solar irradiance variability of relevance for climate studies n.a. krivova

44
SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

Post on 18-Dec-2015

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SOLAR IRRADIANCE VARIABILITY OF RELEVANCE

FOR CLIMATE STUDIES

N.A. Krivova

Page 2: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

CGD, NCAR

SUN - CLIMATE

Page 3: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

CGD, NCAR

SOLAR TOTAL IRRADIANCE:WHAT IS KNOWN?

PMOD TSI

0.1%

Page 4: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

CGD, NCAR

BUT... (1)

Page 5: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

CGD, NCAR

Long-term time series needed!!!

BUT... (1)

Page 6: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

BUT... (2)

3 different composites!!!

Page 7: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

CGD, NCAR

BUT... (3)Different trends in Mg II and TSI composites since 1999!!!

Froehlich, priv. comm.

Page 8: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SOLAR SPECTRAL IRRADIANCE:WHAT IS KNOWN?

SME (Solar Mesosphere Explorer): 1981-1989, 10-20% uncertainty in the UV

SOLSTICE & SUSIM on UARS: 1991-1.8.2005, daily, 120-400nm with ~1 nm resolution

Page 9: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

BUT...

SME (Solar Mesosphere Explore)SME (Solar Mesosphere Explore):: 1981-1989, 10-20% uncertainty in the UV

SOLSTICE & SUSIM on UARSSOLSTICE & SUSIM on UARS:: 1991-1.8.2005, daily, 120-400nm with ~1 nm resolution

200-209 nm 270-274 nmSOLSTICE

SUSIM

difference

1=2-3%

Page 10: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SOLAR SPECTRAL IRRADIANCE:WHAT IS KNOWN?

SME (Solar Mesosphere Explorer): 1981-1989, 10-20% uncertainty in the UV

SOLSTICE & SUSIM on UARS: 1991-1.8.2005, daily, 120-400nm with ~1 nm resolution

SORCE andSCIAMACHY: since 2003, broadrange from UV to IR

SORCE: 310-1599 nm Dec 31, 2005

Page 11: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

BUT... SCIAMACHY: March-May 2004

Page 12: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE

Changes in quiet photosphere:

r-mode oscillations, thermal shadowing, changes in the convection properties etc. (Wolff & Hickey 1987; Parker 1987, 1995; Kuhn et al. 1999)

Changes in surface structure:

darkening due to sunspots and brightening due to faculae and the network:

Stot(t)=Ss(t)+Sf(t)

Page 13: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE

Changes in surface structure:

darkening due to sunspots and brightening due to faculae and the network:

Stot(t)=Ss(t)+Sf(t)

Page 14: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

1996 2000

FACULAE AGAINST SUNSPOTS

Data: MDI

Page 15: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

1996 2000

FACULAE AGAINST SUNSPOTS

~-0.8Wm-2

Page 16: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

1996 2000

FACULAE AGAINST SUNSPOTS

~-0.8Wm-2

~1.7Wm-2

Wenzler 2005

Page 17: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

1996 2000

FACULAE AGAINST SUNSPOTS

~-0.8Wm-2

~1.7Wm-2

Wenzler 2005

0.1%

Fröhlich 2004

Page 18: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE

Changes in surface structure:

Regressions of sets of proxies:

Stot(t)=Sq+sSs(t)+fSf(t)

e.g., Foukal & Lean 1986, 1988; Chapman et al. 1994, 1996; Lean et al. 1998; Fligge et al. 1998; Preminger et al. 2002; Jain & Hasan 2004

Maps of a given proxy + semi-empirical model atmospheres:

Stot(t)=q(t)Sq+s(t)Ss+f(t)Sf

Fontenla et al. 1999, 2004; Unruh et al. 1999; Fligge et al. 2000; Krivova et al. 2003; Ermolli et al. 2003; Wenzler et al. 2004, 2005

quiet Sunsunspotsfaculae

Page 19: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE:

SATIRE (Spectral And Total Irradiance

REconstructions)Basic assumption: all solar irradiance changes on time scales longer than a day are due to solar surface magnetism

Input: magnetic field distribution (observations <e.g., MDI or KP> or model); spectra of photospheric components (model atmospheres)

Output: solar total and spectral irradiance vs. time

Free parameters: 1

Unruh et al. 1999; Fligge et al. 2000; Krivova et al. 2003;Wenzler et al. 2004, 2005

Page 20: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SATIRE: 4-component model

Iq() - quiet Sun intensity

T=5777K (Kurucz 1991)I

s() - sunspot int.; separate

umbra/penumbra (cool Kurucz models)

s( t ) - filling factor of

sunspots (MDI or KP continuum)I

f() - facular intensity

(modified P-model; Fontenla et al. 1993; Unruh et al. 1999)

f(t) - filling factor of

faculae (MDI or KP magnetograms)

Page 21: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SATIRE: cycle 23 (MDI-based)

Krivova et al. 2003

Data: VIRGO TSI

Page 22: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SATIRE:cycles 21-23 (KP-based)

Ground-based: variable seeing

2 different instruments: cross-calibration NASA/NSO 512-channel Diode Array Magnetograph (Feb. 1974 - Apr. 1992); NASA/NSO spectromagnetograph (Nov. 1992 - Sep. 2003)

Poorer quality of earlier data: identification of umbrae/ penumbrae

Page 23: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

Wenzler et al. 2006

Data: PMOD TSI composite

SATIRE:cycles 21-23 (KP-based)

