special relativity uct summer school presentation part 3 of 3 … · 2019-12-18 · 12/17/19 1...

20
12/17/19 1 Special Relativity Presentation to UCT Summer School January 2020 (Part 3 of 3) By Rob Louw [email protected] 1 1 Test your understanding of time dilation Peter, who is standing on the ground, starts his stopwatch the moment that Sarah flies overhead in a spaceship at a speed of 0.6c At the same instant Sarah starts her stopwatch As measured in Peter’s frame of reference, what is the reading on Sarah’s stopwatch at the instant peter’s stopwatch reads 10s? a) 10s, b) less than 10s or c) more than 10s? As measured in Sarah’s frame of reference, what is the reading on Peter’s stopwatch at the instant that Sarah’s stopwatch reads 10s? a) 10s, b) less than 10s or c) more than 10s? Whose stopwatch is reading proper time in the above two examples? 2 Test your understanding of length contraction A 10m long spaceship flies past you horizontally at 0.99c At a certain instant you observe that that the nose and tail of the spaceship align exactly with the two ends of a meter stick that you hold in your hand Rank the following distances in order from longest to shortest: a) the rest length of the spaceship, b) the proper length of the meter stick, c) the proper length of the spaceship d) the length of the spaceship measured in your reference frame e) the length of the meter stick measured in the spaceship’s frame of reference? 3 4

Upload: others

Post on 05-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

12/17/19

1

SpecialRelativity

PresentationtoUCT Summer School January 2020 (Part3of3)

ByRobLouw

[email protected] 1

1

Test your understanding of time dilationPeter,whoisstandingontheground,startshisstopwatchthemomentthatSarahfliesoverheadinaspaceshipataspeedof0.6cAtthesameinstantSarahstartsherstopwatchAsmeasuredinPeter’sframeofreference,whatisthereadingonSarah’sstopwatchattheinstantpeter’sstopwatchreads10s?a)10s,b)lessthan10sorc)morethan10s?AsmeasuredinSarah’sframeofreference,whatisthereadingonPeter’sstopwatchattheinstantthatSarah’sstopwatchreads10s?a)10s,b)lessthan10sorc)morethan10s?Whosestopwatchisreadingpropertimeintheabovetwoexamples?

2

Test your understanding of length contraction

A10mlongspaceshipfliespastyouhorizontallyat0.99cAtacertaininstantyouobservethatthatthenoseandtailofthespaceshipalignexactlywiththetwoendsofameterstickthatyouholdinyourhandRankthefollowingdistancesinorderfromlongesttoshortest:a)therestlengthofthespaceship,b)theproperlengthofthemeterstick,c)theproperlengthofthespaceshipd)thelengthofthespaceshipmeasuredinyourreferenceframee)thelengthofthemeterstickmeasuredinthespaceship’sframeofreference?

3 4

12/17/19

2

5

Aswesawyesterday,spaceandtimehavebecomeintertwinedandwecannolongersaythatlengthandtimehaveabsolutemeaningsindependentoftheframeofreferenceTimeandthethreedimensionsofspacecollectivelyforafour-dimensionalentitycalledspacetime andwecallx,y,zandt togetherthespacetimecoordinatesofanevent

UsingtheLorentzcoordinatetransformationswecanderiveasetofLorentzvelocitytransformations

Theresult(withoutderivation)isshowninthenextslide6

6

In the extreme case where vx = cwe get

vx’ = (c-u)/(1-uc/c2) = c(1-u/c)/(1-u/c) = c

This means that anything moving at c measured in S isalso travelling at c when measured in S’ despite therelative motion of the two frames

7

vx’=(vx – u)/(1- uvx/c2)Lorentzvelocitytransformation

7

TheLorentzvelocitytransformationshowsthatabodywithaspeedlessthanc inoneframeofreferencealwayshasaspeedlessthanc ineveryotherframeofreference

Thisisonereasonforconcludingthatnomaterialbodymaytravelwithaspeedgreaterthanorequaltothespeedoflightinavacuum,relativetoanyinertialreferenceframe

10

10

12/17/19

3

Let'sconsideranexampleofthevelocitylimitwhichanyobservercanreachrelativetosomeotherobserver

IfwehadasetoffivespaceshipsstackedlikeRussiandollswhereeachshipcouldlaunchtheremainingshipsatavelocityequaltotherelativevelocityofthelaunchingshipasobservedfromearthwhatrelativevelocitiescouldthevariousshipsachieverelativetotheearthobserver?

