[spectroscopic properties of inorganic and organometallic compounds] spectroscopic properties of...

51
Solid state NMR spectroscopy G. Davidson DOI: 10.1039/b614702j 1. Structure of solids 1.1. Group 1 1 H and 13 C CP/MAS NMR spectra were used to characterise the clathrate hydrate H 2 + CO 2 . 1 A depth-controlled b-NMR study has been made of the magnetic properties of 8 Li in thin silver films. 22 H, 6 Li and 7 Li NMR spectra were used to determine the local field in granulated LiD polarised samples. 3 NMR line-shapes were measured for a highly-polarised large 6 LiD target at 2.5 T. 4 6,7 Li MAS NMR spectroscopy was able to characterise lithium stannides—assigned tentatively as LiSn 2 , Li 5 Sn 2 and Li 7 Sn 2 . 5 Multinuclear ( 6,7 Li, 23 Na, 27 Al, 31 P) NMR spectra were used to establish the structure of Li + and Na + incorporated into super-sodalites, i.e. M 2 M 0 7 (PO 4 ) 12 4(tren) M(H 2 O) 16 , where tren = tris(2-aminoethyl)amine, M = Li, Na, M 0 = Al, Ga. 6 A 7 Li NMR study has been made of lithium-doped poly(ethylene glycol) distearate, giving evidence on local ordering patterns. 7 7 Li NMR spectroscopy was used to examine the effects of electrochemical cycling on Li + ions in the transition metal layers in layered Li/Ni manganate. 87 Li MAS NMR was used to probe the structure of lithiated MnO 2 —especially the Li + environments. 9 Layered samples of Li x CoO 2 (x = 1.0, 1.05 or 1.1) were charac- terised by 7 Li MAS NMR. 10 Complex formation by Li + with pyridinium derivatives of calix[4]arenes was investigated by 1 H and 7 Li NMR spectroscopy. 11 7 Li MAS NMR was used to study the nature and surroundings of Li + in lithium-exchanged X- and A-zeolites. 12 The thermal phase behaviour of Li 2 B 4 O 7 (to 1200 K) was followed by 7 Li MAS NMR. 13 The structures of LiLa 6 I 12 (Z), where Z = Os, Ir, Pt or U, were analysed by 7 Li MAS NMR spectroscopy. 14 Cation distribution in the lithiated spinel Li 4 Ti 5 O 12 was studied by 6,7 Li NMR. 15 Structural studies were also made of A 1x Zr 2x Nb x (PO 4 ) 3 , where A = H, Li; x = 0, 0.02, 0.1, 0.2 ( 1 H, 7 Li, 31 P); 16 and pure and Cr-doped Li 3 VO 4 ( 7 Li, 51 V). 17 The 7 Li MAS NMR spectra of LiTaOMO 4 , where M = Si, Ge, show that tetrahedral lithium coordination is retained through the thermal phase transforma- tions (439 K for M = Si, 231 K for Ge). 18 7 Li NMR spectra were used to characterise Li 1+x Mn 2x O 4 (x r 0.06) and LiNi 0.8 Co 0.2 O 2 electrode materials. 19 Local environments and short-range ordering in LiNi 0.5 Mn 0.5 O 2 were studied by 6 Li MAS NMR spectroscopy. 20 7 Li NMR studies were reported for LiMPO 4 , where M = Mn or Fe. 21 Solid-state 1 H and 7 Li NMR spectra were obtained for a new zeolite inorganic- organic hybrid polymer electrolyte based on Li 3 Fe(CN) 6 , Me 2 SiCl 2 and PEG-600 precursors. 22 7 Li NMR spectra were used to probe the interaction of Li + with Fe and O in mesoporous Li 3 Fe 2 (PO 4 ) 3 . 23 7 Li MAS NMR data for La 2 Sr 2 LiRuO 8 show a non-random distribution of anti-site defects. 24 7 Li and 27 Al MAS NMR spectra were used to determine the structures of aluminium-doped and Al 2 O 3 -coated LiCoO 2 samples. 25 The layered LiCoO 2 pre- pared from acetate precursors was characterised by 7 Li MAS NMR. 26 A similar study probed the spin state of cobalt in over-stoichiometric ‘‘Li 1.1 CoO 2 ’’. 27 6,7 Li static and MAS NMR spectra determined the structures of Li 1z Ni 1+z O 2 phases. 28 Formerly University of Nottingham, School of Chemistry, University Park, Nottingham, UK NG7 2RD 136 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 This journal is c The Royal Society of Chemistry 2007 Downloaded by North Carolina State University on 24 September 2012 Published on 31 October 2007 on http://pubs.rsc.org | doi:10.1039/B614702J

Upload: g

Post on 05-Oct-2016

245 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

Solid state NMR spectroscopy

G. Davidson

DOI: 10.1039/b614702j

1. Structure of solids

1.1. Group 1

1H and 13C CP/MAS NMR spectra were used to characterise the clathrate hydrateH2 + CO2.

1

A depth-controlled b-NMR study has been made of the magnetic properties of 8Liin thin silver films.2 2H, 6Li and 7Li NMR spectra were used to determine the localfield in granulated LiD polarised samples.3 NMR line-shapes were measured for ahighly-polarised large 6LiD target at 2.5 T.4 6,7Li MAS NMR spectroscopy was ableto characterise lithium stannides—assigned tentatively as LiSn2, Li5Sn2 and Li7Sn2.

5

Multinuclear (6,7Li, 23Na, 27Al, 31P) NMR spectra were used to establishthe structure of Li+ and Na+ incorporated into super-sodalites, i.e.M2M

07(PO4)12 � 4(tren) �M(H2O)16, where tren = tris(2-aminoethyl)amine, M =

Li, Na, M0 = Al, Ga.6 A 7Li NMR study has been made of lithium-dopedpoly(ethylene glycol) distearate, giving evidence on local ordering patterns.7

7Li NMR spectroscopy was used to examine the effects of electrochemical cyclingon Li+ ions in the transition metal layers in layered Li/Ni manganate.8 7Li MASNMR was used to probe the structure of lithiated MnO2—especially the Li+

environments.9 Layered samples of LixCoO2 (x = 1.0, 1.05 or 1.1) were charac-terised by 7Li MAS NMR.10

Complex formation by Li+ with pyridinium derivatives of calix[4]arenes wasinvestigated by 1H and 7Li NMR spectroscopy.11 7Li MAS NMR was used to studythe nature and surroundings of Li+ in lithium-exchanged X- and A-zeolites.12 Thethermal phase behaviour of Li2B4O7 (to 1200 K) was followed by 7Li MAS NMR.13

The structures of LiLa6I12(Z), where Z = Os, Ir, Pt or U, were analysed by 7Li MASNMR spectroscopy.14 Cation distribution in the lithiated spinel Li4Ti5O12 wasstudied by 6,7Li NMR.15 Structural studies were also made of A1�xZr2�xNbx(PO4)3,where A = H, Li; x = 0, 0.02, 0.1, 0.2 (1H, 7Li, 31P);16 and pure and Cr-dopedLi3VO4 (

7Li, 51V).17

The 7Li MAS NMR spectra of LiTaOMO4, where M = Si, Ge, show thattetrahedral lithium coordination is retained through the thermal phase transforma-tions (439 K for M = Si, 231 K for Ge).18 7Li NMR spectra were used tocharacterise Li1+xMn2�xO4 (x r 0.06) and LiNi0.8Co0.2O2 electrode materials.19

Local environments and short-range ordering in LiNi0.5Mn0.5O2 were studied by 6LiMAS NMR spectroscopy.20 7Li NMR studies were reported for LiMPO4, whereM = Mn or Fe.21

Solid-state 1H and 7Li NMR spectra were obtained for a new zeolite inorganic-organic hybrid polymer electrolyte based on Li3Fe(CN)6, Me2SiCl2 and PEG-600precursors.22 7Li NMR spectra were used to probe the interaction of Li+ with Feand O in mesoporous Li3Fe2(PO4)3.

23 7Li MAS NMR data for La2Sr2LiRuO8 showa non-random distribution of anti-site defects.24

7Li and 27Al MAS NMR spectra were used to determine the structures ofaluminium-doped and Al2O3-coated LiCoO2 samples.25 The layered LiCoO2 pre-pared from acetate precursors was characterised by 7Li MAS NMR.26 A similarstudy probed the spin state of cobalt in over-stoichiometric ‘‘Li1.1CoO2’’.

27 6,7Listatic and MAS NMR spectra determined the structures of Li1�zNi1+zO2 phases.

28

Formerly University of Nottingham, School of Chemistry, University Park, Nottingham,UK NG7 2RD

136 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

Page 2: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

Similar studies were reported for the spin-chain compound LiCu2O2 in bothparamagnetic and magnetically-ordered states.29

13C-7Li LEDOR NMR data were used to determine intermolecular distances insolid polymer electrolytes formed from LiPF6 in poly(ethylene oxide).30 7Li and 19FMAS NMR spectra were used to identify and quantify LiF in the solid electrolyteinterphase in Li+-rechargeable batteries.31

The b-NMR technique was used to determine the quadrupole moments of20,21Na.32 23Na NMR spectra were used to probe the local order in Na2CsC60,

33

and to characterise the ferromagnets NaFe4Sb12 and Na0.5Co0.5Fe4Sb12.34

Ab initio calculations have been reported, to assign 23Na NMR spectra ofcrystalline sodium compounds, e.g. Na3OCl.35 A 23Na NMR study of the spin–lattice relaxation rate in the paraelectric phase of microconfined NaNO2 showedmarked differences compared to the bulk phase.36

23Na, 27Al and 31P MAS NMR spectra were used to establish structural relation-ships in gels and glasses in the system NaPO3–Al2O3.

37 Multiple-quantum off-magicangle spinning (MQOMAS) results were reported for 23Na in Na2SO3.

38 23Na-1H2-D correlation MQMAS experiments were carried out on powder samples ofsodium citrate.39

23Na NMR data showed the existence of a magnetic phase transition at 88 K forNa0.5CoO2.

40 23Na solid-state NMR spectra were obtained for polycrystallinehydrated cobalt oxides, Na0.35CoO2, in both non-superconducting and supercon-ducting phases.41 A 23Na NMR study of charge ordering was carried out forNaxCoO2, where 0.50 r x r 0.70.42

Complete assignments were proposed for the 23Na, 27Al and 35Cl MAS NMRspectra of the sodalite Na8[Al6Si6O24]Cl2.

43 23Na and 29Si MAS NMR spectra wereable to determine the proportions of different polytypes of the mineral Na4Ti2-Si8O22 � 5H2O (penkvilksite).44 A 23Na NMR study of NaVGe2O6 shows a phasetransition at 18 K.45

Cation environments in Na2O–B2O3 glasses were investigated by 23Na NMRspectroscopy.46 23Na,27Al and 31P 1-D and 2-D NMR spectra were used todetermine the AlPO4 framework structure in Na2O–AlPO4 gels and glasses.47 Thesodium environments in the sodium silicate and phosphate glasses (1 � x)Na2O �xK2O � 2SiO2 and xNa2O � (100 � x)P2O5 were probed by 23Na MQMAS NMRspectra.48,49

23Na and 125Te MAS NMR spectra gave information on the structure andcrystallisation properties of sodium tellurite glasses xNa2O � (1 � x)TeO2, where0.075 r x r 0.4.50 23Na, 31P and 133Cs double-resonance (TRAPDOR) NMRspectra were reported for a series of samples xCs2O � (56 � x)Na2O � 44P2O5, wherex = 0–40.51

The structural properties of KB6 were studied by 11B and 39K MAS NMRspectroscopy.52 Quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) methods gavethe first observed solid-state 39K NMR spectra of organometallics such as CpK andCp*K.53 39K and 87Rb NMR spectra were used to characterise the pyrochloresuperconductors MOs2O6, where M = K or Rb.54

A 39K NMR study has been reported of phase transitions in a single crystal ofKNO3 in the temperature range 100–365 K.55 The satellite-transition MAS(STMAS) technique was used to obtain 39K NMR data for K2SO4 (arcanite) and25Mg NMR data for Mg(OH)2 (brucite).56 An NMR study (1H, 39K) has beencarried out on the ferroelastic phase transition for K3H(SO4)2.

57

Hyperbolic secant (HS) pulses were used to enhance intensity in 87Rb MQMASexperiments on RbNO3 powder.

58 87Rb NMR data were obtained for RbOs2O6—asuperconducting pyrochlore-type oxide.59

Time-dependent 133Cs NMR spectra on the type II germanium clathrate Cs8Ge136gave evidence for the formation of Cs–Cs bonds involving caesium atoms in adjacentGe cages.60 29Si and 133Cs MAS NMR data for Cs2(UO2)(Si2O6) were consistentwith the X-ray crystal structure.61 133Cs NMR experiments showed phase transitions

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 137

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 3: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

near 325 K and 360 K for Cs2CaCl4 single crystals.62 A 133Cs NMR study of a single

crystal of Cs2CuCl4 showed different quadrupole coupling constants for the twonon-equivalent Cs+ ions.63

1.2 Group 2

Solid-state 27Al NMR spectra were used to determine the temperature dependence ofthe aluminium site distributions in a BeAl2O4:Cr crystal.

64

b-NMRmeasurements on 31Mg gave values for the spin and magnetic moments.65

A very high magnetic field (16.4 T) enabled natural-abundance 25Mg MQMASNMR data to be obtained for a range of samples, including MgO and Mg(OH)2.

66

DFT calculations have been made of 17O and 25Mg NMR chemical shifts in solidMgO.67

13CP/MAS NMR spectra were used to characterise magnesium aluminium layereddouble hydroxides and intercalated species.68 Solid-state NMR spectra were able tocharacterise mesoporous MgAl2O4 catalyst supports.

69 13C solid-state NMR spectrawere used to characterise [Mg(1,3-pdta)]2� and Ca(H2O)3Ca(1,3-pdta)(H2O), where1,3-pdta = 1,3-propanediaminetetra-acetate.70

The effects of Ca2+ concentration on conformational transitions in silk fibroinwere followed by 13C CP/MAS NMR spectroscopy.71 43Ca MAS NMR experimentsgave local structural environments in a range of compounds, e.g. CaO, CaS, CaH2,CaCl2, CaMO4 (M = Mo,W), CaZrO3 etc.

72 43Ca NMR spectroscopy was used tostudy the effects of changing O and Ca contents in superconducting (La1�xCax)(Ba1.75�xLa0.25+x)Cu3Oy.

73 19F and 29Si MAS NMR spectra of a mould fluxaluminosilicate glass containing F� and Ca2+ showed that F–Ca (and not Si–F orAl–F) species were present.74

87Sr MAS NMR spectra were used to probe electric field gradients aboutstrontium in cubic and octahedrally symmetric SrO, SrF2 and SrCl2 samples.75,76

1H and 2H solid-state NMR spectra were used to probe the structure ofBa2In2O4(OH)2.

77 Solid-state NMR (47,49Ti, 87Sr, 137Ba) spectra were reported forthe perovskites BaxSr1�xTiO3, where 0 r x r 1.78 High-speed 19F MAS NMRspectra for BaF2–ZrF4 glasses showed the presence of 3 unique fluorine environ-ments (one bridging, 2 non-bridging).79

1.3 Group 3

The 27Al NMR spectra of 0.88ZrO2 � (0.12 � x)Sc2O3 � xAl2O3 confirm that Alreplaces Sc in the structure.80 The 45Sc NMR spectrum of Sc-ZSM-5 zeolite showsthe presence of a single Sc3+ environment.81 31P and 45Sc MAS NMR spectrawere obtained for 4 scandium phosphate-based structures, including[(H3NC2H4NH3)3][Sc3(OH)2(PO4)2(HPO4)3(H2PO4)].

82 A detailed study of localenvironments around P, F and Sc atoms in (C6H14N2)Sc4F2(PO4)4 � 4H2O involved19F, 31P and 45Sc MAS, and 45Sc MQMAS, NMR spectra.83 29Si MAS NMRspectroscopy was used to characterise glasses in the systems M–Si–Mg–O–N, whereM = Sc, Y �La, Nd, Sm, Gd, Yb or Lu.84

A 1H NMR study of YH3 and LuH3 gave evidence for pseudopolar and indirectexchange mechanisms.85 11B NMR spectroscopy was used to characterise YB4 andYB6 samples.86 The 11B, 29Si and 89Y NMR spectra of M5Si2B8, where M = Y, Sm,Gd, Tb, Dy or Ho, showed the expected number of signals due to distinct crystal-lographic sites.87 Superconducting YNi2B2C was investigated by 11B NMR spec-tra,88 and Y2Si4N6C by 13C MAS NMR.89

51V and 89Y MAS NMR spectra were reported for M0.99Er0.01VO4, where M= Yor Lu.90 27Al and 29Si MAS NMR studies were used to determine the networkstructure of Y–Ca–Mg–sialon glasses.91 89Y MAS NMR spectra characterisedY2SiO5 and polymorphs (a, b, g, d) of Y2Si2O7.

92 The solid solutions b-Y2Si2O7-b-Lu2Si2O7 were investigated using 29Si MAS NMR spectroscopy.93

138 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 4: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

31P CP/MAS NMR spectra were reported and discussed for (NH4)11[LnIII(P-

Mo11O39)2], where Ln = all lanthanides except Pm.94 13C CP/MAS NMR data werealso obtained for the lanthanum(III) complex of a benzo-15-crown-5-[60]fulleropyr-idine.95 Solid state 13C NMR spectra were used to characterise solid La, Ti and La/Ti citrate complexes.96 The perovskites LaGaO3 and La1�xSrxGa1�xMgxO3�x werestudied by 69,71Ga and 139La NMR spectroscopy.97

17O MAS and 3QMAS NMR spectra for La2Mo2O9 gave evidence for threedistinct oxygen sites.98 There was evidence from 55Mn and 139La solid-state NMRspectra for electron-hole exchange for La0.7Mn1.3O3.

99 High-field 139La NMRspectra were used to follow the phase behaviour for phase-separated La1�xSrx-

CoO3.100

A 17O NMR study has been made of the inhomogeneous electronic states ofcrystalline La2�xSrxCuO4, where x = 0.035, 0.05, 0.07, 0.115, 0.15.101 High-resolution 15N, 17O, 27Al and 29Si MAS NMR spectra of La3Si3Al3O12N2 gaveinformation on the glass to crystal transition, and revealed (Si, Al) and (O, N)disorder.102

31P solid-state NMR was used to characterise the lanthanide phosphate nano-crystals LnPO4 � xH2O, where Ln = Ce, Tb or Eu; x B 0.7.103

The 31P NMR spectrum for the filled-skutterudite structure PrFe4P12 reveals aphase transition near 6.5 K.104 An NMR study has been reported for electron-dopedsuperconductors Pr2�xCexCuO4 and Sr0.9La0.1CuO2.

105 A 11B spin–lattice relaxationstudy of Nd3+-doped alkali borate glasses was used to probe the nature of thelanthanide site.106 31P MAS NMR spectra were used to study luminescent materialsbased on lanthanides (Eu, Tb, Sm, Dy) and a mixed zirconium phenyl- andm-sulfophenyl-phosphonate.107

121,123Sb NMR measurements gave evidence on ordering in YbSb.108,109 Structur-al transformations in YbInCu4 were followed by 115In NMR spectroscopy at highpressures.110 NMR studies were also reported for the phase YbCu5.

111

235U NMR data were reported for USb2 (antiferromagnetic).112 A 235U NMRstudy has been made of 235U-enriched UO2—showing evidence for ferromagneticbehaviour near 1 GPa.113 A 31P NMR study has been made of the filled skutteruditecompound UFe4P12.

114 The magnetic structure of UNiGa5 was investigated by69,71Ga NMR.115 A 195Pt NMR study was reported for the superconductor UPt3.

116

A theoretical analysis has been carried out on 17O NMR parameters for NpO2.117

An experimental 17O NMR study of NpO2 at temperatures below 26 K showed thepresence of two inequivalent oxygen sites.118 238,239Pu MAS NMR spectra werereported for highly-radioactive ceramic samples containing 5–10% Pu.119

1.4 Group 4

29Si CP/MAS NMR spectra were used to characterise the catalyst [C5Me4-Si(CH3)2NPh]TiCl2 tethered to the interior pore surface of p-aminophenylsilyl-functionalised mesoporous silica materials.120 The titanium(IV) complexesTi(OiPr)Cl3(thf)(PhCOR), where R = H, Me, Ph, show relative bonding abilitiesMe 4 H 4 Ph.121

1H MAS NMR spectroscopy was used to characterise amorphous hydrous TiO2

particles.122 29Si MAS NMR spectra showed the formation of Ti–O–Si units intitania–silica composite materials.123 Techniques to enhance the sensitivity of 47,49TiNMR spectra were reported, and applied to TiO2 and BaTiO3.

124

The coordination environments in the glasses 50Li2O � xSnO2 � (10 � x)-TiO2 � 40P2O5, where 0.0 r x r 10, were examined by 31P MAS NMR spectro-scopy.125 31P solid-state NMR data were also reported for a TiO2 semiconductorwith molecules bearing phosphonic groups,126 and for lipotechoic acid bound to aTiO2 surface.

127

NMR data (Ti and Sr) were reported for 18O-enriched SrTiO3—showing dis-ordered Ti atoms in the cubic phase.128 Lattice disorder in MTiO3 (M = Sr or Ba)

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 139

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 5: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

was also studied by 47,49Ti NMR spectra.129 MAS NMR spectra were used to obtainstructural information on nanopowder BaTiO3 samples.130 Orbital fluctuations inthe ground state of YTiO3 were examined by 47,49Ti NMR spectroscopy.131

1H MAS NMR spectra for HTiMO5 (M = Nb, Ta) and HTi2NbO7 nanosheetssuggest that Ti(OH)M bridging groups act as strong Brønsted acid sites.132 Oxide/fluoride ordering in the ferroelectrics Bi2TiO4F2 and Bi2NbO5F was studied by 19FMAS NMR spectroscopy.133 13C MAS NMR data were reported for Na6[Ti(C6H4.5O7)2(C6H5O7)].

134 17O and 29Si MAS NMR spectra were used to determinethe structures of amorphous (TiO2)x(SiO2)1�x (x = 0.08, 0.18, 0.41) materials.135

Structural determinations for {[Ti2O2][ENb12O40]}12� and {[Nb2O2]-

[ENb12O40]}10�, where E = Si or Ge, were carried out using 1H, 23Na and 29Si

MAS NMR spectra.136 31P CP/MAS NMR spectroscopy was used to characterise alayered titanium phosphate Ti2(H2PO4)(HPO4(PO4)2 � 0.5(1-methylpiperazine).137

The phase composition of Na4Ti2Si8O22 � 5H2O was established by 23Na and 29SiMAS NMR spectra.138

The structure of T8O10(citrate)4(H2O)12 was established by 13C CP/MASNMR.139 29Si NMR spectra of polymetallasiloxanes (M = Ti or Zr) were used instructural characterisation.140 A CP/MAS NMR study has been carried out on thesurface organic groups in Ti16O16(OEt)32.

141 29Si MAS NMR spectra were able todetermine the structure of highly-ordered MCM-41 titanosilicates, with Ti/Si ratiosof up to 1.142

1H NMR data were reported for cubic e-ZrH2 and non-stoichiometric tetragonald-ZrH2.3.

143 1H double-quantum solid-state NMR spectra were used to characterisethe surface zirconium hydrides (RSiO)3Zr–H and (RSiO)2ZrH2.

144

31P MAS NMR spectra were used to characterise a thermally stable hexagonalphosphate—with evidence for (Zr–O)PO3, (Zr–O)2PO2 and (Zr–O)3PO units.145 17Ostatic and MAS NMR spectra detected bridging oxygen atoms in radiation-damagedzircon, ZrSiO4.

146 23Na and 29Si MAS NMR spectra were reported for Na2M-Si4O11 � 2H2O, where M = Zr or Hf.147

Two-bond correlation NMR experiments were used to determine structures ofZrP2O7 crystalline compounds and disordered phosphates.148 31P MAS NMRspectra were used to characterise g-zirconium benzylphosphonate-phosphates, suchas Zr(PO4)(H2PO4)0.15(Ph–CH2PO3H)0.850.4H2O.149 A 17O NMR study has beenmade of 17O-enriched ZrM2O8 (M = Mo, W).150 13C NMR data were used tocharacterise M4O2(OMc)12 gels, where M = Zr or Hf, OMc = methacrylate.151

19F MAS NMR spectra of binary BaF2–ZrF4 glasses showed one type of bridging,and two types of non-bridging fluorine atoms.152 13C and 29Si MAS NMR spectrawere used to characterise SiO2 modified with Cp2ZrCl2 and (nBuCp)2ZrCl2.

153

1.5 Group 5

51V NMR spectra of Fe2VSi samples gave information on the effects of quenchingand annealing.154

51V MAS NMR spectra for aII-, b- and g-phases of VOPO4 gave values forquadrupole and chemical shift tensors.155 31P and 51V MAS NMR spectra were usedto determine homogeneity in mixed vanadium/titanium phosphates prepared in theVO(OnPr)3/Ti(O

nPr)4/H3PO4 system.15651V NMR spectra were used to characterise VOx species on alumina at high

vanadia loadings.157 Local structures around vanadium atoms in macroporousvanadium oxide foams were established by 51V MAS NMR spectra.158 DFTcalculations gave solid state (MAS) NMR parameters for a range of paramagneticcomplexes, including V(acac)3.

159

23Na, 27Al and 51V NMR imaging gave multidimensional images of polycrystal-line V2O5, Al2O3 pellets etc.160 Vanadia/alumina catalysts for the oxidative dehy-drogenation of ethylbenzene were characterised by solid-state 51V NMR

140 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 6: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

spectroscopy.161 31P and 51V MAS NMR spectra gave information about thestructures of xV2O5 � (100 � x)NaPO3 glasses, where 0 r x r 80.162

A 51V/15N REDOR technique was used to characterise reactive sites in vanadiumoxide supported on silica.163 51V solid-state NMR spectra characterised the structureof V2O5 supported on ZrO2 and modified with MoO3.

164

51V NMR data were used to study the nature of vanadia at the surface of V2O5/Ti-PILC (pillared interlayered clays).165 Similar data were used to elucidate the VV

environment in vanadia and vanadium-molybdenum oxide gales—and to probe theeffects of increased Mo content.166 Na+- and NMe4

+-intercalated speciesM0.3V2O5 � 1.5H2O (M = Na, NMe4) were also studied using 51V MAS NMRspectroscopy.167

51V MAS NMR spectra were used to determine the effects of redox processes onthe lattice structure of MgV2O6, Mg2V2O7 and Mg3V2O8 with incorporated Ca(II) orCu(II) cations.168,169 51V NMR data were reported for the quasi-one-dimensionalalternating chain compound BaCu2V2O8,

170 and for PbNi2�xMgxV2O8, where 0 rx r 0.24.171

The 23Na NMR spectrum of Na2V3O7 at liquid helium temperatures was used toprobe magnetic properties.172 51VMAS NMRwas used to determine the structure ofLi1+xV3O8 � nH2O gel and corresponding xerogels, and to suggest a mechanism fortheir formation.173

The vanadium environments in [VnW12�nO40](3+n)� were determined by 51V MAS

NMR spectroscopy. The chemical shielding anisotropy tensors were sensitive to thenature of the counter-ion.174 The metal-to-insulator transition in BixV8O16, where1.60 r x r 1.80, was studied by 51V NMR spectroscopy.175 51V solid-state NMRdata were obtained for the species [H2V10O28]

4� and [V10O28]6�.176 1H and 51V NMR

spectra were used to follow epoxidation of olefins catalysed by H15Li4V12B32O84.177

29Si and 51V MAS NMR spectra were used to establish the structure, andespecially the nature of the vanadium sites, in mesoporous V-MCM-41.178 Thehighly-ordered mesoporous molecular sieves V-MCM-48 were characterised using51V MAS NMR.179

17O MQMAS, 31P MAS and 93Nb NMR experiments were used to determine thestructures of mixed network glasses xNb2O5 � (100 � x)NaPO3, where 0 r x r40.180 A structural study of amorphous Nb2O5–SiO2 materials was carried out by17O, 29Si MAS and 93Nb static NMR.181

Two-dimensional solid-state 1H NMR spectra for (RSiO)Ta(QCHtBu)(CH2

tBu)2(RSiOSiR) gave evidence for an agostic C–H interaction with Ta.182

A 93Nb NMR study has been made of disorder in single crystals of KTa0.85N-b0.15O3.

183

1.6 Group 6

53Cr and 99,101Ru NMR studies of SrRu1�xCrxO3, where 0 r x r 0.12, gaveevidence for the presence of Cr3+ and a Ru4+/Ru5+ mixed valence state.184 Thesolid-state 1H NMR spectrum of [Cr3O(O2CPh)6(MeOH)3]NO3 � 2MeOH showsthat the ground state has a total spin value of 1/2.185

Solid-state NMR spectra were used to characterise CoMoCx, CoMoNx andCoMoSx catalysts.186 13C and 29Si MAS NMR spectra confirmed the grafting ofCpMo(CO)3Cl on to MCM-41 and MCM-48 molecular sieves.187 15N CP/MASNMR spectra were used to characterise H2CNMo(N[tBu]Ar)3, where Ar = 3,5–(CH3)2C6H3 and related species.188 13C and 15N CP/MAS NMR spectra werereported for Schiff base MoO2

2+ complexes, e.g. (1) and similar species.18913C 2-D PASS NMR spectra were reported for cis-dioxo-catecholatomolybde-

num(V) complexes, e.g. [NH2CH2NH2CHCH3](H+)3[MoVO2(C6H4O2)2].

190 A sys-tematic NMR study (95,97Mo, 57Fe) has been carried out on (A,A 0)2FeMoO6, whereA,A0 = Ca, Sr or Ba.191 The double perovskites (Sr,Ba,La)2Fe1+yMo1�yO6 werestudied using 95,97Mo NMR spectroscopy.192

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 141

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 7: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

1HMAS NMR spectra of Mo/H-ZSM-15 gave information on interactions betweenMo species and the acid sites of H-ZSM-5.193 95Mo MAS NMR spectroscopy gave animproved analysis of quadrupole interactions in mono- and isopolymolybdates.194

11B solid-state NMR spectroscopy was used to characteriseK6�xHx[Ln(BW11O39)(H2O)] � nH2O, where Ln = Sm, Eu, Tb, Er.195 31P MASNMR spectra of heteropolyphosphatotungstates show that each sample containsseveral species, with different W/P ratios.196 Similar data were used to characteriseK5[M(H2O)PW11O39 (M = Co, Ni),197 and these species supported on amine-functionalised MCM-48.198

1H and 31P MAS NMR spectra were used to study H3PW12O40 immobilised inAl2O3-grafted silica gel and mesostructured SBA-15 silica matrices.199 The phos-phorus environments in CsxH3�xPW12O40 were determined by 31P MAS NMR.200

Solid-state 31P NMR spectroscopy was used to characterise 12-tungstophosphoricacid incorporated into an organised mesoporous silica.201

1.7 Group 7

55Mn and 59Co NMR spectra were used to investigate the Laves phasesTi(Fe1�xMx)2, where M = Mn, Co, Ni, x r 0.6.202

Short-range order in Li[NixMn(2�x)/3Li(1�2x)/3]O2 was investigated by 6LiNMR.203 2H and 6Li MAS NMR spectra gave information on the effect of heattreatment of electrolytic MnO2.

204 A 55Mn and 69,71Ga NMR study has been madeof polycrystalline Pr0.5Ca0.5Mn1�xGaxO3, where x = 0, 0.03.205 Very fast MAS(VFMAS) techniques were used to obtain high resolution solid-state 1H NMRspectra for solid paramagnetic complexes, such as Mn(acac)3.

206

17O and 209Bi NMR spectra were used to determine electron spin correlations inthe charge-ordered states of Bi0.5M0.5MnO3, where M = Ca or Sr.207 A 55Mn NMRstudy was made of ferromagnetic perovskites MNi0.5Mn0.5O3, where M = lantha-nide.208 NMR evidence has been obtained for the presence of a spin-polarised holearrangement in cation-deficient La1�xGaxMn3+d.

209 55Mn NMR measurements onMn12O12(O2CR)16(H2O)4, where R = CH3, CH2Br, solvates showed symmetry-lowering perturbations of the core by hydrogen-bonding interactions involvingsolvate molecules of crystallisation.210

1.8 Group 8

The alloys Fe100�(x+y)SixNby were characterised by 57Fe NMR spectra.211 Atheoretical analysis has been made of the 1H NMR spectrum of the crystallineadduct C60[FeCp2]2.

