sp first l13

34
03/14/22 © 2003, JH McClellan & RW Schafer 1 Signal Processing First Lecture 13 Digital Filtering of Analog Signals

Upload: sajid-ali

Post on 06-Aug-2015

170 views

Category:

Engineering


2 download

TRANSCRIPT

04/15/23 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 13Digital Filtering of Analog Signals

04/15/23 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture: Chapter 6, Sections 6-6, 6-7 & 6-8

Other Reading: Recitation: Chapter 6

FREQUENCY RESPONSE EXAMPLES

Next Lecture: Chapter 7

04/15/23 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

Two Domains: Time & Frequency Track the spectrum of x[n] thru an FIR

Filter: Sinusoid-IN gives Sinusoid-OUT UNIFICATION: How does Frequency

Response affect x(t) to produce y(t) ?

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( jeH

FIR

04/15/23 © 2003, JH McClellan & RW Schafer 5

TIME & FREQUENCY

FIR DIFFERENCE EQUATION is the TIME-DOMAIN

M

k

M

kk knxkhknxbny

00

][][][][

M

k

kjj ekheH0

ˆˆ ][)(

ˆ3ˆ2ˆˆ ]3[]2[]1[]0[)( jjjj ehehehheH

04/15/23 © 2003, JH McClellan & RW Schafer 6

Ex: DELAY by 2 SYSTEM

y[n]x[n] )( jeH

y[n]x[n] ][nh

]2[][for )( and ][ Find ˆ nxnyeHnh j

]2[][ nnh

}1,0,0{kb

04/15/23 © 2003, JH McClellan & RW Schafer 7

DELAY by 2 SYSTEM

k = 2 ONLY

y[n]x[n] ]2[ n

]2[][for )( and ][ Find ˆ nxnyeHnh j

M

k

kjj ekeH0

ˆˆ ]2[)(

)( jeHy[n]x[n] 2je

04/15/23 © 2003, JH McClellan & RW Schafer 8

GENERAL DELAY PROPERTY

ONLY ONE non-ZERO TERM for k at k = nd

dnjM

k

kjd

j eenkeH ˆ

0

ˆˆ ][)(

][][for )( and ][ Find ˆd

j nnxnyeHnh

][][ dnnnh

04/15/23 © 2003, JH McClellan & RW Schafer 9

FREQ DOMAIN --> TIME ??

START with kj bnheH or find and ][)(

)ˆcos(7)( ˆ2ˆ jj eeH

y[n]x[n] ][nh ?][ nh

y[n]x[n])( jeH

04/15/23 © 2003, JH McClellan & RW Schafer 10

FREQ DOMAIN --> TIME

EULER’s Formula)ˆcos(7)( ˆ2ˆ jj eeH )5.05.0(7 ˆˆˆ2 jjj eee

)5.35.3( ˆ3ˆ jj ee

]3[5.3]1[5.3][ nnnh

}5.3,0,5.3,0{kb

04/15/23 © 2003, JH McClellan & RW Schafer 11

PREVIOUS LECTURE REVIEW

SINUSOIDAL INPUT SIGNAL OUTPUT has SAME FREQUENCY DIFFERENT Amplitude and Phase

FREQUENCY RESPONSE of FIR MAGNITUDE vs. Frequency PHASE vs. Freq PLOTTING

)(ˆˆ ˆ

)()( jeHjjj eeHeH

MAG

PHASE

04/15/23 © 2003, JH McClellan & RW Schafer 12

FREQ. RESPONSE PLOTS

DENSE GRID (ww) from - to + ww = -pi:(pi/100):pi;

HH = freqz(bb,1,ww) VECTOR bb contains Filter Coefficients DSP-First: HH = freekz(bb,1,ww)

M

k

kjk

j ebeH0

ˆˆ )(

04/15/23 © 2003, JH McClellan & RW Schafer 13

PLOT of FREQ RESPONSE

ˆˆ )ˆcos22()( jj eeH RESPONSE at /3

}1,2,1{}{ kb

(radians)

04/15/23 © 2003, JH McClellan & RW Schafer 14

EXAMPLE 6.2

y[n]x[n])( jeH

ˆˆ )ˆcos22()( jj eeH

njj

j

eenx

eHny)3/(4/

ˆ

2][ and

known is )( when][ Find

04/15/23 © 2003, JH McClellan & RW Schafer 15

njj eenxny )3/(4/2][ when][ Find

EXAMPLE 6.2 (answer)

3/ˆat )( evaluate -Step One ˆ jeH

ˆˆ )ˆcos22()( jj eeH

3/ˆ@3)( 3/ˆ jj eeH

njjj eeeny )3/(4/3/ 23][ njj ee )3/(12/6

04/15/23 © 2003, JH McClellan & RW Schafer 16

EXAMPLE: COSINE INPUT

)cos(2][ and

known is )( when][ Find

43

ˆ

nnx

eHny j

ˆˆ )ˆcos22()( jj eeH

y[n]x[n])( jeH

04/15/23 © 2003, JH McClellan & RW Schafer 17

EX: COSINE INPUT (ans-1)

