 9.4 4.7 3.1 3.252 5.1 2.8 1.9 1.9 4.5 2.8 1.9 1.9 5.1 3.1 2.1 2.156 3.3 2.2 1.5 1.5 3.3 2.2 1.5 1.5 3.3 2.2 1.5 1.5

1

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

0.25

0.5

0.75

5 : 2.5Life, yearCurrent

velocity,m/s

Outsidediameter,

in4 : 4 4.5 : 3

0

Fatigue design

141

Page 152: Stinger Buoyancy

142

APPENDIX C

STINGER RESULT CHARTS

Page 153: Stinger Buoyancy

143

Page 154: Stinger Buoyancy

Table C.1: Pipelay performance (stinger length 16 m)

Stinger weight, kN Net buoyancy, kN

Wave height,

m

Current velocity,

m/s

Outside diameter,

in

Material grade

Stinger length,

m Section

1 Section

2 Section

3 Section

4 Section

1 Section

2 Section

3 Section

4

case I 2 0 42 X 52 16 523 1040 1554 2064 234 527 823 1123 case II 2 0 56 X 52 16 653 1280 1902 2521 507 1091 1680 2271

No. of stinger sections consider only buoyancy and pipeline weight No. of case

case I 1 1 1 2 2 2 2 2 3 3 37 1 1 1 3 3 3 3 4 4 4 2 1 2 3 4 4 4 0 0 0 2 2 2 4 4 4 0 0 0 0 2 2 2 4 0 0 0 0 0 0 case II 1 1 1 1 1 1 1 1 2 2 45 1 1 1 2 2 2 2 3 3 3 1 1 1 2 3 3 3 4 4 4 1 1 1 3 3 3 3 4 0 0 1 1 1 3 3 4 4 0 0 0

No. of stinger sections consider only top tension and max tension in each cases No. of case

100 t 1 1 1 3 3 3 4 0 0 0 20

2 2 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

125 t 1 1 1 3 3 3 3 0 0 0 21 2 1 2 4 4 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

150 t 1 1 1 2 3 2 2 0 0 0 23 2 1 1 4 4 4 0 0 0 0 2 2 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

175 t 1 1 1 2 2 2 2 4 0 0 24 2 1 1 3 4 4 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

200 t 1 1 1 2 2 2 1 3 4 0 26 2 1 1 3 4 4 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

225 t 1 1 1 2 2 1 1 2 3 0 28 2 1 1 3 3 4 4 0 0 0 2 1 2 4 4 0 0 0 0 0 2 2 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

250 t 1 1 1 2 2 1 1 2 2 4 30 2 1 1 3 3 3 4 0 0 0 2 1 1 4 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 4 0 0 0 0 0 0

144

Page 155: Stinger Buoyancy

Table C.2: Pipelay performance (stinger length 18 m)

Stinger weight, kN Net buoyancy, kN

Wave height,

m

Current velocity,

m/s

Outside diameter,

in

Material grade

Stinger length,

m Section

1 Section

2 Section

3 Section

4 Section

1 Section

2 Section

3 Section

4

case I 2 0 42 X 52 18 574 1134 1691 2244 301 672 1046 1424 case II 2 0 56 X 52 18 739 1432 2110 2785 586 1270 1970 2675

No. of stinger sections consider only buoyancy and pipeline weight No. of case

case I 1 1 1 2 2 1 1 2 2 3 41 1 1 1 2 2 2 3 3 3 4 1 1 1 3 3 3 3 4 0 0 1 1 2 3 4 4 4 0 0 0 2 1 2 4 4 4 0 0 0 0 case II 1 1 1 1 1 1 1 1 2 2 48 1 1 1 2 2 2 2 2 2 3 1 1 1 2 2 2 3 3 3 4 1 1 1 3 3 3 3 4 4 4 1 1 1 3 3 3 4 4 0 0

No. of stinger sections consider only top tension and max tension in each cases No. of case

100 t 1 1 1 3 3 3 4 0 0 0 21

1 1 2 4 4 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

125 t 1 1 1 2 3 2 3 0 0 0 23 1 1 1 3 4 4 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

150 t 1 1 1 2 2 2 2 4 0 0 25 1 1 1 3 4 4 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

175 t 1 1 1 2 2 2 1 3 0 0 27 1 1 1 3 4 4 4 0 0 0 2 1 2 4 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

200 t 1 1 1 2 2 1 1 3 4 0 29 1 1 1 3 3 3 4 0 0 0 2 1 1 4 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 4 0 0 0 0 0 0

225 t 1 1 1 2 2 1 1 2 3 4 31 1 1 1 3 3 3 4 0 0 0 2 1 1 3 4 4 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0

250 t 1 1 1 2 2 1 1 2 2 3 32 1 1 1 3 3 3 4 0 0 0 2 1 1 3 4 4 0 0 0 0 2 1 1 4 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0

145

Page 156: Stinger Buoyancy

Table C.3: Pipelay performance (stinger length 20 m)

Stinger weight, kN Net buoyancy, kN

Wave height,

m

Current velocity,

m/s

Outside diameter,

in

Material grade

Stinger length,

m Section

1 Section

2 Section

3 Section

4 Section

1 Section

2 Section

3 Section

4

case I 2 0 42 X 52 20 624 1215 1794 2369 318 725 1147 1571 case II 2 0 56 X 52 20 788 1555 2271 2983 658 1387 2174 2963

No. of stinger sections consider only buoyancy and pipeline weight No. of case

case I 1 1 1 2 2 1 1 2 2 2 43 1 1 1 2 2 2 2 3 3 3 1 1 1 3 3 3 3 4 4 0 1 1 1 3 3 3 4 0 0 0 1 1 2 3 4 4 4 0 0 0 case II 1 1 1 1 1 1 1 1 1 2 49 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 3 3 3 1 1 1 2 3 3 3 4 4 4 1 1 1 3 3 3 3 4 4 0

No. of stinger sections consider only top tension and max tension in each cases No. of case

100 t 1 1 1 2 3 3 3 0 0 0 22

1 1 1 3 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

125 t 1 1 1 2 2 2 2 0 0 0 24 1 1 1 3 4 4 0 0 0 0 1 1 2 4 0 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0

150 t 1 1 1 2 2 2 2 4 0 0 28 1 1 1 3 3 4 4 0 0 0 1 1 1 4 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 2 2 4 0 0 0 0 0 0

175 t 1 1 1 2 2 2 1 3 0 0 29 1 1 1 3 3 3 4 0 0 0 1 1 1 3 4 4 0 0 0 0 2 1 2 4 0 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0

200 t 1 1 1 2 2 1 1 3 4 0 31 1 1 1 3 3 3 4 0 0 0 1 1 1 3 4 4 0 0 0 0 2 1 1 4 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0

225 t 1 1 1 2 2 1 1 2 3 4 32 1 1 1 3 3 3 3 0 0 0 1 1 1 3 4 4 0 0 0 0 2 1 1 3 4 0 0 0 0 0 2 1 2 4 0 0 0 0 0 0

250 t 1 1 1 2 2 1 1 2 2 3 35 1 1 1 2 3 3 3 0 0 0 1 1 1 3 3 4 4 0 0 0 2 1 1 3 4 4 0 0 0 0 2 1 2 4 4 0 0 0 0 0

146

Page 157: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

240

280

320

360

400 Stinger weight, ton40

80

120

160

200

240 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 4 : 4, Stinger length 16 m

Figure C.1: Structure design (1, 4 : 4, 16)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 4 : 4, Stinger length 18 m

Figure C.2: Structure design (1, 4 : 4, 18)

147

Page 158: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 4 : 4, Stinger length 20 m

Figure C.3: Structure design (1, 4 : 4, 20)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

240

280

320

360

400 Stinger weight, ton40

80

120

160

200

240 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 4.5 : 3, Stinger length 16 m

Figure C.4: Structure design (1, 4.5 : 3, 16)

148

Page 159: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 4.5 : 3, Stinger length 18 m

Figure C.5: Structure design (1, 4.5 : 3, 18)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450

500 Stinger weight, ton50

100

150

200

250

300

350 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 4.5 : 3, Stinger length 20 m

Figure C.6: Structure design (1, 4.5 : 3, 20)

149

Page 160: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

240

280

320

360

400 Stinger weight, ton40

80

120

160

200

240 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 5 :2.5, Stinger length 16 m

Figure C.7: Structure design (1, 5 : 2.5, 16)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 5 :2.5, Stinger length 18 m

Figure C.8: Structure design (1, 5 : 2.5, 18)

150

Page 161: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450

500 Stinger weight, ton50

100

150

200

250

300

350 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 1, Aspect ratio 5 :2.5, Stinger length 20 m

Figure C.9: Structure design (1, 5 : 2.5, 20)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

240

280

320

360

400 Stinger weight, ton40

80

120

160

200

240 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 4 :4, Stinger length 16 m

Figure C.10: Structure design (2, 4 : 4, 16)

151

Page 162: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 4 :4, Stinger length 18 m

Figure C.11: Structure design (2, 4 : 4, 18)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450

500 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 4 :4, Stinger length 20 m

Figure C.12: Structure design (2, 4 : 4, 20)

152

Page 163: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

160

200

240

280

320

360 Stinger weight, ton0

40

80

120

160

200

240 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 4.5 :3, Stinger length 16 m

Figure C.13: Structure design (2, 4.5 : 3, 16)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

240

280

320

360

400 Stinger weight, ton0

50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 4.5 :3, Stinger length 18 m

Figure C.14: Structure design (2, 4.5 : 3, 18)

153

Page 164: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 4.5 :3, Stinger length 20 m

Figure C.15: Structure design (2, 4.5 : 3, 20)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

160

200

240

280

320

360

400 Stinger weight, ton40

80

120

160

200

240 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 5 :2.5, Stinger length 16 m

Figure C.16: Structure design (2, 5 : 2.5, 16)

154

Page 165: Stinger Buoyancy

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

240

280

320

360

400

440 Stinger weight, ton0

50

100

150

200

250 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 5 :2.5, Stinger length 18 m

Figure C.17: Structure design (2, 5 : 2.5, 18)

Wave height, m

Outside dia, in 42 46 52 56

2

42 46 52 56

3

42 46 52 56

4

42 46 52 56

5

200

250

300

350

400

450 Stinger weight, ton50

100

150

200

250

300 Net buoyancy, ton

Current velocity, m/s00.250.50.751

Structural designStinger type 2, Aspect ratio 5 :2.5, Stinger length 20 m

Figure C.18: Structure design (2, 5 : 2.5, 20)

155

Page 166: Stinger Buoyancy

Aspect ratioOutside dia, in 42 46 52 56

4 : 442 46 52 56

4.5 : 342 46 52 56

5 : 2.5

0

5

10

15

20

25

30 Tilting (type 1), deg0

10

20

30 Tilting (type 2), deg Stinger length, m161820

Stability performance

Figure C.19: Stability performance

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

20

40

60

80 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 4 : 4, Stinger lenght 16 m)

Figure C.20: Fatigue design (4 : 4, 16)

156

Page 167: Stinger Buoyancy

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

10

20

30

40

50 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 4 : 4, Stinger lenght 18 m)

Figure C.21: Fatigue design (4 : 4, 18)

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

5

10

15

20

25 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 4 : 4, Stinger lenght 20 m)

Figure C.22: Fatigue design (4 : 4, 20)

157

Page 168: Stinger Buoyancy

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

20

40

60

80 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 4.5 : 3, Stinger lenght 16 m)

Figure C.23: Fatigue design (4.5 : 3, 16)

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

10

20

30

40

50 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 4.5 : 3, Stinger lenght 18 m)

Figure C.24: Fatigue design (4.5 : 3, 18)

158

Page 169: Stinger Buoyancy

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

5

10

15

20

25 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 4.5 : 3, Stinger lenght 20 m)

Figure C.25: Fatigue design (4.5 : 3, 20)

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

20

40

60

80 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 5 : 2.5, Stinger lenght 16 m)

Figure C.26: Fatigue design (5 : 2.5, 16)

159

Page 170: Stinger Buoyancy

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

10

20

30

40

50 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 5 : 2.5, Stinger lenght 18 m)

Figure C.27: Fatigue design (5 : 2.5, 18)

Current, m/sOutside dia, in 42 46 52 56

042 46 52 56

0.2542 46 52 56

0.542 46 52 56

0.7542 46 52 56

1

0

5

10

15

20

25 Life, yrWave height, m

2345

Fatigue design(Aspect ratio 5 : 2.5, Stinger lenght 20 m)

Figure C.28: Fatigue design (5 : 2.5, 20)

160

Page 171: Stinger Buoyancy

161

APPENDIX D

STINGER OPTIMIZATION

Page 172: Stinger Buoyancy

162

Page 173: Stinger Buoyancy

Crane capacity not more than 250 tonneWave height 2 meterT i it 100 t

Stinger optimization for

Tensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 210 115 20 26.56 7.3 0.55 0.40 0.80 0.12 1.871 16 4 : 4 42 X 52 210 115 20 26.56 7.3 0.54 0.40 0.80 0.12 1.871 16 4.5 : 3 42 X 60 207 110 20 28 7.3 0.53 0.40 0.80 0.12 1.851 16 4.5 : 3 42 X 52 207 109 20 28 7.3 0.53 0.40 0.80 0.12 1.852 16 4.5 : 3 42 X 60 195 93 20 25.164 7.3 0.47 0.40 0.80 0.12 1.802 16 4 4 42 X 60 206 93 20 21 589 19 0 0 45 0 40 0 70 0 32 1 87

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 16 4 : 4 42 X 60 206 93 20 21.589 19.0 0.45 0.40 0.70 0.32 1.872 16 4 : 4 42 X 52 208 91 20 21.589 19.0 0.44 0.40 0.70 0.32 1.862 16 4.5 : 3 42 X 60 201 86 20 25.164 10.8 0.43 0.40 0.80 0.18 1.812 16 4.5 : 3 42 X 52 202 84 20 25.164 10.8 0.42 0.40 0.80 0.18 1.802 16 5 : 2.5 42 X 60 199 83 20 20 19.0 0.42 0.40 0.60 0.32 1.732 16 4.5 : 3 42 X 60 209 77 20 25.164 25.4 0.37 0.40 0.80 0.42 1.992 16 4.5 : 3 42 X 52 212 74 20 25.164 25.4 0.35 0.40 0.80 0.42 1.972 16 5 : 2.5 42 X 60 208 74 20 20 35.4 0.35 0.40 0.60 0.59 1.942 16 5 : 2.5 42 X 52 211 70 20 20 35.4 0.33 0.40 0.60 0.59 1.92- - - - - - - - - - - - - - -

0.25

0.5

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 250 tonneWave height 2 meterTensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 210 115 21 26.56 7.29 0.55 0.42 0.80 0.12 1.891 16 4 : 4 42 X 52 210 115 21 26.56 7.29 0.54 0.42 0.80 0.12 1.891 16 4.5 : 3 42 X 60 207 110 21 28 7.29 0.53 0.42 0.80 0.12 1.871 16 4.5 : 3 42 X 52 207 109 21 28 7.29 0.53 0.42 0.80 0.12 1.872 16 4.5 : 3 42 X 60 195 93 21 25.164 7.29 0.47 0.42 0.80 0.12 1.822 16 4 : 4 42 X 60 206 93 21 21.589 18.99 0.45 0.42 0.70 0.32 1.892 16 4 : 4 42 X 52 208 91 21 21.589 18.99 0.44 0.42 0.70 0.32 1.882 16 4.5 : 3 42 X 60 201 86 21 25.164 10.80 0.43 0.42 0.80 0.18 1.832 16 4.5 : 3 42 X 52 202 84 21 25.164 10.80 0.42 0.42 0.80 0.18 1.822 16 5 : 2.5 42 X 60 199 83 21 20 18.99 0.42 0.42 0.60 0.32 1.75

0

0.25

2 16 4.5 : 3 42 X 60 209 77 21 25.164 25.44 0.37 0.42 0.80 0.42 2.012 16 4.5 : 3 42 X 52 212 74 21 25.164 25.44 0.35 0.42 0.80 0.42 1.992 16 5 : 2.5 42 X 60 208 74 21 20 35.37 0.35 0.42 0.60 0.59 1.962 16 5 : 2.5 42 X 52 211 70 21 20 35.37 0.33 0.42 0.60 0.59 1.94- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

163

Page 174: Stinger Buoyancy

Crane capacity not more than 250 tonneWave height 2 meterT i it 150 t

Stinger optimization for

Tensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 210 115 23 26.56 7.3 0.55 0.46 0.80 0.12 1.931 16 4 : 4 42 X 52 210 115 23 26.56 7.3 0.54 0.46 0.80 0.12 1.931 16 4.5 : 3 42 X 60 207 110 23 28 7.3 0.53 0.46 0.80 0.12 1.911 16 4.5 : 3 42 X 52 207 109 23 28 7.3 0.53 0.46 0.80 0.12 1.912 16 4.5 : 3 42 X 60 195 93 23 25.164 7.3 0.47 0.46 0.80 0.12 1.862 16 4 4 42 X 60 206 93 23 21 589 19 0 0 45 0 46 0 70 0 32 1 93

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 16 4 : 4 42 X 60 206 93 23 21.589 19.0 0.45 0.46 0.70 0.32 1.932 16 4 : 4 42 X 52 208 91 23 21.589 19.0 0.44 0.46 0.70 0.32 1.922 16 4.5 : 3 42 X 60 201 86 23 25.164 10.8 0.43 0.46 0.80 0.18 1.872 16 4.5 : 3 42 X 52 202 84 23 25.164 10.8 0.42 0.46 0.80 0.18 1.862 16 5 : 2.5 42 X 60 199 83 23 20 19.0 0.42 0.46 0.60 0.32 1.792 16 4.5 : 3 42 X 60 209 77 23 25.164 25.4 0.37 0.46 0.80 0.42 2.052 16 4.5 : 3 42 X 52 212 74 23 25.164 25.4 0.35 0.46 0.80 0.42 2.032 16 5 : 2.5 42 X 60 208 74 23 20 35.4 0.35 0.46 0.60 0.59 2.002 16 5 : 2.5 42 X 52 211 70 23 20 35.4 0.33 0.46 0.60 0.59 1.98- - - - - - - - - - - - - - -

0.25

0.5

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 250 tonneWave height 2 meterTensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 210 115 24 26.56 7.29 0.55 0.48 0.80 0.12 1.951 16 4 : 4 42 X 52 210 115 24 26.56 7.29 0.54 0.48 0.80 0.12 1.951 16 4.5 : 3 42 X 60 207 110 24 28 7.29 0.53 0.48 0.80 0.12 1.931 16 4.5 : 3 42 X 52 207 109 24 28 7.29 0.53 0.48 0.80 0.12 1.932 18 4.5 : 3 42 X 60 209 120 27 21.72 3.80 0.57 0.54 0.70 0.06 1.882 16 4 : 4 42 X 60 206 93 24 21.589 18.99 0.45 0.48 0.70 0.32 1.952 16 4 : 4 42 X 52 208 91 24 21.589 18.99 0.44 0.48 0.70 0.32 1.942 16 4.5 : 3 42 X 60 201 86 24 25.164 10.80 0.43 0.48 0.80 0.18 1.892 16 4.5 : 3 42 X 52 202 84 24 25.164 10.80 0.42 0.48 0.80 0.18 1.882 16 5 : 2.5 42 X 60 199 83 24 20 18.99 0.42 0.48 0.60 0.32 1.81

0

0.25

2 16 4.5 : 3 42 X 60 209 77 24 25.164 25.44 0.37 0.48 0.80 0.42 2.072 16 4.5 : 3 42 X 52 212 74 24 25.164 25.44 0.35 0.48 0.80 0.42 2.052 16 5 : 2.5 42 X 60 208 74 24 20 35.37 0.35 0.48 0.60 0.59 2.022 16 5 : 2.5 42 X 52 211 70 24 20 35.37 0.33 0.48 0.60 0.59 2.00- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

164

Page 175: Stinger Buoyancy

Crane capacity not more than 250 tonneWave height 2 meterT i it 200 t

Stinger optimization for

Tensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 210 115 26 26.56 7.3 0.55 0.52 0.80 0.12 1.991 16 4 : 4 42 X 52 210 115 26 26.56 7.3 0.54 0.52 0.80 0.12 1.991 16 4.5 : 3 42 X 60 207 110 26 28 7.3 0.53 0.52 0.80 0.12 1.971 16 4.5 : 3 42 X 52 207 109 26 28 7.3 0.53 0.52 0.80 0.12 1.972 18 4.5 : 3 42 X 60 209 120 29 21.72 3.8 0.57 0.58 0.70 0.06 1.922 16 4 4 42 X 60 206 93 26 21 589 19 0 0 45 0 52 0 70 0 32 1 99

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 16 4 : 4 42 X 60 206 93 26 21.589 19.0 0.45 0.52 0.70 0.32 1.992 16 4 : 4 42 X 52 208 91 26 21.589 19.0 0.44 0.52 0.70 0.32 1.982 16 4.5 : 3 42 X 60 201 86 26 25.164 10.8 0.43 0.52 0.80 0.18 1.932 16 4.5 : 3 42 X 52 202 84 26 25.164 10.8 0.42 0.52 0.80 0.18 1.922 16 5 : 2.5 42 X 60 199 83 26 20 19.0 0.42 0.52 0.60 0.32 1.852 16 4.5 : 3 42 X 60 209 77 26 25.164 25.4 0.37 0.52 0.80 0.42 2.112 16 4.5 : 3 42 X 52 212 74 26 25.164 25.4 0.35 0.52 0.80 0.42 2.092 16 5 : 2.5 42 X 60 208 74 26 20 35.4 0.35 0.52 0.60 0.59 2.062 16 5 : 2.5 42 X 52 211 70 26 20 35.4 0.33 0.52 0.60 0.59 2.04- - - - - - - - - - - - - - -

0.25

0.5

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 250 tonneWave height 2 meterTensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 210 115 28 26.56 7.29 0.55 0.56 0.80 0.12 2.031 16 4 : 4 42 X 52 210 115 28 26.56 7.29 0.54 0.56 0.80 0.12 2.031 16 4.5 : 3 42 X 60 207 110 28 28 7.29 0.53 0.56 0.80 0.12 2.011 16 4.5 : 3 42 X 52 207 109 28 28 7.29 0.53 0.56 0.80 0.12 2.012 18 4.5 : 3 42 X 60 209 120 31 21.72 3.80 0.57 0.62 0.70 0.06 1.962 16 4 : 4 42 X 60 206 93 28 21.589 18.99 0.45 0.56 0.70 0.32 2.032 16 4 : 4 42 X 52 208 91 28 21.589 18.99 0.44 0.56 0.70 0.32 2.022 16 4.5 : 3 42 X 60 201 86 28 25.164 10.80 0.43 0.56 0.80 0.18 1.972 16 4.5 : 3 42 X 52 202 84 28 25.164 10.80 0.42 0.56 0.80 0.18 1.962 16 5 : 2.5 42 X 60 199 83 28 20 18.99 0.42 0.56 0.60 0.32 1.89

0

0.25

2 16 4.5 : 3 42 X 60 209 77 28 25.164 25.44 0.37 0.56 0.80 0.42 2.152 16 4.5 : 3 42 X 52 212 74 28 25.164 25.44 0.35 0.56 0.80 0.42 2.132 16 5 : 2.5 42 X 60 208 74 28 20 35.37 0.35 0.56 0.60 0.59 2.102 16 5 : 2.5 42 X 52 211 70 28 20 35.37 0.33 0.56 0.60 0.59 2.08- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

165

Page 176: Stinger Buoyancy

Crane capacity not more than 250 tonneWave height 2 meterT i it 250 t

Stinger optimization for

Tensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 210 115 30 26.56 7.3 0.55 0.60 0.80 0.12 2.071 16 4 : 4 42 X 52 210 115 30 26.56 7.3 0.54 0.60 0.80 0.12 2.071 16 4.5 : 3 42 X 60 207 110 30 28 7.3 0.53 0.60 0.80 0.12 2.051 16 4.5 : 3 42 X 52 207 109 30 28 7.3 0.53 0.60 0.80 0.12 2.052 16 4.5 : 3 42 X 60 195 93 30 25.164 7.3 0.47 0.60 0.80 0.12 2.002 16 4 4 42 X 60 206 93 30 21 589 19 0 0 45 0 60 0 70 0 32 2 07

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 16 4 : 4 42 X 60 206 93 30 21.589 19.0 0.45 0.60 0.70 0.32 2.072 16 4 : 4 42 X 52 208 91 29 21.589 19.0 0.44 0.58 0.70 0.32 2.042 16 4.5 : 3 42 X 60 201 86 29 25.164 10.8 0.43 0.58 0.80 0.18 1.992 16 4.5 : 3 42 X 52 202 84 29 25.164 10.8 0.42 0.58 0.80 0.18 1.982 16 5 : 2.5 42 X 60 199 83 29 20 19.0 0.42 0.58 0.60 0.32 1.912 16 4.5 : 3 42 X 60 209 77 29 25.164 25.4 0.37 0.58 0.80 0.42 2.172 16 4.5 : 3 42 X 52 212 74 29 25.164 25.4 0.35 0.58 0.80 0.42 2.152 16 5 : 2.5 42 X 60 208 74 29 20 35.4 0.35 0.58 0.60 0.59 2.122 16 5 : 2.5 42 X 52 211 70 28 20 35.4 0.33 0.56 0.60 0.59 2.08- - - - - - - - - - - - - - -

