spindle torque

11
3i8£te * 192-9 mm&f-s. —.cPp mx t?> Hit-h;u?cDttiij— IE£jt lE^ft i>> H ZE ii & & IE IE ft**, ft**, :?§*** IE&R <h ;ir 31 *** An Experimental Study of Flow Around CPP Blade (3rd Report) Measurement of CPP Blade Spindle Torque By Masamitsu ITO (Member), Shosaburo YAMASAKI (Member), Masamitsu OKU, Hajime KOIZUKA, Masahiro TAMASHIMA (Member) ,and Michihito OGURA (Member) The hydrodynamical component of CPP blade spindle torque that plays an important role in CPP design, is investigated. The hydrodynamical blade spindle torque of two model propellers (MP. B 82--1 and 82 2) was measured by the newly developed support-pillar type blade dynamometer in circulating water channels. Measurements for two propellers in the uniform flow field indicated that the maximum value of hydrodynamical blade spindle torque occured at the maximum reverse pitch setting and near the bollard condition (/=0) and the dominant factor influenced on the hydrodynamical blade spindle torque was blade contour. Fluctuations of the hydrodynamical, blade spindle torque of MP. B 82-1 in the simulated non-uniform flow field with the wire mesh were measured. Although means are much different, fluctuations were nearly same for the pitch setting angle from-10 to 10 degree. It is also seen that the means in the non-uniform flow fields were a little higher than the values in the uniform flow at the same operating condition (same thrust condition). Comparisons of calculated values by the lifting surface method and measured values at the design and the maximum reverse pitch setting conditions were made and they showed good agreements. Then in order to use at the early design stage, spindle torque estimating charts of AU-CP series CPP were drawn based on the lifting surface calculations. vj~-fv^v (CPP) sM±cDjKnfc«j:o f ^«E*, m yxh, b*? o^mmwM $ ti ^. CPP i? i±, c 81

Upload: guest7394f1

Post on 13-Aug-2015

1.175 views

Category:

Design


3 download

TRANSCRIPT

Page 1: Spindle Torque

3i8£te * 192-9 mm&f-s.

— . c P p m x t ? > Hit-h;u?cDttiij—

IE£jt

lE^ft

i>> H ZE

i i

&

& IE IE

ft**, ft**, :?§*** IE&R <h ;ir 31 — ***

An Experimental Study of Flow Around CPP Blade (3rd Report) Measurement of CPP Blade Spindle Torque

By Masamitsu ITO (Member), Shosaburo YAMASAKI (Member), Masamitsu OKU, Hajime KOIZUKA, Masahiro TAMASHIMA (Member)

,and Michihito OGURA (Member)

The hydrodynamical component of CPP blade spindle torque that plays an important role in CPP design, is investigated.

The hydrodynamical blade spindle torque of two model propellers (MP. B 82--1 and 82 2) was measured by the newly developed support-pillar type blade dynamometer in circulating water channels.

Measurements for two propellers in the uniform flow field indicated that the maximum value of hydrodynamical blade spindle torque occured at the maximum reverse pitch setting and near the bollard condition ( / = 0 ) and the dominant factor influenced on the hydrodynamical blade spindle torque was blade contour.

Fluctuations of the hydrodynamical, blade spindle torque of MP. B 82-1 in the simulated non-uniform flow field with the wire mesh were measured. Although means are much different, fluctuations were nearly same for the pitch setting angle from-10 to 10 degree. It is also seen that the means in the non-uniform flow fields were a little higher than the values in the uniform flow at the same operating condition (same thrust condition).

Comparisons of calculated values by the lifting surface method and measured values at the design and the maximum reverse pitch setting conditions were made and they showed good agreements. Then in order to use at the early design stage, spindle torque estimating charts of AU-CP series CPP were drawn based on the lifting surface calculations.

vj~-fv^v (CPP) sM±cDjKnfc«j:of^«E*, m yxh, b*? o^mmwM $ ti . CPP i? i±, c

81

Page 2: Spindle Torque

Hig© CPP xu, m*to> FA- h j^yoymwt,

>Z*M CPP (jSS 6,900mm) t^MB Fig. l Ji:, a

cOo. UOJU y _ U x C^ J J7l , i i ' ) /, :r ~ t^v

^ A r fr / O L r 1 ^lyTTU C b J>C; C :) bfcrf* i/iT-Un i ^ Z - t y\ ^ hfr 47(7)yiw j±LffJ iW

) l ? ^ U C ^ ) 7 ,[<D&S 'ft:, rr u f L i o v ^ ( ; r 0 o L r P i u > '>.

