solar domestic hot water heating systems design, installation and

116
Solar Domestic Hot Water Heating Systems Design, Installation and Maintenance Presented by: Christopher A. Homola, PE

Upload: vonguyet

Post on 29-Jan-2017

223 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Solar Domestic Hot Water Heating Systems Design, Installation and

Solar Domestic Hot Water Heating Systems

Design, Installation and Maintenance

Presented by:

Christopher A. Homola, PE

Page 2: Solar Domestic Hot Water Heating Systems Design, Installation and

A Brief History of Solar Water Heating

Solar water heating has been around for many years because it is the easiest way to use the sun to save energy and money. One of the earliest documented cases of solar energy use involved pioneers moving west after the Civil War. They would place a cooking pot filled with cold water in the sun all day to have heated water in the evening.

The first solar water heater that resembles the concept still in use today was a metal tank that was painted black and placed on the roof where it was tilted toward the sun. The concept worked, but it usually took all day for the water to heat, then, as soon as the sun went down, it cooled off quickly because the tank was not insulated.

Page 3: Solar Domestic Hot Water Heating Systems Design, Installation and

A Brief History of the American Solar Water Heating Industry1890 to 1930's - the California Era

The first commercial solar water heater was introduced by Clarence Kemp in the 1890's in California. For a $25 investment, people could save about $9 a year in coal costs. It was a simple batch type solar water heater that combined storage and collector in one box.

The first thermosyphon systems with the tank on the roof and the collector below were invented, patented, and marketed in California in the 1920's by William Bailey. One of the largest commercial systems in California was installed for a resort in Death Valley.

Natural gas was discovered in Southern California and cheap natural gas, aggressively marketed by utility companies, ended the solar water heating market. Patents were sold to a Florida company, owned by HM Carruthers in 1923 and the solar hot water industry began in the coastal cities of central Florida and southern Florida.

Page 4: Solar Domestic Hot Water Heating Systems Design, Installation and

1930's to 1973 - the South Florida Era

Floridians purchased or shipped to the Caribbean more than 100,000 thermosyphon water heaters between 1930 and 1954 when the industry collapsed. During the second World War (1942 to 1945) copper was reserved for the military and the solar industry was not able to make solar collectors.

After the war, the Florida industry boomed again for about six years. Half of Miami homes had solar water heaters with over 80% of new homes having them installed. In the early 1950's electricity became cheap in Florida and utility companies gave away electric water heaters in an effort to eliminate the solar water heating industry.

By 1973, there were only two full-time solar water heating companies left in the United States both operating out of Miami, Florida.

Page 5: Solar Domestic Hot Water Heating Systems Design, Installation and

1973 to 1986 - Oil Embargo and Tax Credits

The oil embargo of 1973 resulted in a rise in fuel prices. A few companiesstarted experimenting with solar water heaters and designing systems but there were really no national solar collector manufacturers with widespread distribution until the late seventies.

The federal government sponsored a few HUD Grants for domestic solar waterheaters in the period just before the start of the 40% Federal tax rebate in 1979.

The tax credit era, 1979 to 1986, started a nationwide boon in solar hot water systems that resulted in hundreds of manufacturers and thousands of contractors and distributors starting new businesses.

Page 6: Solar Domestic Hot Water Heating Systems Design, Installation and

Equipment has improved since the 1980’s. Improvements were precipitated by both certification design review and experienced installers.

Today, more than 1.2 million buildings have solar water heating systems in the United States. Japan has nearly 1.5 million buildings with solar water heating. In Israel, 30 percent of the buildings use solar- heated water. Greece and Australia are also leading users of solar energy.

There is still a lot of room for expansion in the solar energy industry. There are no geographical constraints. For colder climates, manufacturers have designed systems that protect components from freezing conditions. Wherever the sun shines, solar water heating systems can work. The designs may be different from the early solar pioneers, but the concept is the same.

Page 7: Solar Domestic Hot Water Heating Systems Design, Installation and

Environmental Benefits

Solar water heaters do not pollute. 

Solar water heaters help to avoid carbon dioxide, nitrogen oxides, sulfurdioxide, and the other air pollution and wastes created when

the local utilitygenerates power or fuel is burned to heat domestic water. 

When a solar water heater replaces an electric water heater, the electricitydisplaced over 20 years represents more than 50 tons of avoided carbondioxide emissions alone. 

Page 8: Solar Domestic Hot Water Heating Systems Design, Installation and

Long‐Term Benefits

Solar water heaters offer long‐term benefits that go beyond simpleeconomics. 

In addition to having free hot water after the system has paid for itself inreduced utility bills, owners could be cushioned from future

fuelshortages and price increases. 

Solar water heaters can assist in reducing this country's dependence onforeign oil. 