0.25

0.5

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 250 tonneWave height 3 meterTensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

2 16 4.5 : 3 42 X 60 205 82 20 25.164 46.76 0.40 0.40 0.80 0.78 2.382 16 4.5 : 3 42 X 52 206 80 20 25.164 46.76 0.39 0.40 0.80 0.78 2.372 16 4 : 4 42 X 60 210 89 20 21.589 46.76 0.43 0.40 0.70 0.78 2.312 16 4 : 4 42 X 52 211 88 20 21.589 46.76 0.42 0.40 0.70 0.78 2.302 16 5 : 2.5 42 X 60 203 79 20 20 46.76 0.39 0.40 0.60 0.78 2.172 16 4.5 : 3 42 X 60 212 74 20 25.164 48.48 0.35 0.40 0.80 0.81 2.352 16 5 : 2.5 42 X 60 211 70 20 20 48.48 0.33 0.40 0.60 0.81 2.14- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0

0.25

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

166

Page 177: Stinger Buoyancy

Crane capacity not more than 250 tonneWave height 3 meterT i it 125 t

Stinger optimization for

Tensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total2 16 4.5 : 3 42 X 60 205 82 21 25.164 46.8 0.40 0.42 0.80 0.78 2.402 16 4.5 : 3 42 X 52 206 80 21 25.164 46.8 0.39 0.42 0.80 0.78 2.392 16 4 : 4 42 X 60 210 89 21 21.589 46.8 0.43 0.42 0.70 0.78 2.332 16 4 : 4 42 X 52 211 88 21 21.589 46.8 0.42 0.42 0.70 0.78 2.322 16 5 : 2.5 42 X 60 203 79 21 20 46.8 0.39 0.42 0.60 0.78 2.192 16 4 5 3 42 X 60 212 74 21 25 164 48 5 0 35 0 42 0 80 0 81 2 37

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 16 4.5 : 3 42 X 60 212 74 21 25.164 48.5 0.35 0.42 0.80 0.81 2.372 16 5 : 2.5 42 X 60 211 70 21 20 48.5 0.33 0.42 0.60 0.81 2.16- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.25

0.5

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 250 tonneWave height 3 meterTensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

2 16 4.5 : 3 42 X 60 205 82 23 25.164 46.76 0.40 0.46 0.80 0.78 2.442 16 4.5 : 3 42 X 52 206 80 23 25.164 46.76 0.39 0.46 0.80 0.78 2.432 16 4 : 4 42 X 60 210 89 23 21.589 46.76 0.43 0.46 0.70 0.78 2.372 16 4 : 4 42 X 52 211 88 23 21.589 46.76 0.42 0.46 0.70 0.78 2.362 16 5 : 2.5 42 X 60 203 79 23 20 46.76 0.39 0.46 0.60 0.78 2.232 16 4.5 : 3 42 X 60 212 74 23 25.164 48.48 0.35 0.46 0.80 0.81 2.412 16 5 : 2.5 42 X 60 211 70 23 20 48.48 0.33 0.46 0.60 0.81 2.20- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0

0.25

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

167

Page 178: Stinger Buoyancy

Crane capacity not more than 250 tonneWave height 3 meterT i it 175 t

Stinger optimization for

Tensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total2 16 4.5 : 3 42 X 60 205 82 24 25.164 46.8 0.40 0.48 0.80 0.78 2.462 16 4.5 : 3 42 X 52 206 80 24 25.164 46.8 0.39 0.48 0.80 0.78 2.452 16 4 : 4 42 X 60 210 89 24 21.589 46.8 0.43 0.48 0.70 0.78 2.392 16 4 : 4 42 X 52 211 88 24 21.589 46.8 0.42 0.48 0.70 0.78 2.382 16 5 : 2.5 42 X 60 203 79 24 20 46.8 0.39 0.48 0.60 0.78 2.252 16 4 5 3 42 X 60 212 74 24 25 164 48 5 0 35 0 48 0 80 0 81 2 43

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 16 4.5 : 3 42 X 60 212 74 24 25.164 48.5 0.35 0.48 0.80 0.81 2.432 16 5 : 2.5 42 X 60 211 70 24 20 48.5 0.33 0.48 0.60 0.81 2.22- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.25

0.5

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 250 tonneWave height 3 meterTensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

2 16 4.5 : 3 42 X 60 205 82 26 25.164 46.76 0.40 0.52 0.80 0.78 2.502 16 4.5 : 3 42 X 52 206 80 26 25.164 46.76 0.39 0.52 0.80 0.78 2.492 16 4 : 4 42 X 60 210 89 26 21.589 46.76 0.43 0.52 0.70 0.78 2.432 16 4 : 4 42 X 52 211 88 26 21.589 46.76 0.42 0.52 0.70 0.78 2.422 16 5 : 2.5 42 X 60 203 79 26 20 46.76 0.39 0.52 0.60 0.78 2.292 16 4.5 : 3 42 X 60 212 74 26 25.164 48.48 0.35 0.52 0.80 0.81 2.472 16 5 : 2.5 42 X 60 211 70 26 20 48.48 0.33 0.52 0.60 0.81 2.26- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0

0.25

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

168

Page 179: Stinger Buoyancy

Crane capacity not more than 250 tonneWave height 3 meterT i it 225 t

Stinger optimization for

Tensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total2 16 4.5 : 3 42 X 60 205 82 28 25.164 46.8 0.40 0.56 0.80 0.78 2.542 16 4.5 : 3 42 X 52 206 80 28 25.164 46.8 0.39 0.56 0.80 0.78 2.532 16 4 : 4 42 X 60 210 89 28 21.589 46.8 0.43 0.56 0.70 0.78 2.472 16 4 : 4 42 X 52 211 88 28 21.589 46.8 0.42 0.56 0.70 0.78 2.462 16 5 : 2.5 42 X 60 203 79 28 20 46.8 0.39 0.56 0.60 0.78 2.332 16 4 5 3 42 X 60 212 74 28 25 164 48 5 0 35 0 56 0 80 0 81 2 51

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 16 4.5 : 3 42 X 60 212 74 28 25.164 48.5 0.35 0.56 0.80 0.81 2.512 16 5 : 2.5 42 X 60 211 70 28 20 48.5 0.33 0.56 0.60 0.81 2.30- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.25

0.5

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 250 tonneWave height 3 meterTensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

2 16 4.5 : 3 42 X 60 205 82 29 25.164 46.76 0.40 0.58 0.80 0.78 2.562 16 4.5 : 3 42 X 52 206 80 29 25.164 46.76 0.39 0.58 0.80 0.78 2.552 16 4 : 4 42 X 60 210 89 29 21.589 46.76 0.43 0.58 0.70 0.78 2.492 16 4 : 4 42 X 52 211 88 29 21.589 46.76 0.42 0.58 0.70 0.78 2.482 16 5 : 2.5 42 X 60 203 79 29 20 46.76 0.39 0.58 0.60 0.78 2.352 16 4.5 : 3 42 X 60 212 74 29 25.164 48.48 0.35 0.58 0.80 0.81 2.532 16 5 : 2.5 42 X 60 211 70 28 20 48.48 0.33 0.56 0.60 0.81 2.30- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0

0.25

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

169

Page 180: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 2 meterT i it 100 t

Stinger optimization for

Tensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 22 24.72 0.6 1.03 0.44 0.80 0.01 2.282 20 4.5 : 3 56 X 60 282 283 22 26 0.6 1.00 0.44 0.80 0.01 2.252 20 4.5 : 3 56 X 52 286 278 22 26 0.6 0.97 0.44 0.80 0.01 2.222 18 4.5 : 3 56 X 60 262 254 21 26 1.3 0.97 0.42 0.80 0.02 2.212 18 4.5 : 3 56 X 52 267 248 21 26 1.3 0.93 0.42 0.80 0.02 2.172 20 4 5 3 56 X 60 295 268 22 26 1 1 0 91 0 44 0 80 0 02 2 17

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 20 4.5 : 3 56 X 60 295 268 22 26 1.1 0.91 0.44 0.80 0.02 2.172 18 4.5 : 3 56 X 60 274 240 21 26 2.2 0.88 0.42 0.80 0.04 2.132 18 4.5 : 3 56 X 52 280 234 21 26 2.2 0.84 0.42 0.80 0.04 2.092 16 4.5 : 3 56 X 60 250 203 20 26 3.0 0.81 0.40 0.80 0.05 2.062 16 4.5 : 3 56 X 52 253 200 20 26 3.0 0.79 0.40 0.80 0.05 2.041 16 4 : 4 42 X 60 224 99 20 26.56 35.4 0.44 0.40 0.80 0.59 2.231 16 4 : 4 42 X 52 227 96 20 26.56 35.4 0.42 0.40 0.80 0.59 2.211 18 4 : 4 42 X 60 247 125 21 24.93 23.7 0.51 0.42 0.80 0.39 2.121 16 5 : 2.5 42 X 60 221 94 20 22 35.4 0.42 0.40 0.70 0.59 2.111 18 4 : 4 42 X 52 251 121 21 24.93 23.7 0.48 0.42 0.80 0.39 2.10

0.25

0.5

1 16 4 : 4 42 X 60 233 89 20 26.56 44.7 0.38 0.40 0.80 0.75 2.331 16 4.5 : 3 42 X 60 229 84 20 28 44.7 0.37 0.40 0.80 0.75 2.311 16 4 : 4 42 X 52 237 85 20 26.56 44.7 0.36 0.40 0.80 0.75 2.301 16 4.5 : 3 42 X 52 233 80 20 28 44.7 0.35 0.40 0.80 0.75 2.292 16 4.5 : 3 42 X 60 218 67 20 25.164 44.7 0.31 0.40 0.80 0.75 2.251 16 4 : 4 42 X 60 242 78 20 26.56 42.8 0.32 0.40 0.80 0.71 2.241 16 4.5 : 3 42 X 60 239 73 20 28 42.8 0.31 0.40 0.80 0.71 2.221 16 4 : 4 42 X 52 246 74 20 26.56 42.8 0.30 0.40 0.80 0.71 2.211 16 4.5 : 3 42 X 52 243 69 20 28 42.8 0.28 0.40 0.80 0.71 2.202 16 4.5 : 3 42 X 60 228 56 20 25.164 42.8 0.25 0.40 0.80 0.71 2.16

0.75

1

Crane capacity not more than 350 tonneWave height 2 meterTensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 20 4.5 : 3 56 X 60 295 302 24 24.72 0.61 1.03 0.48 0.80 0.01 2.322 20 4.5 : 3 56 X 60 282 283 24 26 0.61 1.00 0.48 0.80 0.01 2.292 20 4.5 : 3 56 X 52 286 278 24 26 0.61 0.97 0.48 0.80 0.01 2.262 18 4.5 : 3 56 X 60 262 254 23 26 1.28 0.97 0.46 0.80 0.02 2.252 18 4.5 : 3 56 X 52 267 248 23 26 1.28 0.93 0.46 0.80 0.02 2.212 20 4.5 : 3 56 X 60 295 268 24 26 1.05 0.91 0.48 0.80 0.02 2.212 18 4.5 : 3 56 X 60 274 240 23 26 2.22 0.88 0.46 0.80 0.04 2.172 18 4.5 : 3 56 X 52 280 234 23 26 2.22 0.84 0.46 0.80 0.04 2.132 16 4.5 : 3 56 X 60 250 203 21 26 2.95 0.81 0.42 0.80 0.05 2.082 16 4.5 : 3 56 X 52 253 200 21 26 2.95 0.79 0.42 0.80 0.05 2.06

0

0.25

1 16 4 : 4 42 X 60 224 99 21 26.56 35.37 0.44 0.42 0.80 0.59 2.251 16 4 : 4 42 X 52 227 96 21 26.56 35.37 0.42 0.42 0.80 0.59 2.231 18 4 : 4 42 X 60 247 125 23 24.93 23.69 0.51 0.46 0.80 0.39 2.161 18 4 : 4 42 X 52 251 121 23 24.93 23.69 0.48 0.46 0.80 0.39 2.141 16 5 : 2.5 42 X 60 221 94 21 22 35.37 0.42 0.42 0.70 0.59 2.131 16 4 : 4 42 X 60 233 89 21 26.56 44.75 0.38 0.42 0.80 0.75 2.351 16 4.5 : 3 42 X 60 229 84 21 28 44.75 0.37 0.42 0.80 0.75 2.331 16 4 : 4 42 X 52 237 85 21 26.56 44.75 0.36 0.42 0.80 0.75 2.321 16 4.5 : 3 42 X 52 233 80 21 28 44.75 0.35 0.42 0.80 0.75 2.312 16 4.5 : 3 42 X 60 218 67 21 25.164 44.75 0.31 0.42 0.80 0.75 2.27

0.5

0.75

1 16 4 : 4 42 X 60 242 78 21 26.56 42.82 0.32 0.42 0.80 0.71 2.261 16 4.5 : 3 42 X 60 239 73 21 28 42.82 0.31 0.42 0.80 0.71 2.241 16 4 : 4 42 X 52 246 74 21 26.56 42.82 0.30 0.42 0.80 0.71 2.231 16 4.5 : 3 42 X 52 243 69 21 28 42.82 0.28 0.42 0.80 0.71 2.222 16 4.5 : 3 42 X 60 228 56 21 25.164 42.82 0.25 0.42 0.80 0.71 2.18

1

170

Page 181: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 2 meterT i it 150 t

Stinger optimization for

Tensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 28 24.72 0.6 1.03 0.56 0.80 0.01 2.402 20 4.5 : 3 56 X 60 282 283 28 26 0.6 1.00 0.56 0.80 0.01 2.372 20 4.5 : 3 56 X 52 286 278 28 26 0.6 0.97 0.56 0.80 0.01 2.342 18 4.5 : 3 56 X 60 262 254 25 26 1.3 0.97 0.50 0.80 0.02 2.292 18 4.5 : 3 56 X 52 267 248 25 26 1.3 0.93 0.50 0.80 0.02 2.252 20 4 5 3 56 X 60 295 268 28 26 1 1 0 91 0 56 0 80 0 02 2 29

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 20 4.5 : 3 56 X 60 295 268 28 26 1.1 0.91 0.56 0.80 0.02 2.292 18 4.5 : 3 56 X 60 274 240 25 26 2.2 0.88 0.50 0.80 0.04 2.212 18 4.5 : 3 56 X 52 280 234 25 26 2.2 0.84 0.50 0.80 0.04 2.172 16 4.5 : 3 56 X 60 250 203 23 26 3.0 0.81 0.46 0.80 0.05 2.122 16 4.5 : 3 56 X 52 253 200 23 26 3.0 0.79 0.46 0.80 0.05 2.101 16 4 : 4 42 X 60 224 99 23 26.56 35.4 0.44 0.46 0.80 0.59 2.291 16 4 : 4 42 X 52 227 96 23 26.56 35.4 0.42 0.46 0.80 0.59 2.271 18 4 : 4 42 X 60 247 125 25 24.93 23.7 0.51 0.50 0.80 0.39 2.201 18 4 : 4 42 X 52 251 121 25 24.93 23.7 0.48 0.50 0.80 0.39 2.181 16 5 : 2.5 42 X 60 221 94 23 22 35.4 0.42 0.46 0.70 0.59 2.17

0.25

0.5

1 16 4 : 4 42 X 60 233 89 23 26.56 44.7 0.38 0.46 0.80 0.75 2.391 16 4.5 : 3 42 X 60 229 84 23 28 44.7 0.37 0.46 0.80 0.75 2.371 16 4 : 4 42 X 52 237 85 23 26.56 44.7 0.36 0.46 0.80 0.75 2.361 16 4.5 : 3 42 X 52 233 80 23 28 44.7 0.35 0.46 0.80 0.75 2.352 16 4.5 : 3 42 X 60 218 67 23 25.164 44.7 0.31 0.46 0.80 0.75 2.311 16 4 : 4 42 X 60 242 78 23 26.56 42.8 0.32 0.46 0.80 0.71 2.301 16 4.5 : 3 42 X 60 239 73 23 28 42.8 0.31 0.46 0.80 0.71 2.281 16 4 : 4 42 X 52 246 74 23 26.56 42.8 0.30 0.46 0.80 0.71 2.271 16 4.5 : 3 42 X 52 243 69 23 28 42.8 0.28 0.46 0.80 0.71 2.262 16 4.5 : 3 42 X 60 228 56 23 25.164 42.8 0.25 0.46 0.80 0.71 2.22

0.75

1

Crane capacity not more than 350 tonneWave height 2 meterTensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 20 4.5 : 3 56 X 60 295 302 29 24.72 0.61 1.03 0.58 0.80 0.01 2.422 20 4.5 : 3 56 X 60 282 283 29 26 0.61 1.00 0.58 0.80 0.01 2.392 20 4.5 : 3 56 X 52 286 278 29 26 0.61 0.97 0.58 0.80 0.01 2.362 18 4.5 : 3 56 X 60 262 254 27 26 1.28 0.97 0.54 0.80 0.02 2.332 18 4.5 : 3 56 X 52 267 248 27 26 1.28 0.93 0.54 0.80 0.02 2.292 20 4.5 : 3 56 X 60 295 268 29 26 1.05 0.91 0.58 0.80 0.02 2.312 18 4.5 : 3 56 X 60 274 240 27 26 2.22 0.88 0.54 0.80 0.04 2.252 18 4.5 : 3 56 X 52 280 234 27 26 2.22 0.84 0.54 0.80 0.04 2.212 16 4.5 : 3 56 X 60 250 203 24 26 2.95 0.81 0.48 0.80 0.05 2.142 16 4.5 : 3 56 X 52 253 200 24 26 2.95 0.79 0.48 0.80 0.05 2.12

0

0.25

1 16 4 : 4 42 X 60 224 99 24 26.56 35.37 0.44 0.48 0.80 0.59 2.311 16 4 : 4 42 X 52 227 96 24 26.56 35.37 0.42 0.48 0.80 0.59 2.291 18 4 : 4 42 X 60 247 125 27 24.93 23.69 0.51 0.54 0.80 0.39 2.241 18 4 : 4 42 X 52 251 121 27 24.93 23.69 0.48 0.54 0.80 0.39 2.221 16 5 : 2.5 42 X 60 221 94 24 22 35.37 0.42 0.48 0.70 0.59 2.191 16 4 : 4 42 X 60 233 89 24 26.56 44.75 0.38 0.48 0.80 0.75 2.411 16 4.5 : 3 42 X 60 229 84 24 28 44.75 0.37 0.48 0.80 0.75 2.391 16 4 : 4 42 X 52 237 85 24 26.56 44.75 0.36 0.48 0.80 0.75 2.381 16 4.5 : 3 42 X 52 233 80 24 28 44.75 0.35 0.48 0.80 0.75 2.372 16 4.5 : 3 42 X 60 218 67 24 25.164 44.75 0.31 0.48 0.80 0.75 2.33

0.5

0.75

1 16 4 : 4 42 X 60 242 78 24 26.56 42.82 0.32 0.48 0.80 0.71 2.321 16 4.5 : 3 42 X 60 239 73 24 28 42.82 0.31 0.48 0.80 0.71 2.301 16 4 : 4 42 X 52 246 74 24 26.56 42.82 0.30 0.48 0.80 0.71 2.291 16 4.5 : 3 42 X 52 243 69 24 28 42.82 0.28 0.48 0.80 0.71 2.282 16 4.5 : 3 42 X 60 228 56 24 25.164 42.82 0.25 0.48 0.80 0.71 2.24

1

171

Page 182: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 2 meterT i it 200 t

Stinger optimization for

Tensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 31 24.72 0.6 1.03 0.62 0.80 0.01 2.462 20 4.5 : 3 56 X 60 282 283 31 26 0.6 1.00 0.62 0.80 0.01 2.432 20 4.5 : 3 56 X 52 286 278 31 26 0.6 0.97 0.62 0.80 0.01 2.402 18 4.5 : 3 56 X 60 262 254 29 26 1.3 0.97 0.58 0.80 0.02 2.372 18 4.5 : 3 56 X 52 267 248 29 26 1.3 0.93 0.58 0.80 0.02 2.332 20 4 5 3 56 X 60 295 268 31 26 1 1 0 91 0 62 0 80 0 02 2 35

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 20 4.5 : 3 56 X 60 295 268 31 26 1.1 0.91 0.62 0.80 0.02 2.352 18 4.5 : 3 56 X 60 274 240 29 26 2.2 0.88 0.58 0.80 0.04 2.292 18 4.5 : 3 56 X 52 280 234 29 26 2.2 0.84 0.58 0.80 0.04 2.252 16 4.5 : 3 56 X 60 250 203 26 26 3.0 0.81 0.52 0.80 0.05 2.182 16 4.5 : 3 56 X 52 253 200 26 26 3.0 0.79 0.52 0.80 0.05 2.161 16 4 : 4 42 X 60 224 99 26 26.56 35.4 0.44 0.52 0.80 0.59 2.351 16 4 : 4 42 X 52 227 96 26 26.56 35.4 0.42 0.52 0.80 0.59 2.331 18 4 : 4 42 X 60 247 125 29 24.93 23.7 0.51 0.58 0.80 0.39 2.281 18 4 : 4 42 X 52 251 121 29 24.93 23.7 0.48 0.58 0.80 0.39 2.261 16 5 : 2.5 42 X 60 221 94 26 22 35.4 0.42 0.52 0.70 0.59 2.23

0.25

0.5

1 16 4 : 4 42 X 60 233 89 26 26.56 44.7 0.38 0.52 0.80 0.75 2.451 16 4.5 : 3 42 X 60 229 84 26 28 44.7 0.37 0.52 0.80 0.75 2.431 16 4 : 4 42 X 52 237 85 26 26.56 44.7 0.36 0.52 0.80 0.75 2.421 16 4.5 : 3 42 X 52 233 80 26 28 44.7 0.35 0.52 0.80 0.75 2.412 16 4.5 : 3 42 X 60 218 67 25 25.164 44.7 0.31 0.50 0.80 0.75 2.351 16 4 : 4 42 X 60 242 78 26 26.56 42.8 0.32 0.52 0.80 0.71 2.361 16 4.5 : 3 42 X 60 239 73 26 28 42.8 0.31 0.52 0.80 0.71 2.341 16 4 : 4 42 X 52 246 74 26 26.56 42.8 0.30 0.52 0.80 0.71 2.331 16 4.5 : 3 42 X 52 243 69 25 28 42.8 0.28 0.50 0.80 0.71 2.302 16 4.5 : 3 42 X 60 228 56 24 25.164 42.8 0.25 0.48 0.80 0.71 2.24

0.75

1

Crane capacity not more than 350 tonneWave height 2 meterTensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 20 4.5 : 3 56 X 60 295 302 32 24.72 0.61 1.03 0.64 0.80 0.01 2.482 20 4.5 : 3 56 X 60 282 283 32 26 0.61 1.00 0.64 0.80 0.01 2.452 20 4.5 : 3 56 X 52 286 278 32 26 0.61 0.97 0.64 0.80 0.01 2.422 18 4.5 : 3 56 X 60 262 254 31 26 1.28 0.97 0.62 0.80 0.02 2.412 18 4.5 : 3 56 X 52 267 248 31 26 1.28 0.93 0.62 0.80 0.02 2.372 20 4.5 : 3 56 X 60 295 268 32 26 1.05 0.91 0.64 0.80 0.02 2.372 18 4.5 : 3 56 X 60 274 240 31 26 2.22 0.88 0.62 0.80 0.04 2.332 18 4.5 : 3 56 X 52 280 234 31 26 2.22 0.84 0.62 0.80 0.04 2.292 16 4.5 : 3 56 X 60 250 203 28 26 2.95 0.81 0.56 0.80 0.05 2.222 16 4.5 : 3 56 X 52 253 200 28 26 2.95 0.79 0.56 0.80 0.05 2.20

0

0.25

1 16 4 : 4 42 X 60 224 99 28 26.56 35.37 0.44 0.56 0.80 0.59 2.391 16 4 : 4 42 X 52 227 96 28 26.56 35.37 0.42 0.56 0.80 0.59 2.371 18 4 : 4 42 X 60 247 125 31 24.93 23.69 0.51 0.62 0.80 0.39 2.321 18 4 : 4 42 X 52 251 121 31 24.93 23.69 0.48 0.62 0.80 0.39 2.301 16 5 : 2.5 42 X 60 221 94 28 22 35.37 0.42 0.56 0.70 0.59 2.271 16 4 : 4 42 X 60 233 89 28 26.56 44.75 0.38 0.56 0.80 0.75 2.491 16 4.5 : 3 42 X 60 229 84 28 28 44.75 0.37 0.56 0.80 0.75 2.471 16 4 : 4 42 X 52 237 85 28 26.56 44.75 0.36 0.56 0.80 0.75 2.461 16 4.5 : 3 42 X 52 233 80 28 28 44.75 0.35 0.56 0.80 0.75 2.452 16 4.5 : 3 42 X 60 218 67 27 25.164 44.75 0.31 0.54 0.80 0.75 2.39

