"squeezed states in bose-einstein condensate"

50
Ari Tuchman Matt Fenselau Mark Kasevich Squeezed States in a Bose-Einstein Condensate Yale University Brian Anderson (JILA) Masami Yasuda (Tokyo) Chad Orzel $$ - NSF, ONR (Now at Union College)

Upload: chad-orzel

Post on 12-Apr-2017

3.158 views

Category:

Education


5 download

TRANSCRIPT

Page 1: "Squeezed States in Bose-Einstein Condensate"

Ari Tuchman

Matt Fenselau

Mark Kasevich

Squeezed States

in a

Bose-Einstein Condensate

Yale University

Brian Anderson (JILA)

Masami Yasuda (Tokyo)

Chad Orzel

$$ - NSF, ONR

(Now at Union College)

Page 2: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Bose-Einstein Condensate

2001 NOBEL PRIZE in PHYSICS

Eric Cornell

Carl Wieman

Wolfgang Ketterle

“For the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates".

Page 3: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Uncertainty Principle

x p / 2

Best known form:

Fundamental limit on knowledge

Improve measurement of position

Lose information about momentum

Position - Momentum Uncertainty

x 0 p

Important on microscopic scale

~ 10-34

Minimum Uncertainty Wavepacket

x p = / 2p = / 2 x

x

h

hh

h

Page 4: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Uncertainty and Light

Light Wave:

Uncertainty: E t / 2Energy- Time Uncertainty

Energy: Amplitude of wave

Time: Phase of wave

h

Page 5: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Squeezed States

N

N

n

ne

n

n

2/121

!

2

Number-phase uncertainty N 1/2

Coherent State:

Minimum Uncertainty State

N = 1/2

Squeezed State:

Smaller N

Larger

Still N = 1/2

Studied with light -> Do same thing with atoms

N

Page 6: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Michelson Interferometer

LaserBeamSplitter

Mirror

L

Light from two arms overlaps, interferes

Can measure changes in path length difference (L)

Can measure phase shifts ()

Detector

Page 7: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

http://www.ligo.caltech.edu/

Laser Interferometer Gravitational Wave Observatory

Page 8: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Interference of Molecules

M. Arndt et al., Nature 401, 680-682, 14.October 1999

Source Grating Detector

Page 9: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Atom Interferometry

N1

N2

General Scheme:

Detectors for Rotation, Acceleration, Gravity Gradients, etc.

Beam splitters/ gratings

Atom Beam

Improve by using Squeezed States?

Page 10: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Bose-Einstein Condensation

High TemperatureLike classical particles

BEC

Low Temp.Quantum wavepackets

T < Tc

First Rb BEC, JILA, 1995

Page 11: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Interfering BEC

M.R. Andrews et al., Science 275, 637 (1997)

(Ketterle group, MIT)

Two BEC's created in trap

Let fall, overlap, interfere

Fringes in overlap region

Page 12: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Path to BEC

Laser Cooling

Cool atoms to ~ 100 K

Trap ~ 108 - 109 Atoms

Room Temperature

Rb vapor cell

Magnetic Trap (TOP)

Evaporative Cooling

Remove hot atoms from trap

Remaining Atoms get colder

BEC

~ 30,000 atoms T < 100nK

Page 13: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Absorptive Imaging

CCD

Illuminate sample with collimated laser

Atoms absorb light => Image “shadow” on camera

BEC Probe Only

Subtracted Image

50m

BEC

Page 14: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Optical Lattice

Laser shifts energy levels

Lower energy of ground state|g>

|e>

Standing Wave

Periodic Potential

Atoms trapped in high intensity

Page 15: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Optical Lattice

Uo

1-D Optical Lattice

840 nm ( = 60 nm)

Focus to 60 m, retro-reflect

<0.04 photons/sec

Neglect scattering

Atoms localized at anti-nodes of standing wave

Array of traps spaced by /2

BEC

Page 16: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Atomic Tunnel Array Output

Array Output:

Measured pulse period of ~1.1 msec is in excellent agreement with calculated J = mgz/ (z=/2).

Page 17: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Tunnel Array

Tunnel array:

• Under appropriate conditions, atoms tunnel from lattice sites to the continuum.

• Waves interfere to form pulses in region A.

Page 18: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Tunnel Array

• Wavefunction of atoms at qth lattice site:

• Each site has a probability of tunneling out of lattice, into continuum:

Emission of deBroglie waves.

)](exp[ tin qqq

tqt Jqq )()0()( 2/ mgJ

• Relative macroscopic phase q(t) depends on initial phase at t=0 and on g.