(1) tel/^CfJa^hVj^] & uCL» (2) r z{:^{jy\ jjuLfnryLo).

yvyzy}< <lLn:yj^fj , t o ^ ) - J i r f i /K^iVJ^ L U ^ < y } UV)< 11 > L ^ I Vi^WLTc C ^ 6 <fc 5

-'c7ri&"a±, C"°P / L tf > i a i ^ -co ^cfUj,

'-, >\Ljt3it^\L^^yny^;^L?(aLxmity;

* t0 > K h ^ ? m^mmo m & ^ T »

*t), *Bf3ST^cl03?ZS*Sfflbfc. U u « ; r

(1) ffeCDtl, * - * > h ©TIH?~e § <S fr? tf 4>& < L/T, * tf > K h ^ £ (D^^ lEIi^ i^are H C

^ IMJMKA^J^ h nniiimtmwx §, mm %

CylAzCti)>b, MxK0>F*hfrt%mm'tZ>

%&yy> h^iy t i i J 7T- bA>b, fPPlftS >aa'/p^y(7>j^K? t-wigfflco/s^b^, &m^f

8

cu o

00 C/)

^ o H

P-i

j) ASTERN 14.5°l ^ - iVs=8.5 kt !

AHEAD 13.5° Vs=10 kt

1 h 1

h

t = \ 27 SG c

mA

a j : |

1

>

•3

:j:!|::llji|!|!|j; 0 > O

IQ S

0

-16 -8 0 PITCH ANGLE AT 0.7R, S r

16 DEGREE

' P 0 . 7 R '

Fig. 1 An example of full scale spindle torque measurement

(2) |+JI!l4i{C*>*>^^|, * - - * > MCcfcoT, W® iWjmnm^m\yf y>uomB^^\y^^ c t.

(3) ttlicffl05 y' n -Ulffl i 250mm Wft^liqi

(4) gfSS^S^ft© H^SSftft* 200Hz E U i i f > (n-10rps? 4 S, IggrMfig^CD 5 R ^ T ^ ^ ^ . S).

(5) ^ v - K C D ^ * K I ) S ^ , g?5£L/^t\fi|-e||!)

/SLIP RING / LszmjSSM. /CABLE LEAD XTHRUST BEARING SLOCK ^ I S a a U E ^ M S I E R .

Fig. 2 Section of propeller open boat

— 82

Page 3: Spindle Torque

7^7 y JU hfry&

7)>a, J* 'J y Ul) > ^ ~ J : o T ^ S ^ C | 7 t )[ i i§n<>.

77 y 7, b, h ^ T P ^ P ^ ^ 4 7 ~ h ^ R l j K S b f c

J * p

fr!7

y>yi> 7<

P § o 7 9 i

'j -; PD >P^P:

yyizf

hfry:L[-zy^x^

■ WuStl>tZ7y

Zi±, 7 P -< y ;y - b ryCDSOffi^SI".

*^CDES^71inm, fi £&70ram t b fc . M

f l iP i : , |g f j i§bipj^(CBTL 3 oJ:3 ' - .xp > P P . H

0Sf &v7.j,i L p P ^ pMf tAt i# ; lTf fSH~o J; 5 f£

bfc. ipSf.W t ;K TPT; 7 7 > •> £§PT'K *) fj'tffc.

4S0P5 , g«l!E© l M ^ I ^ 3 f % ^ b T ^ 7 ; ^ . @ S :

b , f(l i®3il^ll?g^.x{c!ig^bt: . ItSaSi^TsCD

FSI&, ^AJgiL^fiyPT:&!£Mb^Pi£/N5oDt-§fa

£ S : ^ T P . o . SW^^cDiTriE^ Fig. 3 {c^-f.

SECTION A ~ A

Table 1 Calculated forces and moments

actuating on MP. B 82-1

Components

fx (Thrust)

Fy

F:2

Mx (Torque)

My

\-\z (Spindle ter qua)

Hydrodynamics!

Component

-148! 9

-63/ S

38 s

5146 g-cm

-12040 g-cm

1231 g-cm

Car.tr i ruga!

Component

-

51 3

1S43 9

-

-?? g-Cift

-4! 5 3-cm

Total

~\-\:6\ 9

-SSO 9

i SSI g

5146 g-cm

-12117 g-cm

8iS g-cra

:?ig. 4. Coordinate system-

Fig. 3 Spindle torque measuring boss

2. 4 :i.tl> ¥11 bii^tkMf

7\y>yfrbfry% 8+sn-r £ Wimo 5 S i b t

JBO^nfc/A y:0j^±my7 h P - P P - P ^ P

izm%^Liyym¥mi^bnn^. t&*KM$ti/^M

5^tS^7J 26^y vBO b"C 2 S S { £ # l j ' b t l o .