0.5

0.75

1 16 4 : 4 42 X 60 242 78 28 26.56 42.82 0.32 0.56 0.80 0.71 2.401 16 4.5 : 3 42 X 60 239 73 28 28 42.82 0.31 0.56 0.80 0.71 2.381 16 4 : 4 42 X 52 246 74 28 26.56 42.82 0.30 0.56 0.80 0.71 2.371 16 4.5 : 3 42 X 52 243 69 27 28 42.82 0.28 0.54 0.80 0.71 2.341 16 5 : 2.5 42 X 60 240 73 28 22 42.82 0.30 0.56 0.70 0.71 2.28

1

172

Page 183: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 2 meterT i it 250 t

Stinger optimization for

Tensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 35 24.72 0.6 1.03 0.70 0.80 0.01 2.542 20 4.5 : 3 56 X 60 282 283 35 26 0.6 1.00 0.70 0.80 0.01 2.512 20 4.5 : 3 56 X 52 286 278 35 26 0.6 0.97 0.70 0.80 0.01 2.482 18 4.5 : 3 56 X 60 262 254 32 26 1.3 0.97 0.64 0.80 0.02 2.432 18 4.5 : 3 56 X 52 267 248 32 26 1.3 0.93 0.64 0.80 0.02 2.392 20 4 5 3 56 X 60 295 268 35 26 1 1 0 91 0 70 0 80 0 02 2 43

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

2 20 4.5 : 3 56 X 60 295 268 35 26 1.1 0.91 0.70 0.80 0.02 2.432 18 4.5 : 3 56 X 60 274 240 32 26 2.2 0.88 0.64 0.80 0.04 2.352 18 4.5 : 3 56 X 52 280 234 32 26 2.2 0.84 0.64 0.80 0.04 2.312 16 4.5 : 3 56 X 60 250 203 30 26 3.0 0.81 0.60 0.80 0.05 2.262 16 4.5 : 3 56 X 52 253 200 30 26 3.0 0.79 0.60 0.80 0.05 2.241 16 4 : 4 42 X 60 224 99 30 26.56 35.4 0.44 0.60 0.80 0.59 2.431 16 4 : 4 42 X 52 227 96 30 26.56 35.4 0.42 0.60 0.80 0.59 2.411 18 4 : 4 42 X 60 247 125 32 24.93 23.7 0.51 0.64 0.80 0.39 2.341 18 4 : 4 42 X 52 251 121 32 24.93 23.7 0.48 0.64 0.80 0.39 2.321 16 5 : 2.5 42 X 60 221 94 30 22 35.4 0.42 0.60 0.70 0.59 2.31

0.25

0.5

1 16 4 : 4 42 X 60 233 89 29 26.56 44.7 0.38 0.58 0.80 0.75 2.511 16 4.5 : 3 42 X 60 229 84 29 28 44.7 0.37 0.58 0.80 0.75 2.491 16 4 : 4 42 X 52 237 85 29 26.56 44.7 0.36 0.58 0.80 0.75 2.481 16 4.5 : 3 42 X 52 233 80 29 28 44.7 0.35 0.58 0.80 0.75 2.472 16 4.5 : 3 42 X 60 218 67 27 25.164 44.7 0.31 0.54 0.80 0.75 2.391 16 4 : 4 42 X 60 242 78 29 26.56 42.8 0.32 0.58 0.80 0.71 2.421 16 4.5 : 3 42 X 60 239 73 29 28 42.8 0.31 0.58 0.80 0.71 2.401 16 4 : 4 42 X 52 246 74 29 26.56 42.8 0.30 0.58 0.80 0.71 2.391 16 4.5 : 3 42 X 52 243 69 27 28 42.8 0.28 0.54 0.80 0.71 2.341 16 5 : 2.5 42 X 60 240 73 29 22 42.8 0.30 0.58 0.70 0.71 2.30

0.75

1

Crane capacity not more than 350 tonneWave height 3 meterTensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 20 26.56 46.76 0.47 0.40 0.80 0.78 2.451 16 4 : 4 42 X 52 221 103 20 26.56 46.76 0.46 0.40 0.80 0.78 2.441 16 4.5 : 3 42 X 60 216 99 20 28 46.76 0.46 0.40 0.80 0.78 2.441 16 4.5 : 3 42 X 52 218 98 20 28 46.76 0.45 0.40 0.80 0.78 2.431 18 4 : 4 42 X 60 241 132 21 24.93 36.67 0.55 0.42 0.80 0.61 2.381 16 4 : 4 42 X 60 227 96 20 26.56 48.48 0.42 0.40 0.80 0.81 2.431 16 4.5 : 3 42 X 60 223 91 20 28 48.48 0.41 0.40 0.80 0.81 2.421 16 4 : 4 42 X 52 230 92 20 26.56 48.48 0.40 0.40 0.80 0.81 2.411 16 4.5 : 3 42 X 52 227 87 20 28 48.48 0.38 0.40 0.80 0.81 2.392 16 4.5 : 3 42 X 60 212 74 20 25.164 48.48 0.35 0.40 0.80 0.81 2.35

0

0.25

1 16 4 : 4 42 X 60 236 85 20 26.56 38.19 0.36 0.40 0.80 0.64 2.201 16 4.5 : 3 42 X 60 232 81 20 28 38.19 0.35 0.40 0.80 0.64 2.181 16 4 : 4 42 X 52 240 81 20 26.56 38.19 0.34 0.40 0.80 0.64 2.171 16 4.5 : 3 42 X 52 237 76 20 28 38.19 0.32 0.40 0.80 0.64 2.162 16 4.5 : 3 42 X 60 221 63 20 25.164 38.19 0.29 0.40 0.80 0.64 2.121 16 4 : 4 42 X 60 246 74 20 26.56 32.16 0.30 0.40 0.80 0.54 2.041 16 4 : 4 42 X 52 250 70 20 26.56 32.16 0.28 0.40 0.80 0.54 2.021 16 4.5 : 3 42 X 60 243 69 20 28 27.29 0.29 0.40 0.80 0.45 1.941 16 4.5 : 3 42 X 52 246 65 20 28 27.29 0.26 0.40 0.80 0.45 1.921 16 5 : 2.5 42 X 60 243 69 20 22 32.16 0.28 0.40 0.70 0.54 1.92

0.5

0.75

1 16 4 : 4 42 X 60 254 65 20 26.56 21.74 0.25 0.40 0.80 0.36 1.821 16 4.5 : 3 42 X 60 251 60 20 28 21.74 0.24 0.40 0.80 0.36 1.801 16 4 : 4 42 X 52 260 59 20 26.56 21.74 0.23 0.40 0.80 0.36 1.791 16 4.5 : 3 42 X 52 255 55 20 28 21.74 0.21 0.40 0.80 0.36 1.781 18 4 : 4 42 X 60 285 81 21 24.93 14.41 0.29 0.42 0.80 0.24 1.75

1

173

Page 184: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 3 meterT i it 125 t

Stinger optimization for

Tensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 220 104 21 26.56 46.8 0.47 0.42 0.80 0.78 2.471 16 4 : 4 42 X 52 221 103 21 26.56 46.8 0.46 0.42 0.80 0.78 2.461 16 4.5 : 3 42 X 60 216 99 21 28 46.8 0.46 0.42 0.80 0.78 2.461 16 4.5 : 3 42 X 52 218 98 21 28 46.8 0.45 0.42 0.80 0.78 2.451 18 4 : 4 42 X 60 241 132 23 24.93 36.7 0.55 0.46 0.80 0.61 2.421 16 4 4 42 X 60 227 96 21 26 56 48 5 0 42 0 42 0 80 0 81 2 45

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 227 96 21 26.56 48.5 0.42 0.42 0.80 0.81 2.451 16 4.5 : 3 42 X 60 223 91 21 28 48.5 0.41 0.42 0.80 0.81 2.441 16 4 : 4 42 X 52 230 92 21 26.56 48.5 0.40 0.42 0.80 0.81 2.431 16 4.5 : 3 42 X 52 227 87 21 28 48.5 0.38 0.42 0.80 0.81 2.412 16 4.5 : 3 42 X 60 212 74 21 25.164 48.5 0.35 0.42 0.80 0.81 2.371 16 4 : 4 42 X 60 236 85 21 26.56 38.2 0.36 0.42 0.80 0.64 2.221 16 4.5 : 3 42 X 60 232 81 21 28 38.2 0.35 0.42 0.80 0.64 2.201 16 4 : 4 42 X 52 240 81 21 26.56 38.2 0.34 0.42 0.80 0.64 2.191 16 4.5 : 3 42 X 52 237 76 21 28 38.2 0.32 0.42 0.80 0.64 2.181 18 4 : 4 42 X 60 262 107 23 24.93 29.1 0.41 0.46 0.80 0.49 2.16

0.25

0.5

1 16 4 : 4 42 X 60 246 74 21 26.56 32.2 0.30 0.42 0.80 0.54 2.061 16 4 : 4 42 X 52 250 70 21 26.56 32.2 0.28 0.42 0.80 0.54 2.041 16 4.5 : 3 42 X 60 243 69 21 28 27.3 0.29 0.42 0.80 0.45 1.961 16 4.5 : 3 42 X 52 246 65 21 28 27.3 0.26 0.42 0.80 0.45 1.941 16 5 : 2.5 42 X 60 243 69 21 22 32.2 0.28 0.42 0.70 0.54 1.941 16 4 : 4 42 X 60 254 65 21 26.56 21.7 0.25 0.42 0.80 0.36 1.841 16 4.5 : 3 42 X 60 251 60 21 28 21.7 0.24 0.42 0.80 0.36 1.821 16 4 : 4 42 X 52 260 59 21 26.56 21.7 0.23 0.42 0.80 0.36 1.811 16 4.5 : 3 42 X 52 255 55 21 28 21.7 0.21 0.42 0.80 0.36 1.801 18 4 : 4 42 X 60 285 81 23 24.93 14.4 0.29 0.46 0.80 0.24 1.79

0.75

1

Crane capacity not more than 350 tonneWave height 3 meterTensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 23 26.56 46.76 0.47 0.46 0.80 0.78 2.511 16 4 : 4 42 X 52 221 103 23 26.56 46.76 0.46 0.46 0.80 0.78 2.501 16 4.5 : 3 42 X 60 216 99 23 28 46.76 0.46 0.46 0.80 0.78 2.501 16 4.5 : 3 42 X 52 218 98 23 28 46.76 0.45 0.46 0.80 0.78 2.491 18 4 : 4 42 X 60 241 132 25 24.93 36.67 0.55 0.50 0.80 0.61 2.461 16 4 : 4 42 X 60 227 96 23 26.56 48.48 0.42 0.46 0.80 0.81 2.491 16 4.5 : 3 42 X 60 223 91 23 28 48.48 0.41 0.46 0.80 0.81 2.481 16 4 : 4 42 X 52 230 92 23 26.56 48.48 0.40 0.46 0.80 0.81 2.471 16 4.5 : 3 42 X 52 227 87 23 28 48.48 0.38 0.46 0.80 0.81 2.452 16 4.5 : 3 42 X 60 212 74 23 25.164 48.48 0.35 0.46 0.80 0.81 2.41

0

0.25

1 16 4 : 4 42 X 60 236 85 23 26.56 38.19 0.36 0.46 0.80 0.64 2.261 16 4.5 : 3 42 X 60 232 81 23 28 38.19 0.35 0.46 0.80 0.64 2.241 16 4 : 4 42 X 52 240 81 23 26.56 38.19 0.34 0.46 0.80 0.64 2.231 16 4.5 : 3 42 X 52 237 76 23 28 38.19 0.32 0.46 0.80 0.64 2.221 18 4 : 4 42 X 60 262 107 25 24.93 29.14 0.41 0.50 0.80 0.49 2.201 16 4 : 4 42 X 60 246 74 23 26.56 32.16 0.30 0.46 0.80 0.54 2.101 16 4 : 4 42 X 52 250 70 23 26.56 32.16 0.28 0.46 0.80 0.54 2.081 16 4.5 : 3 42 X 60 243 69 23 28 27.29 0.29 0.46 0.80 0.45 2.001 16 4.5 : 3 42 X 52 246 65 23 28 27.29 0.26 0.46 0.80 0.45 1.981 16 5 : 2.5 42 X 60 243 69 23 22 32.16 0.28 0.46 0.70 0.54 1.98

0.5

0.75

1 16 4 : 4 42 X 60 254 65 23 26.56 21.74 0.25 0.46 0.80 0.36 1.881 16 4.5 : 3 42 X 60 251 60 23 28 21.74 0.24 0.46 0.80 0.36 1.861 16 4 : 4 42 X 52 260 59 23 26.56 21.74 0.23 0.46 0.80 0.36 1.851 16 4.5 : 3 42 X 52 255 55 23 28 21.74 0.21 0.46 0.80 0.36 1.841 18 4 : 4 42 X 60 285 81 25 24.93 14.41 0.29 0.50 0.80 0.24 1.83

1

174

Page 185: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 3 meterT i it 175 t

Stinger optimization for

Tensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 220 104 24 26.56 46.8 0.47 0.48 0.80 0.78 2.531 16 4 : 4 42 X 52 221 103 24 26.56 46.8 0.46 0.48 0.80 0.78 2.521 16 4.5 : 3 42 X 60 216 99 24 28 46.8 0.46 0.48 0.80 0.78 2.521 16 4.5 : 3 42 X 52 218 98 24 28 46.8 0.45 0.48 0.80 0.78 2.511 18 4 : 4 42 X 60 241 132 27 24.93 36.7 0.55 0.54 0.80 0.61 2.501 16 4 4 42 X 60 227 96 24 26 56 48 5 0 42 0 48 0 80 0 81 2 51

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 227 96 24 26.56 48.5 0.42 0.48 0.80 0.81 2.511 16 4.5 : 3 42 X 60 223 91 24 28 48.5 0.41 0.48 0.80 0.81 2.501 16 4 : 4 42 X 52 230 92 24 26.56 48.5 0.40 0.48 0.80 0.81 2.491 16 4.5 : 3 42 X 52 227 87 24 28 48.5 0.38 0.48 0.80 0.81 2.472 16 4.5 : 3 42 X 60 212 74 24 25.164 48.5 0.35 0.48 0.80 0.81 2.431 16 4 : 4 42 X 60 236 85 24 26.56 38.2 0.36 0.48 0.80 0.64 2.281 16 4.5 : 3 42 X 60 232 81 24 28 38.2 0.35 0.48 0.80 0.64 2.261 16 4 : 4 42 X 52 240 81 24 26.56 38.2 0.34 0.48 0.80 0.64 2.251 16 4.5 : 3 42 X 52 237 76 24 28 38.2 0.32 0.48 0.80 0.64 2.241 18 4 : 4 42 X 60 262 107 27 24.93 29.1 0.41 0.54 0.80 0.49 2.24

0.25

0.5

1 16 4 : 4 42 X 60 246 74 24 26.56 32.2 0.30 0.48 0.80 0.54 2.121 16 4 : 4 42 X 52 250 70 24 26.56 32.2 0.28 0.48 0.80 0.54 2.101 16 4.5 : 3 42 X 60 243 69 24 28 27.3 0.29 0.48 0.80 0.45 2.021 18 4 : 4 42 X 60 274 94 27 24.93 19.5 0.34 0.54 0.80 0.32 2.011 16 4.5 : 3 42 X 52 246 65 24 28 27.3 0.26 0.48 0.80 0.45 2.001 16 4 : 4 42 X 60 254 65 24 26.56 21.7 0.25 0.48 0.80 0.36 1.901 16 4.5 : 3 42 X 60 251 60 24 28 21.7 0.24 0.48 0.80 0.36 1.881 16 4 : 4 42 X 52 260 59 24 26.56 21.7 0.23 0.48 0.80 0.36 1.871 18 4 : 4 42 X 60 285 81 27 24.93 14.4 0.29 0.54 0.80 0.24 1.871 16 4.5 : 3 42 X 52 255 55 24 28 21.7 0.21 0.48 0.80 0.36 1.86

0.75

1

Crane capacity not more than 350 tonneWave height 3 meterTensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 26 26.56 46.76 0.47 0.52 0.80 0.78 2.571 16 4 : 4 42 X 52 221 103 26 26.56 46.76 0.46 0.52 0.80 0.78 2.561 16 4.5 : 3 42 X 60 216 99 26 28 46.76 0.46 0.52 0.80 0.78 2.561 16 4.5 : 3 42 X 52 218 98 26 28 46.76 0.45 0.52 0.80 0.78 2.551 18 4 : 4 42 X 60 241 132 29 24.93 36.67 0.55 0.58 0.80 0.61 2.541 16 4 : 4 42 X 60 227 96 26 26.56 48.48 0.42 0.52 0.80 0.81 2.551 16 4.5 : 3 42 X 60 223 91 26 28 48.48 0.41 0.52 0.80 0.81 2.541 16 4 : 4 42 X 52 230 92 26 26.56 48.48 0.40 0.52 0.80 0.81 2.531 16 4.5 : 3 42 X 52 227 87 26 28 48.48 0.38 0.52 0.80 0.81 2.512 16 4.5 : 3 42 X 60 212 74 26 25.164 48.48 0.35 0.52 0.80 0.81 2.47

0

0.25

1 16 4 : 4 42 X 60 236 85 26 26.56 38.19 0.36 0.52 0.80 0.64 2.321 16 4.5 : 3 42 X 60 232 81 26 28 38.19 0.35 0.52 0.80 0.64 2.301 16 4 : 4 42 X 52 240 81 26 26.56 38.19 0.34 0.52 0.80 0.64 2.291 16 4.5 : 3 42 X 52 237 76 26 28 38.19 0.32 0.52 0.80 0.64 2.281 18 4 : 4 42 X 60 262 107 29 24.93 29.14 0.41 0.58 0.80 0.49 2.281 16 4 : 4 42 X 60 246 74 26 26.56 32.16 0.30 0.52 0.80 0.54 2.161 16 4 : 4 42 X 52 250 70 25 26.56 32.16 0.28 0.50 0.80 0.54 2.121 18 4 : 4 42 X 60 274 94 29 24.93 19.45 0.34 0.58 0.80 0.32 2.051 16 4.5 : 3 42 X 60 243 69 25 28 27.29 0.29 0.50 0.80 0.45 2.041 18 4.5 : 3 42 X 60 270 88 29 28 19.45 0.32 0.58 0.80 0.32 2.03

0.5

0.75

1 16 4 : 4 42 X 60 254 65 25 26.56 21.74 0.25 0.50 0.80 0.36 1.921 18 4 : 4 42 X 60 285 81 29 24.93 14.41 0.29 0.58 0.80 0.24 1.911 16 4.5 : 3 42 X 60 251 60 24 28 21.74 0.24 0.48 0.80 0.36 1.881 16 4 : 4 42 X 52 260 59 24 26.56 21.74 0.23 0.48 0.80 0.36 1.871 16 4.5 : 3 42 X 52 255 55 24 28 21.74 0.21 0.48 0.80 0.36 1.86

1

175

Page 186: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 3 meterT i it 225 t

Stinger optimization for

Tensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 220 104 28 26.56 46.8 0.47 0.56 0.80 0.78 2.611 16 4 : 4 42 X 52 221 103 28 26.56 46.8 0.46 0.56 0.80 0.78 2.601 16 4.5 : 3 42 X 60 216 99 28 28 46.8 0.46 0.56 0.80 0.78 2.601 16 4.5 : 3 42 X 52 218 98 28 28 46.8 0.45 0.56 0.80 0.78 2.591 18 4 : 4 42 X 60 241 132 31 24.93 36.7 0.55 0.62 0.80 0.61 2.581 16 4 4 42 X 60 227 96 28 26 56 48 5 0 42 0 56 0 80 0 81 2 59

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 227 96 28 26.56 48.5 0.42 0.56 0.80 0.81 2.591 16 4.5 : 3 42 X 60 223 91 28 28 48.5 0.41 0.56 0.80 0.81 2.581 16 4 : 4 42 X 52 230 92 28 26.56 48.5 0.40 0.56 0.80 0.81 2.571 16 4.5 : 3 42 X 52 227 87 28 28 48.5 0.38 0.56 0.80 0.81 2.552 16 4.5 : 3 42 X 60 212 74 28 25.164 48.5 0.35 0.56 0.80 0.81 2.511 16 4 : 4 42 X 60 236 85 28 26.56 38.2 0.36 0.56 0.80 0.64 2.361 16 4.5 : 3 42 X 60 232 81 28 28 38.2 0.35 0.56 0.80 0.64 2.341 16 4 : 4 42 X 52 240 81 28 26.56 38.2 0.34 0.56 0.80 0.64 2.331 16 4.5 : 3 42 X 52 237 76 28 28 38.2 0.32 0.56 0.80 0.64 2.321 18 4 : 4 42 X 60 262 107 31 24.93 29.1 0.41 0.62 0.80 0.49 2.32

0.25

0.5

1 16 4 : 4 42 X 60 246 74 28 26.56 32.2 0.30 0.56 0.80 0.54 2.201 16 4 : 4 42 X 52 250 70 27 26.56 32.2 0.28 0.54 0.80 0.54 2.161 18 4 : 4 42 X 60 274 94 31 24.93 19.5 0.34 0.62 0.80 0.32 2.091 16 4.5 : 3 42 X 60 243 69 27 28 27.3 0.29 0.54 0.80 0.45 2.081 18 4.5 : 3 42 X 60 270 88 31 28 19.5 0.32 0.62 0.80 0.32 2.071 16 4 : 4 42 X 60 254 65 27 26.56 21.7 0.25 0.54 0.80 0.36 1.961 18 4 : 4 42 X 60 285 81 31 24.93 14.4 0.29 0.62 0.80 0.24 1.951 16 4.5 : 3 42 X 60 251 60 25 28 21.7 0.24 0.50 0.80 0.36 1.901 18 4 : 4 42 X 52 293 73 30 24.93 14.4 0.25 0.60 0.80 0.24 1.891 16 4 : 4 42 X 52 260 59 25 26.56 21.7 0.23 0.50 0.80 0.36 1.89

0.75

1

Crane capacity not more than 350 tonneWave height 3 meterTensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 30 26.56 46.76 0.47 0.60 0.80 0.78 2.651 16 4 : 4 42 X 52 221 103 30 26.56 46.76 0.46 0.60 0.80 0.78 2.641 16 4.5 : 3 42 X 60 216 99 30 28 46.76 0.46 0.60 0.80 0.78 2.641 16 4.5 : 3 42 X 52 218 98 30 28 46.76 0.45 0.60 0.80 0.78 2.631 18 4 : 4 42 X 60 241 132 32 24.93 36.67 0.55 0.64 0.80 0.61 2.601 16 4 : 4 42 X 60 227 96 30 26.56 48.48 0.42 0.60 0.80 0.81 2.631 16 4.5 : 3 42 X 60 223 91 29 28 48.48 0.41 0.58 0.80 0.81 2.601 16 4 : 4 42 X 52 230 92 29 26.56 48.48 0.40 0.58 0.80 0.81 2.591 16 4.5 : 3 42 X 52 227 87 29 28 48.48 0.38 0.58 0.80 0.81 2.572 16 4.5 : 3 42 X 60 212 74 29 25.164 48.48 0.35 0.58 0.80 0.81 2.53

0

0.25

1 16 4 : 4 42 X 60 236 85 29 26.56 38.19 0.36 0.58 0.80 0.64 2.381 16 4.5 : 3 42 X 60 232 81 29 28 38.19 0.35 0.58 0.80 0.64 2.361 16 4 : 4 42 X 52 240 81 29 26.56 38.19 0.34 0.58 0.80 0.64 2.351 16 4.5 : 3 42 X 52 237 76 29 28 38.19 0.32 0.58 0.80 0.64 2.341 18 4 : 4 42 X 60 262 107 32 24.93 29.14 0.41 0.64 0.80 0.49 2.341 16 4 : 4 42 X 60 246 74 29 26.56 32.16 0.30 0.58 0.80 0.54 2.221 16 4 : 4 42 X 52 250 70 27 26.56 32.16 0.28 0.54 0.80 0.54 2.161 18 4 : 4 42 X 60 274 94 32 24.93 19.45 0.34 0.64 0.80 0.32 2.111 18 4.5 : 3 42 X 60 270 88 32 28 19.45 0.32 0.64 0.80 0.32 2.091 18 4 : 4 42 X 52 279 89 32 24.93 19.45 0.32 0.64 0.80 0.32 2.08

0.5

0.75

1 18 4 : 4 42 X 60 285 81 32 24.93 14.41 0.29 0.64 0.80 0.24 1.971 16 4 : 4 42 X 60 254 65 27 26.56 21.74 0.25 0.54 0.80 0.36 1.961 16 4.5 : 3 42 X 60 251 60 25 28 21.74 0.24 0.50 0.80 0.36 1.901 18 4 : 4 42 X 52 293 73 30 24.93 14.41 0.25 0.60 0.80 0.24 1.891 16 4 : 4 42 X 52 260 59 25 26.56 21.74 0.23 0.50 0.80 0.36 1.89

1

176

Page 187: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 4 meterT i it 100 t

Stinger optimization for

Tensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 20 26.56 72.6 0.41 0.40 0.80 1.21 2.821 16 4.5 : 3 42 X 60 226 88 20 28 72.6 0.39 0.40 0.80 1.21 2.801 16 4 : 4 42 X 52 233 89 20 26.56 72.6 0.38 0.40 0.80 1.21 2.791 16 4.5 : 3 42 X 52 229 84 20 28 72.6 0.37 0.40 0.80 1.21 2.782 16 4.5 : 3 42 X 60 215 70 20 25.164 72.6 0.33 0.40 0.80 1.21 2.741 16 4 4 42 X 60 238 84 20 26 56 48 7 0 35 0 40 0 80 0 81 2 36