Macroscopic Quantum State

Phase

Page 19: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Double-Well Potential

Tunneling:

Atoms hop between wells

Tunneling Energy:

Mean Field Interaction:

Collisions between atoms in same well

Collision Energy: Ng

Ratio Ng / Determines Character of Ground State

H = (aL+ aR

+ aR+ aL) + g (NL

2 + NR2)

Page 20: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Ground states

Assume | = cn|n, N-n

Left trap Right trap

n0 20 40 60 80 100

Pn

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

n0 20 40 60 80 100

Pn

0.0

0.1

0.2

0.3

0.4

0.5

Ngnon-interacting)

| = {(aL+ + aR

+)/2}N|vac

Ng

For Ng| = {aL

+} N/2{ aR

+}N/2|vac

Note: Squeezed solutions can not be obtained with Gross-Pitaevskii Eq., which assumes a coherent state and large N.

Squeezed

Page 21: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Lattice site0 5 10 15 20 25 30

Rel

ativ

e N

umbe

r and

fluc

tuat

ions

0

10

20

30

40

50

60

Lattice potential

Ansatz,| = |i (i indexes lattice site)where,|i ~ exp -{(n-n0)2/} |n

Use variational method to find ground-state:

Example solution:

“Soft” Bose-Hubbard model

30 lattice sitesNg~50 atoms/site (center)

Lattice plus harmonic potential

Vary n0,

Page 22: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Lattice potential vs. double well

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000

Nkd

Num

ber V

aria

nce

Lattice calculation (numerical)

Double well (exact)

Ng/

Page 23: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Quantum Optics and BEC

Coherent state:

n

ne

n

n

2/121

!

2

nFock state:

Undefined phase, fixed amplitude

Number-phase uncertainty N 1/2(from Loudon, Quant.

Theory of Light)

Recent work by Javanainen, Castin and Dalibard, 1996

State of system when tunneling fast, interactions weak

State when mean-field large, tunneling slow

Page 24: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Tunnel Array as Phase Probe

~12 wells occupied

Release atoms from lattice

Atom clouds expand, overlap, interfere

Like multiple-slit diffraction

Coherent State:Well-defined phaseSharp interference

Fock State:Large phase varianceInterference washes out

Atoms held in lattice

Page 25: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Squeezed State Formation

(a)

(b)

(c)

(d)

(e)

(f)

8 Er

18 Er

44 Er

ramp = 200 msec

Lattice strengthHarmonic trap off

Density image

Page 26: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

3-D Picture

Page 27: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Squeezed State Formation

Peak Contrast vs. Well Depth

• Fit gaussians to cross sections; Peak width determines contrast

• Vary condensate density by changing TOP gradient

Page 28: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Simple Theory Comparison

Convert B’q, Uo to Ng

Compare to model to extract phase variance

2 = S o2 ~ S (1/N)

Fit (Ng/)C

Theory: C = ½

Fit: C = 0.54(9)

0

10

20

Page 29: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Fock Coherent

200 ms 150 ms

44 Er

11 Er

13 Er 41 Er 44 -> 11 Er

Adiabatically ramp up to make squeezed state

Ramp down to return to coherent state

Non-Adiabatic (2ms ramp up, 10ms dephasing):

Page 30: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2Seconds

0.2

0.4

0.6

0.8

1

1.2

1.4

snaidaR

Relative Phase Spread For Adjacent Wells

Quantum state dynamics

time

Latti

ce d

epth

Adiabatically ramp lattice depth to prepare number squeezed states

Suddenly drop lattice depth to allow tunneling

(Drop slow compared to vibration frequency in well)

Time dependent variational estimate for phase variance per lattice well

Experimental signature: breathing in interference contrast

Number squeezed state

Time

Var

ianc

e

Page 31: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Quantum State Dynamics

Hold Time (ms)0 5 10 15 20 25 30 35

Con

tras

t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

8 Er Fit

1 ms 5 ms 9 ms 13 ms 17 ms 21 ms 25 ms 29 ms

Page 32: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Conclusion

Can make number-squeezed states with a BEC in an optical lattice

Use interference of atoms to probe phase state

Observed factor of ~30 reduction in N N= 2500 ± 50 2500 ± 2

Future:

Look at transition between coherent/ squeezed

Quantum State Dynamics

Ultimate Goal: Squeezed State Atom Interferometry

Have Shown:

Quantum Phase Transition

Page 33: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Page 34: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Quantum State Dynamics

1ms 4ms 6ms 8ms 10ms 12ms 15ms 19ms 23ms

Page 35: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Dephasing Mechanisms

1) Ensemble phase dispersion (inhomogeneous broadening)

2) Coherent-state (self) phase dispersion

3) Squeezing

Trap 2 Trap N

···

(Phasor diagrams)

Trap 1

n

Mean number (thus phase) varies trap-to-trap.