Thefollowingslideshowsthevelocityprofilesofthefivespaceshipsrelativetoanearthobserver

11

11

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

M ot her sh ip Ro cket 1 Ro cket 2 Ro cket 3 Ro cket 4 Ro cket 5

12

12

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

M ot her sh ip Ro cket 1 Ro cket 2 Ro cket 3 Ro cket 4 Ro cket 5

13

13

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

M ot her sh ip Ro cket 1 Ro cket 2 Ro cket 3 Ro cket 4 Ro cket 5

14

14

12/17/19

4

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

M ot her sh ip Ro cket 1 Ro cket 2 Ro cket 3 Ro cket 4 Ro cket 5

15

15

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

M ot her sh ip Ro cket 1 Ro cket 2 Ro cket 3 Ro cket 4 Ro cket 5

16

16

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

M ot her sh ip Ro cket 1 Ro cket 2 Ro cket 3 Ro cket 4 Ro cket 5

17

17

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

M ot her sh ip Ro cket 1 Ro cket 2 Ro cket 3 Ro cket 4 Ro cket 5

Nomatterhowmanysuccessiverocketsarelaunchedtheirvelocitywillneverexceedc!

18

18

12/17/19

5

Relativistic kinematics and the Doppler effect for electromagnetic waves

33

Herewegowithanotherthoughtexperimentinvolvingtheuseofahigh-speedtrain

Asourceoflight ismovingtowardsStanleywithconstantspeeduwhoisinastationeryinertialreferenceframeS

Thesourceemitslightemitslightwavesoffrequencyf0 asMeasuredinitsrestframe

Stanleyreceiveslightwavesoffrequencyfasshownbelow

34

34

36

36

Herewegowithanotherthoughtexperimentinvolvingtheuseofahigh-speedtrain

Asourceoflight ismovingtowardsStanleywithconstantspeeduwhoisinastationeryinertialreferenceframeS

Thesourceemitslightwavesoffrequencyf0 asmeasuredinitsrestframe

Stanleyreceiveslightwavesoffrequencyfasshowninthenextslide

37

37

12/17/19

6

Withanelectromagneticsourceapproaching anobserver,therelativisticblueshiftDopplerformulacanbederivedusingtheappropriateLorentztransformsandis

39

Thedopplerblueshiftequationindicatesthatfincreasesi.e.thewavelengthgetsshorter(bluer)asu approachesthespeedoflight c

f= (𝐜 + 𝐮)/(𝐜 − 𝐮) f0 Dopplerformula(blueshift)

39

40

Withlight,unlikesound,thereisnodistinctionbetweenmotionofsourceandmotionofobserver,onlytherelativevelocityofthetwoissignificant

ThefollowingslideillustratestheDopplerblueshifteffect

40

0

2

4

6

8

10

12

14

16

18

20

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 142Speedvrelativetothespeedoflightc(v/c)

f/f0=(𝒄+𝒖)/(𝒄−𝒖)

Doppler effect- source approaching observer

Asthesourcevelocity- uapproachesthespeedoflight,f/f0approachesinfinity(BLUESHIFT)

f/f0

42

Withelectromagneticwavesmovingaway fromanobserver,therelativisticredshiftDopplerformulacanbederivedusingtheappropriateLorentztransforms

Thedopplerredshiftequationindicatesthatfdecreasei.e.thewavelengthgetslonger(redder)asu approachesthespeedoflightc

43

f= (𝐜 − 𝐮)/(𝐜 + 𝐮) f0 Dopplerformula(redshift)

43

12/17/19

7

NotethatinderivingtheDopplerequations,𝛾 hascancelledout

TheDopplerredshifteffectisshowninthenextfewslides

44

44

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

46

f/f0=(𝒄+𝒖)/(𝒄−𝒖)

Asthesourcevelocityuapproachesthespeedoflight,f/f0approacheszero(redSHIFT)

Doppler effect- source moving away from observer

Speedvrelativetothespeedoflightc(v/c)

f/f0

46

47

Hubblephotographofafastmoving,DopplerblueshiftedjetemanatingfromablackholeatthecentreofGalaxyM87

47

48

QueenMary2’sradarantennae

48

12/17/19

8

49

Radarequipmentinstallationatanairport

49

50

50

51

51

Relativistic particle physics

52

12/17/19

9

Relativistic particle momentum p

53

Newton’s laws of of motion have the same form in all inertialframes of referenceUsing Lorentz transformations to change from one inertialframe to another, the laws should be invariantTheprincipleoftheconservationofmomentumstatesthatwhentwobodiesinteract,thetotalmomentumisconstantprovidingthatthereisnonetexternalforceactingonthebodiesinaninertialreferenceframeConservationofmomentummustthereforebevalidinallinertialframesofreference