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 20 26.56 48.7 0.35 0.40 0.80 0.81 2.361 16 4.5 : 3 42 X 60 234 79 20 28 48.7 0.34 0.40 0.80 0.81 2.351 16 4 : 4 42 X 52 242 78 20 26.56 48.7 0.32 0.40 0.80 0.81 2.331 16 4.5 : 3 42 X 52 239 73 20 28 48.7 0.31 0.40 0.80 0.81 2.322 16 4.5 : 3 42 X 60 223 61 20 25.164 48.7 0.28 0.40 0.80 0.81 2.291 16 4 : 4 42 X 60 248 72 20 26.56 29.3 0.29 0.40 0.80 0.49 1.981 16 4.5 : 3 42 X 60 244 67 20 28 29.3 0.28 0.40 0.80 0.49 1.961 16 4 : 4 42 X 52 253 67 20 26.56 29.3 0.26 0.40 0.80 0.49 1.951 16 4.5 : 3 42 X 52 249 62 20 28 29.3 0.25 0.40 0.80 0.49 1.942 16 4.5 : 3 42 X 60 233 50 20 25.164 29.3 0.21 0.40 0.80 0.49 1.90

0.25

0.5

1 16 4 : 4 42 X 60 258 61 20 26.56 21.3 0.24 0.40 0.80 0.35 1.791 16 4 : 4 42 X 52 264 54 20 26.56 21.3 0.20 0.40 0.80 0.35 1.761 16 4.5 : 3 42 X 60 255 56 20 28 18.7 0.22 0.40 0.80 0.31 1.731 16 4.5 : 3 42 X 52 260 49 20 28 18.7 0.19 0.40 0.80 0.31 1.701 18 4 : 4 42 X 60 289 77 21 24.93 12.4 0.27 0.42 0.80 0.21 1.701 16 4 : 4 42 X 60 268 50 20 26.56 14.0 0.18 0.40 0.80 0.23 1.621 16 4.5 : 3 42 X 60 264 45 20 28 14.0 0.17 0.40 0.80 0.23 1.601 16 5 : 2.5 46 X 60 282 69 20 15.2 9.7 0.24 0.40 0.50 0.16 1.301 16 5 : 2.5 46 X 52 290 59 20 15.2 9.7 0.20 0.40 0.50 0.16 1.261 16 4.5 : 3 46 X 60 280 70 20 11.51 9.7 0.25 0.40 0.40 0.16 1.21

0.75

1

Crane capacity not more than 350 tonneWave height 4 meterTensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 229 93 21 26.56 72.62 0.41 0.42 0.80 1.21 2.841 16 4.5 : 3 42 X 60 226 88 21 28 72.62 0.39 0.42 0.80 1.21 2.821 16 4 : 4 42 X 52 233 89 21 26.56 72.62 0.38 0.42 0.80 1.21 2.811 16 4.5 : 3 42 X 52 229 84 21 28 72.62 0.37 0.42 0.80 1.21 2.802 16 4.5 : 3 42 X 60 215 70 21 25.164 72.62 0.33 0.42 0.80 1.21 2.761 16 4 : 4 42 X 60 238 84 21 26.56 48.67 0.35 0.42 0.80 0.81 2.381 16 4.5 : 3 42 X 60 234 79 21 28 48.67 0.34 0.42 0.80 0.81 2.371 16 4 : 4 42 X 52 242 78 21 26.56 48.67 0.32 0.42 0.80 0.81 2.351 16 4.5 : 3 42 X 52 239 73 21 28 48.67 0.31 0.42 0.80 0.81 2.342 16 4.5 : 3 42 X 60 223 61 21 25.164 48.67 0.28 0.42 0.80 0.81 2.31

0

0.25

1 16 4 : 4 42 X 60 248 72 21 26.56 29.31 0.29 0.42 0.80 0.49 2.001 16 4.5 : 3 42 X 60 244 67 21 28 29.31 0.28 0.42 0.80 0.49 1.981 16 4 : 4 42 X 52 253 67 21 26.56 29.31 0.26 0.42 0.80 0.49 1.971 16 4.5 : 3 42 X 52 249 62 21 28 29.31 0.25 0.42 0.80 0.49 1.961 18 4 : 4 42 X 60 277 91 23 24.93 20.33 0.33 0.46 0.80 0.34 1.931 16 4 : 4 42 X 60 258 61 21 26.56 21.25 0.24 0.42 0.80 0.35 1.811 16 4 : 4 42 X 52 264 54 21 26.56 21.25 0.20 0.42 0.80 0.35 1.781 16 4.5 : 3 42 X 60 255 56 21 28 18.74 0.22 0.42 0.80 0.31 1.751 18 4 : 4 42 X 60 289 77 23 24.93 12.43 0.27 0.46 0.80 0.21 1.741 16 4.5 : 3 42 X 52 260 49 21 28 18.74 0.19 0.42 0.80 0.31 1.72

0.5

0.75

1 16 4 : 4 42 X 60 268 50 21 26.56 14.02 0.18 0.42 0.80 0.23 1.641 16 4.5 : 3 42 X 60 264 45 21 28 14.02 0.17 0.42 0.80 0.23 1.621 16 5 : 2.5 46 X 60 282 69 21 15.2 9.67 0.24 0.42 0.50 0.16 1.321 16 5 : 2.5 46 X 52 290 59 21 15.2 9.67 0.20 0.42 0.50 0.16 1.281 16 4.5 : 3 46 X 60 280 70 21 11.51 9.67 0.25 0.42 0.40 0.16 1.23

1

177

Page 188: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 4 meterT i it 150 t

Stinger optimization for

Tensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 23 26.56 72.6 0.41 0.46 0.80 1.21 2.881 16 4.5 : 3 42 X 60 226 88 23 28 72.6 0.39 0.46 0.80 1.21 2.861 16 4 : 4 42 X 52 233 89 23 26.56 72.6 0.38 0.46 0.80 1.21 2.851 16 4.5 : 3 42 X 52 229 84 23 28 72.6 0.37 0.46 0.80 1.21 2.842 16 4.5 : 3 42 X 60 215 70 23 25.164 72.6 0.33 0.46 0.80 1.21 2.801 16 4 4 42 X 60 238 84 23 26 56 48 7 0 35 0 46 0 80 0 81 2 42

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 23 26.56 48.7 0.35 0.46 0.80 0.81 2.421 16 4.5 : 3 42 X 60 234 79 23 28 48.7 0.34 0.46 0.80 0.81 2.411 16 4 : 4 42 X 52 242 78 23 26.56 48.7 0.32 0.46 0.80 0.81 2.391 16 4.5 : 3 42 X 52 239 73 23 28 48.7 0.31 0.46 0.80 0.81 2.382 16 4.5 : 3 42 X 60 223 61 23 25.164 48.7 0.28 0.46 0.80 0.81 2.351 16 4 : 4 42 X 60 248 72 23 26.56 29.3 0.29 0.46 0.80 0.49 2.041 16 4.5 : 3 42 X 60 244 67 23 28 29.3 0.28 0.46 0.80 0.49 2.021 16 4 : 4 42 X 52 253 67 23 26.56 29.3 0.26 0.46 0.80 0.49 2.011 16 4.5 : 3 42 X 52 249 62 23 28 29.3 0.25 0.46 0.80 0.49 2.001 18 4 : 4 42 X 60 277 91 25 24.93 20.3 0.33 0.50 0.80 0.34 1.97

0.25

0.5

1 16 4 : 4 42 X 60 258 61 23 26.56 21.3 0.24 0.46 0.80 0.35 1.851 16 4 : 4 42 X 52 264 54 23 26.56 21.3 0.20 0.46 0.80 0.35 1.821 16 4.5 : 3 42 X 60 255 56 23 28 18.7 0.22 0.46 0.80 0.31 1.791 18 4 : 4 42 X 60 289 77 25 24.93 12.4 0.27 0.50 0.80 0.21 1.781 16 4.5 : 3 42 X 52 260 49 23 28 18.7 0.19 0.46 0.80 0.31 1.761 16 4 : 4 42 X 60 268 50 23 26.56 14.0 0.18 0.46 0.80 0.23 1.681 16 4.5 : 3 42 X 60 264 45 22 28 14.0 0.17 0.44 0.80 0.23 1.641 16 5 : 2.5 46 X 60 282 69 23 15.2 9.7 0.24 0.46 0.50 0.16 1.361 16 5 : 2.5 46 X 52 290 59 23 15.2 9.7 0.20 0.46 0.50 0.16 1.321 16 4.5 : 3 46 X 60 280 70 23 11.51 9.7 0.25 0.46 0.40 0.16 1.27

0.75

1

Crane capacity not more than 350 tonneWave height 4 meterTensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 229 93 24 26.56 72.62 0.41 0.48 0.80 1.21 2.901 16 4.5 : 3 42 X 60 226 88 24 28 72.62 0.39 0.48 0.80 1.21 2.881 16 4 : 4 42 X 52 233 89 24 26.56 72.62 0.38 0.48 0.80 1.21 2.871 16 4.5 : 3 42 X 52 229 84 24 28 72.62 0.37 0.48 0.80 1.21 2.862 16 4.5 : 3 42 X 60 215 70 24 25.164 72.62 0.33 0.48 0.80 1.21 2.821 16 4 : 4 42 X 60 238 84 24 26.56 48.67 0.35 0.48 0.80 0.81 2.441 16 4.5 : 3 42 X 60 234 79 24 28 48.67 0.34 0.48 0.80 0.81 2.431 16 4 : 4 42 X 52 242 78 24 26.56 48.67 0.32 0.48 0.80 0.81 2.411 16 4.5 : 3 42 X 52 239 73 24 28 48.67 0.31 0.48 0.80 0.81 2.402 16 4.5 : 3 42 X 60 223 61 24 25.164 48.67 0.28 0.48 0.80 0.81 2.37

0

0.25

1 16 4 : 4 42 X 60 248 72 24 26.56 29.31 0.29 0.48 0.80 0.49 2.061 16 4.5 : 3 42 X 60 244 67 24 28 29.31 0.28 0.48 0.80 0.49 2.041 16 4 : 4 42 X 52 253 67 24 26.56 29.31 0.26 0.48 0.80 0.49 2.031 16 4.5 : 3 42 X 52 249 62 24 28 29.31 0.25 0.48 0.80 0.49 2.021 18 4 : 4 42 X 60 277 91 27 24.93 20.33 0.33 0.54 0.80 0.34 2.011 16 4 : 4 42 X 60 258 61 24 26.56 21.25 0.24 0.48 0.80 0.35 1.871 16 4 : 4 42 X 52 264 54 24 26.56 21.25 0.20 0.48 0.80 0.35 1.841 18 4 : 4 42 X 60 289 77 27 24.93 12.43 0.27 0.54 0.80 0.21 1.821 16 4.5 : 3 42 X 60 255 56 24 28 18.74 0.22 0.48 0.80 0.31 1.811 18 4.5 : 3 42 X 60 286 70 27 28 12.43 0.25 0.54 0.80 0.21 1.79

0.5

0.75

1 16 4 : 4 42 X 60 268 50 24 26.56 14.02 0.18 0.48 0.80 0.23 1.701 16 4.5 : 3 42 X 60 264 45 22 28 14.02 0.17 0.44 0.80 0.23 1.641 16 5 : 2.5 46 X 60 282 69 24 15.2 9.67 0.24 0.48 0.50 0.16 1.381 16 5 : 2.5 46 X 52 290 59 24 15.2 9.67 0.20 0.48 0.50 0.16 1.341 16 4.5 : 3 46 X 60 280 70 24 11.51 9.67 0.25 0.48 0.40 0.16 1.29

1

178

Page 189: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 4 meterT i it 200 t

Stinger optimization for

Tensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 26 26.56 72.6 0.41 0.52 0.80 1.21 2.941 16 4.5 : 3 42 X 60 226 88 26 28 72.6 0.39 0.52 0.80 1.21 2.921 16 4 : 4 42 X 52 233 89 26 26.56 72.6 0.38 0.52 0.80 1.21 2.911 16 4.5 : 3 42 X 52 229 84 26 28 72.6 0.37 0.52 0.80 1.21 2.902 16 4.5 : 3 42 X 60 215 70 26 25.164 72.6 0.33 0.52 0.80 1.21 2.861 16 4 4 42 X 60 238 84 26 26 56 48 7 0 35 0 52 0 80 0 81 2 48

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 26 26.56 48.7 0.35 0.52 0.80 0.81 2.481 16 4.5 : 3 42 X 60 234 79 26 28 48.7 0.34 0.52 0.80 0.81 2.471 16 4 : 4 42 X 52 242 78 26 26.56 48.7 0.32 0.52 0.80 0.81 2.451 16 4.5 : 3 42 X 52 239 73 26 28 48.7 0.31 0.52 0.80 0.81 2.442 16 4.5 : 3 42 X 60 223 61 25 25.164 48.7 0.28 0.50 0.80 0.81 2.391 16 4 : 4 42 X 60 248 72 26 26.56 29.3 0.29 0.52 0.80 0.49 2.101 16 4.5 : 3 42 X 60 244 67 25 28 29.3 0.28 0.50 0.80 0.49 2.061 16 4 : 4 42 X 52 253 67 25 26.56 29.3 0.26 0.50 0.80 0.49 2.051 18 4 : 4 42 X 60 277 91 29 24.93 20.3 0.33 0.58 0.80 0.34 2.051 16 4.5 : 3 42 X 52 249 62 25 28 29.3 0.25 0.50 0.80 0.49 2.04

0.25

0.5

1 16 4 : 4 42 X 60 258 61 24 26.56 21.3 0.24 0.48 0.80 0.35 1.871 16 4 : 4 42 X 52 264 54 24 26.56 21.3 0.20 0.48 0.80 0.35 1.841 18 4 : 4 42 X 60 289 77 28 24.93 12.4 0.27 0.56 0.80 0.21 1.841 18 4.5 : 3 42 X 60 286 70 28 28 12.4 0.25 0.56 0.80 0.21 1.811 16 4.5 : 3 42 X 60 255 56 24 28 18.7 0.22 0.48 0.80 0.31 1.811 16 4 : 4 42 X 60 268 50 24 26.56 14.0 0.18 0.48 0.80 0.23 1.701 16 4.5 : 3 42 X 60 264 45 22 28 14.0 0.17 0.44 0.80 0.23 1.641 16 5 : 2.5 46 X 60 282 69 25 15.2 9.7 0.24 0.50 0.50 0.16 1.401 16 5 : 2.5 46 X 52 290 59 24 15.2 9.7 0.20 0.48 0.50 0.16 1.341 16 4.5 : 3 46 X 60 280 70 26 11.51 9.7 0.25 0.52 0.40 0.16 1.33

0.75

1

Crane capacity not more than 350 tonneWave height 4 meterTensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 229 93 28 26.56 72.62 0.41 0.56 0.80 1.21 2.981 16 4.5 : 3 42 X 60 226 88 28 28 72.62 0.39 0.56 0.80 1.21 2.961 16 4 : 4 42 X 52 233 89 28 26.56 72.62 0.38 0.56 0.80 1.21 2.951 16 4.5 : 3 42 X 52 229 84 28 28 72.62 0.37 0.56 0.80 1.21 2.942 16 4.5 : 3 42 X 60 215 70 28 25.164 72.62 0.33 0.56 0.80 1.21 2.901 16 4 : 4 42 X 60 238 84 28 26.56 48.67 0.35 0.56 0.80 0.81 2.521 16 4.5 : 3 42 X 60 234 79 28 28 48.67 0.34 0.56 0.80 0.81 2.511 16 4 : 4 42 X 52 242 78 28 26.56 48.67 0.32 0.56 0.80 0.81 2.491 16 4.5 : 3 42 X 52 239 73 28 28 48.67 0.31 0.56 0.80 0.81 2.482 16 4.5 : 3 42 X 60 223 61 26 25.164 48.67 0.28 0.52 0.80 0.81 2.41

0

0.25

1 16 4 : 4 42 X 60 248 72 28 26.56 29.31 0.29 0.56 0.80 0.49 2.141 16 4.5 : 3 42 X 60 244 67 27 28 29.31 0.28 0.54 0.80 0.49 2.101 16 4 : 4 42 X 52 253 67 27 26.56 29.31 0.26 0.54 0.80 0.49 2.091 18 4 : 4 42 X 60 277 91 31 24.93 20.33 0.33 0.62 0.80 0.34 2.091 18 4.5 : 3 42 X 60 273 84 31 28 20.33 0.31 0.62 0.80 0.34 2.071 16 4 : 4 42 X 60 258 61 25 26.56 21.25 0.24 0.50 0.80 0.35 1.891 18 4 : 4 42 X 60 289 77 30 24.93 12.43 0.27 0.60 0.80 0.21 1.881 16 4 : 4 42 X 52 264 54 25 26.56 21.25 0.20 0.50 0.80 0.35 1.861 18 4.5 : 3 42 X 60 286 70 29 28 12.43 0.25 0.58 0.80 0.21 1.831 16 4.5 : 3 42 X 60 255 56 25 28 18.74 0.22 0.50 0.80 0.31 1.83

0.5

0.75

1 16 4 : 4 42 X 60 268 50 25 26.56 14.02 0.18 0.50 0.80 0.23 1.721 16 4.5 : 3 42 X 60 264 45 22 28 14.02 0.17 0.44 0.80 0.23 1.641 16 5 : 2.5 46 X 60 282 69 27 15.2 9.67 0.24 0.54 0.50 0.16 1.441 16 4.5 : 3 46 X 60 280 70 28 11.51 9.67 0.25 0.56 0.40 0.16 1.371 16 5 : 2.5 46 X 52 290 59 25 15.2 9.67 0.20 0.50 0.50 0.16 1.36

1

179

Page 190: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 4 meterT i it 250 t

Stinger optimization for

Tensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 30 26.56 72.6 0.41 0.60 0.80 1.21 3.021 16 4.5 : 3 42 X 60 226 88 29 28 72.6 0.39 0.58 0.80 1.21 2.981 16 4 : 4 42 X 52 233 89 29 26.56 72.6 0.38 0.58 0.80 1.21 2.971 16 4.5 : 3 42 X 52 229 84 29 28 72.6 0.37 0.58 0.80 1.21 2.962 16 4.5 : 3 42 X 60 215 70 28 25.164 72.6 0.33 0.56 0.80 1.21 2.901 16 4 4 42 X 60 238 84 29 26 56 48 7 0 35 0 58 0 80 0 81 2 54

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 29 26.56 48.7 0.35 0.58 0.80 0.81 2.541 16 4.5 : 3 42 X 60 234 79 29 28 48.7 0.34 0.58 0.80 0.81 2.531 16 4 : 4 42 X 52 242 78 29 26.56 48.7 0.32 0.58 0.80 0.81 2.511 16 4.5 : 3 42 X 52 239 73 29 28 48.7 0.31 0.58 0.80 0.81 2.501 16 5 : 2.5 42 X 60 236 76 29 22 48.7 0.32 0.58 0.70 0.81 2.411 16 4 : 4 42 X 60 248 72 29 26.56 29.3 0.29 0.58 0.80 0.49 2.161 18 4 : 4 42 X 60 277 91 32 24.93 20.3 0.33 0.64 0.80 0.34 2.111 16 4.5 : 3 42 X 60 244 67 27 28 29.3 0.28 0.54 0.80 0.49 2.101 16 4 : 4 42 X 52 253 67 27 26.56 29.3 0.26 0.54 0.80 0.49 2.091 18 4.5 : 3 42 X 60 273 84 32 28 20.3 0.31 0.64 0.80 0.34 2.09

0.25

0.5

1 16 4 : 4 42 X 60 258 61 25 26.56 21.3 0.24 0.50 0.80 0.35 1.891 18 4 : 4 42 X 60 289 77 30 24.93 12.4 0.27 0.60 0.80 0.21 1.881 16 4 : 4 42 X 52 264 54 25 26.56 21.3 0.20 0.50 0.80 0.35 1.861 18 4.5 : 3 42 X 60 286 70 29 28 12.4 0.25 0.58 0.80 0.21 1.831 16 4.5 : 3 42 X 60 255 56 25 28 18.7 0.22 0.50 0.80 0.31 1.831 16 4 : 4 42 X 60 268 50 25 26.56 14.0 0.18 0.50 0.80 0.23 1.721 16 4.5 : 3 42 X 60 264 45 22 28 14.0 0.17 0.44 0.80 0.23 1.641 16 5 : 2.5 46 X 60 282 69 27 15.2 9.7 0.24 0.54 0.50 0.16 1.441 16 4.5 : 3 46 X 60 280 70 28 11.51 9.7 0.25 0.56 0.40 0.16 1.371 16 5 : 2.5 46 X 52 290 59 25 15.2 9.7 0.20 0.50 0.50 0.16 1.36

0.75

1

Crane capacity not more than 350 tonneWave height 5 meterTensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 20 26.56 67.70 0.32 0.40 0.80 1.13 2.651 16 4.5 : 3 42 X 60 239 73 20 28 67.70 0.31 0.40 0.80 1.13 2.631 16 4 : 4 42 X 52 246 74 20 26.56 67.70 0.30 0.40 0.80 1.13 2.632 16 4.5 : 3 42 X 60 228 56 20 25.164 67.70 0.25 0.40 0.80 1.13 2.572 16 4.5 : 3 42 X 52 232 51 20 25.164 67.70 0.22 0.40 0.80 1.13 2.551 16 4 : 4 42 X 60 251 68 20 26.56 48.26 0.27 0.40 0.80 0.80 2.281 16 4.5 : 3 42 X 60 248 63 20 28 48.26 0.26 0.40 0.80 0.80 2.261 16 4 : 4 42 X 52 256 63 20 26.56 48.26 0.25 0.40 0.80 0.80 2.251 16 4.5 : 3 42 X 52 253 58 20 28 48.26 0.23 0.40 0.80 0.80 2.232 16 4.5 : 3 42 X 60 236 46 20 25.164 48.26 0.19 0.40 0.80 0.80 2.20

0

0.25

1 16 4 : 4 42 X 60 261 58 20 26.56 29.28 0.22 0.40 0.80 0.49 1.911 16 4.5 : 3 42 X 60 257 53 20 28 29.28 0.21 0.40 0.80 0.49 1.891 16 4 : 4 42 X 52 267 51 20 26.56 29.28 0.19 0.40 0.80 0.49 1.881 16 4.5 : 3 42 X 52 263 46 20 28 29.28 0.17 0.40 0.80 0.49 1.861 18 4 : 4 42 X 60 293 73 21 24.93 19.06 0.25 0.42 0.80 0.32 1.781 16 4 : 4 42 X 60 271 47 20 26.56 20.84 0.17 0.40 0.80 0.35 1.721 16 5 : 2.5 46 X 60 287 63 20 15.2 14.28 0.22 0.40 0.50 0.24 1.361 16 4.5 : 3 46 X 60 282 67 20 11.51 14.28 0.24 0.40 0.40 0.24 1.281 16 4.5 : 3 46 X 52 291 58 20 11.51 14.28 0.20 0.40 0.40 0.24 1.241 16 4 : 4 46 X 60 286 72 20 9.6 14.28 0.25 0.40 0.30 0.24 1.19

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

180

Page 191: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 5 meterT i it 125 t

Stinger optimization for

Tensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 242 78 21 26.56 67.7 0.32 0.42 0.80 1.13 2.671 16 4.5 : 3 42 X 60 239 73 21 28 67.7 0.31 0.42 0.80 1.13 2.651 16 4 : 4 42 X 52 246 74 21 26.56 67.7 0.30 0.42 0.80 1.13 2.652 16 4.5 : 3 42 X 60 228 56 21 25.164 67.7 0.25 0.42 0.80 1.13 2.592 16 4.5 : 3 42 X 52 232 51 21 25.164 67.7 0.22 0.42 0.80 1.13 2.571 16 4 4 42 X 60 251 68 21 26 56 48 3 0 27 0 42 0 80 0 80 2 30

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 251 68 21 26.56 48.3 0.27 0.42 0.80 0.80 2.301 16 4.5 : 3 42 X 60 248 63 21 28 48.3 0.26 0.42 0.80 0.80 2.281 16 4 : 4 42 X 52 256 63 21 26.56 48.3 0.25 0.42 0.80 0.80 2.271 16 4.5 : 3 42 X 52 253 58 21 28 48.3 0.23 0.42 0.80 0.80 2.252 16 4.5 : 3 42 X 60 236 46 21 25.164 48.3 0.19 0.42 0.80 0.80 2.221 16 4 : 4 42 X 60 261 58 21 26.56 29.3 0.22 0.42 0.80 0.49 1.931 16 4.5 : 3 42 X 60 257 53 21 28 29.3 0.21 0.42 0.80 0.49 1.911 16 4 : 4 42 X 52 267 51 21 26.56 29.3 0.19 0.42 0.80 0.49 1.901 16 4.5 : 3 42 X 52 263 46 21 28 29.3 0.17 0.42 0.80 0.49 1.881 18 4 : 4 42 X 60 293 73 23 24.93 19.1 0.25 0.46 0.80 0.32 1.82

