special hypergeometric functions q

21
Special hypergeometric functions q From Wikipedia, the free encyclopedia

Upload: man

Post on 16-Dec-2015

240 views

Category:

Documents


5 download

DESCRIPTION

1. From Wikipedia, the free encyclopedia2. Lexicographical order

TRANSCRIPT

  • Special hypergeometric functions qFrom Wikipedia, the free encyclopedia

  • Contents

    1 q-Bessel polynomials 11.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7 Gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 q-Charlier polynomials 32.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    3 q-Hahn polynomials 43.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    4 q-Krawtchouk polynomials 64.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    i

  • ii CONTENTS

    4.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5 q-Laguerre polynomials 85.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    6 q-Meixner polynomials 106.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    7 q-MeixnerPollaczek polynomials 127.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    8 q-Racah polynomials 148.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    9 Quantum q-Krawtchouk polynomials 169.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

  • CONTENTS iii

    9.3 Recurrence and dierence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.4 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.5 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.6 Relation to other polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169.8 Text and image sources, contributors, and licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    9.8.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179.8.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179.8.3 Content license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

  • Chapter 1

    q-Bessel polynomials

    In mathematics, the q-Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basicAskey scheme. Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailed list of theirproperties.

    1.1 DenitionThe polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by [1]:

    yn(x; a; q) = 21

    qN aqn0

    ; q; qx

    1.2 OrthogonalityP1

    k=0(ak

    (q;q)n q(k+12 ) ym (qk; a; q) yn (qk; a; q) = (q; q)n (aqn; q)1 a

    nq(n+12 )

    1+aq2n mn[2]

    1.3 Recurrence and dierence relations

    1.4 Rodrigues formula

    1.5 Generating function

    1.6 Relation to other polynomials

    1.7 Gallery

    1.8 References[1] Roelof Koekoek, Peter Lesky Rene Swarttouw,Hypergeometric Orthogonal Polynomials and their q-Analogues, p526

    Springer 2010

    [2] Roelof p527

    1

  • 2 CHAPTER 1. Q-BESSEL POLYNOMIALS

    Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

  • Chapter 2

    q-Charlier polynomials

    In mathematics, the q-Charlier polynomials are a family of basic hypergeometric orthogonal polynomials in thebasic Askey scheme. Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailed list of theirproperties.

    2.1 DenitionThe q-Charlier polynomials are given in terms of the basic hypergeometric function by

    cn(qx; a; q) = 21(qn; qx; 0; q;qn+1/a)

    2.2 Orthogonality

    2.3 Recurrence and dierence relations

    2.4 Rodrigues formula

    2.5 Generating function

    2.6 Relation to other polynomials

    2.7 References Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

    3

  • Chapter 3

    q-Hahn polynomials

    See also: continuous q-Hahn polynomials, dual q-Hahn polynomials and continuous dual q-Hahn polynomials

    In mathematics, the q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basicAskey scheme. Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailed list of theirproperties.

    3.1 DenitionThe polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol byQn(x; a; b;N ; q) =32

    qn abqn + 1 xaq qN ; q; q

    3.2 Orthogonality

    3.3 Recurrence and dierence relations

    3.4 Rodrigues formula

    3.5 Generating function

    3.6 Relation to other polynomialsq-Hahn polynomials Quantum q-Krawtchouk polynomials:lima!1Qn(qx; a; p;N jq) = Kqtmn (qx; p;N ; q)q-Hahn polynomials Hahn polynomialsmake the substitution = q , = q into denition of q-Hahn polynomials, and nd the limit q1, we obtain: 3F2([n; + + n+ 1;x]; [+ 1;N ]; 1) ,which is exactly Hahn polynomials.

    3.7 References Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    4

  • 3.7. REFERENCES 5

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

  • Chapter 4

    q-Krawtchouk polynomials

    See also: ane q-Krawtchouk polynomials, dual q-Krawtchouk polynomials and quantum q-Krawtchouk polynomi-als

    In mathematics, the q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in thebasic Askey scheme. Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailed list of theirproperties.Stanton (1981) showed that the q-Krawtchouk polynomials are spherical functions for 3 dierent Chevalley groupsover nite elds, and Koornwinder (1989) showed that they are related to representations of the quantum group SU(2).