(i) P - T ^ y y° B!b)[J:lbcD--*M0^^:^ h

p - p y - p p f g ^ f bfc;S*2P T P - ° P F > h ^ f r r t f

T*&< zyyiiyyiyxmt^ioym^^L

(2) p h P - P ^ * # P * -f 7°-• • • • • 4 Tr tcDS«f o

p b\s-is#v yyyzy:^xf^mtojyi'^yL

ymmxammr®yyyx^ mjLztztzyjK, mm

(MP.B 82-1) KB<13, *-*>bCD&fiS#&*£X

/nD) = 0 . 519rb|f # b fc# , ^-y>b C D & $ #

P Table 1 ^TfPf. &*?, *S@T*fflOfcffi«Stt

Fig. 4 ( £ ^ b f c & 0 1 ? & £ . iai{-t\ilf^S'C^7 -x

p p P P h ^ ^ 0 | 6 ^ f i ^ x ) > ^ 9 ^ $ <, flfeCDilCDT

mxiyr^y

PHOSPHORUS BRONZg SHEET

^ FOR STRAIN GAUGES

8ALL BEARING

E I

30

Fig. 5 DFB-12—Blade dynamometer for

measuring spindle torque

\y~~2»y y ^f\c£ %%\mx\&, WM'®m&&)<M

i)f±ju W$L, fRffirnKfrtebomm-h^msn

fr7%ffif£&<fiM^Z?jW<c^^Tte, S£*0ffiS

XhmWt- UMii h tiT o ^ o.

7 M / - 7 ^ 7 7 7 7 ^ f ¥®WM% i BIHiSfFb

83 —

Page 4: Spindle Torque

j^m^x iyy%m^mmytz^y]fL^, m^ycx^ X\ . I f ^ i ^ P - p p p D p ^ ^ ^ b T f t - b g ^ , .xb

P KP b P 174b oElt5lE{ilCDP^4r- PPlfSl t~o

Fig. 6 Blade dynamometer with measuring

blade

o o

p

o <-> o

o

8 7

o o CN

o h = 87 3 r im

A h = 62 .3 mm

_J y

\

V

A {

/ i

4

{

;

k

/

V

k Y

y V

A <

/ i

-4000 -2000 0

SPINDLE TORQUE, Q~

2000

O

o-OS

8

o CO

o CN

o

-4

o

o o

A

o

MAXIMUM

MINIMUM

i. A

A

Fig. 7 Spindle torque dynamometer

calibration

0 1 2 3 4 5

SIDE FORCE, Fs, kg

Fig. 8 Interaction on spindle torque output

due to side force

U-4*- b ^y~l5^my)MXchy>* Fig. 5 {C IIIfcg

ffib^ffetJff (DFB-12) £ , Fig. 6JC|fcbf|P7^B

/p/b 4 ftCD^WigScOXiS^^- 2 ft^ogiif $ t l fcp

F P - P P - P , l t i64fcJci :oT| | ' f f l§ns. y^^-y

Ffr bfr? %$:#>% Ki±, PCD 5 hMt$t~ &&&&■$:

ya%\(D7 b p F ^ h fr>?%, is * y b -fe p # - a> e>

62, 3mm £87. 3ramCDigf $ (MP. B82~l CD 0. 5 R t 0. 7 R

fcffls) ^ i t i ^ ^ i T - f : . Fig. 7 {c^arflis

imm i ®VJXMJX$> o ^ .

P > 47 h -k P $ -1» £> 87. SmmCDffi § i c ^ o t , P b

> F^ l^cMl l^ lg j i ^ - ^^T l^S^ IKb : . ;b&-^

^.s^fq]*^>(b§^, i^»>«^: ? m/\y^y>m%m

htz. Fig. 8 » b t , om±W3(Dmm&m/ht

?£y>tzmXchb, AmZ&±£te^tz{&X*foZ>. WU:)

£fc, 7 t ° > y f r b f r y K i z m & y l L i i t , 1,000

g. cm j c ^ b x o . oejgppb y> tz.

wjmom^mmm^ t t » ^ ^ 200Hz X$> *>,

m%mbi4ijxwMLtztm± 220Hz x*$>^tz.

SR-171C «BS10,**ffe^EH-bft MP.B82-lb,

SR-174B4 mmn)%%$MLfcVtz MP. B 82-2 O 2 WM

Om^iytm biz. MR B 82-2 MH±CD Sftn^llS

bfc MP. NO. 0661)2) tmmtXh Z>. Table 2 JCp

p ^ ^ C D g a ^ , Fig. 9 KyQx2^yOfy\t^7S^,

mm*, gfi*B*soHB*sftffaffcD0 2 0512 7j<fi (SOT^^Tfi;, § 3 x f i X g g 5 = 5 . 5 m X 2 m X

lm) ^5j:^®4[H]^7Klt (S8!l8PEfi£, S ^ x f i x

84

Page 5: Spindle Torque

Table 2 Plain par t iculars of model propellers

MP. NO.