)cos(2][ when][ Find 43 nnxny

][][][

)cos(2

21

)4/3/()4/3/(43

nxnxnx

een njnj

][][][)(][

)(][

21

)4/3/(3/2

)4/3/(3/1

nynynyeeHny

eeHnynjj

njj

04/15/23 © 2003, JH McClellan & RW Schafer 18

EX: COSINE INPUT (ans-2)

)cos(2][ when][ Find 43 nnxny

)4/3/()3/()4/3/(3/2

)4/3/()3/()4/3/(3/1

3)(][

3)(][

njjnjj

njjnjj

eeeeHny

eeeeHny

)cos(6][

33][

123

)12/3/()12/3/(

nny

eeny njnj

ˆˆ )ˆcos22()( jj eeH

04/15/23 © 2003, JH McClellan & RW Schafer 19

SINUSOID thru FIR

IF Multiply the Magnitudes

Add the Phases

))(ˆcos()(][

)ˆcos(][

11 ˆ1

ˆ

1

jj eHneHAny

nAnx

)()( ˆˆ* jj eHeH

04/15/23 © 2003, JH McClellan & RW Schafer 20

LTI Demo with Sinusoids

FILTER

x[n]y[n]

04/15/23 © 2003, JH McClellan & RW Schafer 21

DIGITAL “FILTERING”

SPECTRUM of x(t) (SUM of SINUSOIDS) SPECTRUM of x[n]

Is ALIASING a PROBLEM ? SPECTRUM y[n] (FIR Gain or Nulls) Then, OUTPUT y(t) = SUM of SINUSOIDS

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( jeH

04/15/23 © 2003, JH McClellan & RW Schafer 22

FREQUENCY SCALING

TIME SAMPLING: IF NO ALIASING: FREQUENCY SCALING

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( jeH

ˆ ˆ

sfsT ˆ

snTt

04/15/23 © 2003, JH McClellan & RW Schafer 23

11-pt AVERAGER Example

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( jeH

ˆ ˆ

250 Hz

25 Hz ?))250(2cos())25(2cos()( 2

1 tttx

ˆ5

21

211

ˆ

)ˆsin(11

)ˆsin()( jj eeH

10

0111 ][][

k

knxny

04/15/23 © 2003, JH McClellan & RW Schafer 24

D-A FREQUENCY SCALING

RECONSTRUCT up to 0.5fs

FREQUENCY SCALING

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( jeH

ˆ ˆ

TIME SAMPLING:

sf ˆ

ss ftnnTt

04/15/23 © 2003, JH McClellan & RW Schafer 25

TRACK the FREQUENCIES

D-to-AA-to-Dx(t) y(t)y[n]x[n] )( jeH

ˆ ˆ

Fs = 1000 Hz

0.5

.05

0.5

.05

250 Hz

25 Hz

NO new freqs

250 Hz

25 Hz )(

)(

05.0

5.0

j

j

eH

eH

04/15/23 © 2003, JH McClellan & RW Schafer 26

11-pt AVERAGER

NULLS or ZEROS

5.0ˆ 05.0ˆ

04/15/23 © 2003, JH McClellan & RW Schafer 27

EVALUATE Freq. Response

ˆ5

21

211

ˆ

)ˆsin(11

)ˆsin()( jj eeH

)5.0(5

21

211

ˆ

))5.0(sin(11

))5.0(sin()(

jj eeH

5.0ˆAt

5.2

)25.0sin(11

)75.2sin( je

5.00909.0 je

04/15/23 © 2003, JH McClellan & RW Schafer 28

EVALUATE Freq. Response

fs = 1000

MAG SCALE

PHASE CHANGE

)( 1000/)25(2jeH

)( 1000/)250(2jeH

04/15/23 © 2003, JH McClellan & RW Schafer 29

EFFECTIVE RESPONSE

DIGITAL FILTER

LOW-PASS FILTER

)( jeH

04/15/23 © 2003, JH McClellan & RW Schafer 30

FILTER TYPES

LOW-PASS FILTER (LPF) BLURRING ATTENUATES HIGH FREQUENCIES

HIGH-PASS FILTER (HPF) SHARPENING for IMAGES BOOSTS THE HIGHS REMOVES DC

BAND-PASS FILTER

(BPF)

04/15/23 © 2003, JH McClellan & RW Schafer 31

B & W IMAGE

04/15/23 © 2003, JH McClellan & RW Schafer 32

B&W IMAGE with COSINE

FILTERED: 11-pt AVG

04/15/23 © 2003, JH McClellan & RW Schafer 33

FILTERED B&W IMAGE

LPF:BLUR

04/15/23 © 2003, JH McClellan & RW Schafer 34

ROW of B&W IMAGE

BLACK = 255

WHITE = 0

04/15/23 © 2003, JH McClellan & RW Schafer 35

FILTERED ROW of IMAGE

ADJUSTED DELAY by 5 samples