212 Proton NMR spectra were used to characterise the anionic

142 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 8: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

iron(III) porphyrin 5,10,15,20-tetrakis(2,6-difluoro-3-sulfonatophenyl)porphyrina-toiron(III) chloride immobilised on a silanised kaolinite.213

57Fe NMR spectra were used to investigate the origins of ferromagnetism inZn0.96�xFe0.05CuxO.214 Electronic charge distributions in (A,A0)2FeMoO6, where A,A0 = Ca, Sr or Ba, double perovskites were determined by 57Fe and 95,97Mo NMRspectra.215 The 57Fe and 69,71Ga NMR spectra of gallium-substituted magnetite,Fe3�xGaxO4 (x = 0.05) show that gallium is present at tetrahedral sites.216

29Si CP/MAS NMR spectra were used to characterise nanocomposites Ni0.5Zn0.5-Fe2O4/SiO2.

217,218 57Fe NMR spectra gave information on temperature variations oflocal fields in the ferrite BaFe12O19.

219 Mesoporous (Fe, Al)-MCM-41 was char-acterised by NMR methods.220 NMR studies (including 81Br) were reported for theS = 9 and 10 states of the single-molecule magnet Fe8Br8.

221

The first report has been made of 99Ru solid-state NMR spectra for diamagneticcompounds, e.g. Ru3(CO)12, K4Ru(CN)6, Ru(NH3)6Cl2 etc.

222 A detailed 31P solid-state NMR study (including 1-D and 2-D data) has been made of Ru(Z1-Ph2PCH2CH2OCH3)2(Z

2-en)Cl2—revealing a very complex crystal arrangement.22313C and 31P NMR spectra were reported for the supported catalysts Ru(PS-DVB-CH2OOCCF2CF2CF2COO)(CF3COO)(PCy3)(1,3-dimesityl-imidazolin-2-yli-dene)(QCHPh) and related species (PS-DVB = polystyrene/divinylbenzene-basedsystem).224

29Si and 31P solid-state NMR spectra were reported for inorganic/organic hybridmaterials such as (2).225 The complex trans-[RuIICl2(dmso)(Hind){HNQC(Me)ind}], where Hind = indazole, was investigated by 13 CP/MAS NMRspectroscopy.226

A 99,101Ru NMR study has been made of ruthenium site vacancies in SrRu1�xO3

compounds.227 101Ru NMR spectra gave data on the Knight shift in superconduct-ing Sr2RuO4.

228 Structural and electronic properties of Bi3Ru3O11 and La4Ru6O19

were studied using Ru NMR spectra.229

The phenomenon of s-wave superconductivity in the b-pyrochlore oxide RbOs2O6

was investigated by 87Rb NMR spectroscopy.230

1.9 Group 9

59Co NMR spectroscopy was used to study ultrahigh-quality thin fct-Co films grownon Cu(001),231 and epitaxial fct-Co(001) thin films.232 Similar studies were carriedout on structural modifications of Fe44.5Co44.5Zr7B4 nanocrystals.

233,234

7Li MAS NMR spectra were used to characterise layered LixCoO2 samples(x = 1.0, 1.05, 1.1).235 A 59Co NMR study of NaxCoO2 (0.65 r x r 0.75)shows an absence of long-range magnetic order.236 17O NMR studies have beenperformed on the triangular-lattice superconductor Na0.33CoO2 � xH2O andNaxCoO2 (x = 0.35, 0.70).237 There have been several other 59Co NMR studieson NaxCoO2 species.

238–240 59Co NMR spectra of Ca3Co2O6 showed the presence ofCo3+, low-spin ions at 15 K, in addition to high-spin ions.241

A PPh3-Rh/SiO2 catalyst was characterised by 31P MAS NMR spectroscopy.242

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 143

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 9: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

1.10 Group 10

1H and 13C NMR spectra were used to probe the valence structures of mixed-metalchain compounds [Ni1�xPdxX(chxn)2]X2, where X = Cl, Br; chxn = 1R,2R-cyclohexanedi-amine, 0.0 r x r1.0.243 31CP/MAS NMR spectra gave 31P chemicalshift anisotropies for dihalobis(trialkylphosphine)nickel(II) complexes, (R3P)2NiX2,where X = Cl, Br or I, R = Bz, Cy, CyCH2.

244 31P MAS NMR spectra were able toprobe silicas with bisphosphinoamine linkers, (3), where R = (CH2)3Si(OEt)3 or(p-C6H4)Si(OEt)3.

245

Natural abundance 13C and 15N CP/MAS NMR studies have been made of Ni(II)and Zn(II) complexes of dialkyldithiocarbamates.246 13C CP/MAS NMR data wereused to characterise M[S(S)COR]2, where M = Ni, 63Cu, 65Cu; R = Et, iPr, iBu,sBu, C5H11.

247

31P CP/MAS NMR spectra were used to determine the solid structures ofPdCl2(L)2, where L = (4) or its 3- or 4-isomers.248 The 31P NMR spectra ofPd2(SnCl3)Cl(dppm)2, Pd2Cl2(dppm)2, Pd2(SnCl3)2(dppm)2 on porous Vycorglass—showing a range of interactions between adsorbed complexes and the glass.249

High-resolution solid-state 31P (CP/MAS) NMR data were reported for a range ofPd(II) complexes, e.g. trans-PdX2(PR3)2, where X = Cl; R = Ph, Cy, Et; X = Br, R= Ph. 1J(105Pd,31P) values were found to be very sensitive to the nature of the transligand, and therefore useful in determining geometry.250

A 195Pt NMR study of octanethiol-protected platinum nanoparticles gave evi-dence for size effects.251 29Si and 195Pt NMR spectra of alloys CePtSi1�xGex (x = 0,0.1) gave evidence for local inhomogeneity.252 119Sn and 195Pt MAS NMR spectrawere reported for MPtSn, where M = Ti, Zr, Hf, Th.253 2H and 195Pt solid-stateNMR spectra of nanocapsules of e.g. phosphatidyl-choline/cisplatin were re-ported.254

The 31P MAS NMR spectra of [Pt2X(P2O5H2)4]4�, where X = Cl, Br or I, were

used to determine the valence structure of the platinum atoms in –X–Pt–Pt–X–Pt–Pt–X– chains.255 31P MAS and double-quantum filtered 31P MAS NMR spectragave a complete description of the 31P spin-behaviour in polycrystalline (5).256 A 1Hand 13C solid-state NMR study has been made of metallic behaviour and molecularmotions in a one-dimensional –Pt–Pt–I complex, [Pt2(CH3CS2)4I]n.

257

144 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 10: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

1.11 Group 11

A 27Al and 63Cu solid-state NMR study of the metallic glass Zr59Cu20Al10Ni8Ti3 hasbeen carried out.258 2D and 63Cu NMR spectra of hexagonal copper hydride anddeuteride CuH(D)x, where x B 0.8, gave no evidence for H/D self-diffusion.259

A 1H NMR study of k-(ET)2Cu2(CN)2 shows no evidence of a magnetic transitiondown to 30 mK.260 13C NMR spectroscopy gave evidence for a phase transition near18 K for k-(BEDT-TTF)2Cu[N(CN)2]Br, where BEDT-TTF = bis(ethylenedithio)-tetrathiafulvalene.261

Copper NMR spectra were used to obtain evidence for two-step phase separationin Nd0.85Cu0.15CuO4�d.

262 63Cu NMR studies were made on Bi2Sr2�xLaxCuO6+d,where x = 0, 0.15, 0.25, 0.40 or 0.65.263 Magnetisation properties of SrCu2(BO3)2were followed by 11B NMR spectroscopy.264 The 65Cu zero-field (ZF) NMRspectrum of YBa2Cu3O6.5 with inserted water vapour showed three different copperresonances.265 A analysis of NMR data was carried out for powdered VBa2-Cu4O8.

266 Copper NMR studies reveal the co-existence of antiferromagnetic orderand superconductivity in HgBa2Ca4Cu5Oy.

267

63Cu NMR spectra of CuO2 chains were obtained for Sr13LaCu24O41 andSr14Cu24O41.

268 17O and 63Cu NMR spectra were used to characterise Sr14�xCax-Cu24O41, where x = 0 or 12.269

Electronic properties of CuFe2S3 were studied by 63,65Cu NMR spectroscopy.270

High-resolution copper NMR spectra were used to study the metal-insulatortransition of CuIr2S4.

271 13C and 15N CP/MAS NMR spectra were used tocharacterise ML(S2CNR2)2, where M = Cu, Zn, L = hexamethyleneimine, R =Me, Et, R2 = (CH2)4O.272 31P CP/MAS NMR spectra were used to studyinteractions of synthetic chalcolite surfaces with K[S2P(OEt)2]. The species wasidentified by comparison with the Cu6

I[S2P(OEt)2]6 cluster.273

31P MAS NMR spectra were obtained for [CuX{Cp2Mo2(CO)4(m,Z2:Z1:Z1-

P2)}]N—the data were analysed using DFT calculations on related model com-pounds.274 A structural study of NH4CuCl3 was carried out at low temperatures by14N NMR spectroscopy.275 The solid-state 31P NMR spectra were obtained for(CuI)8P12�xAsx, where x = 2.4, 4.2, 4.8, 5.4 or 6.6. For x = 4.8, there was evidencefor 31P–35As coupling and site disorder.276

Solid state 13C NMR spectra were reported for the polymer electrolyte poly(2-ethyl-2-oxazoline)/AgCF3SO3.

277 109Ag MAS NMR data were obtained for AgNO3,AgNO2, Ag2SO4, AgCO3, AgCl, AgBr, AgI etc.278 109Ag CP/MAS NMR spectra for[Ag(NH3)2]2X, where X= SO4, SeO4, and [Ag(NH3)2]NO3 were used to characterisethe almost linear cation.279

Phase transitions in the crystalline ion conductor Ag7P3S11 (a- and g-phases) werefollowed by 31P and 109Ag NMR.280 13C and 15N CP/MAS NMR spectra werereported for [Ag(S2CNR2)]n (R = Me, Et), Ag6(S2CNPr2)6 and Ag(S2CNBu2).

281

13C and 29Si CP/MAS NMR spectra were used to study silver thiolate complexesgrafted on to a silica surface.282

31P solid-state NMR spectroscopy was used to characterise the clustersAux(PR2)y, where R2 = Mes2, PhMes, Cy2 or tBu2, and to study the interactionof phosphido ligands with a gold surface.283

1.12 Group 12

13C CP/MAS NMR data were obtained for (1R,2R)-[cyclohexylenebis(5-chloro-salicylideneiminato]zinc(II).284 27Al MAS NMR spectra were used to characterise aZn, Al layered double hydroxide (Zn/Al = 1.45) containing nitrate ions.285

1H and 13C solid-state NMR spectra have been reported forZn3(OH)(bdc)2 � 2DEF, where DEF = N,N0-diethylformamide, H2bdc = 1,4-ben-zenedicarboxylic acid.286 The 31P and 113Cd MAS NMR spectra of M(O2PPhFc)2,where M = Zn, Cd, Fc = ferrocenyl, were consistent with high molecular

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 145

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 11: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

symmetry.287 Variable-temperature 1H NMR spectra show a phase transition near300 K for (EtNH3)2ZnBr4.

288

113Cd MAS NMR spectra for model cadmium chlorines show five-coordination atthe cadmium. The three-dimensional structures were also probed by 13C–13Ccorrelation experiments.289 113Cd MAS NMR spectra were obtained for CdL2,where HL = 1,3-thiazolidine-2-thione.290 1H and 19F NMR spectra were used tostudy phase transitions in [Cd(H2O)6](BF4)2.

291

13C and 113Cd MAS NMR spectra were reported for (NH4)[Cd(C6H5O7)(H2O)] �H2O, where C6H5O7 = citrate.292 The 113Cd NMR spectra of leaves ofthe cadmium-accumulator Thlaspi caerulescens show that the active ligand ismalate.293 111Cd chemical shifts for Cd(L)(H2O)3, where L = 2,3-, 2,4-, 2,5- or2,6-pyridine dicarboxylate, were obtained from 111Cd NMR spectra.294

The 13C, 31P and 113Cd CP/ MAS NMR spectra were used to probe the solid-statestructures of O,O0-dipropyl- and O,O0-dibutyldithiophosphate cadmium(II) com-plexes.295 The structure of Cd2[(HO3PCH2)4C6H2] was determined using 31P and113Cd NMR spectra.296 31P and 113Cd CP/ MAS NMR spectra were obtained for[{Cd2(Cl2CP2O6)(H2O)4} �H2O]n.

297 111Cd NMR data were reported for the super-conducting state of Cd2Re2O7 (near 1 K).298 111,113Cd and 123,125Te NMR signalswere obtained for CdTe, showing increased signal intensity upon near-band-gapillumination.299

13C and 199Hg MAS NMR spectra were used to characterise(PPN)[Hg(CN)2Cl] �H2O, (nBu4)[Hg(CN)2Cl] � 0.5H2O and related species.300 31PMAS NMR and 1H-31P CP/ MAS NMR spectra for [Hg(PBz3)2]

2+,[Hg(PBz3)2(NO3)2] and [HgX(NO3)(PBz3)], where X = Cl, Br, I, SCN, gave detailedstructural information.301 Solid-state 19F and 31P NMR spectra were obtained forsingle-crystal Hg2PO3F.

302 High-resolution 199Hg MAS NMR spectra were used todetermine the oxygen order in mercury-base cuprate superconductors (Hg-1201,Hg-1223).303

1.13 Group 13

1.13.1 Boron. Precise measurements have been made of the magnetic moment forthe short-lived b-emitter 12B.304 11B NMR measurements have been reported forsuperconducting Li2Pd3B.

305 11B MAS NMR spectra were used to probe hyperfinemagnetic interactions in MB2, where M = Ti, Zr, Hf or Nb.306 11B solid-state NMRstudies on tetragonal YB4 and cubic YB6 gave information on their electronicproperties.307 The electric field gradient tensor at the B atoms in CaB6 single crystalswas investigated by 11B NMR spectroscopy.308

11B NMR spectra were used to characterise crystalline M2[B10H10].309 The

insoluble salts Me3M+CB11Me12

�, where M = Ge, Sn, were characterised by 11Band 13C CP/MAS NMR spectroscopy.310

11B NMR studies on BN nanotubes showed the presence of paramagnetic metalcatalysts, e.g. a-Fe, Fe2B etc.311 15N solid-state NMR spectra of BN fibres formedfrom a polyborazine showed the presence of borazine rings linked through N–B–Nbridges.312

11B and 15N MAS NMR spectra were used to characterise boron nitridepreceramic polymers prepared by ammonolysis of borazine.313 Solid-state NMRspectra (1H, 11B, 13C, 29Si) were used to follow the thermolysis of [B{C3H6–Si(CH3)NH}]n to form a quaternary Si–B–C–N ceramic.314 A range of 1-D and2-D NMR techniques was used to study the network organisation of the high-performance ceramic SiBN3C.

315

11B and 15N solid-state NMR spectra were used to characterise a poly(aminobor-azine) and its pyrolysis products.316

The structure of the polymeric reaction product of boric acid with the poly-saccharide guaran (a major component of guar gum) was investigated by 11B MASNMR spectroscopy.317

146 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 12: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

DFT calculations were made of NMR parameters for cluster models of boronoxide glasses.318 11B NMR spectroscopy at high pressures was used to follow thephase behaviour of B2O3 glass (to 6 GPa).319 11B NMR data show that vitreous B2O3

contains mainly planar B3O6 rings.320 A high-pressure 11B NMR study of B2O3 glass

indicates that there is an increased percentage of four-coordinate boron at increasedpressures.321

A high-resolution solid-state NMR study has investigated the reaction of alkalineearth oxides with B2O3, Al2O3, SiO2 and P2O5 glasses.322 Boron species present incaesium borate glasses were identified by REDOR 11B solid-state NMR.323 19FNMR spectra were used to probe the structures of glasses in the systems MB2O4–PbF2 and MB2O4–LiF (M = Zn, Cd or Hg).324

11B MAS NMR spectra and DFT calculations gave refinement of boratestructures, e.g. Li2B4O7, Mg2B2O5 etc.325 The boron-containing species in boron-modified mordenite were studied by 2-D 11B 3Q- MAS NMR spectroscopy.326 11BMAS NMR spectra were used to analyse borate-pillared layered double hydroxidesderived from Mg0.67Al0.33(OH)2(CO3)0.165 � 0.62H2O.327

11B and 27Al MAS NMR spectra were used to study the structures of B2O3/Al2O3

mixed oxide systems.328,329 17O 3Q- MAS NMR spectra were used to determine siteconnectivities in sodium aluminoborate glasses, involving BO3, BO4, AlO4, AlO5

and AlO6 units.330 11B, 27Al and 29Si MAS NMR spectra were used to study thestructures of mixed alkali (Na/K) aluminoborosilicate glasses.331,332

Solid-state 11B, 27Al, 29Si and 207Pb NMR spectra gave information on localstructures in amorphous (PbO)x[(B2O3)1�z(Al2O3)z]y(SiO2)y dielectric materials (y=(1 � x)/2).333 There have been several NMR studies of structure and bonding inborosilicate materials.334–340 11B MAS NMR spectra for LaBGeO5 included reso-nances from planar BO3 and tetrahedral BO4 units.

341 MAS NMR spectra were usedto characterise lithium lead borate glasses xLi2O � 20PbO � (80 � x)B2O3.

342

11B{31P} and 31P{11B} REDOR NMR spectra were used to determine siteconnectivities in silver borophosphate glasses.343 A very detailed solid-state NMRstudy (11B, 17O, 31P), including 17O, 11B MQ-MAS, 11B-31P HETCOR and 11B{31P}REDOR experiments, was used to determine the structures of sodium borophos-phate glasses.344 Several other NMR studies gave information on structures ofother borophosphate systems.345–349 11B MAS NMR spectra for glasses xSb2O3 �(1 � x)B2O3 (0 r x r 0.8) were used to determine proportions of 3- and4-coordinate boron.350

11B MAS NMR spectroscopy was used to study the structures of glasses30(Li,Na)2O � xB2O3 � (70 � x)TeO2, where 20 r x r 50.351

A structural study of 30Na2O � (70 � x)B2O3 � xNd2O3 glasses (x = 0, 0.1, 0.5, 1)used 11B NMR spectra.352 High-resolution 11B NMR spectra were able to identifythe structures of BaO–B2O3–TiO2 amorphous and crystalline powders.353

DFT calculations gave 11B, 27Al and 29Si NMR data for zeolite active sites,showing the effects of B and Al substitution in the zeolite framework.354 11B and 27AlMAS NMR spectra were used to follow the hydrothermal transformation of porousglass granules into ZSM-5 granules.355

1H/11B and 1H/27Al TRAPDOR, 31P MAS and 31P/27Al TRAPDOR NMRexperiments gave detailed structural information for acid sites on the BF3/g-Al2O3

alkylation catalyst, in the absence and presence of adsorbed PMe3.356

1.13.2 Aluminium

NMR measurements have been made of the magnetic moments of 30Al and 32Al.35727Al NMR data gave chemical shifts and spin–lattice behaviour for FeAl2.

358 Thelocal electronic properties of Al3M (M = Zr, Hf) were established using 27Al solid-state NMR.359 Similar experiments gave information on the electron spin behaviournear Al atoms in CeNi2Al5,

360 and on structural features of a decagonal

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 147

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 13: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

Al72.6Ni10.5Co16.9 quasicrystal.361 29Si MAS NMR spectra probed the structures of

aluminium silicon nitride materials such as Al2Si1.8N8.7C1.3H11.6.362

2H and 27Al NMR spectra were measured for polycrystalline (AlH3)n and (AlD3)n,giving values for asymmetry (Z) and quadrupole coupling constants.363 27Al MASNMR spectroscopy was used to study the coordination properties of alkyl-alumi-nium co-catalysts on a novel SiO2-supported Ziegler–Natta catalyst.364

27Al MAS NMR spectra were used to follow phase transformations in mesopor-ous Al2O3.

365 High-surface area alumina aerogels were characterised by 27Al MASNMR and 3Q MAS NMR spectra.366 27Al MAS NMR spectra were used to studynanoporous alumina membranes of differing pore sizes, containing 8–11 SiO2.

367

27Al MQ MAS NMR spectra were used to analyse local structures in porousalumina, showing that AlO4, AlO5 and AlO6 units were all present. The first twowere in the outer, the last in the inner surface layers.368 The species Ni–Al–CO3 on ag-Al2O3 surface was characterised by 27Al MAS NMR spectroscopy.369 27Al and 29SiMAS NMR spectra were obtained for alumina and amorphous silica-alumina-supported NiW (or Mo) HDS catalysts.370 MAS NMR spectra were used to probethe Ni-loading on Mg–Al mixed oxide particles.371

27Al solid-state NMR spectroscopy was sued to characterise crystalline a-, g- andd-forms of AlQ3 (HQ = 8-hydroxyquinoline) as well as the amorphous form.372

Multinuclear MAS NMR (1H, 13C, 27Al) data were used to determine the structuresof powdered [R2Al(m-Othf)]2 and related species (R = Me, Et, iPr; HOthf =tetrahydrofurfuryl alcohol).373 31P MAS NMR spectra of Al3+/POPC, where POPC= 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, showed close coordination ofAl3+ with the phosphorus.374

A 27Al MQ/MAS NMR study has been made of the structure of [Al8(OH)14-(H2O)18](SO4)5 � 16H2O.375 The effects of pyrogallol on Al13 species formation wereobserved by 27Al solid-state NMR.376 MAS NMR spectra were used to characteriseZn–Al layered double hydroxides intercalated by terephthalate and biphenyl-4,40-dicarboxylate.377 The 27Al MAS NMR spectra of hollow spheres of Si/Al compositeoxides showed the presence of four-coordinate aluminium units.378 Similar data gaveinformation on the coordination geometry of aluminium in granulated blast furnaceslag.379 27Al and 29Si MAS NMR data were used to determine the nature ofaluminium species in soil environments.380 Inorganic matter in natural coals wasdetermined by 27Al 3Q-MAS NMR.381 27Al and 29Si MAS NMR spectra were usedto follow phase transformations in calcined coal-type kaolinite.382 2H, 23Na and 27AlMAS NMR spectra elucidated the structural properties and mechanism of alumi-nium incorporation in metakaolin-based geopolymers.383

1H, 27Al and 29Si MAS NMR spectra characterised steamed and acid-leachedmordenite, giving evidence for the presence of Al(OH)3 �H2O.384 27Al MAS NMRspectroscopy showed the presence of two different four-coordinate aluminium sitesin an illite-smectite clay sample.385 Characterisation of rehydrated Mg–Al hydro-talcites was achieved by 27Al MAS NMR spectroscopy.386

27Al high-speed spin-echo MAS and MQ/MAS NMR were used to characteriseframework and extra-framework aluminium species.387 27Al MAS NMR data werereported for pillared high-layer charged synthetic saponite.388 Similar data for‘MgAlON’ spinel solid solutions showed three different aluminium structuralenvironments.389

Volcanic glasses were structurally characterised by 7Al and 29Si MAS NMR.390

Structural ordering was assessed by 29Si MAS NMR for aluminosilicate geopolymergels.391 Geopolymer formation involving a range of silicates was investigated by 27Aland 29Si MAS NMR spectra.392 Similar studies were made of geopolymers such asmetakaolin.393

A theoretical analysis of 27Al and 29Si chemical shifts for aluminosilicate glassesand crystals was related to T–O–T bond angles.394 29Si MAS NMR spectra foramorphous aluminosilicates were used to test the results of a statistical thermo-dynamic model for Al/Si ordering.395 Aluminium materials including

148 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 14: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

aluminosilicates were characterised in soil samples by 27Al and 29Si MAS NMR.396

Several other studies of aluminosilicates were reported.397–403

Ab initio calculations were made of 1H, 17O, 27Al and 29Si chemical shifts formodel systems of NaAlSi3O8, H2O–NaAlSi3O8 glasses.

404 The 17O solid-state NMRspectrum of CoAl2Si2O8 glass shows two types of oxygen site that are not present inthe crystalline material.405 27Al MQ-MAS NMR spectra were used to establish thealuminium environments in glasses prepared from the CaO–Al2O3–SiO2 system,showing both five- and six-coordinated sites.406

A first-principles calculation gave 17O NMR parameters for a calcium alumino-silicate glass (CaO)0.21(Al2O3)0.12(SiO2)0.67.

407 The crystallisation behaviour of4.5SiO2 � 3Al2O31.5P2O5 � (5 � z)CaO � zCaF2 glasses, where z = 0–3, was followedby 19F, 27Al, 29Si and 31P MAS NMR spectroscopy.408 Similar data were also usedfor the glasses 8SiO2 �Al2O3 � 3.75MgO � 2.25MgF2 �BaO.409

27Al MAS and 3Q-MAS NMR spectra of dealuminated mordenite and amor-phous alumina-silica gave evidence for distorted tetrahedral four-coordination forAl.410 A 29Si solid-state NMR study was reported for the 29Si-labelled nanoalumi-nosilicate imogolite, synthesised from sodium silicate and Al(ClO4)3.

411

A report has been made of the fast acquisition of 29Si 1-D MAS and 2-D 27Al–29SiHETCOR spectra for the new sialon phase Ba3Al3Si9N13O5.

412 27Al MAS NMRspectra gave evidence on the structure of the interface in annealed alumina-zirconia-silicate nano-ceramics.413 There have been several NMR studies on mesoporousaluminosilicates.414–420

27Al and 29Si MAS NMR spectra were used to probe alumina- and amorphoussilica/alumina-supported NiW and NiMo catalysts.421 Samples of the type4.5SiO2 � 3Al2O3 � xNb2O5 � 2CaO were characterised by 27Al and 29Si MASNMR.422 The structures of fluorine-containing glasses 1.5SiO2 �Al2O3 � (0.5/0.25)P2O5 � (1 � z � y)CaO � 0.5CaF2 � zSrO � yNa2O, where x = 0.5, y = 0 or 0.2,z = 0, 0.8, 1.0, were determined by 19F, 27Al, 29Si and 31P MAS NMR spectro-scopy.423 27Al MAS NMR spectra were used to characterise multicomponent glassesSiO2–Al2O3–Fe2O3–CaO–MgO.424

Mesoporous aluminium phosphonates and diphosphonates were studied by 13C,27Al and 31P MAS NMR spectra.425 Structural characteristics of mesoporous AlPO4

glass were determined by 27Al, 31P, 27Al{31P} and 31P{27Al} MAS NMR spectra.42627Al MAS NMR spectra of aluminium phosphates formed from alumina gel andacidic phosphates gave evidence for 4-, 5- and 6-coordinate aluminium sites.427 Anumber of solid-state NMR studies have been made of aluminophosphate molecularsieves.428–434

27Al and 31P MAS NMR spectra were used to probe the short-range structure inglasses (1 � x)Ca(PO3)2 � xAl(PO3)3, where 0 r x r 0.47.435 27Al MAS NMRspectra were used to characterise hydroxyapatite powders Ca10(PO4)6(OH)2, con-taining 0–5 mass% of Al2O3, showing that the Al2O3 remains as such, and does notsubstitute any of the framework ions.436 27Al, 31P MAS NMR and 1H/31P CP/MASNMR data for the three-dimensional open framework aluminophosphate(NH4)2Al4(PO4)4(HPO4 �H2O) show three types of aluminium coordination(AlO4, AlO5, AlO6), with all oxygen vertices attached to framework phosphorusatoms.437

27Al/31P double resonance solid-state NMR techniques (TRAPDOR, REDOR,HETCOR) and 1H/31P CP/MAS NMR spectra gave detailed structural informationfor mesostructured aluminophosphate-based lamellar materials.438 27Al and 31PMAS NMR spectra and 1H/31P CP/MAS NMR data were used to study theevolution of gel phases for AlPO4-14 and MAPO-11 systems.439 Transition metal-containing aluminophosphates were studied by solid-state NMR techniques.440–442

27Al and 31P MAS NMR spectra were used to characterise aluminium fluoro-phosphate glasses prepared by sol-gel methods.443 Similar experiments characterisedsamples in the Na2O–Al2O3–P2O5;

444 NaCaPO4–SiO2 and AlPO4–NaCaPO4–SiO2

systems.445 A 1H/27Al TRAPDOR study has been reported for Brønsted-acid sites in

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 149

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 15: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

the solid acid catalyst SO3/g-Al2O3.446 27Al MAS NMR spectra were used to probe

the structures of Al2O3–TiO2 mixed oxides.447

The 27Al MAS NMR spectra of aluminium-containing mesoporous molecularsieves prepared using H2SiF6 as the silicon source show the presence of Al3+ inisolated tetrahedral sites.448 27Al and 29Si CP/MAS NMR spectra showed thepresence of non-framework five-coordinate aluminium and silanol groups in Na+-and H+-exchanged mordenite zeolites.449 27Al MAS and 3Q-MAS NMR spectrawere used to determine aluminium coordination in dealuminated mordenite zeoliteand amorphous silica/alumina.450

A very large number of solid-state NMR studies have been reported for a range ofaluminium-containing zeolite materials.451–492 27Al MAS NMR spectra were used tocharacterise NiAl-HTLcs/saponite layer composites, where HTLcs = hydrotalcite-like compounds.493

Solid-state 27Al NMR spectra were used to characterise [(RO)P(S)S2]3Al, whereR = Me, Et, nPr, iPr, nBu, sBu, tBu, iamyl, Ph or Cy.494

Hartree–Fock/DFT calculations were reported for 19F and 27Al NMR parametersfor the mineral rosenbergite, AlF[F0.5(H2O)0.5]4 �H2O.495 19F and 27Al solid-stateNMR data were used to detect extra-framework aluminium fluoro-complexes indealuminated H-mordenite.496

27Al MAS NMR spectra were reported for the high surface area AlF3 prepared bysol-gel methods.497 The structure of Al2F8 � 2NC5H6 �C6H3(CO2H)3 was investigatedby 19F and 27Al{19F} MAS NMR—showing the presence of two distinct 6-coordinate aluminium sites.498 19F MAS NMR spectroscopy was used forAlClxF3�x, where x = 0.05–0.3, to characterise the different types of fluorineenvironment.499

1.13.3 Gallium.71Ga NMR data for GaInP2 gave information on electric field

gradients at gallium sites.500 69,71Ga NMR spectroscopies were used to study themagnetic properties of the stabilised d-phase of the Pu–Ga alloy.501

A 14N and 69,71Ga NMR study of GaN thick films gave a detailed assignment ofNMR parameters.502 1H and 71Ga solid-state NMR spectra were used to character-ise GaN powders formed by the reaction of ammonia with several galliumprecursors.503 71Ga MAS NMR spectra characterised nitrogen-deficient GaNpowders.504

23Na, 29Si and 71Ga MAS NMR spectra were used to characterise syntheticgallosilicate molecular sieves, e.g. 6Na2O �Ga2O3 � 10SiO2 � 150H2O.505 The layeredgallophosphate Ga4P4O16(EtNO2)4 (MU-32) was studied by 1H, 13C and 31P MASNMR spectroscopy.506 Similar data were reported for the novel species Ga13(PO4)18(C6H14N)13(C6H13N) � 2H2O

+ � 3H2O.507 31P solid-state NMR was used tocharacterise a new open-framework fluorogallophosphate (MU-28), with the for-mula [Ga20P20O80(OH)6F6(H2O)4(H2L)6] � 8H2O, where L = 1,4-dimethylpipera-zine.508

19F, 31P and 71Ga MAS NMR spectra gave structural information for a hybridopen-framework fluorinated gallium oxalate-phosphate templated by 1,3-diamino-propane.509 The zeolite Ga-MCM-22 was characterised using 29Si and 71Ga MASNMR.510

1.13.4 Indium. Spin–lattice relaxation times were reported for 115In embedded inartificial compounds and porous glass.511 31P, 113In and 115In triple resonance andMAS studies were used to study indirect spin–spin interaction in undoped and Fe-doped InP semiconductors.512 31P{115In} MAS NMR spectroscopy was used toinvestigate shallow donor impurity states of doped InP samples.513 115In NMR datawere reported for CeCoIn5.