Diameter (ful i s c a l e )

BHP (MCR)

N (MCR)

Kind of sh ip

Diameter (model)

Piich ( cons t . )

H/D ( c o n s t . )

Expanded a r ea r a t i o

Boss r a t i c

Blade t h i c k n e s s r a t i o

Mean b lade width r a t i o

Rake angi e

Number of b lade

D i r e c t i o n of t u r n i n g

Blade s e c t i o n

8 82-1

6650 mm

23@@@ ps

127 rpm

RO-RO cont .

249.34 mm

199. 51 mm

0. 3002

%. 6S33

0.2848

0.0541

@. 3363

0 .8

4

Right

MAU-M

B 8 2 - 2

9 0 0 0 mm

17000 p s

65 rpm

Bulk c a r r i e r

243. 44 mm

214.91 mra

§.8828

0.4000

0.2917

©.0440

0.2218

0.®

4

Right

MAU

4. 2 ^i%->M^xmm

^m-im^xcommi, *§h-jwtra&<ttawa>

y7> i A u - b biz.

J: i), WifeoWiM^ J rcMy&y o p y P h {£!& & &

>ic#p l « r - ^ 7 ^ ^ t & <D^&M&rc®^tte%Si

5K7kmo9m^mmbiz. ! -w»7«: , ^ T «

5. ft a is *

s. i S'fc2u$;# MP. B8 2-1, 82-2 CD3£&^ol vp gtSfl^fJo tz.

WzMm® ( S l f b ^ p ^ o S b b , b^pJiiLKPJjfq]

%IE t i~ £) * + iofi££> £> ~ 40ffi £ "eioiS^d § yztm

§i£, H I K S ^ 5rps *>6 15. 5rps 7£lpgbfk §'bbP

Fig. 1.0 K\±, MP. B82-1 {COOT, [ a f f i l e®

$&K, m$\fy--y^yyyfr bfrt®^>bft$ft%Mfo7v

\tbiz i CD KQSG(^QSG/ pn2D*) ^fLyf* 7 t ° 7 yfr

h ^ ^ « b ^ p ^ i | J p $ ^ ^ ^ f r 0 5 ? I E b 1 - ^ . mU mK^^tMikyc&KQSG mm—Ttom^^bxis

*ybbizi>0% Fig. 11 KPF7JP i S ^ J & f r & f t

Fig. 9 MP. B 82-1 and MP. B 82-2

U § =6. 0m X 2 m X 1 m) KXW& btz.

p p -7 ^ S*$?JK& 400mm X^M btZ.

4. f t 38 * ^

4. l ±&-3IE4""C<Dfta

^ S ! f P p i l ] § | 1 ^ 7 k P F ; p ; P CDffiite, MEf*

»£iiii>^^J:SfecD0'&ltcDfflT**S. ^ ^ © ? S K

^7 jC0SK^t t^T^^*>JO>§^©T% ^ t ^ T t t

aabiz7 b p F ^ h fr t cDfft^iSotJ^i£ && b T

Hb^^L^co. » & # $ # « t f * ^ W J a o t i

ftlToCDT, i&^gS^SfC^FpT*ftS!!bTfc<. * *

TtfSi|bWI>?>, 3 i ^ S 5 g » ^ S b § | O T ^ » ^ ^

:btf^5ffbiPP^ p p p 7061^%—JE^ffiS.

7\moM^7M\^§^Tiifibfc. M « ^ A © # I ^

~

o x

cy «

« o

65 °

s Q O

a: l

C/5 00

W

Q O

3 ■ PQ >-J CM

<

S5 W -H

U !

O

>

*>

3

&

">

\ ■ " '

0

7

3

(\

0

A

C>

V

&

A

0

7

A

O

A

0 0

0 V

0

a

8 A

0

O

0

=-4

o

«-3 V

=-2

a

A

= C

o

S l

o

0° V

a

A

o

o

V

a

A

o A

O

V

D

A

O

A

O

V

a

A

O

A

O

V

a

A

O

A

Fig .

4 6 8 10 12 14 16 v PROPELLER ROTATION, N , RPS

10 Centrifugal b lade spindle torque of

M P . B 82-1 (effect of revolution)

85

Page 6: Spindle Torque

X O

8 0

j p

*->.

\ ? \ \

\ \

\

7 N

0

A

%.