0.25

0.5

1 16 4 : 4 42 X 60 271 47 21 26.56 20.8 0.17 0.42 0.80 0.35 1.741 16 5 : 2.5 46 X 60 287 63 21 15.2 14.3 0.22 0.42 0.50 0.24 1.381 16 4.5 : 3 46 X 60 282 67 21 11.51 14.3 0.24 0.42 0.40 0.24 1.301 16 4.5 : 3 46 X 52 291 58 21 11.51 14.3 0.20 0.42 0.40 0.24 1.261 16 4 : 4 46 X 60 286 72 21 9.6 14.3 0.25 0.42 0.30 0.24 1.21- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 350 tonneWave height 5 meterTensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 23 26.56 67.70 0.32 0.46 0.80 1.13 2.711 16 4.5 : 3 42 X 60 239 73 23 28 67.70 0.31 0.46 0.80 1.13 2.691 16 4 : 4 42 X 52 246 74 23 26.56 67.70 0.30 0.46 0.80 1.13 2.692 16 4.5 : 3 42 X 60 228 56 23 25.164 67.70 0.25 0.46 0.80 1.13 2.632 16 4.5 : 3 42 X 52 232 51 23 25.164 67.70 0.22 0.46 0.80 1.13 2.611 16 4 : 4 42 X 60 251 68 23 26.56 48.26 0.27 0.46 0.80 0.80 2.341 16 4.5 : 3 42 X 60 248 63 23 28 48.26 0.26 0.46 0.80 0.80 2.321 16 4 : 4 42 X 52 256 63 23 26.56 48.26 0.25 0.46 0.80 0.80 2.311 16 4.5 : 3 42 X 52 253 58 23 28 48.26 0.23 0.46 0.80 0.80 2.292 16 4.5 : 3 42 X 60 236 46 22 25.164 48.26 0.19 0.44 0.80 0.80 2.24

0

0.25

1 16 4 : 4 42 X 60 261 58 23 26.56 29.28 0.22 0.46 0.80 0.49 1.971 16 4.5 : 3 42 X 60 257 53 23 28 29.28 0.21 0.46 0.80 0.49 1.951 16 4 : 4 42 X 52 267 51 23 26.56 29.28 0.19 0.46 0.80 0.49 1.941 16 4.5 : 3 42 X 52 263 46 22 28 29.28 0.17 0.44 0.80 0.49 1.901 18 4 : 4 42 X 60 293 73 25 24.93 19.06 0.25 0.50 0.80 0.32 1.861 16 4 : 4 42 X 60 271 47 22 26.56 20.84 0.17 0.44 0.80 0.35 1.761 16 5 : 2.5 46 X 60 287 63 23 15.2 14.28 0.22 0.46 0.50 0.24 1.421 16 4.5 : 3 46 X 60 282 67 23 11.51 14.28 0.24 0.46 0.40 0.24 1.341 16 4.5 : 3 46 X 52 291 58 23 11.51 14.28 0.20 0.46 0.40 0.24 1.301 16 4 : 4 46 X 60 286 72 23 9.6 14.28 0.25 0.46 0.30 0.24 1.25

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

181

Page 192: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 5 meterT i it 175 t

Stinger optimization for

Tensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 242 78 24 26.56 67.7 0.32 0.48 0.80 1.13 2.731 16 4.5 : 3 42 X 60 239 73 24 28 67.7 0.31 0.48 0.80 1.13 2.711 16 4 : 4 42 X 52 246 74 24 26.56 67.7 0.30 0.48 0.80 1.13 2.712 16 4.5 : 3 42 X 60 228 56 24 25.164 67.7 0.25 0.48 0.80 1.13 2.652 16 4.5 : 3 42 X 52 232 51 24 25.164 67.7 0.22 0.48 0.80 1.13 2.631 16 4 4 42 X 60 251 68 24 26 56 48 3 0 27 0 48 0 80 0 80 2 36

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 251 68 24 26.56 48.3 0.27 0.48 0.80 0.80 2.361 16 4.5 : 3 42 X 60 248 63 24 28 48.3 0.26 0.48 0.80 0.80 2.341 16 4 : 4 42 X 52 256 63 24 26.56 48.3 0.25 0.48 0.80 0.80 2.331 16 4.5 : 3 42 X 52 253 58 24 28 48.3 0.23 0.48 0.80 0.80 2.312 16 4.5 : 3 42 X 60 236 46 22 25.164 48.3 0.19 0.44 0.80 0.80 2.241 16 4 : 4 42 X 60 261 58 24 26.56 29.3 0.22 0.48 0.80 0.49 1.991 16 4.5 : 3 42 X 60 257 53 24 28 29.3 0.21 0.48 0.80 0.49 1.971 16 4 : 4 42 X 52 267 51 24 26.56 29.3 0.19 0.48 0.80 0.49 1.961 18 4 : 4 42 X 60 293 73 27 24.93 19.1 0.25 0.54 0.80 0.32 1.901 16 4.5 : 3 42 X 52 263 46 22 28 29.3 0.17 0.44 0.80 0.49 1.90

0.25

0.5

1 16 4 : 4 42 X 60 271 47 22 26.56 20.8 0.17 0.44 0.80 0.35 1.761 16 5 : 2.5 46 X 60 287 63 24 15.2 14.3 0.22 0.48 0.50 0.24 1.441 16 4.5 : 3 46 X 60 282 67 24 11.51 14.3 0.24 0.48 0.40 0.24 1.361 16 4.5 : 3 46 X 52 291 58 24 11.51 14.3 0.20 0.48 0.40 0.24 1.321 16 4 : 4 46 X 60 286 72 24 9.6 14.3 0.25 0.48 0.30 0.24 1.27- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 350 tonneWave height 5 meterTensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 26 26.56 67.70 0.32 0.52 0.80 1.13 2.771 16 4.5 : 3 42 X 60 239 73 26 28 67.70 0.31 0.52 0.80 1.13 2.751 16 4 : 4 42 X 52 246 74 26 26.56 67.70 0.30 0.52 0.80 1.13 2.752 16 4.5 : 3 42 X 60 228 56 24 25.164 67.70 0.25 0.48 0.80 1.13 2.651 16 5 : 2.5 42 X 60 240 73 26 22 67.70 0.30 0.52 0.70 1.13 2.651 16 4 : 4 42 X 60 251 68 25 26.56 48.26 0.27 0.50 0.80 0.80 2.381 16 4.5 : 3 42 X 60 248 63 25 28 48.26 0.26 0.50 0.80 0.80 2.361 16 4 : 4 42 X 52 256 63 25 26.56 48.26 0.25 0.50 0.80 0.80 2.351 16 4.5 : 3 42 X 52 253 58 24 28 48.26 0.23 0.48 0.80 0.80 2.311 16 5 : 2.5 42 X 60 249 62 25 22 48.26 0.25 0.50 0.70 0.80 2.25

0

0.25

1 16 4 : 4 42 X 60 261 58 24 26.56 29.28 0.22 0.48 0.80 0.49 1.991 16 4.5 : 3 42 X 60 257 53 24 28 29.28 0.21 0.48 0.80 0.49 1.971 16 4 : 4 42 X 52 267 51 24 26.56 29.28 0.19 0.48 0.80 0.49 1.961 18 4 : 4 42 X 60 293 73 28 24.93 19.06 0.25 0.56 0.80 0.32 1.921 18 4.5 : 3 42 X 60 289 66 28 28 19.06 0.23 0.56 0.80 0.32 1.911 16 4 : 4 42 X 60 271 47 22 26.56 20.84 0.17 0.44 0.80 0.35 1.761 16 5 : 2.5 46 X 60 287 63 25 15.2 14.28 0.22 0.50 0.50 0.24 1.461 16 4.5 : 3 46 X 60 282 67 25 11.51 14.28 0.24 0.50 0.40 0.24 1.381 16 4.5 : 3 46 X 52 291 58 24 11.51 14.28 0.20 0.48 0.40 0.24 1.321 16 4 : 4 46 X 60 286 72 26 9.6 14.28 0.25 0.52 0.30 0.24 1.31

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

182

Page 193: Stinger Buoyancy

Crane capacity not more than 350 tonneWave height 5 meterT i it 225 t

Stinger optimization for

Tensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 242 78 28 26.56 67.7 0.32 0.56 0.80 1.13 2.811 16 4.5 : 3 42 X 60 239 73 28 28 67.7 0.31 0.56 0.80 1.13 2.791 16 4 : 4 42 X 52 246 74 28 26.56 67.7 0.30 0.56 0.80 1.13 2.791 16 5 : 2.5 42 X 60 240 73 28 22 67.7 0.30 0.56 0.70 1.13 2.692 16 4.5 : 3 42 X 60 228 56 25 25.164 67.7 0.25 0.50 0.80 1.13 2.671 16 4 4 42 X 60 251 68 27 26 56 48 3 0 27 0 54 0 80 0 80 2 42

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 251 68 27 26.56 48.3 0.27 0.54 0.80 0.80 2.421 16 4.5 : 3 42 X 60 248 63 27 28 48.3 0.26 0.54 0.80 0.80 2.401 16 4 : 4 42 X 52 256 63 27 26.56 48.3 0.25 0.54 0.80 0.80 2.391 16 4.5 : 3 42 X 52 253 58 25 28 48.3 0.23 0.50 0.80 0.80 2.331 18 4 : 4 42 X 60 279 89 31 24.93 32.7 0.32 0.62 0.80 0.54 2.281 16 4 : 4 42 X 60 261 58 25 26.56 29.3 0.22 0.50 0.80 0.49 2.011 16 4.5 : 3 42 X 60 257 53 25 28 29.3 0.21 0.50 0.80 0.49 1.991 16 4 : 4 42 X 52 267 51 25 26.56 29.3 0.19 0.50 0.80 0.49 1.981 18 4 : 4 42 X 60 293 73 30 24.93 19.1 0.25 0.60 0.80 0.32 1.961 18 4.5 : 3 42 X 60 289 66 29 28 19.1 0.23 0.58 0.80 0.32 1.93

0.25

0.5

1 16 4 : 4 42 X 60 271 47 22 26.56 20.8 0.17 0.44 0.80 0.35 1.761 16 5 : 2.5 46 X 60 287 63 27 15.2 14.3 0.22 0.54 0.50 0.24 1.501 16 4.5 : 3 46 X 60 282 67 27 11.51 14.3 0.24 0.54 0.40 0.24 1.421 16 4 : 4 46 X 60 286 72 28 9.6 14.3 0.25 0.56 0.30 0.24 1.351 16 4.5 : 3 46 X 52 291 58 25 11.51 14.3 0.20 0.50 0.40 0.24 1.34- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

0.75

1

Crane capacity not more than 350 tonneWave height 5 meterTensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 29 26.56 67.70 0.32 0.58 0.80 1.13 2.831 16 4.5 : 3 42 X 60 239 73 29 28 67.70 0.31 0.58 0.80 1.13 2.811 16 4 : 4 42 X 52 246 74 29 26.56 67.70 0.30 0.58 0.80 1.13 2.811 16 5 : 2.5 42 X 60 240 73 29 22 67.70 0.30 0.58 0.70 1.13 2.712 16 4.5 : 3 42 X 60 228 56 25 25.164 67.70 0.25 0.50 0.80 1.13 2.671 16 4 : 4 42 X 60 251 68 27 26.56 48.26 0.27 0.54 0.80 0.80 2.421 16 4.5 : 3 42 X 60 248 63 27 28 48.26 0.26 0.54 0.80 0.80 2.401 16 4 : 4 42 X 52 256 63 27 26.56 48.26 0.25 0.54 0.80 0.80 2.391 16 4.5 : 3 42 X 52 253 58 25 28 48.26 0.23 0.50 0.80 0.80 2.331 18 4 : 4 42 X 60 279 89 32 24.93 32.68 0.32 0.64 0.80 0.54 2.30

0

0.25

1 16 4 : 4 42 X 60 261 58 25 26.56 29.28 0.22 0.50 0.80 0.49 2.011 16 4.5 : 3 42 X 60 257 53 25 28 29.28 0.21 0.50 0.80 0.49 1.991 16 4 : 4 42 X 52 267 51 25 26.56 29.28 0.19 0.50 0.80 0.49 1.981 18 4 : 4 42 X 60 293 73 30 24.93 19.06 0.25 0.60 0.80 0.32 1.961 18 4.5 : 3 42 X 60 289 66 29 28 19.06 0.23 0.58 0.80 0.32 1.931 16 4 : 4 42 X 60 271 47 22 26.56 20.84 0.17 0.44 0.80 0.35 1.761 16 5 : 2.5 46 X 60 287 63 27 15.2 14.28 0.22 0.54 0.50 0.24 1.501 16 4.5 : 3 46 X 60 282 67 27 11.51 14.28 0.24 0.54 0.40 0.24 1.421 16 4 : 4 46 X 60 286 72 29 9.6 14.28 0.25 0.58 0.30 0.24 1.371 16 4.5 : 3 46 X 52 291 58 25 11.51 14.28 0.20 0.50 0.40 0.24 1.34

0.5

0.75

- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

1

183

Page 194: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 2 meterT i it 100 t

Stinger optimization for

Tensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 22 24.72 0.6 1.03 0.44 0.80 0.01 2.282 20 4.5 : 3 56 X 60 282 283 22 26 0.6 1.00 0.44 0.80 0.01 2.251 20 4.5 : 3 56 X 52 299 297 22 24.72 0.6 0.99 0.44 0.80 0.01 2.252 20 4.5 : 3 56 X 52 286 278 22 26 0.6 0.97 0.44 0.80 0.01 2.222 18 4.5 : 3 56 X 60 262 254 21 26 1.3 0.97 0.42 0.80 0.02 2.211 20 4 5 3 56 X 60 308 287 22 24 72 1 1 0 93 0 44 0 80 0 02 2 19

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 20 4.5 : 3 56 X 60 308 287 22 24.72 1.1 0.93 0.44 0.80 0.02 2.192 20 4.5 : 3 56 X 60 295 268 22 26 1.1 0.91 0.44 0.80 0.02 2.171 20 4.5 : 3 56 X 52 313 281 22 24.72 1.1 0.90 0.44 0.80 0.02 2.152 18 4.5 : 3 56 X 60 274 240 21 26 2.2 0.88 0.42 0.80 0.04 2.132 20 4.5 : 3 56 X 52 301 262 22 26 1.1 0.87 0.44 0.80 0.02 2.131 16 4 : 4 42 X 60 224 99 20 26.56 35.4 0.44 0.40 0.80 0.59 2.231 16 4 : 4 42 X 52 227 96 20 26.56 35.4 0.42 0.40 0.80 0.59 2.211 18 4 : 4 42 X 60 247 125 21 24.93 23.7 0.51 0.42 0.80 0.39 2.121 16 5 : 2.5 42 X 60 221 94 20 22 35.4 0.42 0.40 0.70 0.59 2.111 20 4.5 : 3 56 X 60 324 269 22 24.72 2.1 0.83 0.44 0.80 0.04 2.11

0.25

0.5

1 16 4 : 4 42 X 60 233 89 20 26.56 44.7 0.38 0.40 0.80 0.75 2.331 16 4.5 : 3 42 X 60 229 84 20 28 44.7 0.37 0.40 0.80 0.75 2.311 16 4 : 4 42 X 52 237 85 20 26.56 44.7 0.36 0.40 0.80 0.75 2.301 16 4.5 : 3 42 X 52 233 80 20 28 44.7 0.35 0.40 0.80 0.75 2.292 16 4.5 : 3 42 X 60 218 67 20 25.164 44.7 0.31 0.40 0.80 0.75 2.251 16 4 : 4 42 X 60 242 78 20 26.56 42.8 0.32 0.40 0.80 0.71 2.241 16 4.5 : 3 42 X 60 239 73 20 28 42.8 0.31 0.40 0.80 0.71 2.221 16 4 : 4 42 X 52 246 74 20 26.56 42.8 0.30 0.40 0.80 0.71 2.211 16 4.5 : 3 42 X 52 243 69 20 28 42.8 0.28 0.40 0.80 0.71 2.202 16 4.5 : 3 42 X 60 228 56 20 25.164 42.8 0.25 0.40 0.80 0.71 2.16

0.75

1

Crane capacity not more than 500 tonneWave height 2 meterTensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 20 4.5 : 3 56 X 60 295 302 24 24.72 0.61 1.03 0.48 0.80 0.01 2.322 20 4.5 : 3 56 X 60 282 283 24 26 0.61 1.00 0.48 0.80 0.01 2.291 20 4.5 : 3 56 X 52 299 297 24 24.72 0.61 0.99 0.48 0.80 0.01 2.292 20 4.5 : 3 56 X 52 286 278 24 26 0.61 0.97 0.48 0.80 0.01 2.262 18 4.5 : 3 56 X 60 262 254 23 26 1.28 0.97 0.46 0.80 0.02 2.251 20 4.5 : 3 56 X 60 308 287 24 24.72 1.05 0.93 0.48 0.80 0.02 2.232 20 4.5 : 3 56 X 60 295 268 24 26 1.05 0.91 0.48 0.80 0.02 2.211 20 4.5 : 3 56 X 52 313 281 24 24.72 1.05 0.90 0.48 0.80 0.02 2.192 18 4.5 : 3 56 X 60 274 240 23 26 2.22 0.88 0.46 0.80 0.04 2.172 20 4.5 : 3 56 X 52 301 262 24 26 1.05 0.87 0.48 0.80 0.02 2.17

0

0.25

1 16 4 : 4 42 X 60 224 99 21 26.56 35.37 0.44 0.42 0.80 0.59 2.251 16 4 : 4 42 X 52 227 96 21 26.56 35.37 0.42 0.42 0.80 0.59 2.231 18 4 : 4 42 X 60 247 125 23 24.93 23.69 0.51 0.46 0.80 0.39 2.161 20 4.5 : 3 56 X 60 324 269 24 24.72 2.11 0.83 0.48 0.80 0.04 2.151 18 4 : 4 42 X 52 251 121 23 24.93 23.69 0.48 0.46 0.80 0.39 2.141 16 4 : 4 42 X 60 233 89 21 26.56 44.75 0.38 0.42 0.80 0.75 2.351 16 4.5 : 3 42 X 60 229 84 21 28 44.75 0.37 0.42 0.80 0.75 2.331 16 4 : 4 42 X 52 237 85 21 26.56 44.75 0.36 0.42 0.80 0.75 2.321 16 4.5 : 3 42 X 52 233 80 21 28 44.75 0.35 0.42 0.80 0.75 2.312 16 4.5 : 3 42 X 60 218 67 21 25.164 44.75 0.31 0.42 0.80 0.75 2.27

0.5

0.75

1 16 4 : 4 42 X 60 242 78 21 26.56 42.82 0.32 0.42 0.80 0.71 2.261 16 4.5 : 3 42 X 60 239 73 21 28 42.82 0.31 0.42 0.80 0.71 2.241 16 4 : 4 42 X 52 246 74 21 26.56 42.82 0.30 0.42 0.80 0.71 2.231 16 4.5 : 3 42 X 52 243 69 21 28 42.82 0.28 0.42 0.80 0.71 2.222 16 4.5 : 3 42 X 60 228 56 21 25.164 42.82 0.25 0.42 0.80 0.71 2.18

1

184

Page 195: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 2 meterT i it 150 t

Stinger optimization for

Tensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 28 24.72 0.6 1.03 0.56 0.80 0.01 2.402 20 4.5 : 3 56 X 60 282 283 28 26 0.6 1.00 0.56 0.80 0.01 2.371 20 4.5 : 3 56 X 52 299 297 28 24.72 0.6 0.99 0.56 0.80 0.01 2.372 20 4.5 : 3 56 X 52 286 278 28 26 0.6 0.97 0.56 0.80 0.01 2.342 18 4.5 : 3 56 X 60 262 254 25 26 1.3 0.97 0.50 0.80 0.02 2.291 20 4 5 3 56 X 60 308 287 28 24 72 1 1 0 93 0 56 0 80 0 02 2 31

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 20 4.5 : 3 56 X 60 308 287 28 24.72 1.1 0.93 0.56 0.80 0.02 2.312 20 4.5 : 3 56 X 60 295 268 28 26 1.1 0.91 0.56 0.80 0.02 2.291 20 4.5 : 3 56 X 52 313 281 28 24.72 1.1 0.90 0.56 0.80 0.02 2.272 20 4.5 : 3 56 X 52 301 262 28 26 1.1 0.87 0.56 0.80 0.02 2.252 18 4.5 : 3 56 X 60 274 240 25 26 2.2 0.88 0.50 0.80 0.04 2.211 16 4 : 4 42 X 60 224 99 23 26.56 35.4 0.44 0.46 0.80 0.59 2.291 16 4 : 4 42 X 52 227 96 23 26.56 35.4 0.42 0.46 0.80 0.59 2.271 20 4.5 : 3 56 X 60 324 269 28 24.72 2.1 0.83 0.56 0.80 0.04 2.231 18 4 : 4 42 X 60 247 125 25 24.93 23.7 0.51 0.50 0.80 0.39 2.202 20 4.5 : 3 56 X 60 311 250 28 26 2.1 0.80 0.56 0.80 0.04 2.20

0.25

0.5

1 16 4 : 4 42 X 60 233 89 23 26.56 44.7 0.38 0.46 0.80 0.75 2.391 16 4.5 : 3 42 X 60 229 84 23 28 44.7 0.37 0.46 0.80 0.75 2.371 16 4 : 4 42 X 52 237 85 23 26.56 44.7 0.36 0.46 0.80 0.75 2.361 16 4.5 : 3 42 X 52 233 80 23 28 44.7 0.35 0.46 0.80 0.75 2.352 16 4.5 : 3 42 X 60 218 67 23 25.164 44.7 0.31 0.46 0.80 0.75 2.311 16 4 : 4 42 X 60 242 78 23 26.56 42.8 0.32 0.46 0.80 0.71 2.301 16 4.5 : 3 42 X 60 239 73 23 28 42.8 0.31 0.46 0.80 0.71 2.281 16 4 : 4 42 X 52 246 74 23 26.56 42.8 0.30 0.46 0.80 0.71 2.271 16 4.5 : 3 42 X 52 243 69 23 28 42.8 0.28 0.46 0.80 0.71 2.262 16 4.5 : 3 42 X 60 228 56 23 25.164 42.8 0.25 0.46 0.80 0.71 2.22

0.75

1

Crane capacity not more than 500 tonneWave height 2 meterTensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 20 4.5 : 3 56 X 60 295 302 29 24.72 0.61 1.03 0.58 0.80 0.01 2.422 20 4.5 : 3 56 X 60 282 283 29 26 0.61 1.00 0.58 0.80 0.01 2.391 20 4.5 : 3 56 X 52 299 297 29 24.72 0.61 0.99 0.58 0.80 0.01 2.392 20 4.5 : 3 56 X 52 286 278 29 26 0.61 0.97 0.58 0.80 0.01 2.362 18 4.5 : 3 56 X 60 262 254 27 26 1.28 0.97 0.54 0.80 0.02 2.331 20 4.5 : 3 56 X 60 308 287 29 24.72 1.05 0.93 0.58 0.80 0.02 2.332 20 4.5 : 3 56 X 60 295 268 29 26 1.05 0.91 0.58 0.80 0.02 2.311 20 4.5 : 3 56 X 52 313 281 29 24.72 1.05 0.90 0.58 0.80 0.02 2.292 20 4.5 : 3 56 X 52 301 262 29 26 1.05 0.87 0.58 0.80 0.02 2.272 18 4.5 : 3 56 X 60 274 240 27 26 2.22 0.88 0.54 0.80 0.04 2.25

0

0.25

1 16 4 : 4 42 X 60 224 99 24 26.56 35.37 0.44 0.48 0.80 0.59 2.311 16 4 : 4 42 X 52 227 96 24 26.56 35.37 0.42 0.48 0.80 0.59 2.291 20 4.5 : 3 56 X 60 324 269 29 24.72 2.11 0.83 0.58 0.80 0.04 2.251 18 4 : 4 42 X 60 247 125 27 24.93 23.69 0.51 0.54 0.80 0.39 2.242 20 4.5 : 3 56 X 60 311 250 29 26 2.11 0.80 0.58 0.80 0.04 2.221 16 4 : 4 42 X 60 233 89 24 26.56 44.75 0.38 0.48 0.80 0.75 2.411 16 4.5 : 3 42 X 60 229 84 24 28 44.75 0.37 0.48 0.80 0.75 2.391 16 4 : 4 42 X 52 237 85 24 26.56 44.75 0.36 0.48 0.80 0.75 2.381 16 4.5 : 3 42 X 52 233 80 24 28 44.75 0.35 0.48 0.80 0.75 2.372 16 4.5 : 3 42 X 60 218 67 24 25.164 44.75 0.31 0.48 0.80 0.75 2.33

0.5

0.75

1 16 4 : 4 42 X 60 242 78 24 26.56 42.82 0.32 0.48 0.80 0.71 2.321 16 4.5 : 3 42 X 60 239 73 24 28 42.82 0.31 0.48 0.80 0.71 2.301 16 4 : 4 42 X 52 246 74 24 26.56 42.82 0.30 0.48 0.80 0.71 2.291 16 4.5 : 3 42 X 52 243 69 24 28 42.82 0.28 0.48 0.80 0.71 2.282 16 4.5 : 3 42 X 60 228 56 24 25.164 42.82 0.25 0.48 0.80 0.71 2.24

1

185

Page 196: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 2 meterT i it 200 t