54

54

Thisposesuswithaproblem:SupposewelookatacollisioninaninertialcoordinatesystemSandwefindthatmomentumisconserved

WhenweusetheLorentztransformationtoobtainvelocitiesinasecondinertialsystemS’wefindthatusingtheNewtoniandefinitionofmomentum(p=mv),momentumisnotconservedinthesecondsystem

Tosolvethisproblemweneedamoregeneraliseddefinitionofmomentum

55

55

Theequationwillnotbederivedfromfirstprinciples,butitwillsimplybestatedbelowSupposewehaveamaterialparticlewitharestmassofm,whensuchaparticlehasavelocityv,thenitsrelativisticmomentum pis

56

p =mv/ 1 − (𝑣/𝑐). =𝛾mvRelativisticmomentum

56

12/17/19

10

Relativisticmomentumplaysakeyroleinunderstandingthekinematicsofparticlephysics

Particlevelocitieswillbedenotedwithv fortherestofthispresentation

Wewillnolongerbemakinguseofu,therelativevelocityofreferenceframesaswewillbethestationaryobserveronearth

RelativisticandNewtonianmomentumasafunctionofrelativespeedv/careillustratedgraphicallyinthenextfewslides 57

57

59

0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 1 .6

Particle momentum

1

8 mc

1mc

2mc

P=𝜸mv=mv/𝟏−(𝐯/𝐜)𝟐

Speedvrelativetothespeedoflightc(v/c)

Asv approachesc,relativisticmomentumapproachesinfinity

3mc

4mc

5mc

6mc

7mc

0

p=𝜸mv

59

61

0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 1 .6

Particle momentum

1

8 mc

1mc

2mc

P=𝜸mv=mv/𝟏−(𝐯/𝐜)𝟐

Speedvrelativetothespeedoflightc(v/c)

Newtonianmechanicsincorrectly predictsthatmomentumonlyreachesinfinityifvbecomesinfinite

3mc

4mc

5mc

6mc

7mc

0

p=𝜸mv

61

Force F and acceleration a

62

12/17/19

11

ThegeneralformofNewton’ssecondlawisF=dp/dt=ma

Experimentsshowthisresultisstillvalidinrelativisticmechanicsprovidedweuserelativisticmomentum.ThustherelativisticallycorrectversionofNewton’ssecondlaw is

F=ma/{ 𝟏 − (𝒗/𝒄)𝟐}3=𝛾 3ma Forceformula

63

63

Rearrangingthepreviousequationwecanestablishwhathappenstotheaccelerationa ofaparticleofrestmassmwhichissubjectedtoaconstantforcea=(F/m 𝟏 − (𝒗/𝒄)𝟐 3=F/m𝛾 𝟑 Accelerationformula

64

64

InNewtonianmechanicsifaconstantforceF isappliedtoaparticleofrestmassm itwillcontinuetoaccelerateataconstantaccelerationa regardlessofitsspeedvInrelativisticmechanics,whenaparticleofrestmassmissubjectedtoaconstantforceF,itsaccelerationdecreasestozeroasitsvelocitytendstowardthespeedoflightInfactitdoesnotmatterhowbigtheforceornonzeromassis,accelerationwillalwaysdecreasetozeroastheparticlespeedincreasestowardsthespeedoflightTherelativisticeffectofincreasedspeedontheaccelerationofaparticleofrestmassmwhensubjectedtoaconstantforceF isillustratedinthenextfewslides

65

65

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Speedvrelativetothespeedoflightc(v/c)

a=F/m𝜸3

Particle acceleration a

Accelerationofaparticleapproacheszeroasitsspeedapproachesthespeedoflightregardlessofthemagnitudeoftheforceapplied

1F/m

0.9F/m

0

0.1F/m

0.2F/m

0.3F/m

0.4F/m

0.5F/m

0.6F/m

0.7F/m

0.8F/m

a

69

69

12/17/19

12

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Speedvrelativetothespeedoflightc(v/c)

a=F/m𝜸3

Particle acceleration a1F/m

0.9F/m

0

0.1F/m

0.2F/m

0.3F/m

0.4F/m

0.5F/m

0.6F/m

0.7F/m

0.8F/m

a

Newtonianmechanicswrongly predictsthataparticle’saccelerationwillremainconstantwhenaconstantforceisapplied

70

70

Relativistic Work and Particle Energy

75

The kinetic energy of a particle equals the net energy done onit in moving it from rest to speed vInrelativistic termsthekineticenergyKofaparticleofrestmassm becomes

K= mc2

1−v2/c2– mc2 =(𝜸 – 1)mc2 Relativistickineticenergy

76

76

As the speed of the particle v approaches the speed of light soits kinetic energy K approaches infinity