\<; >

\

LP.B 82-1

*1P.B 82-2

:ALCULATED

\ b ■ \ i

P x < x

) |

\

40 -30 -20 -10 0

PITCH SETTING ANGLE, 0,DEGREE

10

Fig. 11 Centrifugal blade spindle torque

73i)mbiyryoyx, ^mPMOzf^ P y §§ffi^6>

iyymyMn\mm&<itlrrKW>-e^. El*K

miiycTxbizommux^s. %\m\u.omn&m

vyyy§iPb ttiiTPofcSMit?ST«&<KiBbT

STIf l lbb: c £ *%ptbf, H^f0S0^@^)T^

myyif&jjoykh zz xy^t^MWCiV>%M\$M®x

p§< 5 mA&0ixyyz£ *)%&z&K-X%ixMn^x

ffi*s^»%^»s^KBtifflft*>^^bgi<^(>»

$ # & , Fig. 11 p ^ T ^ a e o ^ ^ e ^ f f l p f r .

MR B 82-1, 82-2 b l ^ ^ o b t If SH^bfo fP

| E £ § ^ ! ^ 0 , -10, -20, -30, ~-40|f CD 5 Sf i lE

4b b-b, fiff;i¥ J * - 0 . 6—0. 9 CDMX 0.1 *5 ^ K$i

MbiZ. yu^yMtLM^, 8. 25rps Rtf 10. 25rps 0D

2mmt$^x9mi>tz.

mm^z:, gEgf t^ -o , -POgT0f i)t¥ ^ > f t

CDSbrb, mMPlV^"-30, -40fS!TCD J ^ J E O ^ ^

Tte , 7 P P K 7 P r ; ^ © ^ 4 ^ f ? ia&#{Cst$!ll/fc

P 5 P F, bfry ykMM^0j^ym^7\§ #> ~P/P cn

itcnzotrnx'te, ^ty*v^y(Dmmm®jo

Figs. 12, 13 K1&, MP. B 82-1, 82-2 © P b P F

fr h P v 0 S f t ^ / S 5 t % ^ ^ 7 L J b b b : ! > 0 (KQSX=

Qsz/pnzD*) ^ f b t # i J ^ * J b T S b T P o . igft

b „ p ( ^ o g ) , J>0CDf5BTi±? Kffi»I±cD»

- 0 . 6 - 0 . 4 - 0 . 2 0 .0 0 .2 0 .4 0 .6 0 .8

ADVANCE RATIO, J = v../nD

Fig. 12 Hydrodynamical blade spindle torque

of MP. B 82-1

- 0 . 6 - 0 . 4 - 0 . 2 0 .0 0 .2 0 .4 0 .6 0 .8

ADVANCE RATIO, J = vjnd

Fig. 13 Hydrodynamical blade spindle torque

of MP. B 82-2

ftcD^faf^feibT^<(con^^^^^a£b^. fat}* tf > Pfr b fry{m.®M^m>7y^ < ?£%{'£

^-K^cio #SbS)o. J frj<ttez>w$, MMK

g^?>PfiS&5>&£ C. ££> b, 7^n^^7@i5fcx)vh$

< te o fc KlTb fo t), P b > F ^ F ^ 77 P CD £ CD &/JN

$ < * ( S ^ ( J : ^ M b ^ b : b ^ l P

Fig. 14 tefifriiPP J = 0 K*s if >s Wjy* b P F fr b

fry-??, 0. 7 R \ZZ%51 j %> nose-tail line CD b y 9-ttK

Mbxfybiz %(DXfoz. b y ykhKMtoWifJ* b

86 —

Page 7: Spindle Torque

>-rj

(V

0^

9+

Mi

"7-

^ V

9 ^

ii 9 Mi

j

1 ■ 7 ;

^b

SS ■ ^ _ - '

pr Si di ^ 041

n

m y>

inur

*9* Ma >f rv # 0-4

0 9+

P b

6 P >r

m n y

^ ^ &

vP H SS

: , 0 6 m ^ is

jjf jft S

W g c?<~

1j$ y 0

s k

0 o d

e

dd

aq

'a.

hb M

^ w

-0.6

THRUST AND TORQUE COEFFICIEN'

-0.4 -0 .2 0.0 0

TS , IP AND 10IP

OP ' 0 .

cu CD

p a-

UYDRODYKAMICAL BLADE SPINDLE TORQUE, K0C;H

:-8 -6 ~>\ ~2 0 2 (>b)p

co

4 i

3

0 0

O

p-3

O

J

O

CD

\

l 1 1

\

\ \

CO OO

\

\ l \!

\

\

\ \ 7

\ "t —

\

\ 1

\

\ \ \

\

4

PN. -

V 00 "-3

-tfc Iff

p a A

Mi

IJ

#r b n;

MI n

? M tt <* ~r M,

^ m ss Jff ^ bi glr

m '

o ££

Soft d

(P 0

Pn

y to to

EC

o

7H

rt

{-a

O

H 9 Ml i

Sir

i

y$ w

Cd

to -fj

b *

1 § (P $P

ai a-

z a

d S

x

b <Hr.