Stinger optimization for

Tensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 31 24.72 0.6 1.03 0.62 0.80 0.01 2.462 20 4.5 : 3 56 X 60 282 283 31 26 0.6 1.00 0.62 0.80 0.01 2.431 20 4.5 : 3 56 X 52 299 297 31 24.72 0.6 0.99 0.62 0.80 0.01 2.432 20 4.5 : 3 56 X 52 286 278 31 26 0.6 0.97 0.62 0.80 0.01 2.402 18 4.5 : 3 56 X 60 262 254 29 26 1.3 0.97 0.58 0.80 0.02 2.371 20 4 5 3 56 X 60 308 287 31 24 72 1 1 0 93 0 62 0 80 0 02 2 37

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 20 4.5 : 3 56 X 60 308 287 31 24.72 1.1 0.93 0.62 0.80 0.02 2.372 20 4.5 : 3 56 X 60 295 268 31 26 1.1 0.91 0.62 0.80 0.02 2.351 20 4.5 : 3 56 X 52 313 281 31 24.72 1.1 0.90 0.62 0.80 0.02 2.332 20 4.5 : 3 56 X 52 301 262 31 26 1.1 0.87 0.62 0.80 0.02 2.312 18 4.5 : 3 56 X 60 274 240 29 26 2.2 0.88 0.58 0.80 0.04 2.291 16 4 : 4 42 X 60 224 99 26 26.56 35.4 0.44 0.52 0.80 0.59 2.351 16 4 : 4 42 X 52 227 96 26 26.56 35.4 0.42 0.52 0.80 0.59 2.331 20 4.5 : 3 56 X 60 324 269 31 24.72 2.1 0.83 0.62 0.80 0.04 2.291 18 4 : 4 42 X 60 247 125 29 24.93 23.7 0.51 0.58 0.80 0.39 2.282 20 4.5 : 3 56 X 60 311 250 31 26 2.1 0.80 0.62 0.80 0.04 2.26

0.25

0.5

1 16 4 : 4 42 X 60 233 89 26 26.56 44.7 0.38 0.52 0.80 0.75 2.451 16 4.5 : 3 42 X 60 229 84 26 28 44.7 0.37 0.52 0.80 0.75 2.431 16 4 : 4 42 X 52 237 85 26 26.56 44.7 0.36 0.52 0.80 0.75 2.421 16 4.5 : 3 42 X 52 233 80 26 28 44.7 0.35 0.52 0.80 0.75 2.412 16 4.5 : 3 42 X 60 218 67 25 25.164 44.7 0.31 0.50 0.80 0.75 2.351 16 4 : 4 42 X 60 242 78 26 26.56 42.8 0.32 0.52 0.80 0.71 2.361 16 4.5 : 3 42 X 60 239 73 26 28 42.8 0.31 0.52 0.80 0.71 2.341 16 4 : 4 42 X 52 246 74 26 26.56 42.8 0.30 0.52 0.80 0.71 2.331 16 4.5 : 3 42 X 52 243 69 25 28 42.8 0.28 0.50 0.80 0.71 2.302 16 4.5 : 3 42 X 60 228 56 24 25.164 42.8 0.25 0.48 0.80 0.71 2.24

0.75

1

Crane capacity not more than 500 tonneWave height 2 meterTensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 20 4.5 : 3 56 X 60 295 302 32 24.72 0.61 1.03 0.64 0.80 0.01 2.482 20 4.5 : 3 56 X 60 282 283 32 26 0.61 1.00 0.64 0.80 0.01 2.451 20 4.5 : 3 56 X 52 299 297 32 24.72 0.61 0.99 0.64 0.80 0.01 2.452 20 4.5 : 3 56 X 52 286 278 32 26 0.61 0.97 0.64 0.80 0.01 2.422 18 4.5 : 3 56 X 60 262 254 31 26 1.28 0.97 0.62 0.80 0.02 2.411 20 4.5 : 3 56 X 60 308 287 32 24.72 1.05 0.93 0.64 0.80 0.02 2.392 20 4.5 : 3 56 X 60 295 268 32 26 1.05 0.91 0.64 0.80 0.02 2.371 20 4.5 : 3 56 X 52 313 281 32 24.72 1.05 0.90 0.64 0.80 0.02 2.352 18 4.5 : 3 56 X 60 274 240 31 26 2.22 0.88 0.62 0.80 0.04 2.332 20 4.5 : 3 56 X 52 301 262 32 26 1.05 0.87 0.64 0.80 0.02 2.33

0

0.25

1 16 4 : 4 42 X 60 224 99 28 26.56 35.37 0.44 0.56 0.80 0.59 2.391 16 4 : 4 42 X 52 227 96 28 26.56 35.37 0.42 0.56 0.80 0.59 2.371 18 4 : 4 42 X 60 247 125 31 24.93 23.69 0.51 0.62 0.80 0.39 2.321 20 4.5 : 3 56 X 60 324 269 32 24.72 2.11 0.83 0.64 0.80 0.04 2.311 18 4 : 4 42 X 52 251 121 31 24.93 23.69 0.48 0.62 0.80 0.39 2.301 16 4 : 4 42 X 60 233 89 28 26.56 44.75 0.38 0.56 0.80 0.75 2.491 16 4.5 : 3 42 X 60 229 84 28 28 44.75 0.37 0.56 0.80 0.75 2.471 16 4 : 4 42 X 52 237 85 28 26.56 44.75 0.36 0.56 0.80 0.75 2.461 16 4.5 : 3 42 X 52 233 80 28 28 44.75 0.35 0.56 0.80 0.75 2.452 16 4.5 : 3 42 X 60 218 67 27 25.164 44.75 0.31 0.54 0.80 0.75 2.39

0.5

0.75

1 16 4 : 4 42 X 60 242 78 28 26.56 42.82 0.32 0.56 0.80 0.71 2.401 16 4.5 : 3 42 X 60 239 73 28 28 42.82 0.31 0.56 0.80 0.71 2.381 16 4 : 4 42 X 52 246 74 28 26.56 42.82 0.30 0.56 0.80 0.71 2.371 16 4.5 : 3 42 X 52 243 69 27 28 42.82 0.28 0.54 0.80 0.71 2.341 16 5 : 2.5 42 X 60 240 73 28 22 42.82 0.30 0.56 0.70 0.71 2.28

1

186

Page 197: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 2 meterT i it 250 t

Stinger optimization for

Tensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 20 4.5 : 3 56 X 60 295 302 35 24.72 0.6 1.03 0.70 0.80 0.01 2.542 20 4.5 : 3 56 X 60 282 283 35 26 0.6 1.00 0.70 0.80 0.01 2.511 20 4.5 : 3 56 X 52 299 297 35 24.72 0.6 0.99 0.70 0.80 0.01 2.512 20 4.5 : 3 56 X 52 286 278 35 26 0.6 0.97 0.70 0.80 0.01 2.482 18 4.5 : 3 56 X 60 262 254 32 26 1.3 0.97 0.64 0.80 0.02 2.431 20 4 5 3 56 X 60 308 287 35 24 72 1 1 0 93 0 70 0 80 0 02 2 45

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 20 4.5 : 3 56 X 60 308 287 35 24.72 1.1 0.93 0.70 0.80 0.02 2.452 20 4.5 : 3 56 X 60 295 268 35 26 1.1 0.91 0.70 0.80 0.02 2.431 20 4.5 : 3 56 X 52 313 281 35 24.72 1.1 0.90 0.70 0.80 0.02 2.412 20 4.5 : 3 56 X 52 301 262 35 26 1.1 0.87 0.70 0.80 0.02 2.392 18 4.5 : 3 56 X 60 274 240 32 26 2.2 0.88 0.64 0.80 0.04 2.351 16 4 : 4 42 X 60 224 99 30 26.56 35.4 0.44 0.60 0.80 0.59 2.431 16 4 : 4 42 X 52 227 96 30 26.56 35.4 0.42 0.60 0.80 0.59 2.411 20 4.5 : 3 56 X 60 324 269 35 24.72 2.1 0.83 0.70 0.80 0.04 2.371 18 4 : 4 42 X 60 247 125 32 24.93 23.7 0.51 0.64 0.80 0.39 2.342 20 4.5 : 3 56 X 60 311 250 35 26 2.1 0.80 0.70 0.80 0.04 2.34

0.25

0.5

1 16 4 : 4 42 X 60 233 89 29 26.56 44.7 0.38 0.58 0.80 0.75 2.511 16 4.5 : 3 42 X 60 229 84 29 28 44.7 0.37 0.58 0.80 0.75 2.491 16 4 : 4 42 X 52 237 85 29 26.56 44.7 0.36 0.58 0.80 0.75 2.481 16 4.5 : 3 42 X 52 233 80 29 28 44.7 0.35 0.58 0.80 0.75 2.472 16 4.5 : 3 42 X 60 218 67 27 25.164 44.7 0.31 0.54 0.80 0.75 2.391 16 4 : 4 42 X 60 242 78 29 26.56 42.8 0.32 0.58 0.80 0.71 2.421 16 4.5 : 3 42 X 60 239 73 29 28 42.8 0.31 0.58 0.80 0.71 2.401 16 4 : 4 42 X 52 246 74 29 26.56 42.8 0.30 0.58 0.80 0.71 2.391 16 4.5 : 3 42 X 52 243 69 27 28 42.8 0.28 0.54 0.80 0.71 2.341 16 5 : 2.5 42 X 60 240 73 29 22 42.8 0.30 0.58 0.70 0.71 2.30

0.75

1

Crane capacity not more than 500 tonneWave height 3 meterTensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 20 26.56 46.76 0.47 0.40 0.80 0.78 2.451 16 4 : 4 42 X 52 221 103 20 26.56 46.76 0.46 0.40 0.80 0.78 2.441 16 4.5 : 3 42 X 60 216 99 20 28 46.76 0.46 0.40 0.80 0.78 2.441 16 4.5 : 3 42 X 52 218 98 20 28 46.76 0.45 0.40 0.80 0.78 2.431 18 4 : 4 42 X 60 241 132 21 24.93 36.67 0.55 0.42 0.80 0.61 2.381 16 4 : 4 42 X 60 227 96 20 26.56 48.48 0.42 0.40 0.80 0.81 2.431 16 4.5 : 3 42 X 60 223 91 20 28 48.48 0.41 0.40 0.80 0.81 2.421 16 4 : 4 42 X 52 230 92 20 26.56 48.48 0.40 0.40 0.80 0.81 2.411 16 4.5 : 3 42 X 52 227 87 20 28 48.48 0.38 0.40 0.80 0.81 2.392 16 4.5 : 3 42 X 60 212 74 20 25.164 48.48 0.35 0.40 0.80 0.81 2.35

0

0.25

1 16 4 : 4 42 X 60 236 85 20 26.56 38.19 0.36 0.40 0.80 0.64 2.201 16 4.5 : 3 42 X 60 232 81 20 28 38.19 0.35 0.40 0.80 0.64 2.181 16 4 : 4 42 X 52 240 81 20 26.56 38.19 0.34 0.40 0.80 0.64 2.171 16 4.5 : 3 42 X 52 237 76 20 28 38.19 0.32 0.40 0.80 0.64 2.162 16 4.5 : 3 42 X 60 221 63 20 25.164 38.19 0.29 0.40 0.80 0.64 2.121 16 4 : 4 42 X 60 246 74 20 26.56 32.16 0.30 0.40 0.80 0.54 2.041 16 4 : 4 42 X 52 250 70 20 26.56 32.16 0.28 0.40 0.80 0.54 2.021 16 4.5 : 3 42 X 60 243 69 20 28 27.29 0.29 0.40 0.80 0.45 1.941 16 4.5 : 3 42 X 52 246 65 20 28 27.29 0.26 0.40 0.80 0.45 1.921 16 5 : 2.5 42 X 60 243 69 20 22 32.16 0.28 0.40 0.70 0.54 1.92

0.5

0.75

1 16 4 : 4 42 X 60 254 65 20 26.56 21.74 0.25 0.40 0.80 0.36 1.821 16 4.5 : 3 42 X 60 251 60 20 28 21.74 0.24 0.40 0.80 0.36 1.801 16 4 : 4 42 X 52 260 59 20 26.56 21.74 0.23 0.40 0.80 0.36 1.791 20 4.5 : 3 56 X 60 389 195 22 24.72 2.21 0.50 0.44 0.80 0.04 1.781 16 4.5 : 3 42 X 52 255 55 20 28 21.74 0.21 0.40 0.80 0.36 1.78

1

187

Page 198: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 3 meterT i it 125 t

Stinger optimization for

Tensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 220 104 21 26.56 46.8 0.47 0.42 0.80 0.78 2.471 16 4 : 4 42 X 52 221 103 21 26.56 46.8 0.46 0.42 0.80 0.78 2.461 16 4.5 : 3 42 X 60 216 99 21 28 46.8 0.46 0.42 0.80 0.78 2.461 16 4.5 : 3 42 X 52 218 98 21 28 46.8 0.45 0.42 0.80 0.78 2.451 18 4 : 4 42 X 60 241 132 23 24.93 36.7 0.55 0.46 0.80 0.61 2.421 16 4 4 42 X 60 227 96 21 26 56 48 5 0 42 0 42 0 80 0 81 2 45

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 227 96 21 26.56 48.5 0.42 0.42 0.80 0.81 2.451 16 4.5 : 3 42 X 60 223 91 21 28 48.5 0.41 0.42 0.80 0.81 2.441 16 4 : 4 42 X 52 230 92 21 26.56 48.5 0.40 0.42 0.80 0.81 2.431 16 4.5 : 3 42 X 52 227 87 21 28 48.5 0.38 0.42 0.80 0.81 2.412 16 4.5 : 3 42 X 60 212 74 21 25.164 48.5 0.35 0.42 0.80 0.81 2.371 16 4 : 4 42 X 60 236 85 21 26.56 38.2 0.36 0.42 0.80 0.64 2.221 16 4.5 : 3 42 X 60 232 81 21 28 38.2 0.35 0.42 0.80 0.64 2.201 16 4 : 4 42 X 52 240 81 21 26.56 38.2 0.34 0.42 0.80 0.64 2.191 16 4.5 : 3 42 X 52 237 76 21 28 38.2 0.32 0.42 0.80 0.64 2.181 18 4 : 4 42 X 60 262 107 23 24.93 29.1 0.41 0.46 0.80 0.49 2.16

0.25

0.5

1 16 4 : 4 42 X 60 246 74 21 26.56 32.2 0.30 0.42 0.80 0.54 2.061 16 4 : 4 42 X 52 250 70 21 26.56 32.2 0.28 0.42 0.80 0.54 2.041 16 4.5 : 3 42 X 60 243 69 21 28 27.3 0.29 0.42 0.80 0.45 1.961 16 4.5 : 3 42 X 52 246 65 21 28 27.3 0.26 0.42 0.80 0.45 1.941 16 5 : 2.5 42 X 60 243 69 21 22 32.2 0.28 0.42 0.70 0.54 1.941 16 4 : 4 42 X 60 254 65 21 26.56 21.7 0.25 0.42 0.80 0.36 1.841 16 4.5 : 3 42 X 60 251 60 21 28 21.7 0.24 0.42 0.80 0.36 1.821 20 4.5 : 3 56 X 60 389 195 24 24.72 2.2 0.50 0.48 0.80 0.04 1.821 16 4 : 4 42 X 52 260 59 21 26.56 21.7 0.23 0.42 0.80 0.36 1.811 16 4.5 : 3 42 X 52 255 55 21 28 21.7 0.21 0.42 0.80 0.36 1.80

0.75

1

Crane capacity not more than 500 tonneWave height 3 meterTensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 23 26.56 46.76 0.47 0.46 0.80 0.78 2.511 16 4 : 4 42 X 52 221 103 23 26.56 46.76 0.46 0.46 0.80 0.78 2.501 16 4.5 : 3 42 X 60 216 99 23 28 46.76 0.46 0.46 0.80 0.78 2.501 16 4.5 : 3 42 X 52 218 98 23 28 46.76 0.45 0.46 0.80 0.78 2.491 18 4 : 4 42 X 60 241 132 25 24.93 36.67 0.55 0.50 0.80 0.61 2.461 16 4 : 4 42 X 60 227 96 23 26.56 48.48 0.42 0.46 0.80 0.81 2.491 16 4.5 : 3 42 X 60 223 91 23 28 48.48 0.41 0.46 0.80 0.81 2.481 16 4 : 4 42 X 52 230 92 23 26.56 48.48 0.40 0.46 0.80 0.81 2.471 16 4.5 : 3 42 X 52 227 87 23 28 48.48 0.38 0.46 0.80 0.81 2.452 16 4.5 : 3 42 X 60 212 74 23 25.164 48.48 0.35 0.46 0.80 0.81 2.41

0

0.25

1 16 4 : 4 42 X 60 236 85 23 26.56 38.19 0.36 0.46 0.80 0.64 2.261 16 4.5 : 3 42 X 60 232 81 23 28 38.19 0.35 0.46 0.80 0.64 2.241 16 4 : 4 42 X 52 240 81 23 26.56 38.19 0.34 0.46 0.80 0.64 2.231 16 4.5 : 3 42 X 52 237 76 23 28 38.19 0.32 0.46 0.80 0.64 2.221 18 4 : 4 42 X 60 262 107 25 24.93 29.14 0.41 0.50 0.80 0.49 2.201 16 4 : 4 42 X 60 246 74 23 26.56 32.16 0.30 0.46 0.80 0.54 2.101 16 4 : 4 42 X 52 250 70 23 26.56 32.16 0.28 0.46 0.80 0.54 2.081 16 4.5 : 3 42 X 60 243 69 23 28 27.29 0.29 0.46 0.80 0.45 2.001 20 4.5 : 3 56 X 60 371 216 28 24.72 2.95 0.58 0.56 0.80 0.05 1.991 16 4.5 : 3 42 X 52 246 65 23 28 27.29 0.26 0.46 0.80 0.45 1.98

0.5

0.75

1 20 4.5 : 3 56 X 60 389 195 28 24.72 2.21 0.50 0.56 0.80 0.04 1.901 16 4 : 4 42 X 60 254 65 23 26.56 21.74 0.25 0.46 0.80 0.36 1.882 20 4.5 : 3 56 X 60 377 177 28 26 2.21 0.47 0.56 0.80 0.04 1.871 16 4.5 : 3 42 X 60 251 60 23 28 21.74 0.24 0.46 0.80 0.36 1.861 16 4 : 4 42 X 52 260 59 23 26.56 21.74 0.23 0.46 0.80 0.36 1.85

1

188

Page 199: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 3 meterT i it 175 t

Stinger optimization for

Tensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 220 104 24 26.56 46.8 0.47 0.48 0.80 0.78 2.531 16 4 : 4 42 X 52 221 103 24 26.56 46.8 0.46 0.48 0.80 0.78 2.521 16 4.5 : 3 42 X 60 216 99 24 28 46.8 0.46 0.48 0.80 0.78 2.521 16 4.5 : 3 42 X 52 218 98 24 28 46.8 0.45 0.48 0.80 0.78 2.511 18 4 : 4 42 X 60 241 132 27 24.93 36.7 0.55 0.54 0.80 0.61 2.501 16 4 4 42 X 60 227 96 24 26 56 48 5 0 42 0 48 0 80 0 81 2 51

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 227 96 24 26.56 48.5 0.42 0.48 0.80 0.81 2.511 16 4.5 : 3 42 X 60 223 91 24 28 48.5 0.41 0.48 0.80 0.81 2.501 16 4 : 4 42 X 52 230 92 24 26.56 48.5 0.40 0.48 0.80 0.81 2.491 16 4.5 : 3 42 X 52 227 87 24 28 48.5 0.38 0.48 0.80 0.81 2.472 16 4.5 : 3 42 X 60 212 74 24 25.164 48.5 0.35 0.48 0.80 0.81 2.431 16 4 : 4 42 X 60 236 85 24 26.56 38.2 0.36 0.48 0.80 0.64 2.281 16 4.5 : 3 42 X 60 232 81 24 28 38.2 0.35 0.48 0.80 0.64 2.261 16 4 : 4 42 X 52 240 81 24 26.56 38.2 0.34 0.48 0.80 0.64 2.251 16 4.5 : 3 42 X 52 237 76 24 28 38.2 0.32 0.48 0.80 0.64 2.241 18 4 : 4 42 X 60 262 107 27 24.93 29.1 0.41 0.54 0.80 0.49 2.24

0.25

0.5

1 16 4 : 4 42 X 60 246 74 24 26.56 32.2 0.30 0.48 0.80 0.54 2.121 16 4 : 4 42 X 52 250 70 24 26.56 32.2 0.28 0.48 0.80 0.54 2.101 16 4.5 : 3 42 X 60 243 69 24 28 27.3 0.29 0.48 0.80 0.45 2.021 20 4.5 : 3 56 X 60 371 216 29 24.72 3.0 0.58 0.58 0.80 0.05 2.011 18 4 : 4 42 X 60 274 94 27 24.93 19.5 0.34 0.54 0.80 0.32 2.011 20 4.5 : 3 56 X 60 389 195 29 24.72 2.2 0.50 0.58 0.80 0.04 1.921 16 4 : 4 42 X 60 254 65 24 26.56 21.7 0.25 0.48 0.80 0.36 1.902 20 4.5 : 3 56 X 60 377 177 29 26 2.2 0.47 0.58 0.80 0.04 1.891 16 4.5 : 3 42 X 60 251 60 24 28 21.7 0.24 0.48 0.80 0.36 1.881 16 4 : 4 42 X 52 260 59 24 26.56 21.7 0.23 0.48 0.80 0.36 1.87

0.75

1

Crane capacity not more than 500 tonneWave height 3 meterTensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 26 26.56 46.76 0.47 0.52 0.80 0.78 2.571 16 4 : 4 42 X 52 221 103 26 26.56 46.76 0.46 0.52 0.80 0.78 2.561 16 4.5 : 3 42 X 60 216 99 26 28 46.76 0.46 0.52 0.80 0.78 2.561 16 4.5 : 3 42 X 52 218 98 26 28 46.76 0.45 0.52 0.80 0.78 2.551 18 4 : 4 42 X 60 241 132 29 24.93 36.67 0.55 0.58 0.80 0.61 2.541 16 4 : 4 42 X 60 227 96 26 26.56 48.48 0.42 0.52 0.80 0.81 2.551 16 4.5 : 3 42 X 60 223 91 26 28 48.48 0.41 0.52 0.80 0.81 2.541 16 4 : 4 42 X 52 230 92 26 26.56 48.48 0.40 0.52 0.80 0.81 2.531 16 4.5 : 3 42 X 52 227 87 26 28 48.48 0.38 0.52 0.80 0.81 2.512 16 4.5 : 3 42 X 60 212 74 26 25.164 48.48 0.35 0.52 0.80 0.81 2.47

0

0.25

1 16 4 : 4 42 X 60 236 85 26 26.56 38.19 0.36 0.52 0.80 0.64 2.321 16 4.5 : 3 42 X 60 232 81 26 28 38.19 0.35 0.52 0.80 0.64 2.301 16 4 : 4 42 X 52 240 81 26 26.56 38.19 0.34 0.52 0.80 0.64 2.291 16 4.5 : 3 42 X 52 237 76 26 28 38.19 0.32 0.52 0.80 0.64 2.281 18 4 : 4 42 X 60 262 107 29 24.93 29.14 0.41 0.58 0.80 0.49 2.281 16 4 : 4 42 X 60 246 74 26 26.56 32.16 0.30 0.52 0.80 0.54 2.161 16 4 : 4 42 X 52 250 70 25 26.56 32.16 0.28 0.50 0.80 0.54 2.121 20 4.5 : 3 56 X 60 371 216 31 24.72 2.95 0.58 0.62 0.80 0.05 2.051 18 4 : 4 42 X 60 274 94 29 24.93 19.45 0.34 0.58 0.80 0.32 2.051 16 4.5 : 3 42 X 60 243 69 25 28 27.29 0.29 0.50 0.80 0.45 2.04

0.5

0.75

1 20 4.5 : 3 56 X 60 389 195 31 24.72 2.21 0.50 0.62 0.80 0.04 1.962 20 4.5 : 3 56 X 60 377 177 31 26 2.21 0.47 0.62 0.80 0.04 1.931 16 4 : 4 42 X 60 254 65 25 26.56 21.74 0.25 0.50 0.80 0.36 1.921 20 4.5 : 3 56 X 52 402 181 31 24.72 2.21 0.45 0.62 0.80 0.04 1.911 18 4 : 4 42 X 60 285 81 29 24.93 14.41 0.29 0.58 0.80 0.24 1.91

1

189

Page 200: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 3 meterT i it 225 t

Stinger optimization for

Tensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 220 104 28 26.56 46.8 0.47 0.56 0.80 0.78 2.611 16 4 : 4 42 X 52 221 103 28 26.56 46.8 0.46 0.56 0.80 0.78 2.601 16 4.5 : 3 42 X 60 216 99 28 28 46.8 0.46 0.56 0.80 0.78 2.601 16 4.5 : 3 42 X 52 218 98 28 28 46.8 0.45 0.56 0.80 0.78 2.591 18 4 : 4 42 X 60 241 132 31 24.93 36.7 0.55 0.62 0.80 0.61 2.581 16 4 4 42 X 60 227 96 28 26 56 48 5 0 42 0 56 0 80 0 81 2 59