    4.1 DenitionThe polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

    4.2 Orthogonality

    4.3 Recurrence and dierence relations

    4.4 Rodrigues formula

    4.5 Generating function

    4.6 Relation to other polynomials

    4.7 References Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    6

  • 4.7. REFERENCES 7

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

    Stanton, Dennis (1981), Three addition theorems for some q-Krawtchouk polynomials, Geometriae Dedicata10 (1): 403425, doi:10.1007/BF01447435, ISSN 0046-5755, MR 608153

  • Chapter 5

    q-Laguerre polynomials

    See also: big q-Laguerre polynomials, continuous q-Laguerre polynomials and little q-Laguerre polynomials

    In mathematics, the q-Laguerre polynomials, or generalized StieltjesWigert polynomials P()n(x;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme introduced by DanielS. Moak (1981). Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailed list of theirproperties.

    5.1 DenitionThe q-Laguerre polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

    L()n (x; q) =(q+1; q)n(q; q)n

    11(qn; q+1; q;qn++1x)

    5.2 Orthogonality

    5.3 Recurrence and dierence relations

    5.4 Rodrigues formula

    5.5 Generating function

    5.6 Relation to other polynomials

    5.7 References

    Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    8

  • 5.7. REFERENCES 9

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

    Moak, Daniel S. (1981), The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl. 81 (1): 2047,doi:10.1016/0022-247X(81)90048-2, MR 618759

  • Chapter 6

    q-Meixner polynomials

    Not to be confused with q-MeixnerPollaczek polynomials.

    In mathematics, the q-Meixner polynomials are a family of basic hypergeometric orthogonal polynomials in thebasic Askey scheme. Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailed list of theirproperties.

    6.1 DenitionThe polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

    6.2 Orthogonality

    6.3 Recurrence and dierence relations

    6.4 Rodrigues formula

    6.5 Generating function

    6.6 Relation to other polynomials

    6.7 References Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald

    10

  • 6.7. REFERENCES 11

    F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

  • Chapter 7

    q-MeixnerPollaczek polynomials

    Not to be confused with q-Meixner polynomials.

    Inmathematics, the q-MeixnerPollaczek polynomials are a family of basic hypergeometric orthogonal polynomialsin the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailed listof their properties.

    7.1 DenitionThe polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by :[1]

    Pn(x; ajq) = anein a2;qn

    (q;q)n 32(q

    n; aei(+2); aei; a2; 0jq; q)

    7.2 Orthogonality

    7.3 Recurrence and dierence relations

    7.4 Rodrigues formula

    7.5 Generating function

    7.6 Relation to other polynomials

    7.7 References[1] Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analoques, p460,Springer

    Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    12

  • 7.7. REFERENCES 13

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

  • Chapter 8

    q-Racah polynomials

    In mathematics, the q-Racah polynomials are a family of basic hypergeometric orthogonal polynomials in the basicAskey scheme, introduced by Askey & Wilson (1979). Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw(2010, 14) give a detailed list of their properties.

    8.1 DenitionThe polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

    pn(qx + qx+1cd; a; b; c; d; q) = 43

    qn abqn+1 qx qx+1cdaq bdq cq

    ; q; q

    They are sometimes given with changes of variables as

    Wn(x; a; b; c;N ; q) = 43

    qn abqn+1 qx cqxn

    aq bcq qN ; q; q

    8.2 Orthogonality

    8.3 Recurrence and dierence relations

    8.4 Rodrigues formula

    8.5 Generating function

    8.6 Relation to other polynomialsq-Racah polynomialsRacah polynomials

    8.7 References Askey, Richard; Wilson, James (1979), A set of orthogonal polynomials that generalize the Racah coecientsor 6-j symbols, SIAM Journal on Mathematical Analysis 10 (5): 10081016, doi:10.1137/0510092, ISSN0036-1410, MR 541097

    14

  • 8.7. REFERENCES 15

    Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

  • Chapter 9

    Quantum q-Krawtchouk polynomials

    In mathematics, the quantum q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polyno-mials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and Ren F. Swarttouw (2010, 14) give a detailedlist of their properties.

    9.1 DenitionThe polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

    9.2 Orthogonality

    9.3 Recurrence and dierence relations

    9.4 Rodrigues formula

    9.5 Generating function

    9.6 Relation to other polynomials

    9.7 References Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and itsApplications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8,MR 2128719

    Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren F. (2010), Hypergeometric orthogonal polynomials andtheir q-analogues, SpringerMonographs inMathematics, Berlin, NewYork: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

    Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, Ren F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, RonaldF.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

    16

  • 9.8. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 17

    9.8 Text and image sources, contributors, and licenses9.8.1 Text

    Q-Bessel polynomials Source: https://en.wikipedia.org/wiki/Q-Bessel_polynomials?oldid=655473534 Contributors: R.e.b., Headbomb,JL-Bot, Yobot and