W

ll

b

1

® ^ ®>

®> <^ <s>

CM <7> ^ » « - «^J fv> < ^ CO 0 >

©> ®> ^

j ^ - c n c n

e^- s > «g> c n 0 5 CO

<Si> ,

s> <®

&> - g ->j < ^ o > er> o > — «s>

<s> <s> ® *

Cn <?> »vj

CM CO, - M <?> S\> <TJ

CD

tt) to

^ •H

<

E

l i 0

3

£

>-t

3

o*

^

!—]

& Da

CD

O0

^ CD GO

O

CL,

o" 3

c

0>

GO

Hi 0>

3 0

w

hrj

aQ

i^i

0^

KS

^ P 2 £L.

V ^

0

d

td CO to

to

> 0 •< >-S3 0 L-J

> I—<

O

U ii

< 0>

» C;

1 O

OD

O

*-

O

b

0

J >

0

00

THRUST AND TORQUE COEFFICIENTS, b f AND

Page 8: Spindle Torque

0..3 ^ 0 0 .5 0.4 p .3 0 .2

Fig, 17 Simulated wake field at 0^0°

- 1 6 0 - 8 0 0 80 160

BLADE ANGULAR POSITION, 0 , DEGREE

Fig. 18 KQSII variation of one blade in wake field (MP. B 82-1)

6rps T t f H b b .

Fig. 18 Kfc, C®£olZbX&t>tZ—Mfi®ffi33 7^7 bfr bfryoymtyiy&ijz aas^TpbTtP £. BI*, K^T^b^CD^—Eie^CD^^JT*^ -jmii&xmbiz&ijiy y 71—m&x^^tzmm^ J KMJybiz^-i^ipxojmjy^^yyfrbfryxfo

0 30 6(T "90 ' BLADE ANGULAR POSITION, 0 , DEGREE

Fig. 19 KQSH variation of all blade in wake field (MP. B 82-4)

m'&^mbxfo}o, mfbvyxoymmtmmtyx

FfcCDffiJ: yy^7\i^^^ CiU± Hawdon bCDMS7)

tmbmmxfoz. ccywimiy mno -isie^cD ^mjo^jy-m^ ^—m^oztit^te-ox^ztz®

Fig. 19 xiy -ntt®tmm>z±ntt<Dm-jjA tf>K^h^^*^J5gbfc«gS*^f. ^l&tlte&g xnhmb^yODX, —M^CDSIMSJ: *m/bbP. S W I ^ C D & C D ^ ^ T ^ < ^TPCDT, HlgfCDiStHc fcnvrte;, gfEbJP b P F ^ h ^ ^ c D ^ l i ^ ^ i S i - o ^ S « ^ b # ; t b t i £ .

+10^0^1—iffiFficDU-a![*f5ofc.

CPP &SK«*>& Loigib: ®ttT& s*s, TWI^CD

^ 2 i-g2; xW£(D&y^rfrt&oyj; § tr/p b£> b p 5b fc^^xOv£{£J?b*U £&, @i^b-yPbDn ^ (FPP) fo%W£ CPP 0 ^ | t b ^ p © ^ f | T a, mt0miMn¥wen2) \z#y- bfrmw&t.x

Page 9: Spindle Torque

b

C

o

■z.

7J

CQ 1

;< ! o

s

- 7

:\

p.~^-~^.s 3 = -4C

" ^:

^ P

0

-40°

\

"~"~ \ N

"\

,9 = 0 °

^ ^ P

\kb 47 \

MP.B 82-1

MEASURED

DO CALCULATED

MEASURED DO CALCULATED

^QSH

H/D 1.0

- 0 . 6 - 0 . 4 - 0 . 2 0 .0 0.2 0. .

ADVANCE RATIO, J=v /nD

0.6 0.

Fig. 20 Comparison of measured and

calculated hydrodynamical blade

spindle torque

my yy yim^mm e> nx t b . yyy, FPP CD

W:Mmu<D^^t.xmr^^m^^ftzm & i s § nx

l b 1 3 ) .