514

150 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 16: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

1.13.5 Thallium. Solid-state NMR measurements gave the 1J(15N–205Tl) cou-pling constant (862 Hz) for Tl(Tp(3,4-(CH2)6)).515 205Tl NMR data were used tocharacterise Tl2Ba2CuO6�d at low temperatures.516

13C CP/MAS NMR spectra were used to characterise crystalline [Tl{S(S)COR)]n,where R = Et, iPr, iBu, sBu, Cy, showing structurally equivalent alkylxanthateligands.517 Variable-temperature 205Tl NMR spectra were used to follow phasetransitions in Tl2SeO4 (74–97 K).518

1.14 Group 14

1.14.1 Carbon. 13C and 19F MAS NMR spectra were used to probe the structureof graphite monofluoride, (CF)n, giving evidence for both CF and CF2 groups.51913C and 19F MAS and CP/MAS NMR spectra were able to establish the effects ofheat treatment (100–500 1C) of graphite fluorides.520

13C MAS NMR spectroscopy was used to study orthorhombic and rhombohedralC60 fullerene polymers.521 13C NMR studies on Li4�xNaxC60, where x = 0–4, inhalf-integer steps, intercalated two-dimensional polymers, showed that the chemicalshift is much larger for lithium-rich than for sodium-rich samples.522 The 31P MASNMR spectra of complexes of La@C82 or Y@C82 with hexamethylphosphoramide(HMPA) reveal that the different HMPA molecules do not exchange on a time-scaleof up to 1 sec. 139La NMR data suggest that the paramagnetic La@C82 formsdiamagnetic clusters in such complexes.523

13C MAS NMR spectra were used to study the structures of carbon nanotubesgrown by the catalytic decomposition of acetylene on Fe/SiO2 catalysts.524 Therehave been several reports of solid-state NMR studies on SWCNT,525–527 andMWCNT.528 NMR spectra were used to characterise carbon nanofibres, nanotubes,fullerenes and activated carbons as materials for hydrogen storage.529 13C solid-stateNMR data were reported for hollow, porous carbon nanospheres formed fromoxidised fullerenes.530

The hardness of amorphous carbon nitride was investigated by solid-stateNMR.531 17O MAS NMR spectra of single crystals of squaric acid, H4C4O4, gaveevidence for a paraelectric/antiferroelectric phase transition at 373 K.532

1.14.2 Silicon.29Si NMR spectra were used to study amorphous hydrogen-

containing silicon species from thermal decomposition of SiH4.533 13C and 29Si MAS

NMR spectra were used to characterise near-stoichiometric b-SiC.534 Similar datawere able to determine the microstructure of polymer-derived amorphous siliconcarbide layers (a-SiC:H).535

1H, 13C and 29Si NMR data were used to establish the chemical bonding structureof low-dielectric-constant Si:O:C:H films.536 29Si NMR spectra showed the forma-tion of Si3N4, Si3N2O and SiO2 in Si/C/N/O ceramics from pyrolysed and heat-treated rice hulls.537 29Si and 31P NMR spectra were reported for heavily-doped Si:P(100–500 K).538

(EtO)Si(CH2PPh2)3 and related species immobilised on silica surfaces wereinvestigated by 31P solid-state NMR spectroscopy.539 29Si solid-state NMRspectroscopy was used to characterise trimethylsilyl derivatives of natural sili-cates.540 Resin-bound chalcogenyl silane/germane residues were studied by 1H/29Si2-D MAS NMR spectroscopy.541 29Si CP/MAS NMR spectroscopy was used toinvestigate silicon-substituted polysilane,542,543 and polychloromethylsilane.544 1H,13C and 29Si CP/ MAS NMR spectra were used to characterise insoluble, cross-linked polymers based on [(SiH2NH)3(H3CSiHNH)]n and [(SiH2NH)3(-SiH2NCH3)]n.

545

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 151

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 17: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

13C, 15N and 29Si VACP/ MAS NMR spectra were reported for (6),546 (7)547 andrelated species. 29Si MAS NMR spectroscopy was used to characterise hybridmaterials based on tetraethoxysilane and modifiers such as MeSi(OMe)3.

548,549 1Hand 29Si NMR spectra have been obtained for insoluble polymeric hydrolysates ofPh(MeO)3Si and related systems.550 29Si NMR data were used to follow theformation of siloxane bonds in the polymerisation of MeSi(OEt)3 � py by tantalumor niobium catalysts.551

29Si CP/MAS NMR spectra revealed the structures of sol-gel-derived hybrid gelsformed by the co-hydrolysis of (EtO)4Si and (EtO)3SiR (R=Me, Cy, Ph, C8H17).

552

1H and 13C solid-state NMR spectra were used to characterise an inorganic/organiccomposite material derived from (3-glycidylpropyl)trimethoxysilane andSi(OMe)4.

553 The nano-structured organic/inorganic hybrids (EtO)3Si(CH2)3NH-CONH–(CH2)n–NHCONH(CH2)3Si(OEt)3 were studied by 13C and 29Si solid-stateNMR spectroscopy.554 Such spectra of highly-ordered mesoporous ethenylene-silicashowed the presence of O1.5Si–CHQCH–SiO1.5 units.

555

29Si MAS NMR spectra were used to characterise the a-aminoacid esterrac-PhMe2SiCH2CH(NH)COOEt immobilised on a silica support.556 29Si and 31PNMR solid-state spectra were able to characterise a high-capacity phosphonicacid functional adsorbent formed by co-condensation of oligomers of tetraethoxy-silane and trimethoxysilylpropyl diethylphosphonate.557 29Si MAS NMR spectrawere used to investigate the thermal stability of inorganic/organic hybridmaterials derived from Si(OR)4 and R04�ySi(OR)y, where R, R0 = CnHm

groups.55829Si CP/ MAS NMR spectra were obtained for substituted siloxanes grafted on to

silica beads.559 Several NMR studies have been reported for oligomeric

152 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 18: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

silsesquioxanes.560–562 Molecular ordering in a reactive ladder-like polyhydro silses-quioxane was investigated by 29Si NMR spectra.563

29Si MAS NMR spectra were given for SiO2 particles generated in situ inpoly(dimethylsiloxane) networks.564 Structural characterisation of poly(dimethyl-siloxane) was achieved using 17O MAS NMR spectroscopy.565 1H and 29SiNMR data were used to determine the structure of a poly(dimethylsiloxane) layerat the surface of hydrophilic SiO2.

566 29Si CP/MAS NMR spectra were used tocharacterise poly(aminopropyl/phenyl)silsesquioxane.567 1H solid-state NMRdata were obtained for poly(phthalimide)/poly(dimethylsiloxane) block copoly-mers.568 29Si solid-state NMR spectra characterised a silsesquioxane-urethanehybrid.569

29Si MAS NMR spectra revealed the three-dimensional structures of siloxaneproton conducting membranes.570 NMR spin–spin relaxation measurements weremade on SiO2-filled and unfilled polydimethylsiloxane-polydiphenylsiloxane copo-lymers.571 29Si solid-state NMR data were used to study cubic silsesquioxane-polyimide nano-composites.572 29Si solid-state NMR spectra gave information onorganic/inorganic hybrid materials from an octa(2,3-epoxypropyl)silsesquioxaneand diamines.573

Hybrid organo-silica nanoparticles gave characteristic 12C and 29Si MASNMR spectra.574 29Si CP/MAS NMR spectra were obtained for nano-silica parti-cles.575

29Si NMR spectra were used to characterise bimodal pore structures in silicagels prepared from silicon alkoxides or from water glass.576 Silica aerogels andxerogels formed from a range of precursors were characterised by 29Si MASNMR spectra.577 29Si MAS NMR spectra were used to assess the effects ofammonia/silica molar ratios on the synthesis and structure of bimodal mesoporoussilica xerogel.578

A detailed structural study of silica glass formed from melt has been carried outusing 2-D 17O dynamic-angle spinning solid-state NMR.579 29Si MAS NMR spectrawere used to characterise silica particles in rice-husk ash,580 and supported H2SO4 onSiO2.

581 Solid-state NMR spectra (1H, 13C, 29Si) were used to determine theproportions of Si–OH, Si–OCH3 and Si–CH3 groups in silica aerogels.582 Similarexperiments characterised amorphous SiO2 modified by organic ligands (e.g. 2-mercaptoimidazole).583 A silica gel modified by organotrialkynyl tin compounds wasexamined by 13C and 29Si CP/MAS NMR.584

13C and 29Si CP/MAS NMR spectra for mesoporous organosilica films showthat the basic structural unit is –Si–CH2–CH2–Si–.

585 Similar experimentscharacterised ethane-bridged hybrid mesoporous functionalised organosilicascontaining terminal sulfonic groups.586 Polymer chains grafted on to silicananoparticles were characterised by 29Si CP/MAS NMR.587 1H, 13C{1H} and 29SiMAS NMR spectra were used to study germania-silica hybrid organic-inorganicmaterials.588

29Si solid-state NMR data gave evidence on the nanostructure of SiO2/siliconoxycarbide composites.589 Similar data for polypropylene (PP)/silica compositesshowed a uniform distribution of nano-sized silica networks throughout the PPmatrix,590 were used to characterise sol-gel-derived hybrid nanocomposites, porousisotactic PP/silica,591 and to study the structural effects of doping phosphotungsticacid into a PEG/SiO2 hybrid composite.592

31P MAS NMR spectra were used to establish the acidity of silicas modified withalkylsulfo-acidic groups.593 29Si CP/MAS NMR spectra characterised hypercross-linked surface-confined ultra-stable silica-based stationary phases for use in chro-matography.594

A theoretical analysis has been carried out on the 29Si NMR peaks in alkaliborosilicate glasses—to determine the silicate species present.595 There have beenseveral solid-state NMR studies of alkali silicate glasses and related materials.596–608

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 153

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 19: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

Three structurally distinct protonation sites were observed in the solid-state NMRstudy of apophyllite, a K–Ca-phyllosilicate.609 The 1H MAS NMR spectrum ofK5(UO2)2[Si4O12(OH)] includes a resonance at 14.7 ppm, due to the SiO� � �HOSihydrogen bond.610 Solid state 29Si NMR spectroscopy was used to characterisemagnesium silicate hydrate gels.611

29Si homonuclear and 1H–29Si heteronuclear CP/MAS NMR studies of thestructure of calcium silicate hydrate gave evidence on proton environments in thesilicate chains.612 29Si MAS NMR spectra characterised CaO–ZrO2–SiO2 glasses,

613

calcium silicate structures of a tobermorite-based material,614 and the solubility andstructure of calcium silicate hydrate.615 Solid-state 1H, 13C and 29Si NMR data wereused to characterise layered calcium organosilicate hybrids containing covalentlylinked organic functionalities.616

29Si MAS NMR spectra were used to determine the geometry of stronglyhydrogen-bonded silanols in octasilicate (RUB-18, layered hydrous silicate).617,6181H and 29Si MAS NMR spectra probed the structure of Na3Mg5Si8O21(OH)3,a triclinic, C1, amphibole.619 29Si MAS NMR spectra showed that thepotassium calcium silicate, CAS-1, [Ca4K4(H2O)8][Si16O38], is a layeredmaterial.620

There have been solid-state NMR studies of composite materials based on SiO2–TiO2

621–623 and SiO2–ZrO2.624 29Si MAS NMR spectra were used to determine the

structures of glasses xPbO � (100 � x)SiO2, where x = 25–89.625 Phosphosilicateglasses have been the subject of a number of solid-state NMR studies.626–631 29SiMAS NMR spectra were used to characterise the nature of the silicate framework insulfur-bearing silicate glasses.632

1H and 29Si solid-state NMR data were reported for hectorite and montmorillo-nite layered silicates.633 Similar data were used to study the dehydration andrehydration of the clay mineral polygorskite.634 29Si CP/MAS NMR spectra ofmontmorillonite silylated using 3-aminopropyl-triethoxysilane were used to probethe local structures of the silicon atoms.635 29Si NMR spectroscopy was used tocharacterise a proton form of mordenite, with Si/Al2 = 10.636

Mesoporous organosilicas were subjected to a range of solid-state NMR stu-dies.637–647 29Si MAS NMR spectra characterised hexagonal mesoporous zirconiumsilicate,648 hexagonal mesoporous silicates (Ti-HMS, CoMo/Ti-HMS),649 andCu-HMS.650

Purely siliceous zeolites were examined by solid-state 29Si double-quantum dipolarrecoupling NMR spectroscopy.651 Interactions in fluorine-containing all-silica zeo-lites were investigated by 1H, 19F and 29Si CP/MAS NMR.652 13C and 29Si MASNMR spectra demonstrated the presence of a CH2 group in the framework oforganic-inorganic hybrid zeolites.653 29Si MAS NMR spectroscopy was used tocharacterise the high purity zeolite analcime.654

A wide variety of zeolite materials have been studied by solid-stateNMR, including the following: b-zeolite with incorporated F� (19F);655 zeolitesA, LSX and sodalite (17O);656 zeolites Y (17O, 29Si);657–660 H-MFI, H-BEA (1H);661

all-silica BEA zeolite (29Si);662 sigma-2 (29Si);663 MCM-22 (1H, 27Al, 29Si);664

MCM-41 (various nuclei);665–674 MCM-48 (29Si);675–677 MCM-65 (29Si);678

SBA-1 (14N, 17O, 29Si);679 SBA-15 (various nuclei);680–686 and ZSM-5 (1H, 27

Al, 29Si).689–694

Molecular dynamics calculations gave NMR parameters for amorphous SiSe2.695

19F NMR spectra were used to follow the phase transition of [(CH2OH)3CNH3]2-SiF6 at 178 K.696

1.14.3 Germanium. High-resolution 73Ge MAS NMR spectra were reported fororganogermanes, e.g. Ar4Ge, where Ar = Ph, substituted phenyl, C6F5 etc.

697 77Gehigh-resolution solid-state NMR spectra have been obtained for the first time for six-coordinate germanium species, i.e. (8), where R = Cl, OH, OMe, Me, Ph.698

154 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 20: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

A computational study gave 19F chemical shifts for the Si/Ge AST zeolitesynthesised in fluoride media. The data were consistent with five-coordinate germa-nium.699

1.14.4 Tin. The 31P and 119Sn solid-state NMR data for [Ph2Sn(CH2)nSnPh2(OH)]+ and related species were in good agreement with crystallographicresults.700 13C, 117,119Sn MAS NMR data were used to characterise insolublepolystyrene-grafted [–P(CH2)6]SnBuCl2 and related species.701

The coordination polymer [(Ph3SnF)2(Ph3SnO2PPh2)]n was characterised by 19F,31P and 119Sn MAS NMR spectra.702 19F and 119Sn MAS NMR spectra for dimeric[(Men)3SnF]2, where Men = [1R,2S,5R]-menthyl, were used to probe the range ofcoordination numbers indicated by X-ray crystallography.703 1H and 119Sn MASNMR spectra were reported for (P–H)1 � t{P–(CH2)nSnBupCl3 � p}t, where P–H= acrosslinked polystyrene, n = 4, 6 or 11, p = 0 or 1, t = degree of functionalisa-tion.704

13C and 119Sn MAS NMR spectra were used to study the results of graftingSnMe4 on to Hb-zeolite (Si/Al = 25)—showing the exclusive formation ofsurface SnMe3 groups.705 117Sn CP/MAS NMR spectroscopy was used to char-acterise Bu2Sn(LH)2, where L = 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate, aryl= Ph, 3-, 4-MeC6H4, 4-BrC6H4.

706 The 13C and 119Sn MAS NMR spectra forcrystalline Me3SnCN are consistent with an ordered C–N–Sn–C–N environment forthe tin.707

31P and 119Sn solid-state NMR spectra were used to study SnHPO3 andSnHPO4.

708 The 119Sn NMR data for tin(II)–tin(IV)-sodium phosphate glasses showthat the tin sites are similar to those in SnP2O7.

709

1.14.5 Lead.207Pb solid-state NMR spectra were used to monitor the formation

of Pb[B(Im)4](ReO4) from the corresponding nitrate (Im = imidazolate).710 13C, 31Pand 207Pb NMR spectra determined the structures of lead(II) O,O0-dialkyldithio-phosphates.711

29Si and 207Pb MAS NMR spectra were used to investigate the local order andconnectivity in Ln3+-doped SiO2–PbO2 glasses (Ln = La, Ce).712 PbGeO3–PbF2–CdF2 glasses were characterised by solid-state 19F NMR spectra.713

Phase transformations of a ferroelastic single crystal of CsPbCl3 were followed by133Cs and 207Pb NMR spectroscopy.714

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 155

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 21: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

1.15 Group 15

15N MAS NMR spectra were used to determine the nature of the nitrate speciesformed on Al2O3 and BaO/Al2O3 surfaces. For the latter, there was evidence forboth surface and bulk nitrate species.715 14N MAS NMR spectra were used to refinethe structures of the phases RbNO3-IV and CsNO3-II.

716

The 31P MAS NMR spectrum of (CuI)8P12 revealed the presence of novelphosphorus nanorod structures.717 For BaP2N4, the 31P MAS NMR spectrumshowed a single resonance at 0.4 ppm.718

19F and 31P NMR spectra of (F2PN)3 were analysed in detail, assisted by DFTcalculations.719 The 31P solid-state NMR spectra of GeGaP sulfide glasses gaveevidence for the presence of SQPS3/2 and PS3/2 groups.720 Similar data wereobtained for nickel phosphide catalysts supported on MCM-41.721

1H and 31P solid-state NMR spectra were used to establish the structure of anamorphous glass of P(OPh)3.

722

31P CP/MAS NMR spectra were used to characterise the structures of K+, Ni2+

and Zn2+ salts of O,O0-dialkyldithiophosphates, where alkyl = Et, Pr, iPr etc.723

Solid-state 31P NMR spectra were used to investigate surface-bound compounds,where 4-diphenylphosphanylcatechol is anchored to a TiO2 surface.

724 Phosphorusenvironments in Zr(O3PR)(O3PR

0), where R, R0 = 2-naphthyl, 2-anthracenyl, OBu,OEt, were probed by 31P solid-state NMR.725

31P MAS NMR spectra were reported for supramolecular [CH6N3][C9H13O9P3],i.e. guanidinium benzene-1,3,5-tris(methylenephosphonate).726 Interfaces in hapo-nite synthetic clay/phosphonate surfactant nano-composites were investigated by13C and 31P solid-state NMR spectroscopy.727 15N and 31P solid-state NMR datawere given for LixH12�x�y+z[P12OyN24�y]Xz, where X = Cl or Br.728

Solid-state (31P) NMR data for a-Na3PO3S show that the phosphorus nuclei arein non-axially symmetric environments.729 A 31P MAS NMR study has been madeof adsorption of PO4

3� on to high surface area boehmite (g-AlOOH) or g-Al2O3.730

Similar data for Mg2+ or Ca2+ metaphosphate hydrogels show the presence oforthophosphates and long-chain phosphates coordinated to H+ or M2+ (M = Mg,Ca).731

A high-resolution 31P NMR study has been reported for Ca8(HPO4)2, andassignments proposed.732 Several solid-state NMR studies have been made onapatite-based systems.733–737 Solid-state 1H MAS NMR spectra were used toinvestigate the weathered surface of a phosphate glass (30 K2O �10Al2O3 � 60P2O5).

738 Solid-state 1H, 29Si and 31P MAS NMR spectra were usedto determine the microstructure of phosphosilicate gels derived from POCl3 andSi(OEt)4.

739

31P MAS NMR spectra were used to establish phosphate chain lengths inamorphous ammonium silicon polyphosphates, e.g. (NH)2SiP4O13.

740 Similar ex-periments determined local structures in SnO–P2O5 glasses,

741 and probed the effectsof Li+ insertion into SnP2O7.

742 31P MAS NMR spectra ofLi0.25Na0.25Pb0.25PO3�3x/2Nx glasses shows the presence of PO4, PO3N and PO2N2

tetrahedral units.743 Similar spectra identified structural units in xNa2O–(50 � x)-PbO � yB2O3 � (50 � y)P2O5 samples (x = 0, 10, 20, 30, 40, 50; y = 10, 20),744 andother phosphate systems.745–747

31P MAS NMR spectra were used to determine Ti, Zr, O and P connectivites inmesoporous zirconium-titanium phosphates (ZTP).748 31P MAS NMR spectra ofzirconia-supported phosphotungstic acid showed two types of phosphorus spe-cies.749 Studies were also made on other zirconium phosphate species.750–752

Phosphoric acid-modified SiO2/Nb2O5 gave 31P MAS NMR spectra consistentwith the presence of H2PO4

� ions.753 Such data were also reported for a H3PW12O40/TiO2 porous composite.754 31P NMR spin-echo mapping were used to characterisecobalt gallophosphates, e.g. IM-6, CoGaPO4-5.

755 The mesoporous materialP-MCM-41 was characterised by 31P solid-state NMR.756

156 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 22: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

Amine-templated zinc phosphates were studied by 31P MAS NMR spectra,757 aswere [Zn4.5(HPO3)6]

3�,758 and Au(L2H), where L = Ph2P(S)NP(O)Ph2�.759

1.16 Group 16

17O MQ-MAS NMR double-rotation (DOR) techniques were used to probe17O-enriched zeolites A, LSX and sodalite.760

33S solid-state NMR spectra were used to speciate sulfur in silicate glasses, usingdata on crystalline sulfides, sulfites, sulfates, thiosulfates.761 33S MAS NMR spectrawere obtained for a variety of inorganic sulfates.762

Solid-state 1H NMR studied structural aspects of the phase transition at 369 K forCs3H(SeO4)2.

763 77Se MAS NMR spectra of Au2(SeO3)2(SeO4) showed character-istic signals for coordinated selenite and selenate.764

125Te MAS NMR spectra have been reported for [2-(4,4 0-NO2C6H4CHNC6H3-

Me]RTeCl2, where R = 4-MeO–, 4-Me– or 4-Ph–C6H4.765 17O NMR spectra were

obtained for a-TeO2 and Na2TeO3.766 23Na and 125Te static and MAS NMR spectra

were used to determine site symmetries and structures in sodium tellurite glassesxNa2O � (1 � x)TeO2 (0.075 r x r 0.4).767 77Se and 125Te NMR spectra were usedto characterise TexSe1�x vitreous samples. There was evidence for Se–Se–Se,Se–Se–Te and Te–Se–Te environments.768

1.17 Group 18

A study has been made of 3He NMR peculiarities of 3He/4He mixtures below 50mK.769 19F and 129Xe MAS NMR spectra for solid XeF2 gave experimental valuesfor 129Xe and 19F shielding anisotropies (4260 � 10, 125 � 5 ppm, respectively).770

2. Motion in solids

A 2H solid-state NMR study has been made of proton dynamics in hexagonal ice.771

Dynamics of proton motion in ice and KOH- and HCl-doped ices were studied by17O NMR spectroscopy.772

1H and 7Li NMR data were used to investigate the mesopore size dependence ofprotonic and Li+ conductivity in porous alumina.773 Proton dynamics in phase II ofCsHSO4 were followed by 1H spin–lattice relaxation measurements.774 Other studieshave been made of proton dynamics in phases of CsHSO4,

775,776, CsHSeO4,777

Tl3H(SO4)2 (activation energy of hopping motion 0.33 eV),778 K9H7(SO4)8 �H2O,779

and hydrated porous silicates.780

Time-resolved solid-state 1H NMR spectra were used to probe the mechanism offormation of two different cubic mesoporous SiO2 materials formed with triblockcopolymers.781 1H and 13C MAS NMR studies have been made of the mechanism ofH/D exchange for deuteriated propane adsorbed on H-ZSM-5.782

Diffusion of hydrogen in HfCr2Hx(D)x, where x = 0.3, 0.4, was followed by 1Hand 2H solid-state NMR measurements.783 1H NMR spectra were used to studyhydrogen motion in Nb–H alloys containing vacancies.784 Proton and Na+

dynamics of HNa2[PW12O40] were probed by 1H and 23Na non-spinning andMAS NMR spectra. 31P data were consistent with the presence of three differentfour-coordinate phosphorus sites.785

Li+ diffusion dynamics in the new nitridocobaltates Li3�x�yMxN, where M =Co, Ni, Cu, were followed by 7Li NMR spectroscopy.786,787 Li+ ion mobility wasstudied, mainly by 7Li NMR spectra for lithium phosphorus oxynitride films,788

imidazole-based lithium conducting materials,789 Nafion-117 perfluoro-sulfonicmembranes,790 and Na2LiLn(CO3)3, where Ln = Eu–Er, Yb, Lu, Y (Li+ highlymobile between tetrahedral and octahedral coordination polyhedra).791

High-field solid-state NMR of intercalated Li+ in TiO2 (anatase) showed a msec.timescale for diffusion of Li+ between Li0.01TiO2 and Li0.55TiO2 phases.792

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 157

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 23: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

7Li NMR spectra were used to probe Li+ conductivity in (Li1�xNax)3yLa(2/3)�yTiO3

perovskites, where 0 r x r 1.793 NMR data shed light on ionic-hopping dynamicsin the defective perovskites Li3xLa(2/3)�xTiO3.

794

7Li NMR spectra were used to study Li+ dynamics in the perovskites Li0.18La0.61-TiO3. There was evidence for two Li+ species, which exchange positions in thetemperature range 250–350 K.795 Several other studies of lithium ion transportproperties using NMR were reported: nanocrystalline LiNbO3 (7Li),796 Li2La2/3-Ta2O7 layered perovskites (7Li),797 inorganic/organic hybrid gel systems such asFexPdy(CN)2Clv(C3H8O3)Lil (C3H8O3 = glycerol);798 and solid electrolytesLi3�2xMxInBr6, where M = Mg, Ca, Sr, Ba.799

23Na NMR studies were used to study magnetic fluctuations in the metallic stateof Na0.7CoO2.

800 The conduction path of Na+ in Na3InCl6 was probed by 23Na and115In NMR spectra.801 A solid-state NMR study has been made of 1H and 39K spin–lattice relaxation rates in KHSeO4 crystals.

802

NMR studies (27Al, 29Si and 133Cs) examined the structure and dynamics ofCsAlSi2O6 (pollucite).

803 Solid-state 133Cs NMR spectra were used to study the ion-exchange reaction of Cs+-selective g-titanium and g-zirconium phosphates.804 A133Cs NMR study has been made of phonon processes and spin–lattice relaxation inCs2MCl4, where M = Co, Cu.805

9Be and 13C variable-temperature MAS NMR studies of Cp2Be, Cp*2Be and(C5Me4H)2Be show highly fluxional structures in the solid phases.806

MAS NMR spectra (1H, 23Na, 27Al and 29Si) were used to characterise lanthanide-exchanged NaFAU-Y zeolite. The 23Na and 29Si data were related to the migrationtendencies of rare-earth cations from the supercages to the small cages in the zeolitestructure.807

Solid-state 13C and 93Nb NMR spectra were used to determine the structure anddynamics of the organometallic niobium complexes CpNbVCl4 and Cp0NbI(CO)4,where Cp0 = C5H4R

�, R = COMe, CO2Et, CO2Me, COCH2Ph.808 A study has

been made of nuclear spin–lattice relaxation of 93Nb in superconducting NbN.80917O MAS NMR spectra were used to determine ionic motion in Nb5+-dopedBi2WO6 and to resolve different oxide-ion conduction mechanisms.810

A 17O and 209Bi NMR study has been made of manganese electron spincorrelation in the charge-ordered states of Bi0.5M0.5MnO3, where M = Ca orSr.811 A 17O NMR study was reported on spin dynamics in the bilayered perovskitesSr3Ru2O7.

812 Variable-temperature solid-state 1H and 13C NMR spectra were usedto study metallic behaviour and molecular motion in Pt2(CH3CS2)4I.

813

A 63,65Cu NMR study has been made of low-frequency spin dynamics inSrCuO2.

814 Pressure-induced superconductivity in Sr2Ca12Cu4O41 was probed by63Cu NMR spectroscopy.815 A similar technique was used to examine spin–latticerelaxation in the superconductor Bi2Sr2�xLaxCuO6+d.

816 109Ag NMR spectra gaveinformation on the motion of the Ag+ ion in (AgI)x(Ag2) � (B2O3)1�x glasses.817

1H and 19F NMR spectra were used to study molecular motions and phasetransitions in [Cd(H2O)6](BF4)2.

818 A 111,113Cd NMR study of spin–lattice relaxationin CdMoO4 showed that relaxation was caused by paramagnetic impurity centres.819

11B NMR spectroscopy was used to study vortex motion in MgB2.820 Relaxation

processes in Li2Pd3B were followed by 11B NMR spectra.82127Al MAS NMR spectra were used to probe ionic conduction in La(4/3)�y-

Li3yTi2�xAl4x/3O6, where y = 0.21, x = 0.01–0.60.822 Aluminium coordinationchanges during aluminosilicate dissolution were followed by 27Al CP/MAS NMRspectroscopy.823 27Al variable-temperature MAS NMR spectra were used to studyT2-relaxation in a single crystal of KAl(SO4)2 � 12H2O.824

71Ga MAS NMR spectra gave evidence about defect dynamics in crystalline GaN(cubic and hexagonal forms).825 A 71Ga NMR study has been made of atomicmotions in an Sr8Ga16Ge30 clathrate.

826

Solid-state 13C NMR spectra for K2C2 were used to follow dynamic processes inthe low- and high-temperature modifications.827

158 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 24: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

29Si spin–lattice relaxation times were measured for the heavy-fermion alloysCePtSi1�xGex, where x = 0, 0.1.828 29Si MAS NMR spectra were used to study thestructural and ion-exchange properties of nanocrystalline, silicon-dopedSb2O5 � 4H2O. There was evidence for hydrated amorphous silicates.829 Solid-state17O NMR data probed the structure and dynamics of poly(diethylsiloxane) in b1 andb2 liquid crystal phases.830 Solid-state 2H NMR spectra were used to determine themotion of NH4

+ ions in feldspar, N(D/H)4AlSi3O8.831 A 31P NMR study has been

reported for spin-dynamics in Si:P.8321H and 31P spin pairs in solid SnHPO3 and SnHPO4 gave information on spin-

dynamics in these systems.833 The 1H and 31P NMR spectra of CsH2PO4 above thesuperionic phase transition at 502 K show the presence of dynamically disorderedPO4 units.834 Solid-state 31P NMR spectra were used to probe conformationalequilibria for Pd2XY(dppm)2, where X = Y = Cl, Br, I; X = Cl, Y = SnCl3.

835

17O and 89Y MAS NMR spectra were used to study Ca2+-doped Y2Ti2O7,showing that oxygen-ion exchange occurred between normal O1 sites and defectscreated by calcium doping.836 Different oxygen-jump pathways were detected by 17OMAS NMR for Bi2WO6.

837 An 17O MAS NMR study has been made of the room-temperature phase of La2Mo2O9 fast oxide ion conductor.838

Variable-temperature 7Li NMR spectra for LiBi4M3O14, where M = Nb or Ta,gave evidence for oxide ion conductivity in these compounds.839 2H solid-state NMRrevealed rapid exchange between coordinated capping and prism H2O molecules in[M(H2O)n](CF3SO3), where M = Sc, Lu, Yb, Tm, Er, n = 8–9.840 1H and 133Cssolid-state NMR spectra reveal dynamic disorder of H3O

+ and H2O in the frame-work of CdZrCs1.5(H3O)0.5(C2O4)4 � xH2O.841

19F solid-state NMR studies have been made of spin dynamics and quantumrelaxation in LiY0.998Ho0.002F4.