    Q-Charlier polynomials Source: https://en.wikipedia.org/wiki/Q-Charlier_polynomials?oldid=666261212Contributors: Gisling, R.e.b.,Headbomb and Yobot

    Q-Hahn polynomials Source: https://en.wikipedia.org/wiki/Q-Hahn_polynomials?oldid=662811966Contributors: HaeB,Gisling, R.e.b.,Headbomb, JL-Bot, AnomieBOT and Anonymous: 1

    Q-Krawtchouk polynomials Source: https://en.wikipedia.org/wiki/Q-Krawtchouk_polynomials?oldid=448547379 Contributors: R.e.b.and Headbomb

    Q-Laguerre polynomials Source: https://en.wikipedia.org/wiki/Q-Laguerre_polynomials?oldid=662668138Contributors: Gisling, R.e.b.,Headbomb, JL-Bot and Rscosa

    Q-Meixner polynomials Source: https://en.wikipedia.org/wiki/Q-Meixner_polynomials?oldid=448547542 Contributors: R.e.b., Head-bomb and JL-Bot

    Q-MeixnerPollaczek polynomials Source: https://en.wikipedia.org/wiki/Q-Meixner%E2%80%93Pollaczek_polynomials?oldid=662668600Contributors: Gisling, R.e.b., Headbomb and Yobot

    Q-Racah polynomials Source: https://en.wikipedia.org/wiki/Q-Racah_polynomials?oldid=662669429 Contributors: Gisling, R.e.b.,Headbomb and JL-Bot

    Quantumq-Krawtchouk polynomials Source: https://en.wikipedia.org/wiki/Quantum_q-Krawtchouk_polynomials?oldid=448548243Contributors: R.e.b., Headbomb and JL-Bot

    9.8.2 Images File:Ambox_important.svg Source: https://upload.wikimedia.org/wikipedia/commons/b/b4/Ambox_important.svg License: Public do-

    main Contributors: Own work, based o of Image:Ambox scales.svg Original artist: Dsmurat (talk contribs) File:QBessel_function_Im_complex_3D_Maple_plot.gif Source: https://upload.wikimedia.org/wikipedia/commons/4/4e/QBessel_

    function_Im_complex_3D_Maple_plot.gif License: CC BY-SA 4.0 Contributors: Own work Original artist: Gisling File:QBessel_function_Im_density_Maple_plot.gif Source: https://upload.wikimedia.org/wikipedia/commons/5/55/QBessel_function_

    Im_density_Maple_plot.gif License: CC BY-SA 4.0 Contributors: Own work Original artist: Gisling File:QBessel_function_Re_complex_3D_Maple_plot.gif Source: https://upload.wikimedia.org/wikipedia/commons/6/62/QBessel_

    function_Re_complex_3D_Maple_plot.gif License: CC BY-SA 4.0 Contributors: Own work Original artist: Gisling File:QBessel_function_Re_density_Maple_plot.gif Source: https://upload.wikimedia.org/wikipedia/commons/5/52/QBessel_function_

    Re_density_Maple_plot.gif License: CC BY-SA 4.0 Contributors: Own work Original artist: Gisling File:QBessel_function_abs_complex_3D_Maple_plot.gif Source: https://upload.wikimedia.org/wikipedia/commons/6/6f/QBessel_

    function_abs_complex_3D_Maple_plot.gif License: CC BY-SA 4.0 Contributors: Own work Original artist: Gisling File:QBessel_function_abs_density_Maple_plot.gif Source: https://upload.wikimedia.org/wikipedia/commons/4/49/QBessel_function_

    abs_density_Maple_plot.gif License: CC BY-SA 4.0 Contributors: Own work Original artist: Gisling File:Wiki_letter_w.svg Source: https://upload.wikimedia.org/wikipedia/en/6/6c/Wiki_letter_w.svg License: Cc-by-sa-3.0 Contributors:

    ? Original artist: ?

    9.8.3 Content license Creative Commons Attribution-Share Alike 3.0

    q-Bessel polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsGalleryReferences

    q-Charlier polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferences

    q-Hahn polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferences

    q-Krawtchouk polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferences

    q-Laguerre polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferences

    q-Meixner polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferences

    q-MeixnerPollaczek polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferences

    q-Racah polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferences

    Quantum q-Krawtchouk polynomialsDefinitionOrthogonalityRecurrence and difference relationsRodrigues formulaGenerating functionRelation to other polynomialsReferencesText and image sources, contributors, and licensesTextImagesContent license