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 227 96 28 26.56 48.5 0.42 0.56 0.80 0.81 2.591 16 4.5 : 3 42 X 60 223 91 28 28 48.5 0.41 0.56 0.80 0.81 2.581 16 4 : 4 42 X 52 230 92 28 26.56 48.5 0.40 0.56 0.80 0.81 2.571 16 4.5 : 3 42 X 52 227 87 28 28 48.5 0.38 0.56 0.80 0.81 2.552 16 4.5 : 3 42 X 60 212 74 28 25.164 48.5 0.35 0.56 0.80 0.81 2.511 16 4 : 4 42 X 60 236 85 28 26.56 38.2 0.36 0.56 0.80 0.64 2.361 16 4.5 : 3 42 X 60 232 81 28 28 38.2 0.35 0.56 0.80 0.64 2.341 16 4 : 4 42 X 52 240 81 28 26.56 38.2 0.34 0.56 0.80 0.64 2.331 16 4.5 : 3 42 X 52 237 76 28 28 38.2 0.32 0.56 0.80 0.64 2.321 18 4 : 4 42 X 60 262 107 31 24.93 29.1 0.41 0.62 0.80 0.49 2.32

0.25

0.5

1 16 4 : 4 42 X 60 246 74 28 26.56 32.2 0.30 0.56 0.80 0.54 2.201 16 4 : 4 42 X 52 250 70 27 26.56 32.2 0.28 0.54 0.80 0.54 2.161 18 4 : 4 42 X 60 274 94 31 24.93 19.5 0.34 0.62 0.80 0.32 2.091 16 4.5 : 3 42 X 60 243 69 27 28 27.3 0.29 0.54 0.80 0.45 2.081 20 4.5 : 3 56 X 60 371 216 32 24.72 3.0 0.58 0.64 0.80 0.05 2.071 20 4.5 : 3 56 X 60 389 195 32 24.72 2.2 0.50 0.64 0.80 0.04 1.981 16 4 : 4 42 X 60 254 65 27 26.56 21.7 0.25 0.54 0.80 0.36 1.962 20 4.5 : 3 56 X 60 377 177 32 26 2.2 0.47 0.64 0.80 0.04 1.951 18 4 : 4 42 X 60 285 81 31 24.93 14.4 0.29 0.62 0.80 0.24 1.952 18 4.5 : 3 56 X 60 347 158 31 26 4.2 0.45 0.62 0.80 0.07 1.94

0.75

1

Crane capacity not more than 500 tonneWave height 3 meterTensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 220 104 30 26.56 46.76 0.47 0.60 0.80 0.78 2.651 16 4 : 4 42 X 52 221 103 30 26.56 46.76 0.46 0.60 0.80 0.78 2.641 16 4.5 : 3 42 X 60 216 99 30 28 46.76 0.46 0.60 0.80 0.78 2.641 16 4.5 : 3 42 X 52 218 98 30 28 46.76 0.45 0.60 0.80 0.78 2.631 18 4 : 4 42 X 60 241 132 32 24.93 36.67 0.55 0.64 0.80 0.61 2.601 16 4 : 4 42 X 60 227 96 30 26.56 48.48 0.42 0.60 0.80 0.81 2.631 16 4.5 : 3 42 X 60 223 91 29 28 48.48 0.41 0.58 0.80 0.81 2.601 16 4 : 4 42 X 52 230 92 29 26.56 48.48 0.40 0.58 0.80 0.81 2.591 16 4.5 : 3 42 X 52 227 87 29 28 48.48 0.38 0.58 0.80 0.81 2.572 16 4.5 : 3 42 X 60 212 74 29 25.164 48.48 0.35 0.58 0.80 0.81 2.53

0

0.25

1 16 4 : 4 42 X 60 236 85 29 26.56 38.19 0.36 0.58 0.80 0.64 2.381 16 4.5 : 3 42 X 60 232 81 29 28 38.19 0.35 0.58 0.80 0.64 2.361 16 4 : 4 42 X 52 240 81 29 26.56 38.19 0.34 0.58 0.80 0.64 2.351 16 4.5 : 3 42 X 52 237 76 29 28 38.19 0.32 0.58 0.80 0.64 2.341 18 4 : 4 42 X 60 262 107 32 24.93 29.14 0.41 0.64 0.80 0.49 2.341 16 4 : 4 42 X 60 246 74 29 26.56 32.16 0.30 0.58 0.80 0.54 2.221 16 4 : 4 42 X 52 250 70 27 26.56 32.16 0.28 0.54 0.80 0.54 2.161 20 4.5 : 3 56 X 60 371 216 35 24.72 2.95 0.58 0.70 0.80 0.05 2.131 18 4 : 4 42 X 60 274 94 32 24.93 19.45 0.34 0.64 0.80 0.32 2.112 20 4.5 : 3 56 X 60 358 197 35 26 2.95 0.55 0.70 0.80 0.05 2.10

0.5

0.75

1 20 4.5 : 3 56 X 60 389 195 35 24.72 2.21 0.50 0.70 0.80 0.04 2.042 20 4.5 : 3 56 X 60 377 177 35 26 2.21 0.47 0.70 0.80 0.04 2.011 20 4.5 : 3 56 X 52 402 181 35 24.72 2.21 0.45 0.70 0.80 0.04 1.991 18 4 : 4 42 X 60 285 81 32 24.93 14.41 0.29 0.64 0.80 0.24 1.972 18 4.5 : 3 56 X 60 347 158 32 26 4.20 0.45 0.64 0.80 0.07 1.96

1

190

Page 201: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 4 meterT i it 100 t

Stinger optimization for

Tensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 20 26.56 72.6 0.41 0.40 0.80 1.21 2.821 16 4.5 : 3 42 X 60 226 88 20 28 72.6 0.39 0.40 0.80 1.21 2.801 16 4 : 4 42 X 52 233 89 20 26.56 72.6 0.38 0.40 0.80 1.21 2.791 16 4.5 : 3 42 X 52 229 84 20 28 72.6 0.37 0.40 0.80 1.21 2.782 16 4.5 : 3 42 X 60 215 70 20 25.164 72.6 0.33 0.40 0.80 1.21 2.741 16 4 4 42 X 60 238 84 20 26 56 48 7 0 35 0 40 0 80 0 81 2 36

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 20 26.56 48.7 0.35 0.40 0.80 0.81 2.361 16 4.5 : 3 42 X 60 234 79 20 28 48.7 0.34 0.40 0.80 0.81 2.351 16 4 : 4 42 X 52 242 78 20 26.56 48.7 0.32 0.40 0.80 0.81 2.331 16 4.5 : 3 42 X 52 239 73 20 28 48.7 0.31 0.40 0.80 0.81 2.322 16 4.5 : 3 42 X 60 223 61 20 25.164 48.7 0.28 0.40 0.80 0.81 2.291 16 4 : 4 42 X 60 248 72 20 26.56 29.3 0.29 0.40 0.80 0.49 1.981 16 4.5 : 3 42 X 60 244 67 20 28 29.3 0.28 0.40 0.80 0.49 1.961 16 4 : 4 42 X 52 253 67 20 26.56 29.3 0.26 0.40 0.80 0.49 1.951 16 4.5 : 3 42 X 52 249 62 20 28 29.3 0.25 0.40 0.80 0.49 1.942 16 4.5 : 3 42 X 60 233 50 20 25.164 29.3 0.21 0.40 0.80 0.49 1.90

0.25

0.5

1 16 4 : 4 42 X 60 258 61 20 26.56 21.3 0.24 0.40 0.80 0.35 1.791 16 4 : 4 42 X 52 264 54 20 26.56 21.3 0.20 0.40 0.80 0.35 1.761 20 4.5 : 3 56 X 60 397 186 22 24.72 2.1 0.47 0.44 0.80 0.04 1.741 16 4.5 : 3 42 X 60 255 56 20 28 18.7 0.22 0.40 0.80 0.31 1.732 16 4.5 : 3 56 X 60 314 132 20 26 6.4 0.42 0.40 0.80 0.11 1.731 20 4.5 : 3 56 X 60 417 164 22 24.72 1.5 0.39 0.44 0.80 0.02 1.662 16 4.5 : 3 56 X 60 328 116 20 26 4.7 0.35 0.40 0.80 0.08 1.632 20 4.5 : 3 56 X 60 405 145 22 26 1.5 0.36 0.44 0.80 0.02 1.621 16 4 : 4 42 X 60 268 50 20 26.56 14.0 0.18 0.40 0.80 0.23 1.622 18 4.5 : 3 56 X 60 372 129 21 26 2.9 0.35 0.42 0.80 0.05 1.62

0.75

1

Crane capacity not more than 500 tonneWave height 4 meterTensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 229 93 21 26.56 72.62 0.41 0.42 0.80 1.21 2.841 16 4.5 : 3 42 X 60 226 88 21 28 72.62 0.39 0.42 0.80 1.21 2.821 16 4 : 4 42 X 52 233 89 21 26.56 72.62 0.38 0.42 0.80 1.21 2.811 16 4.5 : 3 42 X 52 229 84 21 28 72.62 0.37 0.42 0.80 1.21 2.802 16 4.5 : 3 42 X 60 215 70 21 25.164 72.62 0.33 0.42 0.80 1.21 2.761 16 4 : 4 42 X 60 238 84 21 26.56 48.67 0.35 0.42 0.80 0.81 2.381 16 4.5 : 3 42 X 60 234 79 21 28 48.67 0.34 0.42 0.80 0.81 2.371 16 4 : 4 42 X 52 242 78 21 26.56 48.67 0.32 0.42 0.80 0.81 2.351 16 4.5 : 3 42 X 52 239 73 21 28 48.67 0.31 0.42 0.80 0.81 2.342 16 4.5 : 3 42 X 60 223 61 21 25.164 48.67 0.28 0.42 0.80 0.81 2.31

0

0.25

1 16 4 : 4 42 X 60 248 72 21 26.56 29.31 0.29 0.42 0.80 0.49 2.001 16 4.5 : 3 42 X 60 244 67 21 28 29.31 0.28 0.42 0.80 0.49 1.981 16 4 : 4 42 X 52 253 67 21 26.56 29.31 0.26 0.42 0.80 0.49 1.971 16 4.5 : 3 42 X 52 249 62 21 28 29.31 0.25 0.42 0.80 0.49 1.961 18 4 : 4 42 X 60 277 91 23 24.93 20.33 0.33 0.46 0.80 0.34 1.931 16 4 : 4 42 X 60 258 61 21 26.56 21.25 0.24 0.42 0.80 0.35 1.811 20 4.5 : 3 56 X 60 397 186 24 24.72 2.15 0.47 0.48 0.80 0.04 1.781 16 4 : 4 42 X 52 264 54 21 26.56 21.25 0.20 0.42 0.80 0.35 1.781 16 4.5 : 3 42 X 60 255 56 21 28 18.74 0.22 0.42 0.80 0.31 1.752 20 4.5 : 3 56 X 60 385 167 24 26 2.15 0.43 0.48 0.80 0.04 1.75

0.5

0.75

1 20 4.5 : 3 56 X 60 417 164 24 24.72 1.49 0.39 0.48 0.80 0.02 1.702 20 4.5 : 3 56 X 60 405 145 24 26 1.49 0.36 0.48 0.80 0.02 1.662 18 4.5 : 3 56 X 60 372 129 23 26 2.91 0.35 0.46 0.80 0.05 1.662 16 4.5 : 3 56 X 60 328 116 21 26 4.67 0.35 0.42 0.80 0.08 1.651 16 4 : 4 42 X 60 268 50 21 26.56 14.02 0.18 0.42 0.80 0.23 1.64

1

191

Page 202: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 4 meterT i it 150 t

Stinger optimization for

Tensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 23 26.56 72.6 0.41 0.46 0.80 1.21 2.881 16 4.5 : 3 42 X 60 226 88 23 28 72.6 0.39 0.46 0.80 1.21 2.861 16 4 : 4 42 X 52 233 89 23 26.56 72.6 0.38 0.46 0.80 1.21 2.851 16 4.5 : 3 42 X 52 229 84 23 28 72.6 0.37 0.46 0.80 1.21 2.842 16 4.5 : 3 42 X 60 215 70 23 25.164 72.6 0.33 0.46 0.80 1.21 2.801 16 4 4 42 X 60 238 84 23 26 56 48 7 0 35 0 46 0 80 0 81 2 42

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 23 26.56 48.7 0.35 0.46 0.80 0.81 2.421 16 4.5 : 3 42 X 60 234 79 23 28 48.7 0.34 0.46 0.80 0.81 2.411 16 4 : 4 42 X 52 242 78 23 26.56 48.7 0.32 0.46 0.80 0.81 2.391 16 4.5 : 3 42 X 52 239 73 23 28 48.7 0.31 0.46 0.80 0.81 2.382 16 4.5 : 3 42 X 60 223 61 23 25.164 48.7 0.28 0.46 0.80 0.81 2.351 16 4 : 4 42 X 60 248 72 23 26.56 29.3 0.29 0.46 0.80 0.49 2.041 16 4.5 : 3 42 X 60 244 67 23 28 29.3 0.28 0.46 0.80 0.49 2.021 16 4 : 4 42 X 52 253 67 23 26.56 29.3 0.26 0.46 0.80 0.49 2.011 16 4.5 : 3 42 X 52 249 62 23 28 29.3 0.25 0.46 0.80 0.49 2.001 18 4 : 4 42 X 60 277 91 25 24.93 20.3 0.33 0.50 0.80 0.34 1.97

0.25

0.5

1 20 4.5 : 3 56 X 60 397 186 28 24.72 2.1 0.47 0.56 0.80 0.04 1.861 16 4 : 4 42 X 60 258 61 23 26.56 21.3 0.24 0.46 0.80 0.35 1.852 20 4.5 : 3 56 X 60 385 167 28 26 2.1 0.43 0.56 0.80 0.04 1.831 20 4.5 : 3 56 X 52 409 173 28 24.72 2.1 0.42 0.56 0.80 0.04 1.821 16 4 : 4 42 X 52 264 54 23 26.56 21.3 0.20 0.46 0.80 0.35 1.821 20 4.5 : 3 56 X 60 417 164 28 24.72 1.5 0.39 0.56 0.80 0.02 1.782 20 4.5 : 3 56 X 60 405 145 28 26 1.5 0.36 0.56 0.80 0.02 1.742 18 4.5 : 3 56 X 60 372 129 25 26 2.9 0.35 0.50 0.80 0.05 1.702 20 4.5 : 3 56 X 52 418 129 28 26 1.5 0.31 0.56 0.80 0.02 1.692 16 4.5 : 3 56 X 60 328 116 23 26 4.7 0.35 0.46 0.80 0.08 1.69

0.75

1

Crane capacity not more than 500 tonneWave height 4 meterTensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 229 93 24 26.56 72.62 0.41 0.48 0.80 1.21 2.901 16 4.5 : 3 42 X 60 226 88 24 28 72.62 0.39 0.48 0.80 1.21 2.881 16 4 : 4 42 X 52 233 89 24 26.56 72.62 0.38 0.48 0.80 1.21 2.871 16 4.5 : 3 42 X 52 229 84 24 28 72.62 0.37 0.48 0.80 1.21 2.862 16 4.5 : 3 42 X 60 215 70 24 25.164 72.62 0.33 0.48 0.80 1.21 2.821 16 4 : 4 42 X 60 238 84 24 26.56 48.67 0.35 0.48 0.80 0.81 2.441 16 4.5 : 3 42 X 60 234 79 24 28 48.67 0.34 0.48 0.80 0.81 2.431 16 4 : 4 42 X 52 242 78 24 26.56 48.67 0.32 0.48 0.80 0.81 2.411 16 4.5 : 3 42 X 52 239 73 24 28 48.67 0.31 0.48 0.80 0.81 2.402 16 4.5 : 3 42 X 60 223 61 24 25.164 48.67 0.28 0.48 0.80 0.81 2.37

0

0.25

1 16 4 : 4 42 X 60 248 72 24 26.56 29.31 0.29 0.48 0.80 0.49 2.061 16 4.5 : 3 42 X 60 244 67 24 28 29.31 0.28 0.48 0.80 0.49 2.041 16 4 : 4 42 X 52 253 67 24 26.56 29.31 0.26 0.48 0.80 0.49 2.031 16 4.5 : 3 42 X 52 249 62 24 28 29.31 0.25 0.48 0.80 0.49 2.021 18 4 : 4 42 X 60 277 91 27 24.93 20.33 0.33 0.54 0.80 0.34 2.011 20 4.5 : 3 56 X 60 397 186 29 24.72 2.15 0.47 0.58 0.80 0.04 1.881 16 4 : 4 42 X 60 258 61 24 26.56 21.25 0.24 0.48 0.80 0.35 1.872 20 4.5 : 3 56 X 60 385 167 29 26 2.15 0.43 0.58 0.80 0.04 1.851 20 4.5 : 3 56 X 52 409 173 29 24.72 2.15 0.42 0.58 0.80 0.04 1.841 16 4 : 4 42 X 52 264 54 24 26.56 21.25 0.20 0.48 0.80 0.35 1.84

0.5

0.75

1 20 4.5 : 3 56 X 60 417 164 29 24.72 1.49 0.39 0.58 0.80 0.02 1.802 20 4.5 : 3 56 X 60 405 145 29 26 1.49 0.36 0.58 0.80 0.02 1.762 18 4.5 : 3 56 X 60 372 129 27 26 2.91 0.35 0.54 0.80 0.05 1.742 20 4.5 : 3 56 X 52 418 129 29 26 1.49 0.31 0.58 0.80 0.02 1.712 16 4.5 : 3 56 X 60 328 116 24 26 4.67 0.35 0.48 0.80 0.08 1.71

1

192

Page 203: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 4 meterT i it 200 t

Stinger optimization for

Tensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 26 26.56 72.6 0.41 0.52 0.80 1.21 2.941 16 4.5 : 3 42 X 60 226 88 26 28 72.6 0.39 0.52 0.80 1.21 2.921 16 4 : 4 42 X 52 233 89 26 26.56 72.6 0.38 0.52 0.80 1.21 2.911 16 4.5 : 3 42 X 52 229 84 26 28 72.6 0.37 0.52 0.80 1.21 2.902 16 4.5 : 3 42 X 60 215 70 26 25.164 72.6 0.33 0.52 0.80 1.21 2.861 16 4 4 42 X 60 238 84 26 26 56 48 7 0 35 0 52 0 80 0 81 2 48

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 26 26.56 48.7 0.35 0.52 0.80 0.81 2.481 16 4.5 : 3 42 X 60 234 79 26 28 48.7 0.34 0.52 0.80 0.81 2.471 16 4 : 4 42 X 52 242 78 26 26.56 48.7 0.32 0.52 0.80 0.81 2.451 16 4.5 : 3 42 X 52 239 73 26 28 48.7 0.31 0.52 0.80 0.81 2.442 16 4.5 : 3 42 X 60 223 61 25 25.164 48.7 0.28 0.50 0.80 0.81 2.391 16 4 : 4 42 X 60 248 72 26 26.56 29.3 0.29 0.52 0.80 0.49 2.101 16 4.5 : 3 42 X 60 244 67 25 28 29.3 0.28 0.50 0.80 0.49 2.061 16 4 : 4 42 X 52 253 67 25 26.56 29.3 0.26 0.50 0.80 0.49 2.051 18 4 : 4 42 X 60 277 91 29 24.93 20.3 0.33 0.58 0.80 0.34 2.051 16 4.5 : 3 42 X 52 249 62 25 28 29.3 0.25 0.50 0.80 0.49 2.04

0.25

0.5

1 20 4.5 : 3 56 X 60 397 186 31 24.72 2.1 0.47 0.62 0.80 0.04 1.922 20 4.5 : 3 56 X 60 385 167 31 26 2.1 0.43 0.62 0.80 0.04 1.891 20 4.5 : 3 56 X 52 409 173 31 24.72 2.1 0.42 0.62 0.80 0.04 1.881 16 4 : 4 42 X 60 258 61 24 26.56 21.3 0.24 0.48 0.80 0.35 1.872 18 4.5 : 3 56 X 60 357 147 29 26 4.1 0.41 0.58 0.80 0.07 1.861 20 4.5 : 3 56 X 60 417 164 31 24.72 1.5 0.39 0.62 0.80 0.02 1.842 20 4.5 : 3 56 X 60 405 145 31 26 1.5 0.36 0.62 0.80 0.02 1.802 18 4.5 : 3 56 X 60 372 129 29 26 2.9 0.35 0.58 0.80 0.05 1.782 20 4.5 : 3 56 X 52 418 129 31 26 1.5 0.31 0.62 0.80 0.02 1.752 16 4.5 : 3 56 X 60 328 116 26 26 4.7 0.35 0.52 0.80 0.08 1.75

0.75

1

Crane capacity not more than 500 tonneWave height 4 meterTensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 229 93 28 26.56 72.62 0.41 0.56 0.80 1.21 2.981 16 4.5 : 3 42 X 60 226 88 28 28 72.62 0.39 0.56 0.80 1.21 2.961 16 4 : 4 42 X 52 233 89 28 26.56 72.62 0.38 0.56 0.80 1.21 2.951 16 4.5 : 3 42 X 52 229 84 28 28 72.62 0.37 0.56 0.80 1.21 2.942 16 4.5 : 3 42 X 60 215 70 28 25.164 72.62 0.33 0.56 0.80 1.21 2.901 16 4 : 4 42 X 60 238 84 28 26.56 48.67 0.35 0.56 0.80 0.81 2.521 16 4.5 : 3 42 X 60 234 79 28 28 48.67 0.34 0.56 0.80 0.81 2.511 16 4 : 4 42 X 52 242 78 28 26.56 48.67 0.32 0.56 0.80 0.81 2.491 16 4.5 : 3 42 X 52 239 73 28 28 48.67 0.31 0.56 0.80 0.81 2.482 16 4.5 : 3 42 X 60 223 61 26 25.164 48.67 0.28 0.52 0.80 0.81 2.41

0

0.25

1 16 4 : 4 42 X 60 248 72 28 26.56 29.31 0.29 0.56 0.80 0.49 2.141 16 4.5 : 3 42 X 60 244 67 27 28 29.31 0.28 0.54 0.80 0.49 2.101 16 4 : 4 42 X 52 253 67 27 26.56 29.31 0.26 0.54 0.80 0.49 2.091 18 4 : 4 42 X 60 277 91 31 24.93 20.33 0.33 0.62 0.80 0.34 2.091 18 4.5 : 3 42 X 60 273 84 31 28 20.33 0.31 0.62 0.80 0.34 2.071 20 4.5 : 3 56 X 60 397 186 32 24.72 2.15 0.47 0.64 0.80 0.04 1.942 20 4.5 : 3 56 X 60 385 167 32 26 2.15 0.43 0.64 0.80 0.04 1.912 18 4.5 : 3 56 X 60 357 147 31 26 4.11 0.41 0.62 0.80 0.07 1.901 20 4.5 : 3 56 X 52 409 173 32 24.72 2.15 0.42 0.64 0.80 0.04 1.901 16 4 : 4 42 X 60 258 61 25 26.56 21.25 0.24 0.50 0.80 0.35 1.89

0.5

0.75

1 20 4.5 : 3 56 X 60 417 164 32 24.72 1.49 0.39 0.64 0.80 0.02 1.862 20 4.5 : 3 56 X 60 405 145 32 26 1.49 0.36 0.64 0.80 0.02 1.822 18 4.5 : 3 56 X 60 372 129 31 26 2.91 0.35 0.62 0.80 0.05 1.822 16 4.5 : 3 56 X 60 328 116 28 26 4.67 0.35 0.56 0.80 0.08 1.792 20 4.5 : 3 56 X 52 418 129 32 26 1.49 0.31 0.64 0.80 0.02 1.77

1

193

Page 204: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 4 meterT i it 250 t

Stinger optimization for

Tensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 229 93 30 26.56 72.6 0.41 0.60 0.80 1.21 3.021 16 4.5 : 3 42 X 60 226 88 29 28 72.6 0.39 0.58 0.80 1.21 2.981 16 4 : 4 42 X 52 233 89 29 26.56 72.6 0.38 0.58 0.80 1.21 2.971 16 4.5 : 3 42 X 52 229 84 29 28 72.6 0.37 0.58 0.80 1.21 2.962 16 4.5 : 3 42 X 60 215 70 28 25.164 72.6 0.33 0.56 0.80 1.21 2.901 16 4 4 42 X 60 238 84 29 26 56 48 7 0 35 0 58 0 80 0 81 2 54

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 238 84 29 26.56 48.7 0.35 0.58 0.80 0.81 2.541 16 4.5 : 3 42 X 60 234 79 29 28 48.7 0.34 0.58 0.80 0.81 2.531 16 4 : 4 42 X 52 242 78 29 26.56 48.7 0.32 0.58 0.80 0.81 2.511 16 4.5 : 3 42 X 52 239 73 29 28 48.7 0.31 0.58 0.80 0.81 2.501 16 5 : 2.5 42 X 60 236 76 29 22 48.7 0.32 0.58 0.70 0.81 2.411 16 4 : 4 42 X 60 248 72 29 26.56 29.3 0.29 0.58 0.80 0.49 2.161 18 4 : 4 42 X 60 277 91 32 24.93 20.3 0.33 0.64 0.80 0.34 2.111 16 4.5 : 3 42 X 60 244 67 27 28 29.3 0.28 0.54 0.80 0.49 2.101 20 4.5 : 3 56 X 60 378 208 35 24.72 3.1 0.55 0.70 0.80 0.05 2.101 16 4 : 4 42 X 52 253 67 27 26.56 29.3 0.26 0.54 0.80 0.49 2.09