The dominant part of the solar irradiance variations are due to

the surface magnetic field

Rc=0.91

Reconstruction of TSI back to 1974

Page 24: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SATIRE:cycles 21-23 (KP-based)

Wenzler et al. 2006

Data: PMOD, ACRIM and IRMB TSI composites

Rc=0.84

Rc=0.91

Rc=0.87

PMOD

ACRIM

IRMB

Page 25: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SATIRE:cycles 21-23 (KP-based)

Wenzler et al. 2005

Data:Data: PMOD, ACRIM and PMOD, ACRIM and IRMB TSI compositesIRMB TSI composites

Rc=0.84

Rc=0.91

Rc=0.87

PMOD

ACRIM

IRMB

No minimum-to-minimum trend is seen (similarly to PMOD composite)

Page 26: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

Krivova et al. 2003

MODELS OF SOLAR IRRADIANCE:

Spectral irradiance

Data: VIRGO channels (862, 500 & 402 nm)

Page 27: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

Data: SUSIM

SATIRE

MODELS OF SOLAR IRRADIANCE:

Spectral irradiance

Krivova & Solanki 2004

Page 28: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SATIRESATIRE

SUSIM SUSIM

MODELS OF SOLAR IRRADIANCE:UV irradiance

Krivova et al. 2006

SATIRESUSIM

Regressions

F()/F(220 -240)

vs. F(220 -240)

for every

SUSIM: daily,1991- 2002 Rc=0.97

Page 29: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE:UV irradiance

Krivova et al. 2006

Page 30: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

Krivova et al. 2006

All SATIRE reconstructions can be extended down to 115 nm

MODELS OF SOLAR IRRADIANCE:UV irradiance

Page 31: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

Krivova et al. 2006

MODELS OF SOLAR IRRADIANCE:UV irradiance

Page 32: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE:

Krivova, Solanki & Floyd 2006

Solar cycle variation at 250-400 nm

Page 33: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE:

Spectral irradiance

Krivova et al. 2006

500 nm50 nm 100 nm

≈60%

≈8%

Page 34: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

Krivova et al. 2006

500 nm50 nm 100 nm

≈60%

≈8%

More attention should be paid to the Sun's varying UV radiation

MODELS OF SOLAR IRRADIANCE:

Spectral irradiance

Page 35: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE:

Cyclic componentProxies: Zurich Sunspot Number, Rz

(1700 ff.)Group Sunspot Number, Rg

(1610 ff.)Sunspot areas, As (1874 ff.)Facular areas, Af (1874 ff.)Ca II plage areas, Ap

(1915 ff.)

Foukal & Lean 1990,Hoyt & Schatten 1993,Lean et al. 1995,Solanki & Fligge 1998, 1999,Lockwood & Stamper 1999,Fligge & Solanki 2000,Foster & Lockwood 2003

Solanki & Fligge 1999

Page 36: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SUN'S MAGNETIC FLUX:Secular change

Cyclic flux emergence in (large) active regions and (small) ephemeral regions

Take sunspot number (R) as a `proxy´

Extended cycle for ephemeral regions

ER start earlier

More extended, overlapping cycles

Open flux decays slowly

More extended cyclestime

active regionsephemeral regions

open flux

Solanki et al. 2002

Page 37: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODEL OF THE SUN'S MAGNETIC FLUX:

Open flux

10Be Open solar flux

Interplanetary field

Solanki et al. 2000

Lockwood et al. 1999

Beer et al. 1990

Page 38: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODEL OF THE SUN'S MAGNETIC FLUX:

Total flux

Balmaceda et al. 2006

Page 39: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

take reconstructed magnetic fluxes: act(t),

eph(t), open (t)

use sunspot number Rz (or sunspot area) to separate sunspot and facular contributions to act

eph +open describes the evolution of the network

use the conversion scheme from the short-term rec. (Krivova et al. 2003) to convert magnetic flux into irradiance

MODELS OF SOLAR IRRADIANCE:

Long-term total flux

ephemeral regions active regions

open flux Solanki et al. 2002

Page 40: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODEL OF SOLAR IRRADIANCE:Long-term

Balmaceda et al. 2006

Page 41: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODEL OF SOLAR IRRADIANCE:Long-term

Balmaceda et al. 2006

~1W/m2

Page 42: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE:

SummaryContemporary models:

explain >≈90% of the observed TSI variations in cycles 23 and 22 and >≈80% of the observed variations in cycle 21;

show no bias between the 3 cycles;

do not show any significant minimum-to-minimum change;

reproduce measured variations of the solar spectral irradiance down to 115 nm;

emphasise the importance of the irradiance variations in the UV and stress the need for higher accuracy measurements between 300 and 400 nm;

point to a secular trend of about 1W/m2 (lower than previous estimates)

Page 43: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

MODELS OF SOLAR IRRADIANCE:... and outlook

removal of the remaining free parameter;

tests for spectral irradiance using new data from SORCE

and SCIAMACHY and improvement of models on their

basis;

reconstruction of solar UV irradiance back to 1974 and

the end of the Maunder minimum;

reconstruction of solar irradiance on longer (millenia)

time scales

Page 44: SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova

SATIRE:SATIRE:filling factorsfilling factors

Zakharov (priv. comm)

u= 0 or 1

p= 0 or 10≤f≤

1

q=1- u-p-

f

For each pixel:

I(t)=u(t)Iu()+p(t)Ip()+f(t)If()+q(t)Iq()

and sum up over all pixels