Trap iTrap i

time evolution

Mean-field interaction + initial number variance phase dispersion at each trap

Trap i

control parameter

Trap i

External control parameter used to control quantum many-body state at each trap

Page 36: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Inhomogeneous Phase Broadening

2ms Hold t

Ramp up in 2ms, hold for variable time

Wells evolve independently

~23 Er

Dephasing Time ~ (Bq )-2 => Harmonic trap

Page 37: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Quantum State Dynamics: Exp’tC

ontr

ast

Hold Time (ms)

0 10 20 30 40 50

Uf = 8 Er= 2*50 s-1

Uf = 16 Er= 2*36 s-1

Uf = 19 Er= 2*32 s-1

Vary Low Lattice Level: ~ (Ng)1/2

Page 38: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Quantum State Dynamics: Exp’t

3ms

7ms

13ms

19ms

Max Value: 42 Er Hold at: 11 Er

Page 39: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Page 40: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

BEC Apparatus

87 Rb F = 2 m = 2 state

Single Vapor Cell MOT

~ 104 atoms in condensate

TOP and RF evaporation

1-D Optical Lattice

850 nm ( = 70 nm)

Focus to 60 m

Absorptive Imaging

Page 41: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Double-well system

Left trap Right trap

H = (aL+ aR

+ aR+ aL) - g aL

+ aL aR

+ aR

Hamiltonian

tunneling mean field

Literature

A. Imamoglu, M. Lewenstein, and L. You, PRL 78 2511 (1997). R. Spekkens and J. Sipe, PRA 59, 3868 (1999). A. Smerzi and S. Raghavan, cond-mat/9905059.J. Javanainen, preprint, 1998.

What is the many-body ground state of this system (assume N atoms are partitioned between the two traps)?

Adiabatically manipulate tunnel barrier height

Page 42: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Hold and Release

200 msec ramp

200 msec ramp + 100 msec hold

200 msec ramp + 500 msec hold

ramp hold

Lattice strengthHarmonic trap off

~6 Er depthDensity image High atomic density

Page 43: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Adiabatic and Non-Adiabatic

Page 44: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Time-dependent Variational Calculation

Wavefunction parameterized in terms of mean and variance of atom number and phase for each lattice site:

Time dependent equations for variational parameters:

where

Model allows for calculation of time evolution of quantum state. Valid for < 1 rad.

Lattice wavefunction:

~ ( Tunneling energy / mean field energy )

Page 45: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Bloch Oscillations

• Momentum change dp/dt = -mg

• Wavepackets Bragg diffract from lattice when p = -k. After diffraction p = +k.

• Momentum oscillations with period T=(2k/m)/g

• Frequency is J

ENS, 1996also UT Austin, 1996

Page 46: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Squeezed States

N

N

n

ne

n

n

2/121

!

2

Number-phase uncertainty N 1/2

Coherent State:

Minimum Uncertainty State

N = 1/2

Squeezed State:

Smaller N

Larger

Still N = 1/2

Studied with light -> Do same thing with atoms

N

Page 47: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

TOP Trap

Quadrupole Trap

B ~ B'q x

Tightly confining, but spin-flip losses

Apply rotating bias field

~ 10 kHz

Time-averaged potential

Harmonic: U ~ B'

q2

Brot

Circle of Death

(Time Orbiting Potential)

Page 48: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Evaporative Cooling

Remove hot atoms from trap

=> Remaining sample gets colder

TOP Evaporation

Reduce rotating field

Circle of Death moves in

Forced RF Evaporation

Drive transition

to un-trapped state

Page 49: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Quantum Phase Transition

Formation of fragmented state is sudden.

Can be identified by the energy difference between the ground and first excited states.

N = 20, 60 and 100 atoms

Nkd

Paradigm “quantum phase transition”

Related work: D. Jaksch, et al., PRL, 1998. (Mott insulator transition in optical lattices)

E 2-E1 degree of fragmentation

Page 50: "Squeezed States in Bose-Einstein Condensate"

Kasevich GroupYale Universityhttp://amo.physics.yale.edu

Mean Field Interactions

• Atom-atom interactions modify the energy of the system

• Mean field: energy/particle changes by an average of

42an/m.

where,

a = scattering lengthn = atomic density = ||2m = atomic mass

2

22

2 42 m

aVmt

i ext

• Gross-Pitaevskii Equation

Mean field energy