842 The mobility of F� ions in polycrystalline K2ZrF6

(300–560 K) was followed by 19F NMR spectra.843 Information on moleculardynamics for [(CH2OH)3CNH3]2SiF6 was obtained from 1H and 19F NMR spec-tra.844

19F, 87Rb and 119Sn NMR data were used to probe the dynamic properties of F�

in the two-dimensional fluoride ion conductor RbSn2F5.845 Internal mobility of F�

ions in MSbF4, where M = Na, K, Rb or Cs, was followed by 19F NMR spectro-scopy.846 1H and 19F NMR spectra gave information on the mobility of F� andNH4

+ ions in a range of ammonium fluoroantimonates, e.g. NH4Sb4F13 etc.847

3. Atoms and molecules sorbed on to solids

3.1 Sorbed noble gas atoms

A 3He NMR study has been made of a ferromagnetic solid 3He layer on graphite.8483He NMR studies were used to characterise diffusion in high-porosity silica gels.849

A 3He NMR study has been made of the phase diagram of superfluid 3He in a99.3% porosity silica gel.850,851

83Kr NMR spectroscopy has been developed as a novel probe into the structuresof porous materials, e.g. CaA, CaX, CaY, NaY zeolites.852

A review has been published on the use of 129Xe NMR spectra to probe the shapesof pores, channels, voids and cages in a range of microporous materials.853 129XeNMR spectra were used to characterise the surface of catalytic filamentouscarbon,854 and the nanoporous structure of rapidly preheated coal samples.855

Xenon–protein interactions in pig and horse metmyoglobin, and hence thedifferent structures of these systems were studied by 129Xe NMR.856 Active siteson Mo/Al2O3 and Co–Mo/Al2O3 catalysts were studied using 129Xe NMR spec-tra.857–860

129Xe NMR spectra were also used to characterise SnO2, TiO2, Ti/SiO2;861

mesoporous aluminosilicate molecular sieves;862 acetonitrile confined in mesoporoussilica gels;863 xenon confined in A-, X- and Y-type zeolites;864 the materials ITQ-2,

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 159

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 25: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

ITQ-6 and their zeolite precursors, MCM-22 and ferrierite;865 zeolite HY, steam-dealuminated Y and lanthanum-exchanged Y zeolites;866 nanoporous Al-SBA-15;867

H-ZSM-5 catalysts;868 multifunctional mesoporous organic-hybrid silica materi-als;869 and zeolite ZSM-5 nanoclusters coated on to mesopore walls of SBA-15.870

3.2 Sorbed water and alcohol molecules

Solid-state 1H NMR measurements have been made on water molecules trapped intitanate nanotubes.871,872 An NMR study has been made of the state of watermolecules in MK-100 cation exchange membranes.873 Hydrogen-bonding of waterconfined in mesoporous silica has been probed by 1H MAS NMR spectroscopy.874

Proton NMR spectra were used to follow motions of H2O molecules in the lattice ofthe zeolite chabazite, Ca2[Al4Si8O24] � nH2O.875 1H and 27Al MAS NMR spectrashow dissociative adsorption of H2O on CaNaA zeolites.876

Molecular motions of CH3OH adsorbed in one-dimensional nano-channels of apillared-layer coordination polymer, [Cu2(pzdc)2(pyz)]n, where pyz = pyrazine, pzdc= pyrazine-2,3-dicarboxylate, were studied by 2H NMR spectroscopy.877 A protonMAS NMR study has been made of C1–C4 n-alcohols adsorbed on alkali-cation-exchanged X-zeolites, with Si/Al = 1.2.878 1H MAS NMR spectra were used toprobe the behaviour of ethylene glycol adsorbed in NaX zeolites.879

3.3 Sorbed organic molecules

Ab initio calculations gave 13C chemical shifts for organic species adsorbed onH-ZSM-5 zeolite.880

13C, 27Al and 29Si MAS NMR spectra were used to characterise carbon nanotubesin pores of mesoporous silicates (Al-MCM-41, Si-MCM-41).881 1H pulse field-gradient (PFG) spin-echo NMR spectra were used to measure diffusivity of CH4

in a polycrystalline MFI-type silicalite membrane.882 A 1H MAS NMR study hasbeen made of the partial oxidation of CH4 over a Ru/SiO2 catalyst.

883 The mobilityof CD4 molecules in nanoscale zeolite cages was studied by 2H NMR spectro-scopy.884

A high-resolution 13C MAS NMR study has been made of dynamics and packingmodes of n-alkanes in the nano-channel of MCM-41.885 A combination of pulsedfield gradient (PFG) and MAS NMR (1H) spectra was used to follow diffusion ofn-butane adsorbed in silicalite-1.886 1H and 13C MAS NMR data were obtained forlong-chain hydrocarbons adsorbed on MCM-41 and zeolite NaX.887

13C MAS NMR spectra were used to study chemisorbed methyl groups on NaY,NaX and NaLSX zeolites.888,889 A 1H and 19F NMR study has been made of themicrodynamics of CHClF2 adsorbed in NaY zeolite.890

The molecular dynamics and phase transitions of benzene confined in TiO2

nanotubes were studied by 13C NMR spectroscopy.891 29Si{1H} CP and CP ‘drain’MAS NMR experiments on the p-dichlorobenzene/ZSM-5 sorbate/zeolite complexdetermined the location of the sorbate molecules in the zeolite cavities.892

1H NMR relaxation studies were made of cyclohexane and cyclopentane confinedin MCM-41.893 1,2H NMR experiments were reported for C6H12 nanocrystals incontrolled pore-size silica glass samples.894 13C MAS NMR spectra were used tostudy vanadium-containing mesoporous molecular sieves and their interaction withnaphthalene.895

13C and 29Si solid-state NMR spectra were obtained for acetone inserted intonanostructured tunnels of the magnesium and aluminium silicate, polygorskite.8961H MAS NMR spectra were used to characterise TiO2 nanotubes filled withpoly(ethylene oxide).897 51V NMR spectra were reported for pyridine adsorbed onV2O5/mesoporous Al2O3.

898

Cetyltrimethyammonium bromide intercalated into montmorillonite was studiedby 13C CP/MAS NMR.899 13C and 29Si MAS NMR spectra were used to probe the

160 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 26: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

interaction of methylamine with highly siliceous zeolites, MFI, FAU and FER.90031P NMR spectra were used to characterise lamellar Zr(O3PPh)2 with intercalated n-alkylmonoamine molecules.901 31P CP/MAS NMR spectra were reported for alkyl-,aryl- and ethoxyphosphonium salts immobilised on silica, showing the formation ofsalts [R3PEt]

+[Si–O]�, involving a bound siloxide anion.9022H MAS NMR spectroscopy was used to probe the interaction of 2H-labelled

tetra-alanine with mesoporous MCM-41.903 1H and 13C CP/MAS NMR spectraprobed ibuprofen molecules encapsulated in MCM-41 mesoporous silicas.904 AnMAS NMR study has been made of intercalated octadecylamine in (VO)H-PO4 � xH2O (x = 0.5, 1.5, 2.4) glasses. The internal methylene groups were shownto possess gauche conformations.905

3.4 Sorbed inorganic and organometallic species

2H and 6Li MAS NMR spectra were used to characterise Li+ adsorbed on tonanocrystalline particles of goethite, g-FeOOH.906 An NMR study has been made oflithium adsorbed on hydrogen-terminated Si(111) � (1 � 1):H surfaces.907

13C MAS NMR spectra were used to characterise Cp2ZrMe2 supported onsulfonated metal oxides (SnO2, Fe2O3, TiO2). There was evidence for cationiczirconocenium species at the surface.908

Phosphovanadate intercalated with 4,40-bipyridinium cations was investigated bymultinuclear 1-D and 2-D NMR spectroscopy.909 13C CP/MAS NMR spectracharacterised (FcNN)M(CO)4, where M = Cr, Mo; FcNN = N,N0-bis(ferrocenyl-methylene)ethylenediamine, encapsulated in cyclodextrin.910 Similar data were usedto study Cp2MoCl2 in 2-hydroxypropyl- and trimethyl-b-cyclodextrin,911 and [(Z5-C5H4COOMe)Mo(CO)3Cl] incorporated in MCM-41 mesoporous silica.912 31PMAS NMR spectra were used to characterise zirconia-supported 12-tungstophos-phoric acid catalysts.913

13C MAS NMR data for material containing ferrocene carboxylates intercalatedin ZnAl double hydroxide layers show that the ferrocene carboxylates remainstructurally intact.914

31P NMR data characterised mesoporous MCM-41-supported, water-solublerhodium complexes, e.g. Rh-TPPTS (TPPTS = trisodiumsalt of tri(m-sulfophenyl)-phosphine).915 29Si NMR spectra were usd to probe the surface interaction of[Ni(en)(dien)(H2O)]2+ and related species, with amorphous SiO2.

916

13C NMR spectra studied the interaction of CO with platinum nanoparticlescontaining Pd atoms, suggesting that CO adsorbed on Pd undergoes rapid diffu-sion.917

13C CP/MAS NMR spectra were used to study alkylsilane fragments grafted on toRu nanoparticles.918 A 1H NMR investigation was carried out for hexamethyl-disilazane confined in controlled pore-size glasses.919 13C and 119Sn MAS NMR spectracharacterised SnMe4 grafted on to MCM-41 mesoporous molecular sieves.920

DFT calculations on N2 and O2 interacting with extraframework cations inzeolites containing double 6-membered rings of O, bridged Si and Al atoms wereconsistent with NMR results.921 2H NMR spectroscopy was used to determine thetransport properties of NH3 in Na+-faujasite zeolites with varying Si/Al ratios.922 Anumber of single and double resonance techniques were used to characterise NH3

adsorption environments in 3A zeolite molecular sieves.923,92431P NMR spectra were reported for adsorbed trialkylphosphine molecules on Mo/

H-MCM-22 catalysts.925 31P{1H} MAS NMR spectra for Ph2P(CH2)nPPh2 (n= 1, 3or 6) adsorbed on zeolite HY were used to measure densities of Brønsted acidsites.926 Adsorbed phosphine oxide probes on H-ZSM-5 were studied by 31P MASNMR spectra,927 as were Me3PO molecules interacting with Ge-ZSM-5.928 13C, 29Siand 31P MAS NMR spectra were used to characterise organocyclotriphosphazenesin an SiO2 matrix.929 31P CP/MAS NMR spectra determined the nature of thechemical interaction between phosphate groups and ZnS:Mn2+ nanocrystals.930

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 161

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 27: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

31P MAS NMR spectra were used to study the adsorption of PO43� on boehmite

(g-AlOOH) or Al2O3.931

27Al MAS NMR spectra were used to characterise antimony oxide self-assembledinside the zeolite framework of H-ZSM-5.932

References

1 D.-Y. Kim and H. Lee, J. Am. Chem. Soc., 2005, 127, 9996.2 G. D. Morris, W. A. MacFarlane, K. H. Chow, Z. Salman, D. J. Arsenau, S. Daviel, A.

Hatakeyama, S. R. Kreitzman, C. D. P. Levy, R. Poutissou, R. H. Heffner, J. E.Elenewski, L. H. Greene and R. F. Kiefl, Phys. Rev. Lett., 2004, 93, 157601.

3 Y. Kiselev, J. Ball, G. Baum, P. Berglund, N. Doshita, F. Gautheron, S. Goertz, N.Horikawa, J. Koivumiemi, K. Kondo, A. Magnon, A. Meyer and G. Reicherz,Nucl. Inst.Meth. Phys. Res. Sect. A, 2004, 526, 105.

4 Y. Kiselev, J. Ball, G. Baum, P. Berglund, N. Doshita, F. Gautheron, S. Goertz, N.Horikawa, J. Koivumiemi, K. Kondo, A. Meyer and G. Reicherz, Nucl. Inst. Meth. Phys.Res. Sect. A, 2004, 526, 100.

5 R. D. Rieke, J.-S. Lee, Y.-S. Kye and G. S. Harbison, J. Organometal. Chem., 2004, 689,3421.

6 T. Loiseau, L. Beitone, C. Huguenard, F. Taulelle, M. Henry and G. Ferey, J. Phys.Chem. B, 2004, 108, 20011.

7 M. Alves-Santos, E. R. de Azevedo, E. L. G. Vidoto, G. L. Mantovani, S. R. Rabbaniand T. J. Bonagamba, Solid State Ionics, 2005, 176, 1123.

8 C. P. Grey, W.-S. Yoon, J. Reed and G. Ceder, Electrochem. Solid State Lett., 2004, 7,A290.

9 W. Bowden, C. P. Grey, S. Hackney, F. Wang, Y. Paik, N. Iltchev and R. Sirotina, I. T.E. Lett. Batteries, New Technol. Med., 2004, 5, 222.

10 Y. Lee, A. Woo, K. S. Ryu, Y. J. Paik, B. Y. Jung, J.-H. Lee and K. Han, Solid StateIonics, 2004, 175, 311.

11 I. Mohammed-Ziegler, A. Szollosy, M. Kubinyi, A. Grofcsik, A. Gruen and L. Bitter,Supramol. Chem., 2004, 16, 415.

12 V. V. Terskikh, C. I. Ratcliffe, J. A. Ripmeester, C. J. Reinhold, P. A. Anderson and P. P.Edwards, J. Am. Chem. Soc., 2004, 126, 11350.

13 L. van Wullen, G. Schwering, E. Naumann and M. Jansen, Solid State N. M. R., 2004,26, 84.

14 E. A. Jensen and J. D. Corbett, J. Solid State Chem., 2004, 177, 4465.15 L. Aldon, P. Kubiak, M. Womes, J. C. Tumas, J. Olivier-Fourcade, J. L. Tirado, J. I.

Corredor and C. P. Vicente, Chem. Mat., 2004, 16, 5721.16 I. A. Stenina, I. Yu. Pinus, A. I. Rebrov and A. B. Yaroslvtsev, Solid State Ionics, 2004,

175, 445.17 V. Massarotti, D. Capsoni, M. Bini, P. Mustarelli, G. Chiodelli, C. B. Azzoni, P.

Galinetto and M. C. Mozzati, J. Phys. Chem. B, 2005, 109, 14845.18 T. Malcharek, A. Bosenick, L. Cemic, M. Fechtelkord and A. Guttzeit, J. Solid State

Chem., 2004, 177, 3254.19 G. Sandi, C. S. Johnson, R. E. Gerald, R. Klingler, K. A. Carrado and R. E. Winans,

Proc. Electrochem. Soc., 2000 (pub. 2004), 2000–34, 162.20 J. Breger, N. Dupre, P. J. Chupas, P. L. Lee, T. Proffen, J. B. Parise and C. P. Grey, J.

Am. Chem. Soc., 2005, 127, 7529.21 D. Arcon, A. Zorko, R. Dominko and Z. Jaglicic, J. Phys.: Cond. Matt., 2004, 16, 5531.22 M. Vittadello, S. Suarez, K. Fujimoto, V. di Noto, S. G. Greenbaum and T. Furukawa, J.

Electrochem. Soc., 2005, 152, A956.23 S. Zhu, H. Zhou, T. Miyoshi, M. Hibino, I. Honma and M. Ichihara, Adv. Mat., 2004,

16, 2012.24 J. A. Rodgers, P. D. Battle, N. Dupre, C. P. Grey and J. Sloan, Chem. Mat., 2004, 16,

4257.25 Y. Lee, A. J. Woo, K.-S. Han, K. S. Ryu, D. Sohn, D. Kim and H. Lee, Electrochim.

Acta, 2004, 50, 491.26 B.-Y. Jung, H.-K. Fang, I.-S. Jeong, K.-S. Han, Y. Lee, J. Choo and K. S. Ryu,

Electrochim. Acta, 2004, 50, 473.27 M. Menetrier, S.-H. Yang, A. Wattiaux, L. Fournes and C. Delmas, Chem. Mat., 2005,

17, 4653.28 G. Chazel, M. Menetrier, L. Croguennec and C. Delmas, Mag. Reson. Chem., 2005, 43,

849.

162 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 28: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

29 A. A. Gippius, E. N. Mozorova, A. S. Moskvin, A. V. Zalessky, A. A. Bush, M. Baenitz,H. Rosner and S.-L. Drechsler, Phys. Rev. B, 2004, 70, 020406.

30 D. Reichert, O. Pascui, P. Judenstein and T. Gullion, Chem. Phys. Lett., 2005, 402, 43.31 E. M. Beyer, N. Leifer, S. Sakamoto, S. G. Greenbaum and C. P. Grey, Electrochem.

Solid State Lett., 2005, 8, A145.32 K. Minamisono, K. Matsuta, T. Minamisono, C. D. P. Levy, T. Nagatomo, M. Ogura,

T. Sumikama, J. ABehr, K. P. Jackson, H. Fujiwara, M. Mihara and M. Fukuda, Nucl.Phys. A, 2004, A746, 501c.

33 P. Matus, H. Alloul, P. M. Singer, V. Brouet, G. Kriza, S. Garaj and L. Forro, Appl.Magn. Reson., 2004, 27, 133.

34 A. Rabis, M. Baenitz, A. Leithe-Jasper, A. A. Gippius, E. N. Morozova, W. Schnelle, H.Rosner, J. A. Mydosh, Y. Grin and F. Steglich, Physica, B: Cond. Matt., 2005, 359–361,1195.

35 C. Johnson, E. A. Moore and M. Mortimer, Solid State N. M. R., 2005, 27, 155.36 S. B. Vakhrushev, Yu. A. Kumzerov, A. Fokin, A. A. Naberezhnov, B. Zalar, A. Lebar

and R. Blinc, Phys. Rev. B, 2004, 70, 132102.37 L. Zhang and H. Eckert, Solid State N. M. R., 2004, 26, 132.38 T. G. Ajithkumar, E. R. H. van Eck and A. P. M. Kentgens, Solid State N. M. R., 2004,

26, 180.39 A. Goldbourt, E. Vinogradov, G. Goobes and S. Vega, J. Magn. Reson., 2004, 169, 342.40 B. Pedrini, J. L. Gavilano, S. Weyeneth, E. Felder, J. Hinderer, M. Weller, H. R. Ott, S.

M. Kazakov and J. Karpinski, Los Alamos Nat. Lab., Preprint Arch., Cond. Matt., 2005,1–10, arXiv:cond-mat/0508091.

41 H. Ohta, Y. Itoh, C. Michioka and K. Yoshimura, Los Alamos Nat. Lab. Preprint Arch.Cond. Matt., 2005, 1–4, arXiv:cond-mat/0508197.

42 I. R. Mukhamedshin, H. Alloul, G. Collin and N. Blanchard, Phys. Rev. Lett., 2004, 93,167601.

43 H. Trill, H. Eckert and V. I. Srdanov, Phys. Rev. B, 2005, 71, 014412.44 B. L. Sherriff and B. Zhou, Canad. Mineral., 2004, 42, 1027.45 B. Pedrini, J. L. Gavilano, D. Rau, H. R. Ott, S. M. Kazakov, J. Karpinski and S. Wessel,

Phys. Rev. B, 2004, 70, 024421.46 J. D. Epping, W. Strojek and H. Eckert, Phys. Chem. Chem. Phys., 2005, 7, 2384.47 L. Zhang, H. Eckert, G. Helsch and G. H. Frischat, Z. phys. Chem., 2005, 219, 71.48 Y. Tokuda, M. Takahashi and T. Yoko, Int. Congr. Glass, Proc. 20th, 2004, 10, 017.49 H. Niida, D. Miyabe, Y. Tokuda, M. Takahashi and T. Yoko, Int. Congr. Glass, Proc.

20th, 2004, 10, 028.50 D. Holland, J. Bailey, G. Ward, B. Turner, P. Tierney and R. Dupree, Solid State N. M.

R., 2004, 27, 16.51 S. Prabakar and K. T. Muller, J. Non-Cryst. Solids, 2004, 349, 80.52 A. Ammar, M. Menetrier, A. Villesuzanne, S. Matar, B. Chevalier, J. E. Tourneau, G.

Villeneuve, J. Rodrıguez-Carvajal, H.-J. Koo, A. I. Smirnov and M.-H. Whangbo, Inorg.Chem., 2004, 43, 4974.

53 C. M. Widdifield and R. W. Schurko, J. Phys. Chem. A, 2005, 109, 6865.54 K. Arai, J. Kikuchi, K. Kodama, M. Takigawa, S. Yonezawa, Y. Muraoka and Z. Hiroi,

Los Alamos Nat. Lab., Preprint Arch., Cond. Matt., 2004, 1–4, arXiv:cond-mat/0411460,18 Nov 2004.

55 H. J. Kim, J. Korean Phys. Soc., 2004, 45, 1602.56 N. G. Dowell, S. E. Ashbrook and S. Wimperis, J. Phys. Chem. B, 2004, 108, 13292.57 A. R. Lim, T.-G. Tang, J.-H. Chang and S.-Y. Jeong, J. Phys. Soc. Jpn., 2004, 73, 2863.58 R. Siegel, T. T. Nakashima and R. E. Wasylishen, Chem. Phys. Lett., 2005, 403, 353.59 K. Magishi, J. L. Gavilano, B. Pedrini, J. Hinderer, M. Weller, H. R. Ott, S. M. Kazakov

and J. Karpinski, Phys. Rev. B, 2005, 71, 024524.60 J. Gryko, R. F. Marzke, G. A. Lamberov, T. M. Tritt, M. Beekman and G. S. Nolas,

Phys. Rev. B, 2005, 71, 115208.61 C.-S. Chen, R.-K. Chang, H.-M. Kao and K.-H. Lii, Inorg. Chem., 2005, 44, 3914.62 A. R. Lim and H. S. Yoon, J. Phys. Chem. Solids, 2005, 66, 1004.63 A. R. Lim, K. S. Hong and S.-Y. Jeong, J. Phys. Chem. Solids, 2004, 65, 1373.64 T. H. Yeom and S. H. Choh, J. Korean Phys. Soc., 2004, 45, 1606.65 G. Neyens, M. Kowalska, D. Yordanov, K. Blaum, P. Himpe, P. Lievens, S. Mallion, R.

Neugart, N. Vermeulen, Y. Utsuno and T. Otsuka, Phys. Rev. Lett., 2005, 94, 022501.66 M. Hatakeyama, T. Nemoto, K. Kanehashi and K. Saito, Chem. Lett., 2005, 34, 864.67 S. Rossano, F. Mauri, C. J. Pickard and I. Farnan, J. Phys. Chem. B, 2005, 109, 7245.68 M. del Arco, E. Cebadera, S. Gutierrez, C. Martin, M. J. Montero, V. Rives, J. Rocha

and M. A. Sevilla, J. Pharm. Sci., 2004, 93, 1649.69 O. R. Evans, A. T. Bell and T. D. Tilley, J. Catal., 2004, 226, 292.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 163

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 29: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

70 D. Radanovic, U. Rychlewska, M. I. Djuran, B. War(ajtis, N. S. Draskovic and D. M.Guresic, Polyhedron, 2004, 23, 2183.

71 P. Zhou, X. Xie, D. P. Knight, X.-H. Zong, F. Deng and W.-H. Yao, Biochem., 2004, 43,11302.

72 Z. Lin, M. E. Smith, F. E. Sowrey and R. J. Newport, Phys. Rev. B, 2004, 69, 224107.73 S. Marchand, A. Trokiner, A. Yakubovsky, A. Knizhnik and Y. Eckstein, Physica, C,

2004, 408–410, 826.74 R. G. Hill, N. da Costa and R. V. Law, J. Non-Cryst. Solids, 2005, 351, 69.75 G. M. Bowers and K. T. Muller, Phys. Rev. B, 2005, 71, 224112.76 S. J. Kim, K.-D. Jung and O.-S. Joo, J. Porous Mat., 2004, 11, 211.77 V. Jayaraman, A. Magrez, M. Caldes, O. Joubert, F. Taulelle, J. Rodrıguez-Carvajal, Y.

Piffard and L. Brohan, Solid State Ionics, 2004, 170, 25.78 C. Gervais, D. Veautier, M. E. Smith, F. Babonneau, P. Belleville and C. Sanchez, Solid

State N. M. R., 2004, 26, 147.79 R. E. Youngman and S. Sen, Solid State N. M. R., 2005, 27, 77.80 T. J. Bastow, T. Mathews and J. R. Sellar, Solid State Ionics, 2004, 175, 415.81 C. T. Brigden, D. Thompsett and C. D. Williams, J. Chem. Soc., Dalton Trans., 2004,

2829.82 S. R. Miller, A. M. Z. Slawin, P. Wormald and P. A. Wright, J. Solid State Chem., 2005,

178, 1738.83 H. Park, I. Bull, L. Peng, V. G. Young and C. P. Grey, Chem. Mat., 2004, 16, 5350.84 F. Lofaj, S. Deriano, M. LeFloch, T. Rouxel and M. J. Hoffmann, J. Non-Cryst. Solids,

2004, 344, 8.85 G. Majer, A. Telfah, F. Grinberg and R. G. Barnes, Phys. Rev. B, 2004, 70, 134111.86 B. Jager, S. Paluch, W. Wolf, P. Herzig, O. J. Zegal, N. Shitsevalova and Y. Paderno,

J. Alloys Comp., 2004, 383, 232.87 J. Roger, V. Babizhetskyy, S. Cordier, J. Bauer, K. Hiebl, L. le Polles, S. E. Ashbrook, J.-

F. Halet and R. Guerin, J. Solid State Chem., 2005, 178, 1851.88 A. Lascialfari, A. Rigamonti and I. Zucca, Phys. Rev. B, 2005, 71, 214510.89 K. Liddell, D. P. Thompson, T. Brauninger and R. K. Harris, J. Eur. Ceram. Soc., 2005,

25, 37.90 R. Amantea, P. Ghigna, P. Mustarelli and V. Tartara, J. Solid State Chem., 2005, 178,

1692.91 T. Rouxel, N. Dely, J. C. Sangleboeuf, S. Deriano, M. LeFloch, B. Beuneu and S.

Hampshire, J. Am. Ceram. So., 2005, 88, 889.92 A. I. Becerro, A. Escudero, P. Florian, D. Massiot and M. D. Alba, J. Solid State Chem.,

2004, 177, 2783.93 A. I. Becerro and A. Escudero, J. Solid State Chem., 2005, 178, 1.94 R. Copping, A. J. Gaunt, I. May, M. J. Sarsfield, D. Collison, M. Helliwell, I. S. Denniss

and D. C. Apperley, J. Chem. Soc., Dalton Trans., 2005, 1256.95 P. C. R. Soares-Santos, T. Trindade, A. C. Tome, J. Rocha, R. A. Sa Ferreira,

L. D. Carlos, F. A. A. Paz, J. Klinowski and H. I. S. Nogueira, New J. Chem., 2004,28, 1352.

96 D. S. Todorovsky, M. M. Getsover, I. Wawer, P. Stefanov and V. Enchev, Mat. Letts.,2004, 58, 3559.

97 T. J. Bastow, T. Mathews and J. R. Sellar, Solid State Ionics, 2004, 175, 129.98 J. Emery, D. Massiot, P. Lacorre, Y. Lalignant and K. Conder, Mag. Reson. Chem.,

2005, 43, 366.99 V. P. Paschenko, A. A. Shemyakov, A. V. Pashechenko, L. T. Tsymbal, G. K. Kakazei,

V. P. Dyakonov, H. Szymczak, J. A. M. Santos and J. B. Sousa, Low Temp. Phys., 2004,80, 299.

100 M. J. R. Hoch, P. L. Kuhns, W. G. Moulton, A. P. Reyes, J. Lu, J. Wu and C. Leighton,Phys. Rev., 2004, 70, 174443.

101 P. M. Singer, T. Imai, F. C. Chou, K. Hirota, M. Takaba, T. Kakeshita, H. Eisaki and S.Uchida, Phys. Rev. B, 2005, 72, 014537.

102 A. Koroglu, D. P. Thompson, D. C. Apperley and R. K. Harris, J. Solid State Chem.,2004, 177, 2928.

103 V. Buisette, M. Moreau, T. Gacoin, J.-P. Boilot, J.-Y. Chane-Ching and T. le Mercier,Chem. Mat., 2004, 16, 3767.

104 K. Ishida, H. Murakawa, K. Kitagawa, Y. Ihara, H. Kotegawa, M. Yogi, Y. Kitaoka,B.-L. Young, M. S. Rose, D. E. MacLaughlin, H. Sugawara, T. D. Matsuda, Y. Aoki,H. Sato and H. Harima, Phys. Rev. B, 2005, 71, 024424.

105 G. V. M. Williams, S. Kramer, C. U. Jung, M.-S. Park and S.-I. Lee, Solid State N. M.R., 2004, 26, 236.

106 S. Mukhopadhyay, K. P. Ramesh and J. Ramakrishna, Phys. Rev. B, 2005, 72, 054201.

164 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 30: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

107 R. Ferreira, P. Pires, B. de Castro, R. A. Sa Ferreira, L. D. Carlos and U. Pischel, New J.Chem., 2004, 28, 1506.

108 A. Oyamada, S. Maegawa, T. Goto, K. Hashi and H. Kitazawa, J. Phys. Soc. Jpn., 2004,73, 1953.

109 A. Yamamoto, J. Takeda, T. Koyama, T. Mito, S. Wada, I. Shirotani and C. Sekine,Phys. Rev. B, 2004, 70, 220402.

110 T. Koyama, M. Nakamura, T. Mito, S. Wada and J. L. Sarrao, Phys. Rev. B, 2005, 71,184437.

111 T. Mito, M. Shimoide, T. Koyama, M. Nakamura, S. Wada, M. Reiffers, B. Idzikowski,J. L. Sarro and T. C. Kobarashi, J. Mag. Mag. Mat., 2005, 290–1, 405.

112 H. Kato, H. Sakaj, K. Ikushima, S. Kambe, Y. Tokunaga, A. Dai, Y. Haga, Y. Onuki, H.Yasuoka and R. E. Walstedt, J. Phys. Soc. Jpn., 2004, 73, 2085.

113 (a) H. Saito, H. Kato, Y. Tokunaga, S. Kambe, A. Nakamura and R. E. Walstedt,JAERI-Conf., 2004, 2004–14, 105; (b) H. Saito, H. Kato, Y. Tokunaga, S. Kambe, A.Nakamura and R. E. Walstedt, Chem. Abs., 2005, 142, 252953.

114 Y. Tokunaga, T. D. Matsuda, H. Sakai, H. Kato, S. Kambe, R. E. Walstedt, Y. Haga, Y.Onuki and H. Yasuoka, Phys. Rev. B, 2005, 71, 045124.

115 T. Ohana, M. Hirano and S. Noguchi, Phys. Rev. B, 2005, 71, 094408.116 H. Tou, K. Ishida and Y. Kitaoka, Physica, C, 2004, 408, 305.117 O. Sakai, R. Shina and H. Shiba, J. Phys. Soc. Jpn., 2005, 74, 457.118 Y. Tokunaga, Y. Homma, S. Kambe, D. Aoki, H. Sakai, E. Yamamoto, A. Nakamura,

Y. Shiokawa, R. E. Walstedt and H. Yasuoka, Phys. Rev. Lett., 2005, 94, 137209.119 I. Farnan, H. Cho, W. J. Weber, R. D. Scheele, N. R. Johnson and A. E. Kozelisky, Rev.

Sci. Instr., 2004, 75, 5232.120 S. L. Burkett, S. Soukasene, K. L. Milton, R. Welch, A. J. Little, R. M. Kasi and E. B.

Coughlin, Chem. Mat., 2005, 17, 2716.121 W.-S. Sheen, C.-N. Kuo, S.-H. Hsieh and H.-M. Gau, J. Chin. Chem. Soc., 2004, 51, 719.122 J. Widoniak, S. Eiden-Assmann and G. Maret, Prog. Collid Polym. Sci., 2004, 129,

119.123 Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu and F. Deng, J. Solid State Chem., 2005,

178, 1395.124 T. Brauninger, P. K. Madhu, A. Pampel and D. Reichert, Solid State N. M. R., 2004, 26,

114.125 I. Abrahams, E. Hadjifejzovic and J. R. Dygas, J. Chem. Soc., Dalton Trans., 2004, 3129.126 P. Falaras, I. M. Arabatzis, T. Stergiopoulos, G. Papavassiliou and M. Karagianni, J.

Mat. Proc. Technol., 2005, 161, 276.127 C. V. Rice and J. R. Wickham, J. Am. Chem. Soc., 2005, 127, 856.128 R. Blinc, B. Zalar, V. V. Laguta and M. Itoh, Phys. Rev. Lett., 2005, 94, 14760.129 B. Zalar, A. Lebar, J. Seliger, R. Blinc, V. V. Laguta and M. Itoh, Phys. Rev. B, 2005, 71,

064107.130 Y.-I. Kim, J. K. Jung and K.-S. Ryu, Mat. Res. Bull., 2004, 39, 1045.131 T. Kiyama, H. Saitoh, M. Itoh, K. Kodama, H. Ichikawa and J. Akimitsu, J. Phys. Soc.

Jpn., 2005, 74, 1123.132 A. Takagaki, T. Yoshida, D. Lu, J. N. Kondo, M. Hara, K. Domen and S. Hayashi, J.

Phys. Chem. B, 2004, 108, 11549.133 R. L. Needs, S. E. Dann, M. T. Weller, J. C. Cherryman and R. K. Harris, J. Mat. Chem.,

2005, 15, 2399.134 E. T. Kefalas, P. Panagiotidis, C. P. Raptopouolou, A. Terzis, T. Mavromoustakos and

A. Salifoglu, Inorg. Chem., 2005, 44, 2596.135 G. W. Wallidge, R. Anderson, G. Mountjoy, D. M. Pickup, P. Gunawidjaja, R. J.

Newport and M. E. Smith, J. Mat. Sci., 2004, 39, 6743.136 F. Bonhomme, J. P. Larentzos, T. M. Alam, G. J. Maginn and M. Nyman, Inorg. Chem.,

2005, 44, 1774.137 C. Chen, Y.-L. Yang, K.-L. Huang, Z.-H. Sun, W. Wang, Z. Yi, Y.-L. Liu and W.-Q.