It 

is 

estimated 

that 

adding 

solar 

water 

heater 

to 

an 

existing

home 

raisesthe resale value of the home by the entire cost of the system.Homeowners may be able to recoup their entire investment they selltheir home.

Page 9: Solar Domestic Hot Water Heating Systems Design, Installation and

Economic Benefits

Many 

home 

builders 

choose 

electric 

water 

heaters 

because 

they 

are 

easy 

to 

install 

and 

relatively 

inexpensive 

to 

purchase. 

However, 

research 

shows 

that 

an 

average 

household 

with 

an 

electric 

water 

heater 

spends 

about 

25%

of 

its 

home 

energy costs on heating water.

It makes economic 

sense 

to 

think 

beyond 

the 

initial 

purchase 

price 

and 

consider 

lifetime 

energy 

costs, 

or 

how 

much 

you 

will 

spend 

on 

energy 

to 

use 

the 

appliance 

over 

its 

lifetime. 

The 

Florida 

Solar 

Energy 

Center

studied 

the 

potential 

savings 

to 

Florida 

homeowners 

of 

common 

water‐heating 

systems 

compared 

with 

electric 

water 

heaters. 

It 

found 

that 

solar 

water 

heaters 

offered 

the 

largest 

potential 

savings, with solar water‐heater owners saving as much as 50% to 85% annually on 

their utility bills over the cost of electric water heating.

Page 10: Solar Domestic Hot Water Heating Systems Design, Installation and

Economic Benefits Continued

A solar hot water heater heats the same amount of water for a fraction of thecost.

A solar hot water heating system’s performance is dependent on theintensity of the sun in its location.

The initial expense of installing a solar hotwater 

heater 

($3500 

to 

$5500) 

tends 

to 

be 

greater 

than 

installing 

an 

electric 

($450to $650) or gas ($750 to $1000) water heater.

The costs vary from region to region. Depending on the price of fuel sources, thesolar water heater can be more economical over the lifetime of the system thanheating water with electricity, fuel oil, propane, or even natural gas because thefuel (sunshine) is free.

Page 11: Solar Domestic Hot Water Heating Systems Design, Installation and

Economic Benefits Continued

However, 

at 

the 

current 

low 

prices 

of 

natural 

gas, 

solar 

water 

heaters 

cannotcompete with natural gas water heaters in most parts of the country exceptin new home construction. Although you will still save energy costs with asolar water heater because you won't be buying natural gas, it won't beeconomical on a dollar‐for‐dollar basis.

Paybacks 

vary 

widely, 

but 

you 

can 

expect 

simple 

payback 

of 

to 

years 

ona well‐designed and properly installed solar water heater. You can expectshorter paybacks in areas with higher energy costs. After the paybackperiod, 

you 

accrue 

the 

savings 

over 

the 

life 

of 

the 

system, 

which 

ranges 

from15 to 40 years, depending on the system and how well it is maintained.

Page 12: Solar Domestic Hot Water Heating Systems Design, Installation and

Economic Benefits Continued

You can determine the simple payback of a solar water heater by firstdetermining the net cost of the system. Net costs include the total installedcost less any tax incentives or utility rebates.  After you calculate the netcost of the system, calculate the annual fuel savings and divide the netinvestment by this number to determine the simple payback.

An example: Your total utility bill averages $160 per month and your waterheating costs are average (25% of your total utility costs) at $40 per month.If you purchase a solar water heater for $2,000 that provides an average of60% of your hot water each year, that system will save you $24 per month($40 x 0.60 = $24) or $288 per year (12 x $24 = $288). This system has asimple payback of less than 7 years ($2,000 ÷

$288 = 6.9).

Page 13: Solar Domestic Hot Water Heating Systems Design, Installation and

For 

the 

remainder 

of 

the 

life 

of 

the 

solar 

water 

heater, 

60% 

of 

the 

hot 

water 

will 

be 

free, 

saving 

$288 

each 

year. 

You 

will 

need 

to 

account 

for 

some operation and maintenance costs, which are estimated at $25

to $30 

a year. This is primarily to have the system checked every 3 years.

If you are building a new home or refinancing your 

present 

home 

to 

do 

major 

renovation, 

the 

economics 

are 

even 

more 

attractive. 

The 

cost 

of 

including 

the 

price 

of 

solar 

water 

heater 

in 

new 

30‐year 

mortgage 

is 

usually 

between 

$13 

and 

$20 

per 

month. 

The 

portion 

of 

the 

federal 

income 

tax 

deduction 

for 

mortgage 

interest 

attributable 

to 

the 

solar 

system 

reduces 

that 

amount 

by 

about 

$3 

to 

$5 

per 

month. 