i t , cppoymL^yyxyjyoovmt, MJZ

isb y yy J< o oVlM®$$fkte, yy^y ojffWjlj

m^MteizlLXJk < fHTP b . Fig. 20 & MP. B82-1

i MP. B82-2 I L O ^ T , 0-0°, J>O0iRjS£ , IS

b b 2 b ^ P77f|4|3^b 0 = -4O°, J < 0 CD 2^M(Dt

ZlM9) QZyjayKy bffibJP ^> bfr b fr y OW3M

l l ' f f i b b ^ l f i b b b l J b b & cDT*#> S. b b bCDKH

^ S b f c b M i P ^ ^ ^ D i a b . gfUpxbp FP- h ^ ^ t e

0=-4OoCD^A^i0A'fi :O^, 7f7$gTte7FbTP^

I P P 7 p[£lb M / ^ f C b t e ^ = 0°TCD*fiS^>A

P . MJjx t?> yfr bfr b 0 ^ 0 i l H b b T t e , P b

p F^$tw>bCDi£gii^>stp tuii*[jiiaacDi±bi^?&

-pbim &mtmx<DmRa&m<tezckfc£z lyyjyL^oy^ity^^hii^- ^ym^y-y^x^}

MAU MMX)> burst type1 0 PH~f b b b®i^g^^bC

^ P t m t b T b . (MP.B82-2 b |@fib :MP.NO. 066

T*teHijjfsiasR*(iii^iiA?fflssn^) iztzb, m$^ yyxyyyyytz MAU MMA^CD y y yicmxofr omL^te-y^yyytey.

ISmLmixy^iiizy: o tc, Sffi0iSlilf»S

PteP<P7)>b)Klii^^lletiTPb. b*>U Sit

gpgp^PT, (i)f$IS®S:oDiSo^3+b^p, tatfffr

iI$Vcll<7 b C^(2)^bl 7 i : 7 F P h fr 7 CD^*fflt*>S

bcb^biSxiMb^p, ^WilS^IScDttm ic*5tf

5 1 ^ 7 ^ 7 F P h^^0||K)£bc^/rfflii(cte-b^

ftbtibbfijBibbib.

F5

10 /

/

/ J

\

/

/ 15/

/ 20

L „P

/

25 /

/ 30

/

/ /

/

/

b 7 /

3 5 /

^

Pf

/

/

40/

/ ■ ■ -

P

/

/ / / 5

7

/ / / 55/

0.8 1.0

PITCH RATIO, H/D

Fig. 21 AU-CP series hydrodynamical blade

spindle torque at design condition

*QSH

-A3

/

/

/

/

/

/

/

/

/

/

/

-4

-5

-3

-6

-7

-8

x

-9

-10

0.6 0.8 1.0 1.2

PITCH RATIO, H/D

Fig. 22 AU-CP series of 80% reverse pitch,

hydrodynamical blade spindle torque

at bollard condition

£ bb>T, ff*KiSgfTte«b03S^hCol^TIffili![-

%^m%x§ hyy 7b^yyymwtnWmmxiiy. b

fffiM^SrbbPbp bfr bfryyii&mSix^ o M ^

mt,ny>.

yu^yyy^^itk^oizjmtbx^, jfrmmmm

— 89 —

Page 10: Spindle Torque

Dn conditions tor AU—Ci "D

l]/d

0.6

0. 3

1.0

1.2

P e i on condi t ion

J

0.3

0. 4

0.8

8,8

83 % revsrs

e -2?. 5

-36.0

-44.0

-51.5

e condition

J

0.001

0. 80S

8.001

0.0@1

yMymxyy < K b bKbf/,2^/g $ n t f c b 4 1 CPP yy AU CP is y -£™u> tfuibimftzn b . AU-CP P D - P PPb^TTSnPtb^St t t lP k° > K P F ;7£ P I l i i b l - ^ b R l b H K f t bfc fc CD & Figs. 21, 2 2 P 7 b f 7 Table4fCte ; f i -» :^^b7Fb^

Fig. 2 m K ! t b v . P (<?=0°) © W J C f r O T ,

J = 4 - (H/D)

xjyyxym bxmmxy y. b v y-mmm-r % K

F P bfryixmmtym^fj>y^y «/Kitsuffix* telOibJbb703ao^>|LLbbib^N IS^fifi^OfeCDtt/jN b P .

Fig. 22 tessb? * b p F P F P y yimm^KzsK t te b ibb;3M b ^ P ? ,p 7 - F « I v T 0 S S ^ bTtP b . f b b ^ b ^ p o l i t e 0 . 7 R x i z y z i m M ^ i y y f x 0 - 8 0 % (g:fi0^ ^=-1 .8^0 .7) , l t » W i i ¥ t t ^ = 0. 001 b b fp JntbJ77 b p F P' bfry 0|fe*f-fBte, S ^®-«ltcDiejq£^Jc^g@^iSjq'rs36i, t>* y&K

7. IS S

*W5£T19 ^nizmmmrom bxyz. (1) P ** ™ b : 7 ~ # - ^ 0 t&b! g t £ "£OT b ib CPP

R p b p F ^ F P b ! i M S B b S ^ b / P t f e M f 0 « mrmnxx^c t b>;{ ? myjj^/yojwfmyy: -o xmmvtz.

(2) ^ - S t i b T 0 3 - M 0 S I B , S t 7 J P b P F ; l / h ^ b M S 7 7 b ^ b 0 t e l l b ; ^ b ^ p 0 4 ^ - FttUbj-fi Xhb, a f I s l S b b 0 i ^ S ^ b : ^ ^ b b ^ f J ^ b b : .