Pang, Polyhedron, 2004, 23, 3033.138 B. L. Sherriff and B. Zhou, Canad. Mineral., 2004, 42, 1027.139 T. Kemmitt, N. I. Al-Salim, G. J. Gainsford, A. Bubendorfer and M. Waterland, Inorg.

Chem., 2004, 43, 6300.140 T. Gunji, M. Yokogawa, M. Hongo and Y. Abe, J. Polym. Sci. A, 2005, 43, 763.141 S. Le Calve, C. Alonso, L. Rozes, C. Sanchez, M.-N. Rager and D. Massiot, Compt. rend.

Chim., 2004, 7, 241.142 X. Tang, X. Wen, W. Huang, S. Liu, Y. Wang, O. Palchik, Y. Koltypin, D. M. Pickup,

G. R. H. van Eck and A. Gedanken, Israel J. Chem., 2004, 44, 235.143 S. P. Gabuda, R. N. Pletnev, A. Y. Kupryazhkin, N. A. Zhuravlev, A. V. Dmitriev and E.

V. Zabolotskaya, Izv. Akad. Nauk., Ser. Fiz., 2004, 68, 744.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 165

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 31: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

144 F. Rataboul, A. Baudouin, C. Timeuleux, L. Veyre, C. Coperet, J. Thivolle-Cazat, J.-M.Bassett, A. LeSage and L. Emsley, J. Am. Chem. Soc., 2004, 126, 12541.

145 W. Liu, Z. Song, T. Ikegawa, H. Nishiguchi, T. Ishihara and Y. Takita,Mat. Lett., 2004,58, 3328.

146 S. E. Ashbrook and I. Farnan, Solid State N. M. R., 2004, 26, 105.147 Z. Lin and J. Rocha, Microporous Mesoporous Mat., 2004, 76, 99.148 F. Fayon, I. J. King, R. K. Harris, J. S. O. Evans and D. Massiot, Comt. Rend. Chim.,

2004, 7, 351.149 (a) K.-L. Huang, J.-H. Yu, Y.-C. Zou, C.-J. Li, G.-M. Wang, H. Ding, W.-J. Jin and

R.-R. Xu, Gaodeng Xuexiao Hauxue Xuebao, 2004, 25, 1387; (b) K.-L. Huang, J.-H. Yu,Y.-C. Zou, C.-J. Li, G.-M. Wang, H. Ding, W.-J. Jin and R.-R. Xu, Chem. Abs., 2005,142, 189428.

150 M. R. Hampson, S. Allen, I. J. King, C. J. Crossland, P. Hodgkinson, R. K. Harris, F.Fayon and J. S. O. Evans, Solid State Sci., 2005, 7, 819.

151 L. Armelao, H. Bertagnolli, S. Gross, V. Krishnan, U. Lavrencic-Stangar, K. Muller, B.Orel, G. Srinivasan, E. Tondello and A. Zattin, J. Mat. Chem., 2005, 15, 1954.

152 R. E. Youngman and S. Sen, Solid State N. M. R., 2004, 27, 77.153 A. M. Geller, F. C. Stedile, M. do C. R. Peralba, T. M. Pizzolato and J. H. Z. dos Santos,

J. Colloid Interfac. Sci., 2005, 288, 45.154 H. Nishihara, K. Ono, K. U. Neumann, K. R. A. Ziebeck and K. Kanomata, J. Alloys

Comp., 2004, 383, 302.155 R. Siegel, N. Dupre, M. Quarton and J. Hirschinger, Mag. Reson. Chem., 2004, 42, 1022.156 S. A. Ennaciri, C. R’Kha, P. Barboux, J. Livage and J. Maquet, J. Sol-Gel Sci. Technol.,

2005, 34, 197.157 N. Steinfeldt, D. Muller and H. Berndt, Appl. Catal. A, 2004, 272, 201.158 F. Carn, N. Steuneu, J. Livage, A. Colin and R. Backov, Chem. Mat., 2005, 17, 644.159 Y. Zhang, H. Sun and E. Oldfield, J. Am. Chem. Soc., 2005, 127, 3652.160 I. V. Koptyug, D. R. Sagdeev, E. Gerkema, H. van As and R. Z. Sagdeev, J. Mag. Reson.,

2005, 175, 21.161 N. R. Shiju, M. Anilkumar, S. P. Mirajkar, C. S. Gopinath, B. S. Rao and C. V.

Satyanarayana, J. Catal., 2005, 230, 484.162 G. Tricot, L. Montagne, L. Delevoye, G. Palavit and V. Kostoj, J. Non-Cryst. Solids,

2004, 345–6, 56.163 C. Brown, R. Achey, R. Fu, T. Gedris and A. E. Stiegman, J. Am. Chem. Soc., 2005, 127,

11590.164 J. R. Sohn, J. S. Han and J. S. Lim, J. Ind., Eng. Chem., 2004, 10, 1003.165 H. J. Chae, I.-S. Nam, S.-W. Ham and S. B. Hong, Appl. Catal. B, 2004, 53, 117.166 J. W. Wiench, C. J. Fontenot, J. F. Woodworth, G. L. Schrader, M. Pruski and S. C.

Larsen, J. Phys. Chem. B, 2005, 109, 1756.167 O. Durupthy, N. Steuneu, T. Coradin, J. Maquet, C. Bonhomme and J. Livage, J. Mat.

Chem., 2005, 15, 1090.168 S. Sugiyama, T. Hashimoto, Y. Tanabe, N. Shigemoto and H. Hayashi, J. Mol. Catal. A,

2005, 227, 255.169 S. Sugiyama, T. Hashimoto, Y. Morishita, N. Shigemoto and H. Hayashi, Appl. Catal. A,

2004, 270, 253.170 K. Ghoshray, B. Pahari, B. Bandopadhyay, R. Sarkar and A. Ghoshray, Phys. Rev. B,

2005, 71, 214401.171 D. Arcon, A. Zorko and A. Lappas, Appl. Magn. Reson., 2004, 27, 289.172 J. L. Gavilano, E. Felder, D. Rau, H. R. Ott, P. Millet, F. Mila, T. Cichorek and A. C.

Mota, Los Alamos Nat. Lab., Preprint Arch., Cond., Matt., 31 Jan 2005, 1–11, arXiv:-cond-mat/0501756.

173 M. Dubarry, J. Gaubicher, D. Guyomard, O. Durupthy, N. Steunou, J. Livage, N. Dupreand C. P. Grey, Chem. Mat., 2005, 17, 2276.

174 W. Huang, L. Todaro, G. P. A. Yap, R. Beer, L. C. Francesconi and T. Polenova, J. Am.Chem. Soc., 2004, 126, 11564.

175 T. Waki, H. Kato, M. Kato and Y. Noshimura, J. Phys. Soc. Jpn., 2004, 73, 275.176 (a) S.-X. Liu, H.-J. Zhai, J. Peng, D.-H. Li, Z.-M. Dai, E.-B. Wang, N.-H. Hu and H.-Q.

Jia, Gaodeng Xuexiao Huaxue Xuebao, 2004, 25, 997; (b) S.-X. Liu, H.-J. Zhai, J. Peng,D.-H. Li, Z.-M. Dai, E.-B. Wang, N.-H. Hu and H.-Q. Jia, Chem. Abs., 2005, 142, 32023.

177 (a) F. Gao, R. Hua and T. Yamase, Cuihua Xuebao, 2005, 26, 153; (b) F. Gao, R. Huaand T. Yamase, Chem. Abs., 2005, 143, 117111.

178 S. Shylesh and A. P. Singh, J. Catal., 2005, 233, 359.179 P. Selvam and S. E. Dapurkar, Appl. Catal. A, 2004, 276, 257.180 A. Flambard, L. Montagne, L. Delevoye, G. Palavit, J.-P. Amoureux and J.-J. Videau,

J. Non-Cryst. Solids, 2004, 345–6, 75.

166 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 32: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

181 K. O. Drake, D. Carta, L. J. Skipper, F. E. Sowrey, R. J. Newport andM. E. Smith, SolidState N. M. R., 2005, 27, 28.

182 F. le Roux, M. Chabanas, A. Baudouin, A. de Mallmann, C. Coperet, E. A. Quadrelli, J.Thivolle-Cazat, J.-M. Basset, W. Lukens, A. Lesage, L. Emsley and G. J. Sunley, J. Am.Chem. Soc., 2004, 126, 13391.

183 S. Rankel, B. Zalar, V. V. Laguta, R. Blinc and J. Toulouse, Phys. Rev. B, 2005, 71,144110.

184 Z. H. Han, J. I. Budnick, W. A. Hines, B. Dabrowski, S. Kolesnik and T. Maxwell, J.Phys. Cond. Matt., 2005, 17, 1193.

185 A. Vlachos, V. Psycharis, C. P. Raptopoulou, N. Laliot, Y. Sanakis, G. Diamantopoulos,M. Fardis, M. Karayanni, G. Papavassiliou and A. Terzis, Inorg. Chim. Acta, 2004, 357,3162.

186 H. A. Al-Megren, T. Xiao, S. L. Gonzales-Cortes, S. H. Al-Khowaiter and M. L. H.Green, J. Mol. Catal. A, 2005, 225, 143.

187 A. Sakthivel, J. Zhao, M. Hanzlik and F. E. Kuhn, J. Chem. Soc., Dalton Trans., 2004,3338.

188 E. L. Sceats, J. S. Figueroa, C. C. Cummins, N. M. Loening, P. van der Wel and R. G.Griffin, Polyhedron, 2004, 23, 2751.

189 W. Schilf, B. Kamienski, Z. Rozwadowski, K. Ambroziak, B. Bieg and T. Dzembowska,J. Mol. Struct., 2004, 700, 61.

190 G. Hou, L. Wang, X. Lu, A. Zheng, F. Deng and C. Ye, Sci. Chin., Ser. B, Chem., 2004,47, 214.

191 M. Wojcik, E. Jedryka, S. Nadolski, D. Rubi, C. Frontera, J. Fontcuberta, B. Jurca, N.Dragoe and P. Berthet, Los Alamos Nat. Lab., Preprint Arch., Cond., Matt., 7 Jun 2004,1–26, arXiv:cond-mat/0406161.

192 D. Zajac, Cz. Kapusta, P. C. Riedi, M. Sikora, C. J. Oates, D. Rybicki, J. M. de Teresa,D. Serrate, C. Marquina and M. R. Ibarra, Acta Phys. Pol. A, 2004, 106, 759.

193 H. Liu, Y. Li, B. Wenjie and Y. Xu, Catal. Today, 2004, 93–5, 65.194 J.-B. d’E. de la Caillerie, F. Barberon, K. V. Romanenko, O. B. Lapina, L. le Polles, R.

Gautier and Z. Gan, J. Phys. Chem. B, 2005, 109, 14033.195 F. L. Sousa, A. C. A. S. Ferreira, R. A. S. Ferreira, A. M. V. Cavaleiro, L. D. Carlos, H.

I. S. Nogueira, J. Rocha and T. Trindade, J. Nanosci. Nanotechnol., 2004, 4, 214.196 J. Li, S. Gao, M. Li, R. Zhang and Z. Xi, J. Mol. Catal. A, 2004, 218, 247.197 Y. Yang, Y. Guo, C. Hu, Y. Wang and E. Wang, Appl. Catal. A, 2004, 273, 201.198 (a) P. Zhou, L. Li, W. Zhang and Y. Guo, Xuebao, 2004, 25, 753; (b) P. Zhou, L. Li, W.

Zhang and Y. Guo, Chem. Abs., 2005, 142, 182269.199 P. M. Rao, A. Wolfson, S. Kababya, S. Vega and M. V. Landau, J. Catal., 2005, 232,

210.200 J. A. Dias, E. Caliman and S. C. L. Dias, Microporous Mesoporous Mat., 2004, 76, 221.201 J. Toufaily, J.-L. Guth, M. Soulard, J. Patarin, H. Hamad and T. Hamieh, J. Phys. IV,

2005, 124, 69.202 Y. Yamada, K. Nakamura, K. Kitagawa, G. Obara and T. Nakamura, J. Mag. Mag.

Mat., 2005, 285, 28.203 W.-S. Yoon, S. Iannopollo, C. P. Grey, D. Carlier, J. Gorman, J. Reed and G. Ceder,

Electrochem. Solid State Lett., 2004, 7, A167.204 Y. Paik, W. Bowden, T. Richards and C. P. Grey, J. Electrochem. Soc., 2005, 152, A1539.205 C. J. Oates, C. Kapusta, M. Sikora, P. C. Riedi, C. Martin, C. Yaicle, A. Maignan and

M. R. Ibarra, Phys. Rev. B, 2005, 71, 014430.206 N. P. Wickramasinghe, M. Shaibat and Y. Ishii, J. Am. Chem. Soc., 2005, 127, 5796.207 A. Trokiner, S. Verkhovskii, A. Yakubovskii, K. Kumagai, S.-W. Cheong, D. Khomskii,

Y. Furukawa, J. S. Ahn, A. Pogudin, V. Ogloblichev, A. Gerashenko, K. Mikhalev andY. Piskunov, Phys. Rev. B, 2005, 72, 054442.

208 K. Asai, N. Kobayashi, T. Bairo, N. Kaneko, Y. Kobayashi, M. Susuki, Y. Satoh andM.Mizoguchi, J. Phys. Soc. Jpn., 2005, 74, 1289.

209 G. Papavassiliou, M. Pissas, M. Belesi, M. Fardis, M. Karayanni, J. P. Ansermet, D.Carlier, C. Dimitropoulos and J. Dolinsek, Europhys. Lett., 2004, 68, 453.

210 A. G. Harter, N. E. Chakov, B. Roberts, R. Achey, A. Reyes, P. Kuhns, G. Christou andN. S. Dalal, Inorg. Chem., 2005, 44, 2122.

211 C. F. Barbatti, R. Turtelli, M. Schoenhart, H. Sassik, J. P. Sinnecker, E. H. C. P.Sinnecker, R. S. Sarthour, A. P. Guimaraes and R. Grossinger, J. Mag. Mag. Mat., 2005,290, 612.

212 J. Rozen, F. Masin, R. Celoin and H. Szwarc, Phys. Rev. B, 2004, 70, 144206.213 S. Nakagaki, F. L. Benedito and F. Wypych, J. Mol. Catal. A, 2004, 217, 121.214 J. H. Shim, T. Hwang, S. Lee, J. H. Park, S.-J. Han and Y. H. Jeong, Appl. Phys. Lett.,

2005, 86, 082503.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 167

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 33: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

215 M. Wojcik, E. Jedryka, S. Nadolski, D. Rudi, C. Frontera, J. Fontcuberta, B. Jurca, N.Dragoe and P. Berthet, Phys. Rev. B, 2005, 71, 104410.

216 J. Kohout, E. Gamaliy, H. Stepankova, J. Englich, V. Prochazka, V. Chlain and V. A. M.Brabers, J. Mag. Mag. Mat., 2004, 290, 1018.

217 K. H. Wu and W. C. Huang, J. Solid State Chem., 2004, 177, 3052.218 K. H. Wu, W. C. Huang, C. C. Yang and J. S. Hau, Mat. Res. Bull., 2005, 40, 239.219 A. A. Bezlepkin and S. P. Kuntsevich, Low Temp. Phys., 2005, 31, 283.220 S. N. Orlik, G. Pop. R. Ganea, V. A. Ostopyuk and L. M. Alekseenko, Theor. Exp.

Chem., 2004, 40, 187.221 D. Zipse, N. S. Dalal, R. M. Achey, J. M. North, S. Hill and R. S. Edwards, Appl. N. M.

R., 2004, 27, 151.222 K. J. Ooms and R. E. Wasylishen, J. Am. Chem. Soc., 2004, 126, 10972.223 K. Eichele, C. Nachtigal, S. Jung, H. A. Mayer, E. Lindner andM. Strobele,Mag. Reson.

Chem., 2004, 42, 807.224 T. S. Holbach, S. Mix, D. Fischer, S. Machling, J. O. Krause, C. Sievers, S. Blechert, O.

Nuyken and M. R. Burchmeiser, J. Org. Chem., 2005, 70, 4687.225 D.-Y. Wu, E. Lindner, H. A. Mayer, Z.-J. Jiang, V. Krishnan and H. Bertagnolli, Chem.

Mat., 2005, 17, 2951.226 E. Reisner, V. B. Arion, A. Rufinska, I. Chiorescu, W. F. Schmid and B. K. Keppler, J.

Chem. Soc., Dalton Trans., 2005, 2355.227 Z. H. Han, J. I. Budnick, W. A. Hines, P. W. Klamut, B. Dabrowski and M. Maxwell,

Phys. Rev. B, 2005, 71, 214432.228 H. Murakawa, K. Ishida, K. Kitagawa, Z. Q. Mao and Y. Maeno, Phys. Rev. Lett., 2004,

93, 167004.229 K. Tsuchida, C. Kato, T. Fujita and Y. Kobayashi, J. Phys. Soc. Jpn., 2004, 73, 698.230 K. Magishi, J. L. Gavilano, B. Pedrini, J. Hinderer, M. Weller, H. R. Ott, S. M. Kazakov

and J. Karpinski, Los Alamos Nat. Lab., Preprint Arch., Cond., Matt., 7 Sep 2004, 1–5,arXiv:cond-mat/0409169.

231 H. Wieldraaijer, W. J. M. de Jong and J. T. Kohlepp, Phys. Rev. Lett., 2004, 93, 177205.232 H. Wieldraaijer, W. J. M. de Jong and J. T. Kohlepp, J. Mag. Mag. Mat., 2005, 286, 390.233 E. Jedryka, M. Wojcik, P. Svec and I. Skorvanek, Appl. Phys. Lett., 2004, 85, 2884.234 M. Wojcik, E. Jedryka, I. Skorvanek and P. Svec, J. Mag. Mag. Mat., 2005, 290–1, 1431.235 Y. Lee, A.-J. Woo, K. S. Ryu, Y. J. Park, B. Y. Jung, J. H. Lee and K. Han, Solid State

Ionics, 2004, 175, 311.236 P. Carretta, M. Mariani, C. B. Azzoni, M. C. Mozzati, I. Bradaric, I. Savic, A. Feher and

J. Sebek, Phys. Rev. B, 2004, 70, 024409.237 F. L. Ning and T. Imai, Phys. Rev. Lett., 2005, 94, 227004.238 F. L. Ning, T. Imai, B. W. Statt and F. C. Chou, Phys. Rev. Lett., 2004, 93, 237201.239 M. Kato, C. Michioka, T. Waki, K. Yoshimura, K. Ishida, H. Sakurai, E. Takayama-

Muromachi, K. Takada and T. Sasaki, Physica B, 2005, 359–361, 482.240 I. R. Mukhamedshin, H. Alloul, G. Collin and N. Blanchard, Los Alamos Nat. Lab.,

Preprint Arch., Cond., Matt., 16 May 2005, 1–5, arXiv:cond-mat/0505380.241 E. V. Sampathkumaran, N. Fujiwara, S. Rayaprol, P. K. Sadhu and Y. Uwatko, Phys.

Rev. B, 2004, 70, 014437.242 (a) H. Zhu, Y. Ding, L. Yan, D. He, T. Wang, W. Chen, L. Yuan and L. Lin, Cuihua

Xuebao, 2004, 25, 653; (b) H. Zhu, Y. Ding, L. Yan, D. He, T. Wang, W. Chen, L. Yuanand L. Lin, Chem. Abs., 2005, 142, 200464.

243 N. Kimura, A. Josako, M. Kano, K. Kisoda, T. Manabe, M. Yamashita and R. Ikeda,Bull. Chem. Soc. Jpn., 2004, 77, 1815.

244 D. Christendat, I. S. Butler, D. F. R. Gilson, R. Hynes and F. G. Morin, Inorg. Chim.Acta, 2004, 357, 3775.

245 T. Posset, F. Rominger and J. Blumel, Chem. Mat., 2005, 17, 586.246 A. V. Ivanov and O. N. Antzutkin, Topics Curr. Chem., 2005, 246.247 A. V. Ivanov, O. A. Bredyuk, O. N. Antzutkin and W. Forsling, Russ. J. Coord. Chem.,

2004, 30, 480.248 U. Kalinowska, L. Checinska, M. Mazecka, A. Erxleben, B. Lippert and J. Ochocki,

Inorg. Chim. Acta, 2005, 358, 2464.249 I. de F. Gimenez and O. L. Alves, J. Braz.Chem. Soc., 2004, 15, 640.250 H. Ruegger, Mag. Reson. Chem., 2004, 42, 814.251 Y. Y. Tong, B. S. Zelakiewicz, B. M. Dy and A. R. Pogozelski, Chem. Phys. Lett., 2005,

406, 137.252 B. L. Young, D. E. McLaughlin, M. S. Rose, K. Ishida, O. O. Bernal, H. G. Lukefahr, K.

Heuser, G. R. Stewart, N. P. Butch, P.-C. Ho and M. B. Maple, Phys. Rev. B, 2004, 70,024401.

253 A. Grykalowska and B. Nowak, 1, 2005, 27, 223.

168 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 34: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

254 V. Chupin, A. I. P. M. de Kroon and B. de Kruijff, J. Am. Chem. Soc., 2004, 126, 13816.255 (a) N. Kimura,Wakayama Daigaku Kyoikugakubo Kiyo, Shizen Kagaku, 2004, 54, 23; (b)

N. Kimura, Chem. Abs., 2005, 142, 47865.256 M. Bechmann, S. Dusold, F. Geipel, A. Sebald and D. Sellmann, J. Phys. Chem. A, 2005,

109, 5275.257 N. Kimura, M. Yamashita and R. Ikeda, Chem. Phys. Lett., 2005, 406, 111.258 H. Breitzke, K. Luders, S. Scudino, U. Kuhn and J. Eckert, Phys. Rev. B, 2004, 70,

014201.259 B. Nowak, R. Burtovyy and M. Tkacz, J. Alloys Comp., 2004, 384, 71.260 Y. Shimizu, K. Miyagawa, K. Oda, K. Kanoda, M. Maesato and G. Saito, J. Phys. IV,

2004, 114, 377.261 A. Kawamoto, M. Yamasita and K.-I. Kumaga, Phys. Rev. B, 2004, 70, 212506.262 O. N. Bakharev, I. M. Abu-Shiekh, H. B. Brom, A. A. Nugroho, I. P. McCulloch and J.

Zaanen, Los Alamos Nat. Lab., Preprint Arch., Cond., Matt., 19 May 2004, 1–4,arXiv:cond-mat/0405431.

263 G.-Q. Zheng, P. L. Kuhns, A. P. Rayes, B. Liang and C. T. Lin, Phys. Rev. Lett., 2005,94, 047006.

264 M. Kodama, S. Miyahara, M. Takigawa, M. Horvatic, C. Berthier, F. Mila, H.Naheyama and Y. Ueda, J. Phys. Cond. Matt., 2005, 17, L61.

265 A. V. Dooglav, A. V. Egorov, I. R. Mukhamedshin, A. V. Savinkov, H. Alloul, J.Bobroff, W. A. MacFarlane, P. Mendels, G. Collin, N. Blanchard, P. G. Picard, P. J. C.King and J. Lord, Phys. Rev. B, 2004, 70, 054506.

266 K. Katayama, Y. Yoshida, T. Machi, S. Adachi and T. Ishida, Physica C, 2004, 412–4,526.

267 H. Kotegawa, Y. Kitaoka, Y. Araki, Y. Tokunaga, G.-Q. Zheng, K. Tokiwa, T.Watanabe, A. Iyo, H. Kito, Y. Tanaka and H. Ihara, Physica C, 2004, 408–410, 761.

268 H. Gerdes, A. Bosse, D. Mienert, F. J. Litterst, R. Klingeler, B. Buchner and H.-H.Klauss, J. Mag. Mag. Mat., 2005, 290–1, 338.

269 Y. Piskunov, D. Jerome, P. Auban-Senzier, P. Wzietek and A. Yakubovsky, Phys. Rev.,B, 2005, 72, 064512.

270 (a) A. I. Pogorel’tsev, V. L. Matukhin and N. A. Nevzerov, Izv. Vyssh. Ucgeb. Zaved.Prob. Energ., 2004, 117; (b) A. I. Pogorel’tsev, V. L. Matukhin and N. A. Nevzerov,Chem. Abs., 2005, 142, 308452.

271 M. Saski, K. Kumagai, K. Kakuyanagi and S. Nagata, Physica C, 2004, 408–410, 822.272 A. V. Ivanov, E. V. Novikova, S. A. Leskova and W. Forsling, Zhur. Neorg. Khim., 2004,

49, 100.273 D. Rusanova, W. Forsling, O. N. Antzutkin, K. J. Pike and R. Dupree, Langmuir, 2005,

21, 4420.274 M. Scheer, L. Gregoriades, J. Bai, M. Sierka, G. Brunklaus and H. Eckert, Chem.-Eur. J.,

2005, 11, 2163.275 K. Kodama, M. Takigawa, Y. Shimaoka and H. Tanaka, Los Alamos Nat. Lab., Preprint

Arch., Cond., Matt., 19 Jan 2005, 1–7, arXiv:cond-mat/0501451.276 B. Jayasekera, S. L. Brock, A. Y. H. Lo, R. W. Schurko and G.-A. Nazri, Chem.-Eur. J.,

2005, 11, 3762.277 J. Spevacek, J. Brus, J. Dybal and Y. S. Kang, Macromol., 2005, 38, 5083.278 G. H. Penner and W. Li, Inorg. Chem., 2004, 43, 5588.279 G. A. Bowmaker, R. K. Harris, B. Assadollahzadeh, D. C. Apperley, P. Hodgkinson and

P. Amornsakchai, Mag. Reson. Chem., 2004, 42, 819.280 C. Brinkmann, H. Eckert, D. Wilmer, M. Vogel, J. S. auf der Guenne, W. Hoffbauer, F.

Rau and A. Pfitzner, Solid State Sci., 2004, 6, 1077.281 A. V. Ivanov, S. A. Zinkin, A. A. Konzelko and W. Forsling, Zhur. Neorg. Khim., 2004,

49, 652.282 R. Spennato, M.-J. Menu, M. Dartiguenave and Y. Dartiguenave, Trans. Met. Chem.,

2004, 29, 830.283 D. M. Stefanescu, D. S. Gluck, R. Siegel and R. E. Wasylishen, Langmuir, 2004, 20,

10379.284 E. Szlyk, A. Wojtczak, A. Surdykowski and M. Go(dzikiewicz, Inorg. Chim. Acta, 2005,

358, 467.285 S. Gago, M. Pillinger, A. A. Valente, T. M. Santos, J. Rocha and I. S. Goncalves, Inorg.

Chem., 2004, 43, 5422.286 T. Loiseau, H. Muguerra, G. Ferey, M. Haouas and F. Taulelle, J. Solid State Chem.,

2005, 178, 621.287 O. Oms, J. le Bideau, A. Vioux and D. Leclercq, J. Organometal. Chem., 2005, 690, 363.288 K. Horiuchi, C. Iijima, S. Miyagi, H. Yogi, T. Fukami and R. Ikeda, Bull. Chem. Soc.

Jpn., 2004, 77, 2199.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 169

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 35: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

289 I. de Boer, J. Matysik, K. Erkelens, S. Sasaki, T. Miyatake, S. Yagai, H. Tamiaki, A.R.Holzwarth and H. J. M. de Groot, J. Phys. Chem. B, 2004, 108, 16556.

290 D. C. Craig, I. G. Dance, P. A. W. Dean, J. M. Hook, H. A. Jenkins, C. W. Kirby, M. L.Scudder and U. Rajalingam, Can. J. Chem., 2005, 83, 174.

291 E. Mikuli, B. Grad, W. Medycki and K. Holderna-Natkaniec, J. Solid State Chem., 2004,177, 3795.

292 E. T. Kefalas, M. Dakanali, P. Panagiotidis, C. P. Raptopoulou, A. Terzis, T.Mavromoustakis, I. Kyrikou, N. Karligiano, A. Bino and A. Salifoglu, Inorg. Chem.,2005, 44, 4818.

293 D. Ueno, J. F. Ma, T. Iwashita, F.-J. Zhao and S. P. McGrath, Planta, 2005, 221,928.

294 G. Mendoza-Diaz, G. Rigotti, O. E. Piro and E. E. Sileo, Polyhedron, 2005, 24, 777.295 A. V. Ivanov, A. V. Gerasimenko, O. N. Antzutkin and W. Forsling, Inorg. Chim. Acta,

2005, 358, 2585.296 N. Stock, N. Guillou, J. Senker, G. Ferey and T. Bein, Z. anorg. allg. Chem., 2005, 631,

575.297 M. Kontturi, E. Laurila, R. Mattsson, S. Paraniemi, J. J. Vepsalainen and M. Ahlgren,

Inorg. Chem., 2005, 44, 2400.298 H. Sakai, Y. Tokunaga, S. Kambe, K. Kitagawa, H. Murakawa, K. Ishida, H. Ohno, M.

Kato, K. Yoshimura and R. E. Walstedt, J. Phys. Soc. Jpn., 2004, 73, 2940.299 I. J. H. Leung and C. A. Michal, Phys. Rev. B, 2004, 70, 035213.300 N. D. Draper, R. J. Batchelor, P. M. Aguiar, S. Kroeker and D. B. Leznoff, Inorg. Chem.,

2004, 43, 6557.301 G. A. Bowmaker, B. Assadollahzadeh, A. M. Brodie, E. W. Ainscough, G. H. Freeman

and G. B. Jameson, J. Chem. Soc., Dalton Trans., 2005, 1602.302 M. Weil, M. Puchberger and E. J. Baran, Inorg. Chem., 2004, 43, 8330.303 R. Stern, I. Heinmaa, D. A. Pavlov and I. Bryntse, Los Alamos Nat. Lab., Preprint Arch.,

Cond., Matt., 21 Apr 2004, 1–4, arXiv:cond-mat/0404496.304 D. Zhou, Y. Zheng, E. Du, Y. Xu, J. Zhu, D. Yuan, Z. Wang, H. Luo, Y. Zuo, R. Ma, X.

Duan, M. Mihara, M. Fukuda, K. Matsuta, T. Minamisono and S. Zhu, Sci. China, Ser.G., 2004, 47, 531.

305 M. Nishiyama, Y. Inada and G. Zheng, Phys. Rev. B, 2005, 71, 220505.306 S. Paluch, O. J. Zogal and P. Peshev, J. Alloys Comp., 2004, 383, 176.307 B. Jager, S. Paluch, W. Wolf, P. Herzig, O. J. Zogal, N. Shitsevalova and Y. Paderno, J.

Alloys Comp., 2004, 383, 232.308 B. J. Mean, K. H. Lee, K.-H. Kang, M. Lee, J. S. Rhee and B. K. Cho, Physica B, 2005,

359–361, 1204.309 K. Hofmann and B. Albert, Z. Krist., 2005, 220, 142.310 I. Zharov, T.-C. Weng, A. M. Orendt, D. H. Barich, J. Penner-Hahn, D. M. Grant, Z.

Havlas and J. Michl, J. Am. Chem. Soc., 2004, 126, 12033.311 C. H. Lee, S.-H. Park, J. K. Jung, K.-S. Ryu, S. H. Nahm, J. Kim and Y. Che, Solid State

Comm., 2005, 134, 419.312 B. Toury, D. Cornu, F. Chassagneux and P. Miele, J. Eur. Ceram. Soc., 2004, 25,

137.313 C. Gervais, E. Framery, C. Duriez, J. Maquet, M. Vaultier and F. Barbonneau, J. Eur.

Ceram. Soc., 2004, 25, 129.314 F. Berger, A. Muller, F. Aldinger and K. Muller, Z. anorg. allg. Chem., 2005, 631, 355.315 L. van Wullen and M. Jansen, Solid State N. M. R., 2005, 27, 90.316 C. Gervais, E. Framery, C. Duriez, J. Maquet, M. Vaultier and F. Barbonneau, J. Eur.