In Newtonian terms K only becomes infinite if v is infinite

77

77

12/17/19

13

0 0 .5 1 1 .5 2 2 .5

Particlekineticenergy

79Speedvrelativetothespeedoflightc(v/c)

0

0.5mc2

1mc2

1.5mc2

2mc2

2.5mc2

3mc2

3.5mc2

4mc2

K=(𝜸

–1)mc2 (Kineticenergy)

K

Relativistickineticenergybecomesinfiniteasv approachesc

79

0 0 .5 1 1 .5 2 2 .5

Particlekineticenergy

81Speedvrelativetothespeedoflightc(v/c)

0

0.5mc2

1mc2

1.5mc2

2mc2

2.5mc2

3mc2

3.5mc2

4mc2

K=(𝜸

–1)mc2 (Kineticenergy)

K

Newtonianmechanicsincorrectly predictsthatkineticenergyonlybecomesinfiniteifv becomesinfinite(K=1/2mv2)

81

Total particle energy E, Rest energy (E = mc2) and Massless energy (E = pc)

82

Torecall,therelativistickineticenergyequationforamovingparticleincludestwoterms

K= mc2

1−v2/c2– mc2

Themotiontermdependsonmotionandtheenergytermisindependentofmotion

ItseemsthatthekineticenergyofaparticleisthedifferencebetweensometotalenergyEandanenergymc2 thatithasevenatrest

83

Motionterm Energyterm

83

12/17/19

14

A particle’s total energy E can thus be expressed as follows

E = K +mc2 = mc2

1−v2/c2= 𝜸mc2 Total particle energy

84

84

Tosummarise,thetotalenergyEofaparticleisthesumofitsKineticenergyplusitsrestenergy

Whatisapparentisthatevenwhenaparticleisatrestitstillhasenergy

Thisiscalleditsrestenergywhichisproportionaltoitsrest(andonlyrest)mass

Thishasbeenexperimentallyconfirmed.Whenunstablefundamentalparticlesdecay,thereisalwaysanenergychangeconsistentwiththeassumptionofarestenergyofmc2witharestmassofm 85

85

Thesimplestexampleofthepresenceofrestenergyisthereleaseofenergyofdecayofaneutralpion(𝝿 ).

Itisanunstableparticleofmassmwhichwhenitdecays(withzerokineticenergybeforeitsdecay)releasesradiationwithanenergyexactlyequaltom𝝿 c2

Toputthingsintoperspective,a50ggolfballhasenoughrestenergytopotentiallypowera100Wlightbulbfor1.3millionyears!

86

86

Withabitofmanipulationthemomentumandrestenergyequationscanbereformulatedasfollows

(p/m)2 = v2/c2

1 − v2/c2 and(E/mc2)2= 7

1−v2/c2

Subtractingandrearrangingtheseequationsgivesus

E2 =(mc2)2 +(pc)2

87

87

12/17/19

15

Formasslessparticles(m=0)thepreviousexpressionbecomes

E=pc

Allmasslessparticlesthustravelatthespeedoflightandhavebothenergyandmomentumsuch

Photons, thequantumofelectromagneticradiationaremassless

Theonlyotherknownmasslessparticleisthegluon88

88

Theexpressionalsosaysthatforparticlesatrest(p=0),thetotalenergyequationreducesto

89

E=mc2 Einstein’sfamousrestenergyequation

89

Conservation of mass energy

90

From the preceding points it is clear that energy and mass areinterchangeable

It is also clear that the principles of conservation of mass andenergy should be restated in terms of a broader principlewhich is The law of the conservation of mass and energy

This law is the fundamental principle involved in thegeneration of nuclear power. When a uranium or plutoniumnucleus undergoes fission in a nuclear reactor, the sum of therest masses of the resulting fragments is less than the mass ofthe parent nucleus. An amount of energy is released whichequals E = mc2where m equals the lost mass

It may appear that the foundations of Newtonian mechanicshave been destroyedNewtonian mechanics are not wrong, they are simplyincomplete

91

91

12/17/19

16

92

92

Block 111 Virginia – class nuclear attack submarine

93

93

94

Fatmanreplica

94

More Relativistic phenomena in nature

95

12/17/19

17

Thestructureofspacetimeisresponsiblefortheforceofgravityandthestrangeideathattheearthisfallinginastraightlinearoundthesun!