(3) ^ ^ - f i t ! b T ! t a ^ ? b ^ b f i | l T t e , -SCD8E yz}7\£7 F77 F fr y 0 i > i ] f i a b ^ yyy§zMbxVSz yyyyhyx. $.tz, ^ - m ^ o ^ m z , m-mi &ftv<D^-m*x*<D{& t mibxmMm^^sK % p .

(b mijW^%mkxy.v> wm^yytmzsxm^v yoz> yxzmyoyx Wz y^°>b fr bfryoz il^tf Jf:

b , ^ i f l i ^ ^ ' E ^ f ? / : . 7 b 7 A b b 7 y ~ p p p P T » | p a 7 b : H a ; ; t p i p r P b "iba^SbbK KTibfjpb j : b S b i x b p F P ^fryiy^-zm^mx biz.

7i7@f^TteP b p F fr b fr 9 XRXyx yyy-7 B >(D &mX7)<7Xy | b S btey-y ilfjy T P ^ f P CPP &yyoymmxMry ^^mmymmxyzzy zztty mkL?mbxmmzztii7 mmxozmmxy: bIzXMxyyyMtbK.&, b y 7:7-7 3 p p 7 7 b : b f a S S ( S i 0 l « p £ IR »; x n b i t S b P 7 b - b b b W ^ izmxy^tmxhny.

^S?^^aS^iS!S0l ; b « b * IP

# « Sc M i ) &wxk%, \MmiExm, 31 I E * , x a x i b ,

H t - ^ ^ S ^ W ^ (LMim) —yy Fffi;bb(b a i s i a o s ® j : 0 m s s s s 7 - - mmmmm -km, ^186-^, BS57. 9, P. 139

2) # « & * , [ilifXHillS, * IE*, s a i m i s s # r . ^ m ^ y ^ y ^ ^ y ^ t > b o m w h y \mxhimmm% ( f 2 S ) — a a a - f c j ^ i a

mmmmm^m, » i 9 o § , HSSS. 9, p . 91 3 ) Bossow, G. ! Untersuchungen uber das

hydrodynamische Flugelmoment an Schiffs-verstellpropellern, Schiff bauforschung, 1962

4 ) Powell, S.C. 1 Performance and blade torque of a series of controllable pitch propellers, Massachusetts Institute of Technology, June, 1962

5 ) Pronk, C. ; Blade spindle torque and off-design behaviour of controllable pitch propellers, Doctor's Thesis, Delft University of Technology, 1980

6 ) Blaurock, J, *. Propeller blade loading in non uniform flow, SNAME symposium Propeller 75, July 1975

7 ) Hawdon, L., Carlton, B. A. and Leathard, F. I. ! The analysis of controllable pitch propeller characteristics at off design conditions, Trans, of Inst, of Mar. Eng., Vol. 88, 1976, p. 162

8 ) Boswell, R.J., Nelka, J . J . and Kader, R.D. : Experimental spindle torque and open water performance of two skewed controllable pitch propellers, DWTNSRDC Report No. 453, Dec. 1975.

9) ibiSXHjip: * S I £ f ^ n ^ y SbiM^IWil

PH56. 8, P . 47 10) S R 171 : m%9.Pr No. 317, R354. 3 11) S R 174 : W^Sf ft No. 329, BH55. 3

— 90 —

Page 11: Spindle Torque

i2) mm sb LSzym^ ±Aib*: bn^7 / ;b iiBm%^mbizxmmmojmmkoymz, tb^im, y-7 ey--73 7jkiimkt}(DWL Byy-ik§L^^mxm, »i46bh PH54. 12, IP

■fifPlb H # i t M S # , ^109^-, BH56. 1, 73

P. 20 15) Yazaki, A. [Model tests on four bladed

13) dlllff JEHSb H IE* , bbjliib*, S b t l l ^ , controllable pitch propellers, Report of

fePTtblit^b J l S f i ^ , mWiMM : Highly Ship Research Institute, No. 1, 1964

Skewed Propeller <Dffl% ( ^ 5 ffi 3,200-&S 16) # i " I i ^ * , O^JEHfiU, H X * : AU-CP P

& g S / ^ 7 l ^ i & ^ 0 ^ i f J f i J ) : H * M S ^ M l i * ^ 7#J4t t fgcDSS:S;*^ t b 0 b p P 7 |/J»J

3C*, ^153^- , B858. 5, P . 163 ISft^OJEffi, H S 5 t l & S ^ E , ^181^7 US

14) Hffllbgb HW l b inH^?&, fjffiiEPPfii 56. 6, P . 25

91 —