If 

your 

fuel 

savings 

are 

more 

than 

$15 

per 

month, 

the 

investment 

in 

the 

solar

water 

heater is profitable immediately.

Page 14: Solar Domestic Hot Water Heating Systems Design, Installation and

Peak Power Benefit

A typical residential solar water heating system (SWHS) for a family of four delivers 4 kilowatts of electrical equivalent thermal power when under full sun and when the temperature of the water in the storage tank is about the same as the air temperature. Such a system typically has about 64 square feet of solar collector surface area and produces approximately the same peak power as 400 square feet of photovoltaic panels.

Page 15: Solar Domestic Hot Water Heating Systems Design, Installation and

Production Capacity Benefit

Ratings of collectors and systems, along with other information specific to the local area, can be used to calculate the specific reduction in a utility’s peak demand. On average, for every solar water heating system that is installed, 0.5 kilowatts of peak demand is deferred from a utility’s load.

Page 16: Solar Domestic Hot Water Heating Systems Design, Installation and

Energy Production Benefit

Because peak performance occurs infrequently, a more realistic indication of solar thermal system performance is the rated daily energy output of the collectors or system.

Using this method, a typical solar water heating system contributes 7 to 10 kilowatt-hours per day, depending on the solar resource and type of collector.

Electric water heating for residential applications typically consumes about 12 kilowatt-hours per day, depending on ground water temperature.

Annual site-specific energy savings for domestic water heating systems are available at www.solar-rating.org for all systems certified by the Solar Rating and Certification Corporation (SRCC).

Using this data, a typical solar water heating system produces about 3,400 kilowatt-hours per year, depending on local conditions and type of collector.

Page 17: Solar Domestic Hot Water Heating Systems Design, Installation and

•Atmosphere

•Angle of Incidence

•Geography

•Latitude and Season

•Air Pollution and Natural Haze

What Influences the Amount of Solar Radiation?

Page 18: Solar Domestic Hot Water Heating Systems Design, Installation and

Atmosphere

The atmosphere absorbs certain wavelengths of light more than others. The exact spectral distribution of light reaching the earth's surface depends on how much atmosphere the light passes through, as well as the humidity of the atmosphere. In the morning and evening, the sun is low in the sky and light waves pass through more atmosphere than at noon. The winter sunlight also passes through more atmosphere versus summer. In addition, different latitudes on the earth have different average “thicknesses” of atmosphere that sunlight must penetrate. The figure below illustrates the atmospheric effects on solar energy reaching the earth. Clouds, smoke and dust reflect some solar insolation back up into the atmosphere, allowing less solar energy to fall on a terrestrial object. These conditions also diffuse or scatter the amount of solar energy that does pass through.

Page 19: Solar Domestic Hot Water Heating Systems Design, Installation and

Angle of Incidence

The sun’s electromagnetic energy travels in a straight line. The angle at which these rays fall on an object is called the angle of incidence. A flat surface receives more solar energy when the angle of incidence is closer to zero (i.e. perpendicular) and therefore receives significantly less in early morning and late evening. Because the angle of incidence is so large in the morning and evening on earth, about six hours of “usable” solar energy is available daily. This is called the “solar window.”

Page 20: Solar Domestic Hot Water Heating Systems Design, Installation and

Absorptance vs. Reflectance

Certain materials absorb more insolation than others. More absorptive materials are generally dark with a matte finish, while more-reflective materials are generally lighter colored with a smooth or shiny finish.

The materials used to absorb the sun's energy are selected for their ability to absorb a high percentage of energy and to reflect a minimum amount of energy. The solar collector's absorber and absorber coating efficiency are determined by the rate of absorption versus the rate of reflectance. This in turn, affects the absorber and absorber coating's ability to retain heat and minimize emissivity and reradiation. High absorptivity and low reflectivity improves the potential for collecting solar energy.

Page 21: Solar Domestic Hot Water Heating Systems Design, Installation and

Collecting and Converting Solar Energy

Solar collectors capture the sun’s electromagnetic energy and convert it to heat energy. The efficiency of a solar collector depends not only on its materials and design but also on its size, orientation and tilt.

Available solar energy is at its maximum at noon, when the sun is at its highest point in its daily arc across the sky. The sun's daily motion across the sky has an impact on any solar collector's efficiency and performance in the following ways.

1.Since the angle of incidence of the solar energy – measured from the normal (right angle) surface of the receiving surface – changes throughout the day, solar power is lower at dawn and dusk. In reality, there are only about 6 hours of maximum energy available daily.2.The total energy received by a fixed surface during a given period depends on its orientation and tilt and varies with weather conditions, time of day and season.