Ceram. Soc., 2004, 25, 133.317 M. Bishop, N. Shahid, J. Yang and A. R. Barron, J. Chem. Soc., Dalton Trans., 2004,

2621.318 J. W. Zwanziger, Solid State N. M. R., 2005, 27, 5.319 S. K. Lee, K. Mibe, Y. Fei, G. D. Cody and B. O. Mysen, Phys. Rev. B, 2005, 94, 165507.320 E. Kashchieva, B. Shivachev and Y. Dimitriev, J. Non-Cryst. Solids, 2005, 351, 1158.321 G. D. Cody and B. O. Mysen, Phys. Rev. Lett., 2004, 94, 165507.322 T. Maekawa, J. Ceram. Soc. Jpn., 2004, 112, 467.323 P. M. Aguiar and S. Kroeker, Solid State N. M. R., 2005, 27, 10.324 (a) K. A. Kostanyan, N. B. Knyaznyan, S. G. Muradyan and L. A. Gasparyan,

Hayastani Kimiakan Handes, 2004, 57, 14; (b) K. A. Kostanyan, N. B. Knyaznyan, S.G. Muradyan and L. A. Gasparyan, Chem. Abs., 2005, 142, 180230.

325 M. R. Hansen, G. K. H. Madsen, H. J. Jakobsen and J. Skibsted, J. Phys. Chem. A, 2005,109, 1989.

326 L. Chen, M. Zhang, Y. Yue, C. Ye and F. Deng, Microporous Mesoporous Mat., 2004,76, 151.

170 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 36: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

327 (a) S.-F. Li, D.-Q. Li, L. Shi, L. Yang, M. Pu, D. G. Evans and X. Duan,Huaxue Xuebao,2004, 62, 1205; (b) S.-F. Li, D.-Q. Li, L. Shi, L. Yang, M. Pu, D. G. Evans and X. Duan,Chem. Abs., 2005, 142, 125855.

328 F. Dumeignil, M. Rigole, M. Guelton and J. Grimblot, Chem. Mat., 2005, 17, 2361.329 F. Dumeignil, M. Rigole, M. Guelton and J. Grimblot, Chem. Mat., 2005, 17, 2369.330 L.-S. Du and J. F. Stebbins, Solid State N. M. R., 2005, 27, 37.331 N. Ollier, T. Charpentier, B. Boizot, G. Wallez and D. Ghaleb, J. Non-Cryst. Solids,

2004, 341, 26.332 N. Ollier, T. Charpentier, B. Boizot and G. Petite, J. Phys. Cond. Matt., 2004, 16, 7625.333 A. M. Sawvel, S. C. Chinn, W. L. Bourcier and R. S. Maxwell, Chem. Mat., 2005, 17,

1493.334 H. Miyoshi, D. Chen and T. Akai, Phys. Chem. Glasses, 2005, 46, 157.335 D. L. Dorset and G. J. Kennedy, J. Phys. Chem. B, 2005, 109, 13891.336 S.-J. Hwang, C.-Y. Chen and S. I. Jones, J. Phys. Chem. B, 2004, 108, 18535.337 J. G. Wood, S. Prabakar, K. T. Muller and C. G. Pantano, J. Non-Cryst. Solids, 2004,

349, 276.338 A. Ledieu, F. Devreux, P. Barboux, L. Sicard and O. Spalla, J. Non-Cryst. Solids, 2004,

343, 3.339 D. Chen, H. Miyoshi, H. Masui, T. Akai and T. Yazawa, J. Non-Cryst. Solids, 2004, 345–

6, 104.340 D. Chen, H. Miyoshi, H. Masui, T. Akai and T. Yazawa, J. Non-Cryst. Solids, 2004, 345–

6, 99.341 P. Gupta, H. Jain, D. B. Williams, O. Kanert and R. Kuchler, J. Non-Cryst. Solids, 2004,

349, 291.342 V. C. V. Gowda and R. V. Anavekar, Ionics, 2004, 10, 103.343 S. Elbers, W. Strojek, L. Koudelka and H. Eckert, Solid State N. M. R., 2005, 27, 65.344 M. Zeyer-Dusterer, L. Montagne, G. Palavit and C. Jager, Solid State N. M. R., 2004, 27,

50.345 Y. N. Hadj, M. Ben Amara, J. J. Videau, M. Menetrier and M. Couzi, Phys. Chem.

Glasse, 2004, 45, 272.346 L. Zhang and H. Eckert, J. Mat. Chem., 2005, 15, 1640.347 L. Koudelka, P. Mosner, J. Pospisil, G. Montagne and G. Palavit, J. Solid State Chem.,

2005, 178, 1837.348 S. Elbers, W. Strojek, L. Koudelka and H. Eckert, Solid State N. M. R., 2004, 27, 65.349 M. Wiebcke, A. Burgershausen and H. Koller, Microporous Mesoporous Mat., 2005, 78,

97.350 D. Holland, A. C. Hannon, M. E. Smith, C. E. Johnson, M. F. Thomas and A. M.

Beesley, Solid State N. M. R., 2004, 26, 172.351 M. H. Bhat, M. Ganguli and K. J. Rao, Curr. Sci., 2004, 86, 676.352 S. Mukhopadhyay, K. P. Ramesh, R. Kannan and J. Ramakrishna, Phys. Rev. B, 2004,

70, 224202.353 L. J. Q. Maia, V. R. Mastelaro, J. F. Schneider, P. Parent and C. Laffon, J. Solid State

Chem., 2005, 178, 1452.354 A. Goursot and D. Berthomieu, Mag. Reson. Chem., 2004, 42, S180.355 M. Rauscher, T. Selvam, W. Schwieger and D. Freude, Microporous Mesoporous Mat.,

2004, 75, 195.356 J. Yang, A. Zheng, M. Zhang, Q. Luo, Y. Yue, C. Ye, X. Lu and F. Deng, J. Phys. Chem.

B, 2005, 109, 13124.357 H. Ueno, D. Kameda, G. Kijima, K. Asahi, A. Yoshimi, H. Miyoshi, K. Shimada, G.

Kato, D. Nagae, S. E. Mori, T. Haseyama, H. Watanabe and M. Tsukui, Phys. Lett. B,2005, 615, 186.

358 J. Chi, Y. Li, F. G. Vagisov, V. Goruganti and J. H. Ross, Phys. Rev. B, 2005, 71, 024431.359 C. S. Lue, B. X. Xie, S. N. Horng, J. H. Su and J. Y. Lin, Phys. Rev. B, 2005, 71, 195104.360 R. Sarkar, K. Ghoshray, B. Bandopadhyay and A. Ghoshray, Phys. Rev. B, 2005, 71,

104421.361 P. Jeglic and J. Dolinsek, Phys. Rev. B, 2005, 71, 014204.362 S. Kaskel, G. Chaplais and K. Schlichte, Chem. Mat., 2005, 17, 181.363 V. P. Tarasov and Yu. B. Muravlev, Khim. Fiz., 2004, 23, 3.364 B. Liu, K. Fukuda, H. Nakatani, I. Nishiyama, M. Yamahiro and K. Terano, J. Mol.

Catal. A, 2004, 219, 363.365 Y. Kim, C. Kim, P. Kim and J. Yi, J. Non-Cryst. Solids, 2005, 351, 550.366 T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell and J. H. Satcher,

Chem. Mat., 2005, 17, 395.367 R. Ozao, Y. Nishimoto, H. Yoshida, T. Inada andW.-P. Pan, Trans. Mat. Res. Soc. Jpn.,

2004, 29, 2395.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 171

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 37: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

368 T. Iijima, S. Kato, R. Ikeda, S. Ohki, G. Kido, M. Tansho and T. Shimizu, Chem. Lett.,2005, 34, 1286.

369 (a) S.-B. Mao, D.-Q. Li, F.-Z. Zhang, D. G. Evans and X. Duan, Wuji Huaxue Xuebao,2004, 20, 596; (b) S.-B. Mao, D.-Q. Li, F.-Z. Zhang, D. G. Evans and X. Duan, Chem.Abs., 2004, 141, 387652.

370 T. I. Koranyi and J. B. Nagy, React. Kinetics Catal. Lett., 2005, 85, 131.371 K. Takehira, T. Kawabata, T. Shishido, K. Murakami, T. Ohi, D. Shoro, M. Honda and

K. Takaki, J. Catal., 2005, 231, 92.372 H. Kaji, Y. Kusaka, G. Onoyama and F. Horii, Jpn. J. Appl. Phys. Pt. 1, 2005, 44A, 3706.373 T. J. Boyle, T. M. Alam, S. D. Bunge, J. M. Segall, G. R. Avilucea, R. G. Tissot and M.

A. Rodriguez, Organometallics, 2005, 24, 731.374 N. MacKinnon, K. J. Crowell, A. K. Udit and P. M. McDonald, Chem. Phys. Lipids,

2004, 132, 23.375 W. H. Casey, M. M. Olmstead and B. L. Phillips, Inorg. Chem., 2005, 44, 4888.376 G. S. R. Krishnamurthi, M. K. Wang and P. M. Huang, Clays Clay Min., 2004, 52, 734.377 S. Gago, M. Pillinger, T. M. Santos and I. S. Goncalves, Ceramics-Silkaty, 2004, 48, 155.378 (a) Y.-Q. Jiang, Y.-H. Liu, X. Zhao, J.-Z. Zhao, Y.-M. Tian and Z.-C. Wang, Gaodeng

Xuexiao Huaxue Xuebao, 2005, 26, 1018; (b) Y.-Q. Jiang, Y.-H. Liu, X. Zhao, J.-Z. Zhao,Y.-M. Tian and Z.-C. Wang, Chem. Abs., 2005, 143, 252195.

379 P. Z. Wang, R. Trettin, V. Rudert and T. Spaniol, Adv. Cement Res., 2004, 16, 1.380 S. Hiradate, Soil Sci. Plant Nutrition, 2004, 50, 303.381 K. Kanehashi and K. Saito, Energy Fuels, 2004, 18, 1732.382 (a) C. Wei, H. Ma, D. Yang, Y. Li and A. Mikuni, Guisuanyan Xuebao, 2005, 33, 77; (b)

C. Wei, H. Ma, D. Yang, Y. Li and A. Mikuni, Chem. Abs., 2005, 142, 359312.383 P. Duxson, G. C. Lukey, F. Separovic and J. S. J. van Deventer, Ind. Eng. Chem. Res.,

2005, 44, 832.384 (a) M.-J. Zhang, L. Chen, D.-L. Yi, A.-M. Zheng, J. Yang, F. Deng, Y. Yue and C.-H.

Ye, Gaodeng Xuexiao Huaxue Xuebao, 2005, 25, 1490; (b) M.-J. Zhang, L. Chen, D.-L.Yi, A.-M. Zheng, J. Yang, F. Deng, Y. Yue and C.-H. Ye, Chem. Abs., 2005, 142, 361571.

385 V. A. Drits, H. Lindgreen, B. A. Sakharov, H. J. Jakobsen and B. B. Zviagina, Clay Min.,2004, 39, 367.

386 S. Abello, F. Medina, D. Tichit, J. Perez-Ramırez, J. C. Groen, J. E. Sueiras, P. Salagreand Y. Cesteros, Chem.-Eur. J., 2005, 11, 728.

387 J. Jiao, J. Kanellopoulos, W. Wang, S. S. Ray, H. Forster, D. Freude and M. Hunger,Phys. Chem. Chem. Phys., 2005, 7, 3221.

388 M. Yao, Z.-Y. Liu, K.-X. Wang, C.-J. Li, Y.-C. Zou and H.-J. Sun, J. Porous Mat., 2004,11, 229.

389 O. Morey and P. Gouriot, J. Eur. Ceram. Soc., 2004, 25, 50.390 S. Hiradate and S.-I. Wada, Clays Clay Min., 2005, 53, 401.391 P. Duxson, J. L. Provis, G. C. Lukey, F. Separovic and J. S. J. van Deventer, Langmuir,

2005, 21, 3028.392 P. S. Singh, M. Trigg, I. Burgar and T. Bastow, Mat. Sci. Eng. A, 2005, 396, 392.393 P. S. Singh, T. Bastow and M. Trigg, J. Mat. Sci., 2005, 40, 3951.394 Y. Liu, H. Nekvasil and J. Tossell, J. Phys. Chem. A, 2005, 109, 3060.395 J. L. Provis, P. Duxson, G. C. Lukey and J. S. J. van Deventer, Chem. Mat., 2005, 17,

2976.396 S. Hiradate, Soil Sci., Plant Nutrition, 2004, 50, 303.397 C. Gervais, M. Profeta, F. Babonneau, C. J. Pickard and F. Mauri, J. Phys. Chem. B,

2004, 108, 13249.398 (a) B. Gao, Z. Liu and Q. Yue,Huonjing Huaxue, 2004, 23, 208; (b) B. Gao, Z. Liu and Q.

Yue, Chem. Abs., 2004, 141, 302220.399 K. Sinko and A. Nemenyi, Progr. Colloid. Polym Sci., 2004, 125, 103.400 M. J. Bertolini, M. A. Zaghete, R. Gimenes, R. Freitas de Souza and L. G. Vaz, J. Non-

Cryst. Solids, 2004, 344, 170.401 S. K. Lee, G. D. Cody, Y. Fei and B. O. Mysen, Geochim. Cosmochim. Acta, 2004, 68,

4189.402 T. O. Sandland, L.-S. Du, J. F. Stebbins and J. D. Webster, Geochim. Cosmochim. Acta,

2004, 68, 5059.403 T. O. Sandland, L.-S. Du, J. F. Stebbins and J. D. Webster, Geochim. Cosmochim. Acta,

2004, 68, 5062.404 J. D. Kubicki and D. G. Sykes, Geochim. Cosmochim. Acta, 2004, 68, 3909.405 J. A. Tossell and J. Horbach, J. Phys. Chem. B, 2005, 109, 1794.406 D. R. Neuvill, L. Cormier and D. Massiot, Geochim. Cosmochim. Acta, 2004, 68, 5071.407 M. Benoit, M. Profeta, F. Mauri, C. J. Pickard and M. E. Tuckerman, J. Phys. Chem. B,

2005, 109, 6052.

172 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 38: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

408 A. Stamboulis, R. G. Hill, R. V. Law and S. Matsuya, Phys. Chem. Glasses, 2004, 45,127.

409 R. G. Hill, A. Stamboulis, R. V. Law, J. Hawes and J. Henry, Phys. Chem. Glasses, 2004,45, 121.

410 (a) H.-L. Fei, P.-C. Sun, T.-H. Chen, B.-H. Li and D.-T. Ding, Bopuxue Zazhi, 2005, 22,61; (b) H.-L. Fei, P.-C. Sun, T.-H. Chen, B.-H. Li and D.-T. Ding, Chem. Abs., 2005, 142,359305.

411 A. McCutcheon, J. Hu, C. S. K. Kannangara, M. A. Wilson and N. Reddy, J. Non-Cryst.Solids, 2005, 351, 1967.

412 M. Eden, J. Grins, Z. Shen and Z. Weng, J. Mag. Reson., 2004, 169, 279.413 D. le Messurier, N. Sissouno, A. R. Vearey-Roberts, S. Evans, D. A. Evans and R.

Winter, Mat. Sci. Technol., 2004, 20, 975.414 C. Eang, G. Zhu, T. Shang, X. Cai, C. Liu, N. Li, Y. Wei, J. Li, W. Zhang and S. Qiu,

Solid State Comm., 2005, 135, 257.415 J. Huang, G. Li, S. Wu, H. Wang, L. Xing, K. Song, T. Wu and Q. Kan, J. Mat. Chem.,

2005, 15, 1055.416 M. Kargol, J. Zajac, D. J. Jones, T. Steriotis, J. Roziere and P. Vise, Chem. Mat., 2004,

16, 3911.417 K. Gora-Marek, M. Derewinski, P. Sarv and J. Datka, Catal. Today, 2005, 101, 131.418 S.-R. Zhai, J.-L. Zheng, D. Wu, Y.-H. Sun and F. Deng, J. Solid State Chem., 2005, 178,

85.419 C. Wang, G. Zhu, X. Cai, T. Shang, L. Zhao, N. Li, R. Wang, Y. Wei, J. Li and S. Qiu,

Top. Catal., 2005, 35, 25.420 Y. Xia, W. Wang and R. Mokaya, J. Am. Chem. Soc., 2005, 127, 790.421 T. I. Koranyi and J. B. Nagy, React. Kinetics Catal. Lett., 2005, 85, 131.422 M. J. Bertolini, R. G. Palma-Dibb, M. A. Zaghete and R. Gimenes, J. Non-Cryst. Solids,

2005, 351, 466.423 A. Stamboulis, R. G. Hill and R. V. Law, J. Non-Cryst. Solids, 2005, 351, 3289.424 M. Lubas, M. Sitarz, Z. Fojud and S. Jurga, J. Mol. Struct., 2005, 744–7, 615.425 J. El-Haskouri, C. Guillem, J. Latorre, A. Beltran, D. Beltran and P. Amoros, Chem.

Mat., 2004, 16, 4359.426 L. Zhang, A. Bogershausen and H. Eckert, J. Am. Ceram. Soc., 2005, 88, 897.427 C. Moorlag, Q. Yang, T. Troczynski, J. Brotherton and C. A. Fyfe, J. Am. Ceram. Soc.,

2004, 87, 2064.428 N. Venkatathri and G. P. A. Kumar, Ultra Sci. Phys. Sci., 2003, 15, 345.429 G. Poulet, P. Sautet and A. Tuel, Actualite Chim., 2005, 282, 18.430 W. Yu, E. W. Hagaman and S. Dai, Chem. Mat., 2004, 16, 5182.431 H. Yang, R. I. Walton, S. Biedasek, S. Antonijevic, S. Wimperis, A. J. Ramirez-Costa, J.

Li and A. I. Kolesnikov, J. Phys. Chem. B, 2005, 109, 4464.432 J. W. Wiench and M. Pruski, Solid State N. M. R., 2004, 26, 51.433 N. Venkatathri, Ultra Sci. Phys. Sci., 2003, 15, 415.434 N. Venkatathri, J. Ind. Chem. Soc., 2005, 82, 77.435 J. Schneider, S. L. Oliveira, L. A. O. Nunes, F. Bonk and H. Panepucci, Inorg. Chem.,

2005, 44, 423.436 E. Fujii, K. Kawabata, H. Yoshimatsu, K. Tsoru, S. Hayakawa and K. Osaka, J. Ceram.

Soc. Jpn., 2005, 113, 241.437 D. Zhou, L. Chen, J. Yu, Y. Li, W. Yan, F. Deng and R. Xu, Inorg. Chem., 2005, 44,

4391.438 Y. Huang and Z. Yan, J. Am. Chem. Soc., 2005, 127, 2731.439 J.-J. Li, Y. Guo, G.-D. Li, J.-S. Chen, C.-J. Li and Y.-C. Zou, Microporous Mesoporous

Mat., 2005, 79, 79.440 N. Venkatathri, Ultra Sci. Phys. Sci., 2004, 16, 207.441 G. Mali, A. Ristic and V. Kaucic, J. Phys. Chem. B, 2005, 109, 10711.442 G. Kuriakose, J. B. Nagy and N. Nagaraju, Catal. Comm., 2005, 6, 29.443 L. Zhang, C. C. de Araujo and H. Eckert, Chem. Mat., 2005, 17, 3101.444 S. M. Abo-Naf, N. A. Ghoneim and H. A. El-Batal, J. Mat. Sci. Mat. Electronics, 2004,

15, 273.445 M. Sitarz, M. Handke, Z. Fojud and S. Jurga, J. Mol. Struct., 2005, 744–7, 621.446 (a) R.-P. Yao, M.-J. Zhang, J. Yang, D.-L. Yi, J. Xu, F. Deng, Y. Yue and C.-H. Ye,

Huaxue Xuebao, 2005, 63, 269; (b) R.-P. Yao, M.-J. Zhang, J. Yang, D.-L. Yi, J. Xu, F.Deng, Y. Yue and C.-H. Ye, Chem. Abs., 2005, 143, 13981.

447 A. Vargas, J. A. Montoya, C. Maldonado, I. Hernandez-Perez, D. R. Acosta and J.Morales, Microporous Mesoporous Mat., 2004, 74, 1.

448 (a) D. J. Yim, Y. C. Kim and S. Y. Jeong, Kongop Hwahak, 2004, 15, 865; (b) D. J. Yim,Y. C. Kim and S. Y. Jeong, Chem. Abs., 2005, 142, 101017.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 173

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 39: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

449 J. L. de Macedo, S. C. L. Dias and J. A. Dias, Microporous Mesoporous Mat., 2004, 72,119.

450 (a) H. Fei, P. Sun, T. Chen, B. Li and D. Ding, Bopuxue Zazhi, 2005, 22, 61; (b) H. Fei, P.Sun, T. Chen, B. Li and D. Ding, Chem. Abs., 2005, 248753.

451 K. J. A. Raj and V. R. Vijayaraghavan, Ind. J. Chem. Technol., 2004, 11, 678.452 J. Guo, X.-W. Cheng, W.-Z. Zhou and Y.-C. Long,Microporous Mesoporous Mat., 2005,

79, 319.453 L. Capek, J. Dadecek and B. Wichterlova, J. Catal., 2004, 227, 352.454 S. Altwasser, J. Jiao, S. Stevernagel, J. Weitkamp and M. Hunger, Stud. Surf. Sci. Catal.,

2004, 154C, 3098.455 S. Altwasser, J. Jiao, S. Stevernagel, J. Weitkamp and M. Hunger, Stud. Surf. Sci. Catal.,

2004, 154B, 1212.456 (a) Y. Kang, H. Ma, J. Yang, B. Li and Y. Han, Guisuanyan Xuebao, 2004, 32, 930; (b) Y.

Kang, H. Ma, J. Yang, B. Li and Y. Han, Chem. Abs., 2005, 142, 139476.457 S. Chandrasekhar and P. N. Pramada, Appl. Clay Sci., 2004, 27, 187.458 C.-S. Lee, H.-J. Lee, S.-W. Choi, J. Kwak and C. H. F. Peden, Key Eng. Mat., 2005

277–9, 708.459 H. Ernst, D. Freude, J. Kanellopoulos, T. Loeser, D. Prochnow and D. Schneider, Stud.

Surf. Sci. Catal., 2004, 154B, 1173.460 E. Guillon, A. A. Quoineaud, T. Armaroli, S. Lacombe and S. Gautier, Stud. Surf. Sci.

Catal., 2004, 154B, 1539.461 J. Perez-Ramırez, J. C. Groen, A. Bruckner, M. S. Kumar, U. Bentrup, M. N. Debbagh

and L. A. Villaescusa, J. Catal., 2005, 232, 318.462 A. de Lucas, J. L. Valverde, P. Sanchez, F. Dorado and M. J. Ramos, Ind. Eng. Chem.

Res., 2004, 43, 8217.463 C. Sankar, C. Zenonos, A. M. Beale, M. Sanchez-Sanchez, I. L. Franklin and J. Garcıa-

Martınez, Stud. Surf. Sci. Catal., 2004, 154A, 758.464 J. Zhuang, D. Ma, G. Yang, Z. Yan, X. Liu, X. Liu, X. Han, X. Bao, P. Xie and Z. Liu, J.

Catal., 2004, 228, 234.465 (a) M. Ke, X. Wang and F. Zhang, Shiyou Huagong, 2005, 34, 226; (b) M. Ke, X. Wang

and F. Zhang, Chem. Abs., 2005, 142, 413994.466 D. Mao, W. Yang, J. Xia, B. Zhang, Q. Song and Q. Chen, J. Catal., 2005, 230, 140.467 Q. Luo, J. Yang, W. Hu, M. Zhang, Y. Yue, C. Ye and F. Deng, Solid State N. M. R.,

2005, 28, 9.468 Y. Wan, J. Ma, Z. Wang and W. Zhou, Microporous Mesoporous Mat., 2004, 76, 35.469 A. Vinu, K. Ariga, S. Saravanamurugan, M. Hartmann and V. Murugesan, Microporous

Mesoporous Mat., 2004, 76, 91.470 F. A. Barbosa, A. C. B. dos Santos, M. I. P. da Silva and A. M. Stumbo, Catal. Today,

2004, 98, 109.471 R. Luque, J. M. Campelo, D. Luna, J. M. Marinas and A. A. Romero, Microporous

Mesoporous Mat., 2005, 84, 11.472 L. Forni, C. Tosi, G. Fornasari, F. Trofiro, A. Vaccari and J. B. Nagy, J. Mol. Ctal. A,

2004, 221, 97.473 A. Palani and A. Pandurangan, J. Mol. Catal. A, 2005, 226, 129.474 S. Udaykumar, A. Pandurangan and P. K. Sinha, Appl. Catal. A, 2004, 272, 267.475 A. Belhakem, A. Bengueddach and J. Patarin, J. Soc. Algerienne Chim., 2003, 13, 215.476 A. Sakthivel, S.-J. Huang, W.-H. Chen, Z.-H. Lan, K.-H. Chen, H.-P. Lin, C.-Y. Mou

and S.-B. Liu, Adv. Funct. Mat., 2005, 15, 253.477 O. Collart, P. Cool, P. van der Voort, V. Meynen, E. F. Vansant, K. Houhoofd, P. J.

Grobet, O. I. Lebedev and G. van Tendeloo, J. Phys. Chem. B, 2004, 108, 13905.478 J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. A. Romero, J. J. Calvino and M.

P. Rodriguez-Luque, J. Catal., 2005, 230, 327.479 G. Kosova, S. Ernst, M. Hartmann and J. Cejka, Eur. J. Inorg. Chem., 2005, 1154.480 S. Zhai, J. Zheng, J. Li, D. Wu, Y. Sun and F. Deng, Microporous Mesoporous Mat.,

2005, 83, 10.481 (a) Y. Zhong, X.-W. Cheng, J. Guo, Q. Huang and Y.-C. Long, Huaxue Xuebao, 2005,

63, 720; (b) Y. Zhong, X.-W. Cheng, J. Guo, Q. Huang and Y.-C. Long, Chem. Abs.,2005, 143, 62810).

482 N. Katada, S. Nakata, S. Kato, K. Kanehashi, K. Saito and M. Niwa, J. Mol. Catal. A,2005, 236, 239.

483 N. Venkatathri, Ind. J. Chem. A, 2004, 43A, 2514.484 B. Boddenberg, B. R. Rani and R. Grosse, Langmuir, 2004, 20, 10962.485 N. Venkatathri and R. Srivastava, Ind. J. Chem. A, 2004, 43A, 1039.486 N. Venkatathri, J. Ind. Chem. Soc., 2004, 81, 198.487 N. Venkatathri and R. Srivastava, J. Ind. Inst. Sci., 2004, 84, 99.

174 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 40: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

488 L. Y. Shi, Y. M. Wang, A. Ji, L. Gao and Y. Wang, J. Mat. Chem., 2005, 15, 1392.489 H.-M. Kao, C.-C. Ting and S.-W. Chao, J. Mol. Catal. A, 2005, 235, 200.490 A. Vinu, B. M. Devassy, S. B. Halligudi, W. Bohlmann and M. Hartmann, Appl. Catal.

A, 2005, 281, 207.491 T. Klimova, L. Lizama, J. Z. Amezcua, P. Roquero, E. Terres, J. Navarrete and J. M.

Dominguez, Catal. Today, 2004, 98, 141.492 N. Venkatathri, Ultra Sci. Phys. Sci., 2004, 16, 261.493 (a) Y.-X. Qin, M. Hu, Y.-D. Li and H.-Y. Li, Wuji Huaxue Xuebao, 2005, 21, 1181; (b)

Y.-X. Qin, M. Hu, Y.-D. Li and H.-Y. Li, Chem. Abs., 2005, 143, 217339.494 U. N. Tripathi and M. S. Ahmad, Main Gp. Met. Chem., 2004, 27, 169.495 J. A. Tossell and Y. Liu, Mag. Reson. Chem., 2004, 42, S34.496 H.-M. Kao, Y.-C. Chen, C.-C. Ting, P. T. Chen and J.-C. Jiang, Catal. Today, 2004, 97,

13.497 S. K. Ruediger, U. Gross, M. Feist, H. A. Prescott, S. C. Shekar, S. I. Troyanov and E.

Kemnitz, J. Mat. Chem., 2005, 15, 588.498 T. Loiseau, H. Muguerra, J. Marrot, G. Ferey, M. Hawas and F. Taulelle, Inorg. Chem.,

2005, 44, 2920.499 T. Krahl and E. Kemnitz, Angew. Chem. Int. Ed., 2004, 43, 6653.500 C. B. Nelson, P. C. Taylor and W. A. Harrison, Phys. Rev. B, 2004, 70, 224207.501 Y. Piskunov, K. Mikhalev, A. Gerashenko, A. Pogudin, V. Ogloblichev, S. Verkhouski,

A. Tankeyev, V. Arkhipov, Y. Zouev and L. Lekomtsev, Phys. Rev. B, 2005, 71, 174410.502 J. P. Yesinowski, Phys. Stat. Solidi C, 2005, 2, 2399.503 B. Schwenzer, J. Hu, R. Seshadri, S. Keller, S. P. den Baars and U.K. Mishra, Chem.

Mat., 2004, 16, 5088.504 W.-S. Jung and B.-K. Min, Mat. Letts., 2004, 58, 3058.505 S. B. Hong, S.-H. Lee, C.-H. Shin, A. J. Woo, L. J. Alvarez, C. M. Zicovich-Wilson and

M. A. Camblor, J. Am. Chem. Soc., 2004, 126, 13742.506 M. A. Hasnaoui, A. Simon-Masseron, V. Gramlich, J. Patarin and A. Bengueddach, Eur.

J. Inorg. Chem., 2005, 536.507 L. Lakiss, A. Simon-Masseron, V. Gramlich and J. Patarin, Solid State Sci., 2005, 7,

141.508 L. Josien, A. Simon-Masseron, V. Gramlich, F. Porcher and J. Patarin, J. Solid State

Chem., 2004, 177, 3721.509 T. Loiseau, G. Ferey, M. Haouas and F. Taulelle, Chem. Mat., 2004, 16, 5318.510 (a) I. Fechette, E. Dumitru, P. Caullet, V. Hulea and H. Kessler, COFrRoCA 2004 Coll.

Franco-Roum. Chim. Appl., 3rd, 2004, 505; (b) I. Fechette, E. Dumitru, P. Caullet, V.Hulea and H. Kessler, Chem. Abs., 2005, 143, 117467.

511 E. V. Charnaya, C. Tien, Yu. A. Kumzerov and A. V. Fokin, Phys. Rev. B, 2004, 70,052201.

512 T. Iijima, K. Hashi, A. Goto, T. Shimizu and S. Ohki, J. Phys. Soc. Jpn., 2004, 73, 1045.513 T. Iijima, K. Hashi, A. Goto, T. Shimizu and S. Ohki, Jpn. J. Appl. Phys. Pt. 2, 2004, 43,

L1389.514 K. Kakuyanagi, M. Saitoh, K. Kumagi, S. Takashima, M. Nohara, H. Takagi and Y.

Matsuda, Phys. Rev. Letts., 2005, 94, 047602.515 R. M. Claramunt, M. D. Santa Maria, J. Elguero and S. Trofimenko, Polyhedron, 2004,

23, 2985.516 Y. Itoh, C. Michioka, K. Yoshimura, A. Hayashi and Y. Ueda, Los Alamos Nat. Lab.,

Preprint Arch., Cond. Mat., 10 Jan 2005, 1–4, arXiv:cond-mat/0501200.517 A. V. Ivanov, O. A. Bredyuk, O. N. Antzutkin and W. Forsling, Russ. J. Coord. Chem.,

2005, 31, 45.518 Y. Matsuo and S. Ikehata, Ferroelectics, 2004, 302, 121.519 J. Giraudet, M. Dubois, A. Hamwi, W. E. E. Stone, P. Pirotte and F. Masin, J. Phys.

Chem. B, 2005, 109, 175.520 J. Giraudet, M. Dubois, K. Guerin, J. P. Pinheiro, A. Hamwi, W. E. E. Stone, P. Pirotte

and F. Masin, J. Solid State Chem., 2005, 178, 1262.521 S. Wang, M. Gu, Y. Yu, X. Xu, J. Wu, G. Yuan and D. Feng, Int. J. Mod. Phys. B, 2005,

19, 2398.522 T. Wagberg, C. Goze-Bac, R. Roding, B. Sundqvist, D. Johnels, H. Kataura and P.

Bernier, A. I. P. Conf. Proc., 2004, 723, 238.523 V. K. Koltover, J. W. Logan, H. Heise, V. P. Bubnov, Y. I. Estrin, I. E. Kareev, V. P.