ThesunandallthestarsgettheirenergyprincipallyfromhydrogenfusionbecauseE=mc2

CosmicexplosionsarealsodrivenbyE=mc2

InastrophysicstheredorblueDopplershiftofcelestialbodiestellushowfaststarsareapproachingorrecedingfromuswhichhasledtoourunderstandingoftheexpandinguniverse

96

96

Theheatgeneratedbythedecayofradioactiveelementsintheinnerlayersoftheearthprovidesmorethan50%oftheheattokeeptheselayersmolten

Themovementoftectonicplatesdependsonhavingamoltenmassonwhichtheycan‘float’

Thisishowourcontinentsandmountainsareformed

Theearth’srotatingmoltencorealsocreatestheearth’smagneticfieldwhichisvitalinprotectingusfromharmfulradiation 97

97

98

Untilrecentlymarinershavereliedheavilyonthemagneticcompassfornavigation

98

99

Auroraborealis

99

12/17/19

18

You’veprobablynotgivenitmuchthought,butthereasonwhygoldisyellow(orrather,golden) isdeeplyingrainedinitsatomicstructureandit’sbecauseofsomethingcalledrelativisticquantumchemistry

Simplyput,gold’selectronsmovesofast(± c/2)inordertoavoidbeingsuckedintothenucleusthattheyexhibitrelativisticcontraction,shiftingthewavelengthoflightabsorbedtoblueandreflectingtheoppositecolour:golden

Thesesamequantumrelativisticeffectsarealsothereasonwhygolddoesnotcorrodeeasily

100

100

101

Simplyput,gold’selectronsmovesofast(±c/2)inordertoavoidbeingsuckedintothenucleusthattheyexhibitrelativisticcontraction,shiftingthewavelengthoflightabsorbedtoblueandreflectingtheoppositecolour:golden

101

You’veprobablynotgivenitmuchthought,butthereasonwhygoldisyellow(orrather,golden) isdeeplyingrainedinitsatomicstructure—andit’sbecauseofsomethingcalledrelativisticquantumchemistry

Simplyput,gold’selectronsmovesofast(± c/2)inordertoavoidbeingsuckedintothenucleusthattheyexhibitrelativisticcontraction,shiftingthewavelengthoflightabsorbedtoblueandreflectingtheoppositecolour:golden

Thesesamequantumrelativisticeffectsarealsothereasonwhygolddoesnotcorrodeeasily

102

102

Theouterelectrongets’trapped’intheinnerorbitalsnearerthenucleusandisthereforenotfreelyavailabletoreactwithotherelementsIncontrastLithium,whichisinthesamecolumnintheperiodictable,isveryreactiveThesesamequantumrelativisticeffectsarealsothereasonwhygolddoesnotcorrodeeasilyLikegold, mercuryisalsoaheavyatom,withelectronsheldclosetothenucleusbecauseoftheirspeedandconsequentmassincrease.Withmercury,thebondsbetweenitsatomsareweak,somercurymeltsatlowertemperaturesandistypicallyaliquidwhenweseeit.

103

103

12/17/19

19

Theouterelectrongets’trapped’intheinnerorbitalsnearerthenucleusandisthereforenotfreelyavailabletoreactwithotherelementsIncontrastLithium,whichisinthesamecolumnintheperiodictable,isveryreactiveThesesamequantumrelativisticeffectsarealsothereasonwhygolddoesnotcorrodeeasilyLikegold, mercuryisalsoaheavyatom,withelectronsheldclosetothenucleusbecauseoftheirspeedandconsequentmassincreaseWithmercurythebondsbetweenitsatomsareweak,somercurymeltsatlowertemperaturesandistypicallyaliquidwhenweseeit 104

104

105

105

More Practical applications of special relativity

106

Inparticleacceleratorsmanyparticleshaveveryshorthalflives.Atspeedsclosetothespeedoflighthalflivesaresignificantlyincreasedgivingresearcherstheopportunitytostudythem

Moderncomputerchips.Thisalittlemoreesoteric,butdesigningsolid-stateelectronicsdependsonbeingabletomodelelectronbandstructures.Thatoftenrequiresrelativisticcorrectionstodosoaccurately

Inmedicine,manybodyscannersrelyonrelativisticsciencefortheiroperation

107

107

12/17/19

20

PPet Scanner

108

Positron emission tomog-raphy(PET) scanner

108

Special relativity conclusions

109

It may appear that the foundations of Newtonian mechanicshave been destroyed. Newtonian mechanics are not wrong,they are simply incomplete. Newton’s laws are approximatelycorrect when speeds are small in comparison to cRather than destroying them, relativity generalises themEven special relativity is not complete!The general theory of relativity goes further and deals withhow the geometric properties of space are affected by thepresence of matterDon’t forget that all speeds are relative! (Except the speed oflight)You cannot travel faster then the speed of light! 110

110

The end

Email address:

[email protected]

113

113