0.25

0.5

1 20 4.5 : 3 56 X 60 397 186 35 24.72 2.1 0.47 0.70 0.80 0.04 2.002 20 4.5 : 3 56 X 60 385 167 35 26 2.1 0.43 0.70 0.80 0.04 1.971 20 4.5 : 3 56 X 52 409 173 35 24.72 2.1 0.42 0.70 0.80 0.04 1.962 16 4.5 : 3 56 X 60 314 132 30 26 6.4 0.42 0.60 0.80 0.11 1.932 20 4.5 : 3 56 X 52 396 154 35 26 2.1 0.39 0.70 0.80 0.04 1.921 20 4.5 : 3 56 X 60 417 164 35 24.72 1.5 0.39 0.70 0.80 0.02 1.922 20 4.5 : 3 56 X 60 405 145 35 26 1.5 0.36 0.70 0.80 0.02 1.882 18 4.5 : 3 56 X 60 372 129 32 26 2.9 0.35 0.64 0.80 0.05 1.842 20 4.5 : 3 56 X 52 418 129 35 26 1.5 0.31 0.70 0.80 0.02 1.832 16 4.5 : 3 56 X 60 328 116 30 26 4.7 0.35 0.60 0.80 0.08 1.83

0.75

1

Crane capacity not more than 500 tonneWave height 5 meterTensioner capacity 100 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 20 26.56 67.70 0.32 0.40 0.80 1.13 2.651 16 4.5 : 3 42 X 60 239 73 20 28 67.70 0.31 0.40 0.80 1.13 2.631 16 4 : 4 42 X 52 246 74 20 26.56 67.70 0.30 0.40 0.80 1.13 2.632 16 4.5 : 3 42 X 60 228 56 20 25.164 67.70 0.25 0.40 0.80 1.13 2.572 16 4.5 : 3 42 X 52 232 51 20 25.164 67.70 0.22 0.40 0.80 1.13 2.551 16 4 : 4 42 X 60 251 68 20 26.56 48.26 0.27 0.40 0.80 0.80 2.281 16 4.5 : 3 42 X 60 248 63 20 28 48.26 0.26 0.40 0.80 0.80 2.261 16 4 : 4 42 X 52 256 63 20 26.56 48.26 0.25 0.40 0.80 0.80 2.251 16 4.5 : 3 42 X 52 253 58 20 28 48.26 0.23 0.40 0.80 0.80 2.232 16 4.5 : 3 42 X 60 236 46 20 25.164 48.26 0.19 0.40 0.80 0.80 2.20

0

0.25

1 16 4 : 4 42 X 60 261 58 20 26.56 29.28 0.22 0.40 0.80 0.49 1.911 16 4.5 : 3 42 X 60 257 53 20 28 29.28 0.21 0.40 0.80 0.49 1.891 16 4 : 4 42 X 52 267 51 20 26.56 29.28 0.19 0.40 0.80 0.49 1.881 16 4.5 : 3 42 X 52 263 46 20 28 29.28 0.17 0.40 0.80 0.49 1.861 18 4 : 4 42 X 60 293 73 21 24.93 19.06 0.25 0.42 0.80 0.32 1.781 16 4 : 4 42 X 60 271 47 20 26.56 20.84 0.17 0.40 0.80 0.35 1.722 16 4.5 : 3 56 X 60 333 110 20 26 6.81 0.33 0.40 0.80 0.11 1.641 20 4.5 : 3 56 X 60 425 155 22 24.72 2.14 0.37 0.44 0.80 0.04 1.641 18 4 : 4 42 X 60 305 59 21 24.93 12.97 0.19 0.42 0.80 0.22 1.632 18 4.5 : 3 56 X 60 380 120 21 26 4.19 0.32 0.42 0.80 0.07 1.61

0.5

0.75

2 16 4.5 : 3 56 X 60 347 93 20 26 4.61 0.27 0.40 0.80 0.08 1.552 18 4.5 : 3 56 X 60 398 100 21 26 2.98 0.25 0.42 0.80 0.05 1.522 16 4.5 : 3 56 X 52 358 81 20 26 4.61 0.23 0.40 0.80 0.08 1.501 16 4.5 : 3 56 X 60 358 109 20 19.21 4.61 0.30 0.40 0.60 0.08 1.381 16 5 : 2.5 56 X 60 361 106 20 18 4.98 0.29 0.40 0.60 0.08 1.38

1

194

Page 205: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 5 meterT i it 125 t

Stinger optimization for

Tensioner capacity 125 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 242 78 21 26.56 67.7 0.32 0.42 0.80 1.13 2.671 16 4.5 : 3 42 X 60 239 73 21 28 67.7 0.31 0.42 0.80 1.13 2.651 16 4 : 4 42 X 52 246 74 21 26.56 67.7 0.30 0.42 0.80 1.13 2.652 16 4.5 : 3 42 X 60 228 56 21 25.164 67.7 0.25 0.42 0.80 1.13 2.592 16 4.5 : 3 42 X 52 232 51 21 25.164 67.7 0.22 0.42 0.80 1.13 2.571 16 4 4 42 X 60 251 68 21 26 56 48 3 0 27 0 42 0 80 0 80 2 30

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 251 68 21 26.56 48.3 0.27 0.42 0.80 0.80 2.301 16 4.5 : 3 42 X 60 248 63 21 28 48.3 0.26 0.42 0.80 0.80 2.281 16 4 : 4 42 X 52 256 63 21 26.56 48.3 0.25 0.42 0.80 0.80 2.271 16 4.5 : 3 42 X 52 253 58 21 28 48.3 0.23 0.42 0.80 0.80 2.252 16 4.5 : 3 42 X 60 236 46 21 25.164 48.3 0.19 0.42 0.80 0.80 2.221 16 4 : 4 42 X 60 261 58 21 26.56 29.3 0.22 0.42 0.80 0.49 1.931 16 4.5 : 3 42 X 60 257 53 21 28 29.3 0.21 0.42 0.80 0.49 1.911 16 4 : 4 42 X 52 267 51 21 26.56 29.3 0.19 0.42 0.80 0.49 1.901 16 4.5 : 3 42 X 52 263 46 21 28 29.3 0.17 0.42 0.80 0.49 1.881 18 4 : 4 42 X 60 293 73 23 24.93 19.1 0.25 0.46 0.80 0.32 1.82

0.25

0.5

1 16 4 : 4 42 X 60 271 47 21 26.56 20.8 0.17 0.42 0.80 0.35 1.741 20 4.5 : 3 56 X 60 425 155 24 24.72 2.1 0.37 0.48 0.80 0.04 1.681 18 4 : 4 42 X 60 305 59 23 24.93 13.0 0.19 0.46 0.80 0.22 1.672 16 4.5 : 3 56 X 60 333 110 21 26 6.8 0.33 0.42 0.80 0.11 1.662 18 4.5 : 3 56 X 60 380 120 23 26 4.2 0.32 0.46 0.80 0.07 1.652 16 4.5 : 3 56 X 60 347 93 21 26 4.6 0.27 0.42 0.80 0.08 1.572 18 4.5 : 3 56 X 60 398 100 23 26 3.0 0.25 0.46 0.80 0.05 1.562 16 4.5 : 3 56 X 52 358 81 21 26 4.6 0.23 0.42 0.80 0.08 1.521 16 4.5 : 3 56 X 60 358 109 21 19.21 4.6 0.30 0.42 0.60 0.08 1.401 18 4.5 : 3 56 X 60 411 118 23 20.58 3.0 0.29 0.46 0.60 0.05 1.40

0.75

1

Crane capacity not more than 500 tonneWave height 5 meterTensioner capacity 150 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 23 26.56 67.70 0.32 0.46 0.80 1.13 2.711 16 4.5 : 3 42 X 60 239 73 23 28 67.70 0.31 0.46 0.80 1.13 2.691 16 4 : 4 42 X 52 246 74 23 26.56 67.70 0.30 0.46 0.80 1.13 2.692 16 4.5 : 3 42 X 60 228 56 23 25.164 67.70 0.25 0.46 0.80 1.13 2.632 16 4.5 : 3 42 X 52 232 51 23 25.164 67.70 0.22 0.46 0.80 1.13 2.611 16 4 : 4 42 X 60 251 68 23 26.56 48.26 0.27 0.46 0.80 0.80 2.341 16 4.5 : 3 42 X 60 248 63 23 28 48.26 0.26 0.46 0.80 0.80 2.321 16 4 : 4 42 X 52 256 63 23 26.56 48.26 0.25 0.46 0.80 0.80 2.311 16 4.5 : 3 42 X 52 253 58 23 28 48.26 0.23 0.46 0.80 0.80 2.292 16 4.5 : 3 42 X 60 236 46 22 25.164 48.26 0.19 0.44 0.80 0.80 2.24

0

0.25

1 16 4 : 4 42 X 60 261 58 23 26.56 29.28 0.22 0.46 0.80 0.49 1.971 16 4.5 : 3 42 X 60 257 53 23 28 29.28 0.21 0.46 0.80 0.49 1.951 16 4 : 4 42 X 52 267 51 23 26.56 29.28 0.19 0.46 0.80 0.49 1.941 16 4.5 : 3 42 X 52 263 46 22 28 29.28 0.17 0.44 0.80 0.49 1.901 18 4 : 4 42 X 60 293 73 25 24.93 19.06 0.25 0.50 0.80 0.32 1.861 20 4.5 : 3 56 X 60 425 155 28 24.72 2.14 0.37 0.56 0.80 0.04 1.761 16 4 : 4 42 X 60 271 47 22 26.56 20.84 0.17 0.44 0.80 0.35 1.762 20 4.5 : 3 56 X 60 412 136 28 26 2.14 0.33 0.56 0.80 0.04 1.732 16 4.5 : 3 56 X 60 333 110 23 26 6.81 0.33 0.46 0.80 0.11 1.701 18 4 : 4 42 X 60 305 59 24 24.93 12.97 0.19 0.48 0.80 0.22 1.69

0.5

0.75

2 16 4.5 : 3 56 X 60 347 93 23 26 4.61 0.27 0.46 0.80 0.08 1.612 18 4.5 : 3 56 X 60 398 100 25 26 2.98 0.25 0.50 0.80 0.05 1.602 16 4.5 : 3 56 X 52 358 81 23 26 4.61 0.23 0.46 0.80 0.08 1.561 16 4.5 : 3 56 X 60 358 109 23 19.21 4.61 0.30 0.46 0.60 0.08 1.441 18 4.5 : 3 56 X 60 411 118 25 20.58 2.98 0.29 0.50 0.60 0.05 1.44

1

195

Page 206: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 5 meterT i it 175 t

Stinger optimization for

Tensioner capacity 175 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 242 78 24 26.56 67.7 0.32 0.48 0.80 1.13 2.731 16 4.5 : 3 42 X 60 239 73 24 28 67.7 0.31 0.48 0.80 1.13 2.711 16 4 : 4 42 X 52 246 74 24 26.56 67.7 0.30 0.48 0.80 1.13 2.712 16 4.5 : 3 42 X 60 228 56 24 25.164 67.7 0.25 0.48 0.80 1.13 2.652 16 4.5 : 3 42 X 52 232 51 24 25.164 67.7 0.22 0.48 0.80 1.13 2.631 16 4 4 42 X 60 251 68 24 26 56 48 3 0 27 0 48 0 80 0 80 2 36

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 251 68 24 26.56 48.3 0.27 0.48 0.80 0.80 2.361 16 4.5 : 3 42 X 60 248 63 24 28 48.3 0.26 0.48 0.80 0.80 2.341 16 4 : 4 42 X 52 256 63 24 26.56 48.3 0.25 0.48 0.80 0.80 2.331 16 4.5 : 3 42 X 52 253 58 24 28 48.3 0.23 0.48 0.80 0.80 2.312 16 4.5 : 3 42 X 60 236 46 22 25.164 48.3 0.19 0.44 0.80 0.80 2.241 16 4 : 4 42 X 60 261 58 24 26.56 29.3 0.22 0.48 0.80 0.49 1.991 16 4.5 : 3 42 X 60 257 53 24 28 29.3 0.21 0.48 0.80 0.49 1.971 16 4 : 4 42 X 52 267 51 24 26.56 29.3 0.19 0.48 0.80 0.49 1.961 18 4 : 4 42 X 60 293 73 27 24.93 19.1 0.25 0.54 0.80 0.32 1.901 16 4.5 : 3 42 X 52 263 46 22 28 29.3 0.17 0.44 0.80 0.49 1.90

0.25

0.5

1 20 4.5 : 3 56 X 60 425 155 29 24.72 2.1 0.37 0.58 0.80 0.04 1.781 16 4 : 4 42 X 60 271 47 22 26.56 20.8 0.17 0.44 0.80 0.35 1.762 20 4.5 : 3 56 X 60 412 136 29 26 2.1 0.33 0.58 0.80 0.04 1.751 18 4 : 4 42 X 60 305 59 26 24.93 13.0 0.19 0.52 0.80 0.22 1.732 18 4.5 : 3 56 X 60 380 120 27 26 4.2 0.32 0.54 0.80 0.07 1.732 18 4.5 : 3 56 X 60 398 100 27 26 3.0 0.25 0.54 0.80 0.05 1.642 16 4.5 : 3 56 X 60 347 93 24 26 4.6 0.27 0.48 0.80 0.08 1.632 16 4.5 : 3 56 X 52 358 81 24 26 4.6 0.23 0.48 0.80 0.08 1.581 18 4.5 : 3 56 X 60 411 118 27 20.58 3.0 0.29 0.54 0.60 0.05 1.481 18 5 : 2.5 56 X 60 415 114 27 18 3.0 0.27 0.54 0.60 0.05 1.46

0.75

1

Crane capacity not more than 500 tonneWave height 5 meterTensioner capacity 200 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 26 26.56 67.70 0.32 0.52 0.80 1.13 2.771 16 4.5 : 3 42 X 60 239 73 26 28 67.70 0.31 0.52 0.80 1.13 2.751 16 4 : 4 42 X 52 246 74 26 26.56 67.70 0.30 0.52 0.80 1.13 2.752 16 4.5 : 3 42 X 60 228 56 24 25.164 67.70 0.25 0.48 0.80 1.13 2.651 16 5 : 2.5 42 X 60 240 73 26 22 67.70 0.30 0.52 0.70 1.13 2.651 16 4 : 4 42 X 60 251 68 25 26.56 48.26 0.27 0.50 0.80 0.80 2.381 16 4.5 : 3 42 X 60 248 63 25 28 48.26 0.26 0.50 0.80 0.80 2.361 16 4 : 4 42 X 52 256 63 25 26.56 48.26 0.25 0.50 0.80 0.80 2.351 16 4.5 : 3 42 X 52 253 58 24 28 48.26 0.23 0.48 0.80 0.80 2.311 16 5 : 2.5 42 X 60 249 62 25 22 48.26 0.25 0.50 0.70 0.80 2.25

0

0.25

1 16 4 : 4 42 X 60 261 58 24 26.56 29.28 0.22 0.48 0.80 0.49 1.991 16 4.5 : 3 42 X 60 257 53 24 28 29.28 0.21 0.48 0.80 0.49 1.971 16 4 : 4 42 X 52 267 51 24 26.56 29.28 0.19 0.48 0.80 0.49 1.961 18 4 : 4 42 X 60 293 73 28 24.93 19.06 0.25 0.56 0.80 0.32 1.921 20 4.5 : 3 56 X 60 405 178 31 24.72 3.14 0.44 0.62 0.80 0.05 1.911 20 4.5 : 3 56 X 60 425 155 31 24.72 2.14 0.37 0.62 0.80 0.04 1.822 20 4.5 : 3 56 X 60 412 136 31 26 2.14 0.33 0.62 0.80 0.04 1.792 18 4.5 : 3 56 X 60 380 120 29 26 4.19 0.32 0.58 0.80 0.07 1.772 16 4.5 : 3 56 X 60 333 110 26 26 6.81 0.33 0.52 0.80 0.11 1.761 16 4 : 4 42 X 60 271 47 22 26.56 20.84 0.17 0.44 0.80 0.35 1.76

0.5

0.75

2 18 4.5 : 3 56 X 60 398 100 29 26 2.98 0.25 0.58 0.80 0.05 1.682 16 4.5 : 3 56 X 60 347 93 26 26 4.61 0.27 0.52 0.80 0.08 1.672 16 4.5 : 3 56 X 52 358 81 26 26 4.61 0.23 0.52 0.80 0.08 1.621 18 4.5 : 3 56 X 60 411 118 29 20.58 2.98 0.29 0.58 0.60 0.05 1.521 18 5 : 2.5 56 X 60 415 114 29 18 2.98 0.27 0.58 0.60 0.05 1.50

1

196

Page 207: Stinger Buoyancy

Crane capacity not more than 500 tonneWave height 5 meterT i it 225 t

Stinger optimization for

Tensioner capacity 225 tonne

Fw Fnet Case Tilting Life F Case Tilting Life Total1 16 4 : 4 42 X 60 242 78 28 26.56 67.7 0.32 0.56 0.80 1.13 2.811 16 4.5 : 3 42 X 60 239 73 28 28 67.7 0.31 0.56 0.80 1.13 2.791 16 4 : 4 42 X 52 246 74 28 26.56 67.7 0.30 0.56 0.80 1.13 2.791 16 5 : 2.5 42 X 60 240 73 28 22 67.7 0.30 0.56 0.70 1.13 2.692 16 4.5 : 3 42 X 60 228 56 25 25.164 67.7 0.25 0.50 0.80 1.13 2.671 16 4 4 42 X 60 251 68 27 26 56 48 3 0 27 0 54 0 80 0 80 2 42

0

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade Score

1 16 4 : 4 42 X 60 251 68 27 26.56 48.3 0.27 0.54 0.80 0.80 2.421 16 4.5 : 3 42 X 60 248 63 27 28 48.3 0.26 0.54 0.80 0.80 2.401 16 4 : 4 42 X 52 256 63 27 26.56 48.3 0.25 0.54 0.80 0.80 2.391 16 4.5 : 3 42 X 52 253 58 25 28 48.3 0.23 0.50 0.80 0.80 2.331 18 4 : 4 42 X 60 279 89 31 24.93 32.7 0.32 0.62 0.80 0.54 2.281 16 4 : 4 42 X 60 261 58 25 26.56 29.3 0.22 0.50 0.80 0.49 2.011 16 4.5 : 3 42 X 60 257 53 25 28 29.3 0.21 0.50 0.80 0.49 1.991 16 4 : 4 42 X 52 267 51 25 26.56 29.3 0.19 0.50 0.80 0.49 1.981 18 4 : 4 42 X 60 293 73 30 24.93 19.1 0.25 0.60 0.80 0.32 1.961 20 4.5 : 3 56 X 60 405 178 32 24.72 3.1 0.44 0.64 0.80 0.05 1.93

0.25

0.5

1 20 4.5 : 3 56 X 60 425 155 32 24.72 2.1 0.37 0.64 0.80 0.04 1.842 18 4.5 : 3 56 X 60 380 120 31 26 4.2 0.32 0.62 0.80 0.07 1.812 20 4.5 : 3 56 X 60 412 136 32 26 2.1 0.33 0.64 0.80 0.04 1.812 16 4.5 : 3 56 X 60 333 110 28 26 6.8 0.33 0.56 0.80 0.11 1.802 18 4.5 : 3 56 X 52 392 107 31 26 4.2 0.27 0.62 0.80 0.07 1.762 18 4.5 : 3 56 X 60 398 100 31 26 3.0 0.25 0.62 0.80 0.05 1.722 16 4.5 : 3 56 X 60 347 93 28 26 4.6 0.27 0.56 0.80 0.08 1.712 16 4.5 : 3 56 X 52 358 81 28 26 4.6 0.23 0.56 0.80 0.08 1.661 18 4.5 : 3 56 X 60 411 118 31 20.58 3.0 0.29 0.62 0.60 0.05 1.561 18 5 : 2.5 56 X 60 415 114 31 18 3.0 0.27 0.62 0.60 0.05 1.54

0.75

1

Crane capacity not more than 500 tonneWave height 5 meterTensioner capacity 250 tonne

Fw Fnet Case Tilting Life F Case Tilting Life TotalScore

Current velocity,

m/sType

Stinger length,

m

Aspect ratio

Outside diamete

r, in

Material grade

Stinger optimization for

1 16 4 : 4 42 X 60 242 78 29 26.56 67.70 0.32 0.58 0.80 1.13 2.831 16 4.5 : 3 42 X 60 239 73 29 28 67.70 0.31 0.58 0.80 1.13 2.811 16 4 : 4 42 X 52 246 74 29 26.56 67.70 0.30 0.58 0.80 1.13 2.811 16 5 : 2.5 42 X 60 240 73 29 22 67.70 0.30 0.58 0.70 1.13 2.712 16 4.5 : 3 42 X 60 228 56 25 25.164 67.70 0.25 0.50 0.80 1.13 2.671 16 4 : 4 42 X 60 251 68 27 26.56 48.26 0.27 0.54 0.80 0.80 2.421 16 4.5 : 3 42 X 60 248 63 27 28 48.26 0.26 0.54 0.80 0.80 2.401 16 4 : 4 42 X 52 256 63 27 26.56 48.26 0.25 0.54 0.80 0.80 2.391 16 4.5 : 3 42 X 52 253 58 25 28 48.26 0.23 0.50 0.80 0.80 2.331 18 4 : 4 42 X 60 279 89 32 24.93 32.68 0.32 0.64 0.80 0.54 2.30

0

0.25

1 16 4 : 4 42 X 60 261 58 25 26.56 29.28 0.22 0.50 0.80 0.49 2.011 16 4.5 : 3 42 X 60 257 53 25 28 29.28 0.21 0.50 0.80 0.49 1.991 20 4.5 : 3 56 X 60 405 178 35 24.72 3.14 0.44 0.70 0.80 0.05 1.991 16 4 : 4 42 X 52 267 51 25 26.56 29.28 0.19 0.50 0.80 0.49 1.981 18 4 : 4 42 X 60 293 73 30 24.93 19.06 0.25 0.60 0.80 0.32 1.961 20 4.5 : 3 56 X 60 425 155 35 24.72 2.14 0.37 0.70 0.80 0.04 1.902 20 4.5 : 3 56 X 60 412 136 35 26 2.14 0.33 0.70 0.80 0.04 1.872 16 4.5 : 3 56 X 60 333 110 30 26 6.81 0.33 0.60 0.80 0.11 1.842 18 4.5 : 3 56 X 60 380 120 32 26 4.19 0.32 0.64 0.80 0.07 1.832 20 4.5 : 3 56 X 52 425 122 35 26 2.14 0.29 0.70 0.80 0.04 1.82

0.5

0.75

2 16 4.5 : 3 56 X 60 347 93 30 26 4.61 0.27 0.60 0.80 0.08 1.752 18 4.5 : 3 56 X 60 398 100 32 26 2.98 0.25 0.64 0.80 0.05 1.742 16 4.5 : 3 56 X 52 358 81 29 26 4.61 0.23 0.58 0.80 0.08 1.681 16 4.5 : 3 56 X 60 358 109 30 19.21 4.61 0.30 0.60 0.60 0.08 1.581 18 4.5 : 3 56 X 60 411 118 32 20.58 2.98 0.29 0.64 0.60 0.05 1.58

1

197

Page 208: Stinger Buoyancy

198

APPENDIX E

DRAWING OF STINGER STRUCTURE

Page 209: Stinger Buoyancy

199

Page 210: Stinger Buoyancy

Tabl

e E.

1: D

ista

nce

in e

ach

stin

ger s

ectio

n

Ls 1

1Ls

12

Ls 1

3Ls

14

Ls 1

5Ls

16

Ls 1

7Ls

21

Ls 2

2Ls

23

Ls 2

4Ls

25

Ls 2

6Ls

27

Ls 2

8

163.

254.

004.

003.

001.

751.

753.

003.

253.

253.

001.

75

184.

253.

003.

003.

003.

001.

751.

753.

002.

832.

832.

833.

001.

75

203.

254.

004.

004.

004.

001.

751.

753.

003.

503.

503.

503.

001.

75

Tota

l st

inge

r le

ngth

(L

), m

.

Dis

tanc

e, m

.

Sec

tion

1Se

ctio

n 2

N

ote

that

all

of th

e sy

mbo

lic d

raw

ing

is d

emon

stra

ted

in a

bove

tabl

e an

d ta

ble

of st

ruct

ural

des

ign

in A

PPEN

DIX

A.

200

Page 211: Stinger Buoyancy

Figu

re E

.1: S

ymbo

lic d

raw

ing

of s

tinge

r typ

e 1

(Sec

tion

1)

201

Page 212: Stinger Buoyancy

Figu

re E

.2: S

ymbo

lic d

raw

ing

of s

tinge

r typ

e 1

(Sec

tion

2-4)

202

Page 213: Stinger Buoyancy

Fi

gure

E.3

: Sym

bolic

dra

win

g o

f stin

ger t

ype

2 (S

ectio

n 1)

203

Page 214: Stinger Buoyancy

Fi

gure

E.4

: Sym

bolic

dra

win

g o

f stin

ger t

ype

2 (S

ectio

n 2-

4)

204