Lodygina and A. Pines, J. Phys. Chem. B, 2004, 108, 12450.524 M. Perez-Cabero, I. Rodriguez-Ramos, A. R. Overweg, I. Sobrados and A. Guerrero-

Ruiz, Carbon, 2005, 43, 2631.525 K. Shen, S. Curran, H. Xu, Y. Jiang, J. D. Ewald, J. Talla and T. Pietrass, Preprints

Symp.-Am. Chem. Soc., Div. Fuel Chem., 2005, 50, 410.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 175

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 41: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

526 K. Lee, K. H. Kang, B. J. Mean, M. Lee, J.-K. Jung, K.-S. Ryu and Y. H. Lee, Physica B,2005, 359–361, 1412.

527 L. S. Cahill, Z. Yao, A. Adronov, J. Penner, K. R. Moonoosawny, P. Kruse and G. R.Goward, J. Phys. Chem., B, 2004, 108, 11412.

528 H.-M. Huang, I.-C. Liu, C.-Y. Chang, H.-C. Tsai, C.-H. Hsu and R. C-C. Tsiang, J.Polym. Sci. A, 2004, 42, 5802.

529 (a) W. Schutz and M. Rzepka, Hydrogen Planet World Hydrogen Conf 14th, 2002, 1220;(b) W. Schutz and M. Rzepka, Chem. Abs., 2004, 141, 280308.

530 J. Wang, D. Nepal and K. E. Geckeler, J. Mat. Chem., 2005, 15, 1049.531 N. Saito, R. Ohta, K. H. Lee, Y. Kobayashi, S. Okazaki, Y. Inoue, H. Sugimura and O.

Takai, Electrochem. Solid State Lett., 2004, 7, C84.532 N. S. Dalal, K. L. Pierce, J. Palomar and R. Fu, Ferroelectics, 2004, 302, 23.533 J. O. Odden, P. K. Egeberg and A. Kjekshus, J. Non-Cryst. Solids, 2005, 351, 1317.534 (a) Y.-J. Li, F. Cao, Y.-X. Yuand and X.-D. Li, Yingyong Huaxue, 2004, 21, 731; (b) Y.-J.

Li, F. Cao, Y.-X. Yuand and X.-D. Li, Chem. Abs., 2005, 142, 98685.535 A. Hilbig, E. Muller, R. Wenzel, G. Rower, E. Brendler, G. Irmer and G. Schreiber, J.

Eur. Ceram. Soc., 2005, 25, 151.536 P.-Y. Mabboux and K. K. Gleason, J. Electrochem. Soc., 2005, 152, F7.537 J. C. C. Freitas, J. S. Moreira, F. G. Emmerich and T. J. Bonagamba, J. Non-

Cryst.Solids, 2004, 341, 77.538 E. M. Meintjes, J. Danielson and W. W. Warren, Phys. Rev. B, 2005, 71, 035114.539 M. Bogza, T. Oeser and J. Blumel, J. Organometal. Chem., 2005, 690, 3383.540 J. Cervantes, E. Roriguez-Rodriguez, J. J. Guzman-Andrade, G. Mendoza-Diaz, M.

Caudillo-Gonzalez and M. Najera-Lara, Silicon Chem., 2003, 2, 185.541 T. Ruhland, J. Terang, H. Pedersen, J. C. Madsen and K. S. Bang, Synth., 2005, 1635.542 (a) X. Xing, X.-D. Li, A.-Q. Guo, F. Cao, X.-H. Bao and J. Wang, Yingyong Huaxue,

2004, 21, 942; (b) X. Xing, X.-D. Li, A.-Q. Guo, F. Cao, X.-H. Bao and J. Wang, Chem.Abs., 2005, 142, 298428.

543 (a) X. Xing, X. Li, A. Guo, X. Bao and F. Cao, Youjigui Cailiao, 2004, 18, 1; (b) X. Xing,X. Li, A. Guo, X. Bao and F. Cao, Chem. Abs., 2005, 142, 280488.

544 (a) X. Xing, X. Li, A. Guo, F. Cao and J. Wang, Gongneng Gaofenxi Xuebao, 2004, 17,181; (b) X. Xing, X. Li, A. Guo, F. Cao and J. Wang, Chem. Abs., 2004, 141, 395930.

545 M. Horz, A. Zern, F. Berger, J. Haug, K. Muller, F. Aldinger and M. Weinmann, J. Eur.Ceram. Soc., 2005, 25, 99.

546 O. Seiler, C. Burschka, M. Fischer, M. Penska and R. Tacke, Inorg. Chem., 2005, 44,2337.

547 R. Tacke, R. Bertermann, C. Burschka and S. Dragota, Z. anorg. allg. Chem., 2004, 630,2006.

548 Z. Olejniczak, M. yeczka, K. Cholewa-Kowalska K. Wojtach, M. Pokita and W.Mozgawa, J. Mol. Struct., 2005, 744–7, 465.

549 (a) M. yeczka, K. Cholewa-Kowalska, K. Wojtach and J. Najman, Prace Komisji NaukCeram. Ceramika, 2003, 80, 155; (b) M. yeczka, K. Cholewa-Kowalska, K. Wojtach andJ. Najman, Chem. Abs., 2005, 142, 177651.

550 C. Pakjamsai, N. Kobayashi, M. Koyano, S. Sasaki and Y. Kawakami, J. Polym. Sci. A,2004, 42, 4587.

551 M. Fukushima, E. Yasuda, Y. Nakamura, H. Kita, H. Kawabata and Y. Tanabe, J.Ceram. Soc. Jpn., 2005, 113, 210.

552 Y. Komori, H. Nakashima, S. Hayashi and Y. Sugahara, J. Non-Cryst. Solids, 2005, 351,97.

553 L. M. Bronstein, R. L. Karlinsky, B. Stein and J. W. Zwanziger, Solid State Ionics, 2005,176, 559.

554 J. J. E. Moreau, L. Vellutini, M. W. C. Man, C. Bied, P. Dieudonne, J.-L. Bantignies andJ.-L. Sauvajol, Chem.-Eur. J., 2005, 11, 1527.

555 K. Nakajima, I. Tomita, M. Hara, S. Hayashi, K. Domen and J. N. Kondo, J. Mat.Chem., 2005, 15, 2362.

556 R. Tacke, T. Schmid and M. Merget, Organometallics, 2005, 24, 1780.557 K. H. Nam and L. L. Tavlariides, Chem. Mat., 2005, 17, 1597.558 Z. Olejniczak, M. yeczka, K. Cholewa-Kowalska, K. Wojtach, M. Pokita and W.

Mozgawa, J. Mol. Struct., 2005, 744–7, 467.559 A. El-Harrak, G. Carrot, J. Oberdisse, J. Jestin and F. Boue, Polymer, 2005, 46, 1095.560 D. Ribeiro do Carmo, N. L. Dias Filho and N. R. Stradiotto,Mat. Res. (Brazil), 2004, 7,

499.561 D. Ribeiro do Carmo, N. L. Dias Filho, L. S. Guinesi and N. R. Stradiotto, Appl. Surf.

Sci., 2004, 235, 449.562 Y. Ni and S. Zheng, Chem. Mat., 2004, 16, 5141.

176 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 42: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

563 (a) Q. Duan, K. Deng, T. Zhang, X. Zhang, P. Xie and R. Zhang, Gaofenzi Xuebao, 2004,898; (b) Q. Duan, K. Deng, T. Zhang, X. Zhang, P. Xie and R. Zhang, Chem. Abs., 2005,142, 430645.

564 L. Dewimille, B. Bresson and L. Bokobza, Polymer, 2005, 46, 4135.565 H. Kimura, S. Kanesaka, S. Kuroki, I. Ando, A. Asano and H. Kurosu, Mag. Reson.

Chem., 2005, 43, 209.566 (a) V. M. Litvinov, H. Barthel and J. Weis,Organosilicon Chem. V, 2001 (pub. 2003), 715;

(b) V. M. Litvinov, H. Barthel and J. Weis, Chem. Abs., 2005, 143, 200329.567 S. Liu, X. Lang, H. Ye, S. Zhang and J. Zhao, Eur. Polym. J., 2005, 41, 996.568 (a) A. Kretschmer, R. A. Drake, S. J. Bones, M. Neidhofer, M. Wilhelm and H. W.

Spiess, Organosilicon Chem. V, 2001, 339; (b) A. Kretschmer, R. A. Drake, S. J. Bones,M. Neidhofer, M. Wilhelm and H. W. Spiess, Chem. Abs., 2005, 142, 447570.

569 M. Oaten and N. R. Choudhury, Macromol., 2005, 38, 6392.570 V. di Noto, M. Vittadello, J. R. P. Jayakody, A. N. Khalfan and S. G. Greenbaum,

Electrochim. Acta, 2005, 50, 4007.571 B. R. Cherry and T. M. Alam, Polymer, 2004, 45, 5611.572 J. Huang, P. C. Lim, L. Shen, P. K. Pallathadka, K. Zeng and C. He, Acta Mat., 2005, 53,

2395.573 L.-H. Lee and W.-C. Chen, Polymer, 2005, 46, 2163.574 A. Arkhireeva, J. N. Hay and W. Oware, J. Non-Cryst. Solids, 2005, 351, 1688.575 H. Chen, S. Zhou, G. Gu and L. Wu, J. Dispersion Sci. Technol., 2005, 26, 27.576 J. Takahashi, S. Sato, T. Sodesawa and T. Azuma, J. Sol-Gel Sci. Technol., 2004, 31, 373.577 J. Mrowiec-Biazon, A. B. Jarzebski, L. Pajak, Z. Olejniczak and M. Gibas, Langmuir,

2004, 20, 10389.578 X. Wang, W. Li, G. Zhu, S. Qiu, D. Zhao and B. Zhong,Microporous Mesoporous Mat.,

2004, 71, 87.579 T. M. Clark, P. J. Grandinetti, P. Florian and J. F. Stebbins, Phys. Rev. B, 2004, 70,

064202.580 R. F. Abreu, J. Schneider and M. A. Cincotto, J. Am. Ceram. Soc., 2005, 88, 1514.581 (a) X. Xin, W. Xie, X. Shu and E. Min, Cuihua Xuebao, 2005, 26, 127; (b) X. Xin, W. Xie,

X. Shu and E. Min, Chem. Abs., 2005, 143, 99242.582 H. El-Rassy and A. C. Pierre, J. Non-Cryst. Solids, 2005, 35, 1603.583 G. Marino, E. T. G. Cavalheiro and A. G. Ferreira, Mat. Sci. Forum, 2004, 455–6, 388.584 S. Boutet, B. Jousseaume, T. Toupance, M. Biesemans, R. Willem, C. Labrugere and L.

Delttre, Chem. Mat., 2005, 17, 1803.585 S. S. Park and C.-S. Ha, Chem. Mat., 2005, 17, 3519.586 Q. Yang, M. P. Kapoor, N. Shirokura, M. Ohashi, S. Inagaki, J. N. Kondo and K.

Domen, J. Mat. Chem., 2005, 15, 666.587 A. El-Harrak, G. Carrot, J. Oberdisse, C. Eychenne-Baron and F. Boue, Macromol.,

2004, 37, 6376.588 B. Alonso, D. Massiot, F. Babonneau, G. Brusatin, G. della Giustina, T. Kidchob and P.

Innocenzi, Chem. Mat., 2005, 17, 3172.589 A. Flores, C. Martos, S. Sanchez-Cortes, F. Rubio, J. Rubio and J. L. Oteo, J. Am.

Ceram. Soc., 2004, 87, 2093.590 D. Sun, R. Zhang Z. Liu, Y. Huang, Y. Wang, J. He, B. Han and G. Yang, Macromol.,

2005, 38, 5617.591 S. Jian, H. Goossens, F. Picchioni, M. van Duin and P. Lemstra, Polym. Preprints (Am.

Chem. Soc. Div. Polym. Chem.), 2004, 45, 595.592 C. W. Lin, R. Thangamuthu and P. H. Chang, J. Membrane Sci., 2005, 254, 197.593 S. A. Alekseev, V. N. Zaisev, A. N. Alekseev, Yu. N. Kochkin and J. Evans, Ads. Sci.

Technol., 2004, 22, 615.594 B. G. Trammell, L. Ma, H. Luo, M. A. Hillmyar and P. W. Carr, J. Chromatogr. A, 2004,

1060, 61.595 T. Nanba, M. Nishimura and Y. Miura, Geochim. Cosmochim. Acta, 2004, 68, 5103.596 X. Xue and M. Kanzaki, Geochim. Cosmochim. Acta, 2004, 68, 5027.597 O. Seiler, C. Burschka, M. Penka and R. Tacke, Silicon Chem., 2002 (pub. 2004), 1, 355.598 V. D. Zavel’skii, A. A. Lundin, T. P. Sarova and N. I. Bezmen, Zhur. Fiz. Khim., 2004,

78, 706.599 X. Xue and M. Kanzaki, Geochim. Cosmochim. Acta, 2004, 68, 5030.600 P. S. Singh, T. Bastow and M. Trigg, Cement Concrete Res., 2004, 34, 1943.601 G. D. Cody, B. O. Mysen and S. K. Lee, Geochim. Cosmochim. Acta, 2005, 69, 2373.602 X. Hou, R. J. Kirkpatrick, L. J. Struble and P. J. M. Monteiro, J. Am. Ceram. Soc., 2005,

88, 943.603 G. D. Cody, B. O. Mysen and S. K. Lee, Geochim. Cosmochim. Acta, 2005, 69, 2376.604 M. Hayashi, T. Watanabe, K. Nagata and S. Hayashi, I. S. I. J. Int., 2004, 44, 1527.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 177

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 43: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

605 L. Linati, G. Lusvardi, G. Malavasi, L. Menabue, M. C. Menziani, P. Mustarelli and U.Segre, J. Phys. Chem. B, 2005, 109, 4989.

606 S. Deriano, T. Rouxel, M. LeFloch and B. Beuneu, Phys. Chem. Glass., 2004, 45, 37.607 J. R. Allwardt, B. C. Schmidt and J. F. Stebbins, Chem. Geol., 2004, 213, 137.608 C. M. Queiroz, S. Agathopoulos, J. R. Frade and M. H. V. Fernandes, Mat. Sci. Forum,

2004, 455–6, 383.609 K. Aldushin, G. Jordan, M. Fechtelkord, W. W. Schmahl, H.-W. Becker and W.

Rammensee, Clays Clay Min., 2004, 52, 432.610 C.-S. Chen, H.-M. Kao and K.-H. Lii, Inorg. Chem., 2005, 44, 935.611 D. R. M. Brew and F. P. Glasser, Cement Concrete Res., 2005, 35, 85.612 F. Brunet, P. Bertani, T. Charpentier, A. Nonat and J. Virlet, J. Phys. Chem. B, 2004,

108, 15494.613 L. Barbieri, V. Cannillo, C. Leonelli, M. Montorsi, C. Siligardi and P. Mustarelli, Phys.

Chem. Glass., 2004, 45, 138.614 F. Matsushita, Y. Aono and S. Shibata, Cement Concrete Res., 2004, 34, 1251.615 J. J. Chen, J. J. Thomas, H. F. W. Taylor and H. M. Jennings, Cement Concrete Res.,

2004, 34, 1499.616 J. Minet, S. Abramson, B. Bresson, C. Sanchez, V. Montouillout and N. Lequeux, Chem.

Mat., 2004, 16, 3955.617 C. Gardiennet, F. Marica, C. A. Fyfe and P. Tekely, J. Chem. Phys., 2005, 122, 054705.618 C. Gardiennet, F. Marica, X. Assfeld and P. Tekely, Angew. Chem. Int. Ed., 2004, 43,

3565.619 F. Camara, R. Oberti, G. della Ventura, M. D. Welch and W. V. Maresch, Am. Mineral.,

2004, 89, 1464.620 J. L. Jorda, S. Prokic, L. B. McCusker, C. Baerlocher, C. F. Xue and J. Dong, Compt.

Rend. Chim., 2005, 8, 331.621 P. H. Mutin, V. Lafond, A. F. Popa, M. Granier, L. Marrey and A. Dereux, Chem. Mat.,

2004, 16, 5670.622 C.-S. Wu, J. Polym. Sci. A, 2005, 43, 1690.623 C. R. Silva, C. Airoldi, K. E. Collins and C. H. Collins, J. Chromatogr. A, 2005, 1073,

155.624 T. A. Canada, D. B. Beach and Z.-L. Xue, Analyt. Chem., 2004, 77, 2842.625 T. Takaishi, M. Takahashi, J. Jin, T. Uchino, T. Yofo and M. Takahashi, J. Am. Ceram.

Soc., 2005, 88, 1591.626 I. Elgayar, A. E. Aliev, A. R. Boccaccini and R. G. Hill, J. Non-Cryst. Solids, 2005, 351,

173.627 D. Miyabe, M. Takahashi, Y. Tokuda, T. Yoko and T. Uchino, Phys. Rev. B, 2005, 71,

172202.628 A. Aronne, M. Turco, G. Bagnasco, P. Pernice, M. di Serio, N. J. Clayden, E. Marenna

and E. Fanelli, Chem. Mat., 2005, 17, 2081.629 G. Lejeune, C. Coelho, L. Bonhomme-Coury, T. Azais, J. Maquet and C. Bonhomme,

Solid State N. M. R., 2005, 27, 242.630 N. J. Clayden, A. Aronne, S. Esposito and P. Pernice, J. Non-Cryst. Solids, 2004, 345–6,

601.631 T. Takaishi, M. Takahashi, J. Jin, T. Uchino, T. Yoko and M. Takahashi, J. Am. Ceram.

Soc., 2005, 88, 1596.632 T. Tsujimura, X. Xue, M. Kanzaki and M. J. Walter, Geochim. Cosmochim. Acta, 2004,

68, 5081.633 E. M. Levin, S.-S. Hou, S. L. Bud’ko and K. Schmidt-Rohr, J. Appl. Phys., 2004, 96,

5085.634 W. Kuang, G. A. Facey and C. Detellier, Clays Clay Min., 2004, 52, 635.635 K.-W. Park and O. Y. Kwon, Bull. Korean Chem. Soc., 2004, 25, 965.636 N. Katada, T. Kanai and M. Niwa, Microporous Mesoporous Mat., 2004, 75, 61.637 Y. Zhang, J. M. Kim, D. Wu, Y. Sun, D. Zhao and S. Peng, J. Non-Cryst. Solids, 2005,

351, 777.638 Y.-S. Lin, Y. Hung, J.-K. Su, R. Lee, C. Chang, M.-J. Lin and C.-Y. Mou, J. Phys.

Chem. B, 2004, 108, 15608.639 A. S. M. Chong, X. S. Zhao, A. T. Kustedjo and S. Z. Giao, Microporous Mesoporous

Mat., 2004, 72, 33.640 Y. Liang and R. Anwander, Microporous Mesoporous Mat., 2004, 72, 153.641 A. Bhaumik, S. Samanta, N. K. Mal, P. Kumar and A. Manna, Chem. Eng. Sci., 2005,

60, 839.642 M. A. Wahab, I. Imae, Y. Kawakami and C. S. Ha, Chem. Mat., 2005, 17, 2165.643 M. A. Wahab and C. S. Ha, J. Mat. Chem., 2005, 15, 508.644 W. J. Hunks and G. A. Ozin, Chem. Mat., 2004, 16, 5465.

178 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 44: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

645 S. Jayasundera, M. C. Burleigh, M. Zeinali, M. S. Spector, J. B. Miller, W. Yan, S. Daiand M. A. Markowitz, J. Phys. Chem. B, 2005, 109, 9198.

646 D. Li, Y. Han, J.-W. Song, L. Zhao, X. Xu, Y. Di and F.-S. Xiao, Chem.-Eur. J., 2004,10, 5911.

647 B. Toury and F. Babonneau, J. Eur. Ceram. Soc., 2005, 25, 265.648 J.-H. Choy, J.-B. Yoon, H. Jung and J.-H. Park, J. Porous Mat., 2004, 11, 123.649 T. A. Zepeda, J. L. G. Fierro, B. Pawelec, R. Nava, T. Klimova, G. A. Fuentes and T.

Halachev, Chem. Mat., 2005, 17, 4062.650 (a) M. Zhang, L. Wang, X. Li and Z. Huang, Huagong Jinzhan, 2003, 22, 1203; (b) M.

Zhang, L. Wang, X. Li and Z. Huang, Chem. Abs., 2005, 143, 160385.651 D. H. Brouwer, R. J. Darton, R. E. Morris and M. H. Levitt, J. Am. Chem. Soc., 2005,

127, 10365.652 S. I. Zones, R. J. Darton, R. E. Morris and S.-J. Hwang, J. Phys. Chem. B, 2005, 109, 652.653 K. Yamamoto, Y. Nohara, Y. Domon, Y. Takahashi, Y. Sakata, J. Plevert and T.

Tatsumi, Chem. Mat., 2005, 17, 3913.654 A. Dyer, S. Tangkawanit and K. Rangsriwatananon, Microporous Mesoporous Mat.,

2004, 75, 273.655 J. A. Vidal-Moya, T. Blasco, A. Corma, M. T. Navarro and P. Rey, Stud. Surf. Sci.

Catal., 2004, 154B, 1289.656 D. Freude and T. Loser, Lect. Notes Phys., 2004, 634, 163.657 L. Peng, Y. Liu, N. Kim, J. E. Readman and C. P. Grey, Nature Mat., 2005, 4, 216.658 W. Lutz, C. H. Ruscher, T. M. Gesing, M. Stocker, S. Vasenkov, D. Freude, R. Glaser

and C. Berger, Stud. Surf. Sci. Catal., 2004, 154B, 1411.659 W. Song, G. Li, V. H. Grassian and S. C. Larsen, Env. Sci. Technol., 2005, 39, 1214.660 J. Jiao, S. S. Ray, W. Wang, J. Weitkamp and M. Hunger, Z. anorg. allg. Chem., 2005,

631, 484.661 R. R. Pinto, P. Borges, M. A. N. D. A. Lemos, F. Lemos, J. C. Vedrine, E. Derouane and

F. R. Ribeiro, Appl. Catal. A, 2005, 284, 39.662 O. Larlus and V. P. Valtchev, Chem. Mat., 2005, 17, 881.663 D. H. Brouwer, P. E. Kristiansen, C. A. Fyfe and M. H. Levitt, J. Am. Chem. Soc., 2005,

127, 542.664 Q. Luo, J. Yang, W. Hu, M. Zhang, Y. Yue, C. Ye and F. Deng, Solid State N. M. R.,

2005, 28, 9.665 J. Trebosc, J. W. Wiench, S. Huh, V. S-Y. Lin and M. Pruski, J. Am. Chem. Soc., 2005,

127, 7587.666 (a) S. Ge, N. He, C. Yang, M. Gu and C. Hu, Dongnan Daxue Xuebao, Ziran Kexueban,

2004, 34, 504; (b) S. Ge, N. He, C. Yang, M. Gu and C. Hu, Chem. Abs., 2005, 142,122228.

667 C. Zhang, Q. Liu and Z. Xu, J. Non-Cryst. Solids, 2005, 351, 1377.668 O. Trofymluk, A. A. Levchenko, S. H. Tolbert and A. Navrotsky, Chem. Mat., 2005, 17,

3772.669 T. V. Kovalchuk, H. Sfihi, A. S. Korchev, A. S. Kovalenko, V. G. Il’in, V. N. Zaitsev and

J. Fraissard, J. Phys. Chem. B, 2005, 109, 13948.670 D. Baute, H. Zimmermann, S. Kababya, S. Vega and D. Goldfarb, Chem. Mat., 2005, 17,

3723.671 J. Trebosc, J. W. Wiench, S. Huh, V. S-Y. Lin and M. Pruski, J. Am. Chem. Soc., 2005,

127, 3057.672 W.-H. Zhang, X.-B. Lu, J.-H. Xiu, Z.-L. Hua, L.-X. Zhang, M. Robertson, J.-L. Shi,

D.-S. Yan and J. D. Holmes, Adv. Funct. Mat., 2004, 14, 544.673 (a) C.-M. Zhang, Z. Xu, K.-S. Wan and Q. Liu, Wuji Cailiao Xuebao, 2004, 19, 559; (b)

C.-M. Zhang, Z. Xu, K.-S. Wan and Q. Liu, Chem. Abs., 2005, 142, 301919.674 K. Yan, H. Zhu, G. Yang, X. Guo, W. Hou, Q. Yan, M. Gu and C. Hu, Adv. Funct.

Mat., 2004, 14, 816.675 M. Bandyopadhyay and H. Gies, Compt. Rend. Chim., 2005, 8, 621.676 H. Gies, S. Grabowski and W. Gruenert, Stud. Surf. Sci. Catal., 2004, 154C, 2869.677 E. Gianotti, V. Dellarosca, M. L. Pena, A. Corma, S. Coluccia and L. Marchese, Res.

Chem. Intermed., 2004, 30, 871.678 D. L. Dorset and G. J. Kennedy, J. Phys. Chem. B, 2004, 108, 15216.679 C. C. Egger, M. W. Anderson, G. J. T. Tiddy and J. L. Casci, Phys. Chem. Chem. Phys.,

2005, 7, 1845.680 F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu and D. Zhao, J. Phys. Chem. B, 2005,

109, 8723.681 C. Peng, H. Zhang, J. Yu, Q. Meng, L. Fu, H. Li, L. Sun and X. Guo, J. Phys. Chem. B,

2005, 109, 15278.682 A. S. M. Chong and X. S. Zhao, Appl. Surf. Sci., 2004, 237, 398.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 179

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 45: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

683 P. Shah, A. V. Ramaswamy, K. Lazar and V. Ramaswamy, Appl. Catal. A, 2004, 273,239.

684 X. Wang, K. S. K. Lin, J. C. C. Chan and S. Cheng, J. Phys. Chem. B, 2005, 109, 1763.685 (a) J. Lei, L.-Y. Zhang, S.-S. Ding, S.-Y. Jiang, C.-Z. Yu and D.-Y. Zhao, Gaodeng

Xuexiao Huaxue Xuebao, 2005, 26, 793; (b) J. Lei, L.-Y. Zhang, S.-S. Ding, S.-Y. Jiang,C.-Z. Yu and D.-Y. Zhao, Chem. Abs., 2005, 143, 58380.

686 J. Zhu, W.-S. You, Z.-M. Zhu, Z.-G. Sun, L.-C. Zhang and Y.-P. Gu, Chem. Res. Chin.Univ., 2005, 21, 264.

687 Y. Tao, Y. Hattori, A. Matumoto, H. Kanoh and K. Kaneko, J. Phys. Chem. B, 2005,109, 194.

688 W. Song, R. E. Justice, C. A. Jones, V. H. Grassian and S. C. Larsen, Langmuir, 2004, 20,8301.

689 W. Song, J. F. Woodworth, V. H. Grassian and S. C. Larsen, Langmuir, 2005, 21, 7009.690 S. D. Kim, S. H. Noh, K. H. Seong and W. J. Kim,Microporous Mesoporous Mat., 2004,

72, 185.691 C. A. Fyfe, A. C. Diaz, H. Grondey, A. R. Lewis and H. Forster, J. Am. Chem. Soc.,

2005, 127, 7543.692 (a) H. Wang, D. Tan, Y. Xu and X. Bao, Cuihua Xuebao, 2004, 25, 445; (b) H. Wang, D.

Tan, Y. Xu and X. Bao, Chem. Abs., 2004, 141, 412696.693 G. Yang, Y. Wang, D. Zhou, X. Liu, X. Han and X. Bao, J. Mol. Catal. A, 2005, 237, 36.694 A. Martinez-Hernandez and G. A. Fuentes, Appl. Catal. B, 2005, 57, 167.695 M. Celino and C. Massobrio, Comput. Mat. Sci., 2005, 33, 106.696 J. Hatori, Y. Matsuo, Z. Czapla, M. Komukae, T. Osaka and S. Ikehata, Ferroelectrics,

2004, 301, 163.697 Y. Takeuchi, M. Nishikawa, H. Hachiya and H. Yamamoto, Mag. Reson. Chem., 2005,

43, 662.698 Y. Takeuchi, M. Nishikawa and H. Yamamoto, Mag. Reson. Chem., 2004, 42, 907.699 G. Sastre, A. Pulido and A. Corma, Chem. Comm., 2005, 2357.700 J. Beckmann, D. Dakternieks, A. Duthie and C. Mitchell, Organometallics, 2004, 23,

6150.701 M. Biesemans, F. A. G. Mercier, M. van Poeck and J. C. Martins, Eur. J. Inorg. Chem.,

2004, 2908.702 J. Beckmann, D. Dakternieks, A. Duthie, C. Mitchell, F. Ribot, J. B. d’E. de la Caillerie

and B. Revel, Appl. Organometal. Chem., 2004, 18, 353.703 J. Beckmann, D. Dakternieks and A. Duthie, Organometallics, 2005, 24, 773.704 C. Camacho-Camacho, M. Biesemans, M. van Poeck, F. A. G. Mercier, R. Willem, K.

Darriet-Jambert, B. Jousseaume, T. Toupance, U. Schneider and U. Gerigk, Chem.-Eur.J., 2005, 11, 2455.

705 Y. Zheng, X.-X. Wang, Z.-H. Li, X.-Z. Fu and K.-M. Wei, J. Organometal. Chem., 2005,690, 3187.

706 T. S. B. Baul, W. Rynjah, R. Willem, M. Biesemans, I. Verbruggen, M. Holeapek, D.Devos and A. Linden, J. Organometal. Chem., 2004, 689, 4691.

707 P. Avalle, R. K. Harris, H. Hanika-Heidl and R. D. Fischer, Solid State Sci., 2004, 6,1069.

708 P. Amornsakchai, D. C. Apperley, R. K. Harris, P. Hodgkinson and P. C. Waterfield,Solid State N. M. R., 2004, 26, 160.

709 E. Bekaert, L. Montagne, L. Delevoye, G. Palavit and A. Wattiaux, J. Non-Cryst. Solids,2004, 345–6, 70.

710 B. H. Hamilton, T. A. Wagler, M. P. Espe and C. J. Ziegler, Inorg. Chem., 2005, 44, 4891.711 A.-C. Larsson, A. V. Ivanov, K. J. Pike, W. Forsling and O. N. Antzutkin, J. Mag.

Reson., 2005, 177, 56.712 S. Grandi, C. Tomasi, P. Mustarelli, A. Dossena and G. Cecchet, Thermochim. Acta,

2004, 418, 117.713 L. A. Bueno, J. P. Donoso, C. J. Magon, I. Kosacki, F. A. Dias Filho, C. C. Tambelli, Y.

Messadeq and S. J. L. Ribeiro, J. Non-Cryst. Solids, 2005, 351, 766.714 A. R. Lim and I. G. Kim, J. Phys. Soc. Jpn., 2004, 73, 475.715 J. Szanyi, J. H. Kwak, D. H. Kim, S. D. Burton and C. H. F. Peden, J. Phys. Chem. B,

2005, 109, 27.716 B. Zhou, T. Giavani, H. Bildsoe, J. Skibsted and H. J. Jakobsen, Chem. Phys. Lett., 2005,

402, 133.717 A. Pfitzner, M. F. Brau, J. Zweck, G. Brunkhaus and H. Eckert, Angew. Chem. Int. Ed.,

2004, 43, 4228.718 F. W. Karau and W. Schnick, J. Solid State Chem., 2005, 178, 135.719 L. Kapicka, D. Dastych, V. Richterova, M. Alberti and P. Kubecek,Mag. Reson. Chem.,

2005, 43, 294.

180 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 46: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

720 R. E. Youngman and B. G. Aitken, J. Non-Cryst. Solids, 2004, 345–6, 50.721 A. Wang, L. Ruan, Y. Teng, X. Li, M. Lu, J. Ren, Y. Wang and Y. Hu, J. Catal., 2005,

229, 314.722 J. Senker, J. Sehnert and S. Correll, J. Am. Chem. Soc., 2005, 127, 337.723 A.-C. Larsson, A. V. Ivanov, W. Forsling, O. N. Antzutkin, A. E. Abraham and A. C. de

Dios, J. Am. Chem. Soc., 2005, 127, 2218.724 N. T. Lucas, J. M. Hook, A. M. McDonagh and S. B. Colbran, Eur. J. Inorg. Chem.,

2005, 496.725 J. C. Amicangelo and W. R. Leenstra, Inorg. Chem., 2005, 44, 2067.726 J. Sopkova-de Oliveira Santos, V. Montouillot, F. Tayon, C. Fernandez, L. Delain-

Bioton, D. Villemin and P.-A. Jaffres, New J. Chem., 2004, 28, 1244.727 P. A. Mirau, R. A. Vaia and J. Garber, Polym. Preprints (A. C. S. Div. Polym. Chem.),

2005, 46, 440.728 S. Correll, N. Stock, O. Oeckler, J. Senker, T. Nilges and W. Schnick, Z. anorg. allg.

