solar orbiter eus: thermal design considerations bryan shaughnessy, rutherford appleton laboratory 1...

18
1 Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory Solar Orbiter EUV Spectrometer Thermal Design Considerations Bryan Shaughnessy

Upload: christine-miller

Post on 17-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

1

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Solar Orbiter EUV Spectrometer

Thermal Design Considerations

Bryan Shaughnessy

Page 2: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

2

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

The Thermal Challenge

PhaseSun Distance

(AU)Heat Flux (kW/m2) Note

Cold Non-Operational 1.2 1.0 Cruise phaseHot Non-Operational 0.8 2.2 AphelionCold Operational 0.45 6.8 Start/end 30 day solar encounterHot Operational 0.2 34.4 Perihelion

• Reject heat input to instrument of order 100 W at 0.2 AU

• Maintain sensible temperatures through the solar encounter

• Reduce heat loss when instrument is further from the Sun

Page 3: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

3

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Spacecraft Thermal Interface

• Preliminary interfaces (SCI-A/2005-307/SO/AJ Issue 1):– Instrument contained within spacecraft– Cold finger interface provided for detector cooling– Interfaces to fluid loops/heat pipes for hot elements.

• Spacecraft rejects heat using louvered radiators (ESA CDF study)

• Radiators likely to needed embedded heat-pipes or loop heat pipes to distribute heat.

• Modelling assumptions– 50 W/K thermal link from interfaces to radiator– Radiator efficiency 90%– Louvers : Fully open at 40C; effective emissivity 0.7

Fully closed at 20C; effective emissivity 0.1

Page 4: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

4

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Instrument Configuration

• Normal Incidence (baseline)– Uncoated SiC or Au coated SiC primary mirror (for

medium/long wavelengths)• Solar absorptivity ~ 0.8

– Au coated SiC primary mirror (for medium/long wavelengths)• Solar absorptivty ~ 0.1

– Multilayer coated SiC primary mirror (for short wavelengths)• Solar absorptivity ~ 0.4 - 0.6

• Grazing Incidence (backup)– Coated SiC optics (short, medium and long wavelengths)

• Solar absorptivity ~ 0.5 - 0.6

Page 5: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

5

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Normal Incidence Thermal Concept

Page 6: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

6

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Normal Incidence Thermal Concept

ENTRANCE BAFFLE

HEAT STOP / HEAT REJECTION MIRROR

PRIMARY MIRROR

DETECTOR THERMALLYISOLATED ENCLOSURE

HEAT REJECTION I/F (HOT)

HEAT REJECTION I/F (COLD)

Page 7: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

7

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Grazing Incidence Thermal Concept

Plane mirror forrastering

Parabolic mirror

Hyperbolic mirror

Entrance slit

Detector

TVLS grating

From the Sun

Page 8: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

8

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Grazing Incidence Thermal Concept

Plane mirror forrastering

Parabolic mirror

Hyperbolic mirror

Entrance slit

Detector

TVLS grating

From the Sun

HEAT REJECTION I/F (HOT)

HEAT REJECTION I/F (COLD)

ENTRANCE BAFFLE

DETECTOR THERMALLYISOLATED ENCLOSURE

HEAT STOP

BAFFLE

Page 9: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

9

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Heat Load Summary (at 0.2 AU)

GISiC Multilayer Au Note

Through Aperture 86 132 132 132Entrance Baffle Absorbed 3 28 28 28 Partially reflect out of instrument?PM Absorbed 54 82 52 10SM Absorbed 17 - - -SM Baffle Absorbed 9 - - - Partially reflect out of instrument?RM Absorbed 1 - - -Slit Incident 1 21 52 93 Heat stop / heat reflection mirror

NI (various PM finishes)

Page 10: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

10

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Basic Thermal Requirements

• Detector temperature: < -60 C (target -80 C)

• Optics: < 100 C assumed– Coatings (if used) are limiting factor

• Hot heat rejection interface < +50 C– Assuming NH3 heat-pipes

Page 11: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

11

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Primary Mirror flexible thermal link

• High conductance flexible thermal link required:• Alignment with spacecraft interfaces• Allow PM scanning• Assume PM can operate hot (~ 100 C) but spacecraft interface

limited to 50 C :– Conductance required: ~ 1.6 W/K (NI with absorbing PM)

– Approximately 180 x 0.1 mm Al foils (25 mm wide, 50 mm length) and bolted clamps

• Careful design required– Thermally induced deformation of mirror surface

– Need to ensure that spacecraft interface is not heated above is maximum temperature requirement

• Similar link could be used for all heat rejection interfaces

Page 12: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

12

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Primary Mirror flexible thermal link

FoilsStrap interface to spacecraft heat rejection point

Bolted clamp between foil bundleand PM interface platePM interface plate

PM

Page 13: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

13

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Thermal Predictions

• ESATAN/ESARAD thermal models have been developed for the NI and GI configurations

• Predictions presented for NI (absorbing PM) and GI• Further assumptions:

– No MLI around instrument

– Spacecraft conductive/radiative interfaces temperatures 40 C (Hot) and 0 C (Cold)

– Detector dissipation 1.6 W

– NI configuration assumes mirror at heat stop reflects unwanted radiation out of instrument

Page 14: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

14

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Thermal Predictions

0.2 AU 0.8 AU 0.2 AU 0.8 AUBAFFLE 52 0 45 -2BAFFLE RADIATOR 51 0 - -PRIMARY MIRROR 95 0 80 -2PM RAD I/F 47 -4 49 -4PRIMARY RADIATOR 45 -4 48 -4SECONDARY MIRROR - - 60 -1SM RAD I/F - - 50 -2SECONDARY RADIATOR - - 49 -2RASTER MIRROR - - 69 2SLIT/HEAT STOP 47 1 54 1GRATING 41 0 45 0DETECTOR -85 -93 -84 -93DETECTOR RADIATOR -116 -121 -116 -121

DetectorPrimary MirrorEntrance BaffleSecondary Mirror

NI GI

RADIATOR AREAS (m2)

TEMPERATURE PREDICTIONS

0.090.13

-0.04

0.090.210.07

-

Page 15: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

15

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Orbital Solar Load Variation

0

10

20

30

40

50

60

70

80

90

0 15 30 45 60 75 90 105 120

Time, days

PM

abs

orbe

d lo

ad, W

Note variation over the 30 day (+/- 15 day) observation period

Page 16: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

16

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Orbital Solar Load Variation – impact on NI Primary Mirror

0

5

10

15

20

25

30

35

40

45

50

0 15 30 45 60 75 90 105 120

Time, days

Te

mpe

ratu

re, d

eg C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rad

iato

r ef

fect

ive

emis

sivi

ty

T400 - Primary MirrorT405 - S/C thermal i/fT410 - S/C louvered radiatorRadiator effective emissivity

Page 17: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

17

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

Conclusion

• Thermal design concepts outlined for EUS• Thermal design is highly dependent on spacecraft thermal

interfaces– Heat sink temperature requirements

– Variation in heat rejection, especially over solar encounter period

• Critical areas:– Design of high conductance flexible straps, particularly interfaces to

optical surfaces (i.e., thermal distortion)

– Feasibility of ‘heat rejection mirrors’

– Qualification of coatings (if used)

– Intensity of solar beam at heat-stop if reflective primary mirror used

Page 18: Solar Orbiter EUS: Thermal Design Considerations Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Considerations

18

Solar Orbiter EUS: Thermal Design ConsiderationsBryan Shaughnessy, Rutherford Appleton Laboratory

THE END