Chem., 2004, 630, 2205.729 M. Pompetzki, L. van Wullen and M. Jansen, Z. anorg. allg. Chem., 2004, 630, 384.730 Y. Kim and R. J. Kirkpatrick, Eur. J. Soil Sci., 2004, 55, 243.731 T. Akamatsu, T. Kasuga and M. Nogami, J. Non-Cryst. Solids, 2005, 351, 691.732 Y.-H. Tseng, J. Zhan, K. S. K. Lin, C.-Y. Mou and J. C. C. Chan, Solid State N. M. R.,

2004, 2, 99.733 R. M. Wilson, J. C. Elliott, S. E. P. Dowker and L. M. Rodriguez-Lorenzo, Biomat.,

2005, 26, 1317.734 C. J. L. Silwood, I. Abrahams, D. C. Apperley, N. P. Lockyer, E. Lynch, M. Motevalli,

R. M. Nix and M. Grootveld, J. Mat. Chem., 2005, 15, 1626.735 K. Wei, Y. Wang, C. Lai, C. Ning, D. Wu, G. Wu, N. Zhao, X. Chen and J. Ye, Mat.

Letts., 2005, 59, 220.736 J. M. Gibson, V. Raghunathan, J. M. Popham, P. S. Stayton and G. P. Drobny, J. Am.

Chem. Soc., 2005, 127, 9350.737 A. Aissa, B. Badraoui, R. Thouvenot and M. Debbabi, Eur. J. Inorg. Chem., 2004,

3828.738 T. M. Alam, B. C. Tischendorf and R. K. Brow, Solid State N. M. R., 2005, 27, 99.739 N. J. Clayden, P. Pernice and A. Aronne, J. Non-Cryst. Solids, 2005, 351, 195.740 T. Uma, H. Y. Tu, D. Freude, D. Schneider and U. Stimming, J. Mat. Sci., 2005, 40, 227.741 A. Hayashi, T. Konishi, K. Tadanaga, T. Minami and M. Tatsumisago, J. Non-Cryst.

Solids, 2004, 345–6, 478.742 P. S. Attidekou, P. A. Connor, P. Wormald, D. P. Tunstall, S. M. Francis and J. T. S.

Irvine, Solid State Ionics, 2004, 175, 185.743 F. Munoz, L. Pascual, S. Duran, J. Rocherulle and R. Marchand, Silicates Industriels,

2004, 69, 105.744 L. Koudelka, P. Mosner, M. Zeyer and C. Jaeger, J. Non-Cryst. Solids, 2005, 351,

1039.745 F. Munoz, F. Agullo-Rueda, L. Montagne, R. Marchand, A. Duran and L. Pascual, J.

Non-Cryst. Solids, 2004, 347, 153.746 V. Sudarsan, R. Mishra and S. K. Kulshreshtha, J. Non-Cryst. Solids, 2004, 342, 160.747 M. Mehnaoui, R. Ternane, A. Madani and M. Trabelsi-Ayadi, J. Phys., IV, 2004, 122,

135.748 M. P. Kapoor, S. Inagaki and H. Yoshida, J. Phys. Chem. B, 2005, 109, 9231.749 B. M. Devassy, G. V. Shanbhag, F. Lefebvre, W. Bohringer, J. Fletcher and S. B.

Halligud, J. Mol. Catal. A, 2005, 230, 113.750 Z.-Y. Yuan, T.-Z. Ren, A. Azioune, J.-J. Pireaux and B.-L. Sui, Catal. Today, 2005, 105,

647.751 P. Wu, J. Liu, M. He and M. Iwamoto, Chem. Mat., 2005, 17, 3921.752 E. Brunet, M. J. de la Mata, H. M. H. Alhendawi, C. Cerro, M. Alonso, O. Juanes and J.

C. Rodrıguez-Ubis, Chem. Mat., 2005, 17, 1424.753 M. S. P. Francisco, W. S. Cardoso, Y. Gushikem, R. Landers and Y. V. Kholin,

Langmuir, 2004, 20, 8707.754 (a) L. Li, Y. Guo, P. Zhou, X. Xu and W. Kang, Cuihua Xuebao, 2005, 26, 209; (b) L. Li,

Y. Guo, P. Zhou, X. Xu and W. Kang, Chem. Abs., 2005, 143, 138161.755 A. Simon-Masseron, L. Josien, L. Delmotte and J. Patarin, Microporous Mesoporous

Mat., 2004, 71, 143.756 M. Vallet-Regi, I. Izquierdo-Barba, A. Ramila, J. Perez-Pariente, F. Babonneau and J.

M. Gonzalez-Calbet, Solid State Sci., 2005, 7, 233.757 T. R. Jensen, N. Gerentes, J. Jepsen, R. G. Hazell and H. J. Jakobsen, Inorg. Chem.,

2005, 44, 658.758 D. Zhang, Z. Shi, H. Yue, G. Li and S. Feng, Inorg. Chim. Acta, 2005, 358, 265.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 181

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 47: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

759 G. L. Abbati, M. C. Aragoni, M. Arca, M. B. Carrea, F. A. Devillanova, A. Garau, F.Idaia, V. Lippolis, M. Marcelli, C. Silvestru and G. Verani, Eur. J. Inorg. Chem., 2005,589.

760 D. Freude and T. Loser, Lect. Notes Phys., 2004, 634, 163.761 S. Couch, A. P. Howes, S. C. Kohn and M. E. Smith, Solid State N. M. R., 2004, 26, 203.762 T. A. Wagler, W. A. Daunch, M. Panzner, W. J. Youngs and P. L. Rinaldi, J. Mag.

Reson., 2004, 170, 336.763 Y. Matsuo, Y. Tanaka, J. Hatori and S. Ikehata, Solid State Comms., 2005, 134, 361.764 M. S. Wickleder, O. Buchner, C. Wickleder, S. el Sheik, G. Brunklaus and H. Eckert,

Inorg. Chem., 2004, 43, 5860.765 A. K. S. Chauhan, K. A. Anamika, R. C. Srivastava, R. J. Butcher, J. Beckmann and A.

Duthie, J. Organometal. Chem., 2005, 690, 1350.766 R. T. Hart and J. W. Zwanziger, J. Am. Ceram. Soc., 2005, 88, 2325.767 D. Holland, J. Bailey, G. Ward, B. Turner, P. Tierney and R. Dupree, Solid State N. M.

R., 2005, 27, 16.768 B. Bureau, C. Boussard-Pledel, M. le Floch, J. Troles, F. Smektala and J. Lucas, J. Phys.

Chem. B, 2005, 109, 6130.769 N. P. Mikhin, J. Low-Temp. Phys., 2005, 138, 817.770 M. Gerken, P. Hazendonk, J. Nieboer and G. J. Schrobilgen, J. Fluorine Chem., 2004,

125, 1163.771 B. Geil, T. M. Kirschgen and F. Fujara, Phys. Rev. B, 2005, 72, 014304.772 W. R. Groves and C. H. Pennington, Chem. Phys., 2005, 315, 1.773 H. Maekawa, H. Y. Shen, Y. Fujimaki and T. Yamamura, Mat. Res. Soc. Symp. Proc.,

2004, 835, 33.774 S. Hayashi and M. Mizuno, Solid State Comm., 2004, 132, 443.775 S. Hayashi and M. Mizuno, Solid State Ionics, 2004, 171, 289.776 S. Hayashi and M. Mizuno, Solid State Ionics, 2004, 167, 317.777 Y. Yoshida, Y. Matsuo and S. Ikehata, Solid State Ionics, 2005, 176, 2457.778 Y. Matsuo, K. Takahashi, J. Hatori and S. Ikehata, J. Solid State Chem., 2004, 177,

4282.779 S. Vrtnik, T. Apih, M. Klanjsek, P. Jeglic, G. Lahajnar, L. F. Kirpichnikiova, A. I.

Baranov and J. Dolinsek, J. Phys. Cond. Matt., 2004, 16, 7967.780 A. J. Benesi, M. W. Grutzeck, B. O’Hare and J. W. Phair, J. Phys. Chem. B, 2004, 108,

17783.781 K. Flodstrom, H. Wennerstrom, C. Teixeira, H. Amenitsa, M. Linden and V. Alfredsson,

Langmuir, 2004, 20, 10311.782 A. G. Stepanov, S. S. Arzumanov, M. V. Luzgin, H. Ernst, D. Freude and V. N. Parmon,

J. Catal., 2005, 235, 221.783 (a) A. V. Skripov, A. V. Soloninin, D. S. Sibirtsev and B. A. Aleksashin, Fiz. Metal.

Metalloved., 2005, 99, 53; (b) A. V. Skripov, A. V. Soloninin, D. S. Sibirtsev and B. A.Aleksashin, Chem. Abs., 2005, 143, 258674.

784 T. Imai, A. Kayanuma, Y. Fukai and S. Masubuchi, J. Phys. Cond. Matt., 2004, 16, 8191.785 S. F. Dec and A. M. Herring, J. Phys. Chem. B, 2004, 108, 12339.786 A. G. Gordon, R. I. Smith, C. Wilson, Z. Stoeva and D. H. Gregory, Chem. Comm.,

2004, 2812.787 Z. Stoeva, R. Gomez, D. H. Gregory, G. B. Hix and J. J. Titman, J. Chem. Soc., Dalton

Trans., 2004, 3093.788 P. E. Stallworth, F. Vereda, S. G. Greenbaum, T. E. Haas, P. Zerigian and R. B.

Goldner, J. Electrochem. Soc., 2005, 152, A516.789 A. R. Czardybon, K. Sivasubramanian and G. R. Goward, Mat. Res. Soc. Symp. Proc.,

2004, 835, 39.790 I. A. Stenina, P. Sistat, A. I. Rebrov, G. Pourcelly and A. B. Yaroslavtsev, Desalination,

2004, 170, 49.791 A. ben Ali, V. Maisonneuve, S. Houlbert, G. Silly, J. Y. Buzare and M. Leblanc, Solid

State Sci., 2004, 6, 1237.792 M. Wagemaker, A. A. van Well, G. J. Kearley and F. M. Mulder, Solid State Ionics,

2004, 175, 191.793 C. P. Herrero, A. Varez, A. Rivera, J. Santamaria, C. Leon, O. V’yunov, A. G. Belous

and J. Sanz, J. Phys. Chem. B, 2005, 109, 3262.794 O. Bohnke, J. Emery, J.-L. Fourquet and J.-C. Badot, Rec. Res. Dev. Solid State Ionics,

2003, 1, 47.795 A. Rivera and J. Sanz, Phys. Rev. B, 2004, 70, 094301.796 A. V. Chadwick, M. J. Pooley and S. L. P. Savin, Phys. Stat. Solidi C, 2005, 2, 302.797 F. le Berre, M.-P. Crosnier-Lopez, Y. Lalignant, E. Suard, O. Bohnke, J. Emery and J.-L.

Fourquet, J. Mat. Chem., 2004, 14, 3558.

182 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 48: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

798 V. di Noto, M. Vittadello, S. G. Greenbaum, S. Suarez, K. Kano and T. Furukawa, J.Phys. Chem. B, 2004, 108, 18832.

799 Y. Tomita, H. Matsushita, H. Yonekura, Y. Yamauchi, K. Yamada and K. Kobayashi,Solid State Ionics, 2004, 174, 35.

800 Y. Ihara, K. Ishida, C. Michioka, M. Kato, K. Yoshimura, H. Sakurai and E.Takayama-Muromachi, J. Phys. Soc. Jpn., 2004, 73, 2963.

801 K. Yamada, K. Kumano and T. Okuda, Solid State Ionics, 2005, 176, 823.802 A. R. Lim, I. H. Yun and C. S. Yoon, Solid State Comm., 2005, 134, 183.803 S. E. Ashbrook, K. R. Whittle, L. le Polles and I. Farnan, J. Am. Ceram. Soc., 2005, 88,

1575.804 N. Suzuki, M. Igarashi, H. Suzuki, M. Itoh, K. Yu and Y. Kanzaki, Bull. Chem. Soc.

Jpn., 2004, 77, 1829.805 A. R. Lim and J. K. Jung, Solid State Comm., 2004, 132, 393.806 I. Hung, C. L. B. MacDonald and R. W. Schurko, Chem.-Eur. J., 2004, 10, 5923.807 B. Thomas and S. Sugunan, Ind. J. Chem. A, 2004, 43A, 2503.808 A. Y. H. Lo, T. E. Bitterwolf, C. L. B. MacDonald and R. W. Schurko, J. Phys. Chem. A,

2005, 109, 7073.809 H. Nishihara, Y. Furutani, S. Yokota, M. Ohyanagi and Y. Kumashiro, J. Alloys Comp.,

2004, 383, 308.810 N. Kim, R.-M. Vannier and C. P. Grey, Chem. Mat., 2005, 17, 1952.811 A. Trokiner, S. Verkhovskii, A. Yakubovskii, K. Kumagai, S.-W. Cheong, D. Khomskii,

Y. Furukawa, J. S. Ahn, A. Pogudin, V. Ogloblichev, A. Gerashenko, K. Mikhalev andYu. Pisunov, Los Alamos Nat. Lab., Preprint Arch., Cond., Matt., 19 Mar 2005, 1–10,arXiv:cond-mat/0503499.

812 H. Kitagawa, K. Ishida, R. S. Perry, T. Tayama, T. Sakakibara and Y. Maeno, LosAlamos Nat. Lab., Preprint Arch., Cond., Matt., 2005, 1–5, arXiv:cond-mat/0508012.

813 N. Kimura, M. Yamashita and R. Ikeda, Chem. Phys. Lett., 2005, 406, 111.814 K. N. Mikhalev, S. O. Rebrin, A. P. Gerashchenko and T. V. D’yachkova, JETP Lett.,

2004, 80, 540.815 N. Fujiwara, N. Mori, Y. Uwatoko, T. Matsumoto, N. Motoyama and S. Uchida, J.

Phys. Cond. Matt., 2005, 17, S929.816 G.-Q. Zheng, P. L. Kuhns, A. P. Reyes, B. Liang and C. T. Lin, Los Alamos Nat. Lab.,

Preprint Arch., Cond., Matt., 4 Feb 2005, 1–5, arXiv:cond-mat/0502117.817 S. Berndt, K. R. Jeffrey, R. Kuchler and R. Bohmer, Solid State N. M. R., 2004, 27,

122.818 E. Mikuli, B. Grad, W. Medycki and K. Holderna-Natkaniec, J. Solid State Chem., 2004,

177, 3795.819 P. A. Beckmann, S. Bai and C. Dybowski, Phys. Rev. B, 2005, 71, 012410.820 K. H. Lee, K. H. Kang, B. J. Mean, M. Lee, J. S. Rhee, B. K. Cho and J. S. Cho, Physica

C, 2005, 359–361, 463.821 M. Nishiyama, Y. Inada and G. Zheng, Los Alamos Nat. Lab., Preprint Arch., Cond.,

Matt., 8 Jun 2005, 1–4, arXiv:cond-mat/0506191.822 Y. Zou and N. Inoue, Solid State Ionics, 2005, 176, 2257.823 L. J. Criscenti, S. L. Brantley, K. T. Muller, N. Tsomaia and J. D. Kubicki, Geochim.

Cosmochim. Acta, 2005, 69, 2205.824 M. D. Andersen, H. J. Jakobsen and J. Skibsted, J. Mag. Reson., 2005, 173, 209.825 J. P. Yesinowski and A. P. Purdy, J. Am. Chem. Soc., 2004, 126, 9166.826 W. Gou, Y. Li, J. Chi, J. H. Ross, M. Beekman and G. S. Nolas, Phys. Rev. B, 2005, 71,

174307.827 B. Zibrowius, C. Bahtz, M. Knapp and U. Ruschewitz, Phys Chem. Chem. Phys., 2004, 6,

5237.828 B.-L. Young, P. E. Mclaughlin, M. S. Rose, K. Ishida, O. O. Bernal, H. G. Lukefahr, K.

Heuser and G. R. Stewart, Phys. Rev. B, 2004, 70, 174430.829 V. Luca, C. S. Griffith, M. G. Blackford and J. V. Hanna, J. Mat. Chem., 2005, 15, 564.830 H. Kimura, S. Kanesaka, S. Kuroki, I. Ando, A. Asano and H. Kurosu, Mag. Reson.

Chem., 2005, 43, 209.831 M. Mookherjee, M. D. Welch, L. le Polles, S. A. T. Redfern and D. C. Harlov, Phys.

Chem. Min., 2005, 32, 126.832 M. J. R. Hoch and D. F. Holcomb, Phys. Rev. B, 2005, 71, 035115.833 P. Amornsakchai, P. Hodgkinson and R. K. Harris, Mol. Phys., 2004, 102, 877.834 K. Yamada, T. Sagara, Y. Yamane, H. Ohki and T. Okuda, Solid State Ionics, 2004, 175,

557.835 G. Szalontai and G. Besenyei, Inorg. Chim. Acta, 2004, 357, 4413.836 N. Kim and C. P. Grey, J. Chem. Soc., Dalton Trans., 2004, 3048.837 N. Kim, R.-N. Vannier and C. P. Grey, Chem. Mat., 2005, 17, 1952.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 183

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 49: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

838 J. Emery, D. Massiot, P. Lacorre, Y. Laligant and K. Conder,Mag. Reson. Chem., 2005,43, 366.

839 B. Muktha, M. H. Priya, G. Madras and T. N. G. Row, J. Phys. Chem. B, 2005, 109,11442.

840 A. Abbasi, P. Lindquist-Reis, L. Eriksson, D. Sandstrom, S. Lidin, I. Persson and M.Sandstrom, Chem.-Eur. J., 2005, 11, 4065.

841 E. Jeanneau, M. le Floch, B. Bureau, N. Audebrand and D. Louer, J. Phys. Chem. Solids,2004, 65, 1213.

842 M. J. Graf, A. Lascialfari, F. Borsa, A. M. Tkachuk and B. Barbara, Los Alamos Nat.Lab., Preprint Arch., Cond., Matt., 17 Aug, 2005, 1–25, arXiv:cond-mat/0508406.

843 V. Y. Kavun, V. I. Sergienko and N. F. Uvarov, J. Struct. Chem., 2003, 44, 796.844 Y. Matsuo, J. Hatori, Z. Czapla and S. Ikehata, J. Phys. Chem. Solids, 2005, 66, 127.845 K. Yamada, M. M. Ahmad, Y. Osigo, T. Okuda, J. Chikami, G. Miehe, H. Ehrenberg

and H. Fuss, Eur. Phys. J. B, 2004, 40, 167.846 V. Y. Kavun, N. F. Uvarov, V. I. Sergienko and L. A. Zemnukhova, Russ. J. Coord.

Chem., 2004, 30, 505.847 V. Y. Kavun, N. F. Uvarov, L. A. Zemnukhova and O. V. Brovkina, Zhur. Neorg. Khim.,

2004, 49, 1012.848 A. Yamaguchi, T. Watanuki, R. Masutomi and H. Ishimoto, Phys. Rev. Lett., 2004, 93,

165301.849 G. Tastevin and P.-J. Nacher, J. Chem. Phys., 2005, 123, 064506.850 J. E. Baumgardner, Y. Lee, D. D. Osheroff, L. W. Hrubesh and J. F. Poco, Phys. Rev.

Lett., 2004, 93, 055301.851 J. E. Baumgardner and D. D. Osheroff, Phys. Rev. Lett., 2004, 93, 155301.852 C. F. Horton-Garcia, G. E. Pavlovskaya and T. Meersmann, J. Am. Chem. Soc., 2005,

127, 1958.853 T. Ueda, H. Nakayama and T. Eguchi, Trends Appl. Spectrosc., 2004, 5, 83.854 K. V. Romanenko, J.-B. d. E. de la Caillerie, J. Fraissard, T. V. Reshetenko and O. B.

Lapina, Microporous Mesoporous Mat., 2005, 81, 41.855 (a) K. Saito and K. Kanehashi, Proc. Ann. Int. Pittsburgh Coal Conf., 21st42–5; (b) K.

Saito and K. Kanehashi, Chem. Abs., 2005, 143, 269310.856 M. Corda, B. Era, A. Fais and M. Casu, Biochim. Biophys. Acta, 2004, 1674, 182.857 K. Hagihara, T. Ebihara, N. Urasato and T. Fujikawa, J. Jpn. Petrol. Inst., 2005, 48, 84.858 K. Hagihara, T. Ebihara, N. Urasato and T. Fujikawa, J. Jpn. Petrol. Inst., 2005, 48, 156.859 K. Hagihara, T. Ebihara, N. Urasato and T. Fujikawa, Appl. Catal. A, 2005, 293, 56.860 K. Hagihara, T. Ebihara, N. Urasato and T. Fujikawa, Appl. Catal. A, 2005, 285, 132.861 K. Knagge, L. J. Smith and D. Raftery, B 6, 2005, 109, 4533.862 A. Sakthivel, S.-J. Huang, W.-H. Chen, Z.-H. Lan, K.-H. Chen, T.-W. Kim, R. Ryoo, A.

S. T. Chang and S.-B. Liu, Chem. Mat., 2004, 16, 3168.863 V.-V. Telkki, J. Lounila and J. Jokisaari, J. Phys. Chem. B, 2005, 109, 757.864 N. Kato, T. Ueda, H. Omi, K. Miyakubo and T. Eguchi, Phys Chem. Chem. Phys., 2004,

6, 5427.865 M.-A. Springuel-Huet, A. Nossou, F. Guenneau, V. Fornes, A. Corma, J. Fraissard and

A. Gedeon, Stud. Surf. Sci. Catal., 2004, 154B, 1204.866 Y. Millot, P. P. Man, M. Springuel-Huet and J. Fraissard, Stud. Surf. Sci. Catal., 2004,

154B, 1400.867 W. Li, S.-J. Huang, S.-B. Liu and M.-O. Coppens, Langmuir, 2005, 21, 2078.868 W.-H. Chen, F. Bauer, E. Bilz, A. Freyer, S.-J. Huang, C.-S. Lai and S.-B. Liu, Stud.

Surf. Sci. Catal., 2004, 154C, 2269.869 S.-J. Huang, S. Huh, P.-S. Lo, S.-H. Liu, V. S-Y. Lin and S.-B. Liu, Phys Chem. Chem.

Phys., 2005, 7, 3080.870 T.-O. Do, A. Nossou, M. A. Springuel-Huet, C. Schneider, J. L. Bretherton, C. A. Fyfe

and S. Kaliaguine, J. Am. Chem. Soc., 2004, 126, 14324.871 X.-P. Tang, K. C. Chartkunchand and Y. Wu, Chem. Phys. Lett., 2004, 399, 456.872 A. Thorne, A. Kruth, D. Tunstall, J. T. S. Irvine and W. Zhou, J. Phys. Chem. B, 2005,

109, 5439.873 V. V. Kotov, S. A. Sokolova, G. A. Netesova and I. V. Kuznetsova, Zhur. Fiz. Khim.,

2004, 78, 1869.874 B. Grunberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach

and G. Buntkowsky, Chem.-Eur. J., 2004, 10, 5689.875 S. P. Gabuda, S. G. Kozlova and A. G. Lundin, Russ. J. Phys. Chem., 2005, 79, 334.876 I. A. Beta, B. Hunger, W. Bohlmann and H. Jobic, Microporous Mesoporous Mat., 2005,

79, 69.877 S. Horike, R. Matsuda, R. Kitaura, S. Kitagawa, T. Iijima, K. Endo, Y. Kubota and M.

Takata, Chem. Comm., 2004, 2152.

184 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 50: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

878 R. Schenkel, A. Jentys, S. F. Parker and J. A. Lercher, J. Phys. Chem. B, 2004, 108,15013.

879 O. F. Erdem and D. Michel, J. Phys. Chem. B, 2005, 109, 12054.880 A. Zheng, L. Chen, J. Yang, Y. Yue, C. Ye, X. Lu and F. Deng, Chem. Comm., 2005,

2474.881 M. Urban, Z. Konya, D. Mehn and I. Kiricsi, J. Mol. Struct., 2005, 744–7, 93.882 H. Takaba, A. Yamamoto, K. Hayamizu and S. Nakao, J. Phys. Chem. B, 2005, 109,

13871.883 (a) T. Wu, Q. Yan, Q. Zhang, Z. Niu, Z. Chao, J. Ye and H. Wan, Cuihua Xuebao, 2004,

25, 909; (b) T. Wu, Q. Yan, Q. Zhang, Z. Niu, Z. Chao, J. Ye and H. Wan, Chem. Abs.,2005, 142, 97060.

884 A. M. Korzeniowska, Z. T. Lalowicz and A. Gutsze, Chem. Phys., 2005, 311, 299.885 M. Okazaki, K. Toriyama and S. Anandan, Chem. Phys. Lett., 2005, 401, 363.886 A. Pampel, M. Fernandez, D. Freude and J. Karger, Chem. Phys. Lett., 2005, 407, 53.887 W. Bohlmann, S. Mulla-Osman and D. Michel, Stud. Surf. Sci. Catal., 2004, 154B, 1823.888 S. Vratislav, M. Dlouha and V. Bosacek, Physica B, 2004, 350, e407.889 V. Bosacek, S. Vratislav and M. Dlouha, Coll. Czech. Chem. Comm., 2004, 69, 1537.890 M. Ishiwata, M. Y. Murata and T. Yoshida, J. Phys. Soc. Jpn., 2004, 73, 1036.891 X.-P. Tang, J.-C. Wang, L. W. Cary, A. Kleinhammer and Y. Wu, J. Am. Chem. Soc.,

2005, 127, 9255.892 C. A. Fyfe, D. H. Brouwer and P. Tekely, J. Phys. Chem. A, 2005, 109, 6187.893 D. W. Aksnes, K. Forland and M. Stocker, Microporous Mesoporous Mat., 2005, 77, 79.894 D. W. Aksnes, K. Forland and L. Kimtys, J. Mol. Struct., 2004, 708, 23.895 S. Shylesh and A. P. Singh, J. Catal., 2004, 228, 333.896 W. Kuang and C. Detellier, Can. J. Chem., 2004, 82, 1527.897 M. Volel, M. Armand, W. Gorecki and M. L. Saboungi, Chem. Mat., 2005, 17, 2028.898 P. Concepcion, M. T. Navarro, T. Blasco, J. M. L. Nieto, B. Panzacchi and F. Rey,

Catal. Today, 2004, 96, 179.899 J. Zhu, H. He, L. Zhu, X. Wen and F. Deng, J. Colloid Interfac. Sci., 2005, 286, 239.900 A.-J. Han, Y. Zeng, J. Guo, Y.-F. Huang, H.-Y. He and Y.-C. Long, Chin. J. Chem.,

2005, 23, 413.901 V. S. O. Ruiz and C. Airoldi, Thermochim. Acta, 2004, 420, 73.902 J. Sommer, Y. Yang, D. Rambow and J. Bluemel, Inorg. Chem., 2004, 43, 7561.903 S. Pizzanelli, S. Kababya, V. Frydman, M. Landau and S. Vega, J. Phys. Chem. B, 2005,

109, 8029.904 F. Babonneau, L. Yeung, N. Steunou, C. Gervais, A. Ramila and M. Vallet-Regi, J. Sol-

Gel Sci. Technol., 2004, 31, 219.905 S. Dasgupta, M. Agarwal and A. Datta, J. Mol. Catal. A, 2004, 223, 167.906 U. G. Nielsen, Y. Paik, K. Julmis, M. A. A. Schoonen, R. J. Reeder and C. P. Grey, J.

Phys. Chem. B, 2005, 109, 18310.907 C. Weidel, H. J. Jansch, G. Kirchner, J. J. Paggel, H. Winnefeld and D. Fick, Phys. Rev.

B, 2005, 72, 033307.908 C. P. Nicholas and T. J. Marks, Langmuir, 2004, 20, 9456.909 F.-N. Shi, F. A. A. Paz, J. Rocha, J. Klinowski and T. Trindade, Eur. J. Inorg. Chem.,

2004, 3031.910 %. Petrovski, S. S. Braga, S. S. Rodrigues, C. C. L. Pereira, I. S. Goncalves, M. Pillinger,

C. Freire and C. C. Romao, New J. Chem., 2005, 29, 347.911 S. S. Braga, M. P. M. Marques, J. B. Sousa, M. Pillinger, J. J. C. Teixeira-Dias and I. S.

Goncalves, J. Organometal. Chem., 2005, 690, 2905.912 M. Abrantes, S. Gago, A. A. Valente, M. Pillnger, I. S. Goncalves, T. M. Santos, J.

Rocha and C. C. Romao, Eur. J. Inorg. Chem., 2004, 4914.913 B. M. Devassy, F. Lefebvre and S. B. Halligudi, J. Catal., 2005, 231, 1.914 S. Gago, M. Pillinger, T. M. Santos, J. Rocha and I. S. Goncalves, Eur. J. Inorg. Chem.,

2004, 1389.915 Y. Yang, C. Deng and Y. Yuan, J. Catal., 2005, 232, 108.916 S. Boujday, J.-F. Lambert and M. Che, ChemPhysChem, 2004, 5, 1003.917 P. K. Babu, H. S. Kim, J. H. Chung, E. Oldfield and A. Wieckowski, J. Phys. Chem. B,

2004, 108, 20228.918 K. Pelzer, B. Laleu, F. Lefebvre, K. Philippot, B. Chaudret, J. P. Candy and J. M. Basset,

Chem. Mat., 2004, 16, 4937.919 D. W. Aksnes and K. Forland, Appl. Mag. Reson., 2003, 25, 297.920 (a) Y. Zheng, X.-X. Wang, X.-Z. Fu and K.-M. Wei,Wuli Huaxue Xuebao, 2005, 21, 146;

(b) Y. Zheng, X.-X. Wang, X.-Z. Fu and K.-M. Wei, Chem. Abs., 2005, 143, 103981.921 H. Mikosch, E. L. Uzunova and G. S. Nikolov, J. Phys. Chem. B, 2005, 109, 11119.922 F. Gilles, J.-L. Blin and B.-L. Su, Colloids Surf. A, 2004, 241, 253.

Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186 | 185

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online

Page 51: [Spectroscopic Properties of Inorganic and Organometallic Compounds] Spectroscopic Properties of Inorganic and Organometallic Compounds Volume 39 || Solid state NMR spectroscopy

923 G. P. Holland, B. R. Cherry and T. M. Alam, J. Phys. Chem. B, 2004, 108, 16420.924 G. P. Holland and T. M. Alam, Phys Chem. Chem. Phys., 2005, 7, 1739.925 S.-J. Huang, Q. Zhao, W.-H. Chen, X. Han, X. Bao, P.-S. Lo, H.-K. Lee and S.-B. Liu,

Catal. Today, 2004, 97, 25.926 L. Peng, P. J. Chupas and C. P. Grey, J. Am. Chem. Soc., 2004, 126, 12254.927 (a) W.-H. Chen, S.-J. Huang, A. Sakthivel, S. P. Naik, A. S. T. Chiang and S.-B. Liu,

Nano-architectured Nanostructured Mat. Fabrication Control Props., 2003 (pub. 2004),127; (b) W.-H. Chen, S.-J. Huang, A. Sakthivel, S. P. Naik, A. S. T. Chiang and S.-B. Liu,Chem. Abs., 2005, 142, 436535.

928 L. G. A. van de Water, M. A. Zwijnenburg, W. G. Sloof, J. C. van der Waal, J. C. Jansenand T. Maschmeyer, ChemPhysChem, 2004, 5, 1328.

929 M. Barbosa, C. Dıaz, M. I. Toral, J. Retuert and Y. Martinez, J. Mat. Chem., 2005, 15,1360.

930 H. Takahashi and T. Isobe, Jpn. J. Appl. Phys. Pt. 1, 2005, 44, 922.931 Y. Kim and R. J. Kirkpatrick, Eur. J. Soil Sci., 2004, 55, 243.932 B. Li, S. Li, Y. Wang, N. Li, X. Liu and B. Lin, J. Solid State Chem., 2005, 178, 1030.

186 | Spectrosc. Prop. Inorg. Organomet. Compd., 2007, 39, 136–186

This journal is �c The Royal Society of Chemistry 2007

Dow

nloa

ded

by N

orth

Car

olin

a St

ate

Uni

vers

ity o

n 24

Sep

tem

ber

2012

Publ

ishe

d on

31

Oct

ober

200

7 on

http

://pu

bs.r

sc.o

rg |

doi:1

0.10

39/B

6147

02J

View Online