Page 22: Solar Domestic Hot Water Heating Systems Design, Installation and

Insolation

Insolation is the amount of the sun’s electromagnetic energy that “falls” on any given object.

Simply put, when we are talking about solar radiation, we are referring to insolation.

In Florida (at about sea level), an object will receive a maximum of around 300 Btu/ft2hr (about 90 watts/ft2 or 950 watts/meter2) at high noon on a horizontal surface under clear skies on June 21 (the day of the summer equinox).

Page 23: Solar Domestic Hot Water Heating Systems Design, Installation and
Page 24: Solar Domestic Hot Water Heating Systems Design, Installation and

PV Solar Radiation (Flat Plate, Facing South, Latitude Tilt)—Static Maps

These maps provide monthly average daily total solar resource information on grid cells of approximately 40 km by 40 km in size. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location.

Resource:

National Renewable Energy Laboratory

www.nrel.gov/gis/solar.html

Page 25: Solar Domestic Hot Water Heating Systems Design, Installation and

Optimum Performance Considerations 

Optimum Tilt:• To latitude for greatest performance or up to latitude minus 5 degrees.

• Optimum Summer Load:  Latitude minus 15 degrees (e.g. solar air conditioning).

• Optimum Winter Load:  Latitude plus 15 degrees (e.g. solar space heating).

Optimum Azimuth:

• Toward the equator (e.g. Facing south in northern hemisphere).

Page 26: Solar Domestic Hot Water Heating Systems Design, Installation and

Figure 1. Sun Path Diagrams for 28º N. Latitude

Seasonal Variations

The dome of the sky and the sun’s path at various times of the year are shown in Figure 1.

Page 27: Solar Domestic Hot Water Heating Systems Design, Installation and

Figure 2a And 2b. Collected Energy Varies with Time of Year And Tilt

For many solar applications, we want maximum annual energy harvest. For others, maximum winter energy (or summer energy) collection is important. To orient the flat-plate collector properly, the application must be considered, since different angles will be “best” for each different application.

Page 28: Solar Domestic Hot Water Heating Systems Design, Installation and

Actual Collector Orientation Possibilities

Page 29: Solar Domestic Hot Water Heating Systems Design, Installation and

Collector Orientation

Collectors work best when facing due south. If roof lines or other factors dictate different orientations, a small penalty will be paid, as shown in Figure 3. As an example: for an orientation 20 degrees east or west of due south, we must increase the collector area to 1.06 times the size needed with due south orientation (dashed line on Figure 3) to achieve the same energy output. The orientation angle away from due south is called the azimuth and, in the Northern Hemisphere, is plus if the collector faces toward the east and minus if toward the west.

Figure 3. Glazed Collector Orientations

Page 30: Solar Domestic Hot Water Heating Systems Design, Installation and

Tilt Angle

The best tilt angle will vary not only with the collector’s geographical location but also with seasonal function. Solar water heating systems are designed to provide heat year-round.

In general:

A)Mounting at an angle equal to the latitude works best for year- round energy use.

B)Latitude minus 15 degrees mounting is best for summer energy collection.

C)Latitude plus 15 degrees mounting is best for winter energy collection.

Page 31: Solar Domestic Hot Water Heating Systems Design, Installation and

Various Collector Tilt Angles

Page 32: Solar Domestic Hot Water Heating Systems Design, Installation and

Solar water heating systems include storage tanks and solar 

collectors.  

There are two types of solar water heating systems: Active, which 

have circulating pumps and controls, and Passive, which don’t.

Most solar water heaters require a well‐insulated storage tank.

Solar storage tanks have an additional outlet and inlet connected 

to and from the solar collector.  

In two‐tank systems, the solar water heater preheats water 

before it enters the conventional water heater.  

In one‐tank systems, the back‐up heater is combined with the 

solar storage in one tank.

Solar Water Heating System Basics

Page 33: Solar Domestic Hot Water Heating Systems Design, Installation and

Electric Back-Up

Solar systems with single tanks are designed to encourage temperature stratification so that when water is drawn for service, it is supplied from the hottest stratum in the tank (i.e. top of tank).

While a solar system tank in the United States normally contains a heating element, the element is deliberately located in the upper third of the tank.

The electric element functions as back-up when solar energy is not available or when hot water demand exceeds the solar-heated supply.

Page 34: Solar Domestic Hot Water Heating Systems Design, Installation and

Natural Gas Back-Up

Natural gas back-up systems may use passive (thermosyphon or integral collector system) solar preheating plumbed in series for proper operation.

Or two separate tanks may be used for active solar systems with natural gas back-up heating systems.

The solar storage tank is piped in series to the auxiliary tank sending the hottest solar preheated water to the gas back-up tank.

Page 35: Solar Domestic Hot Water Heating Systems Design, Installation and

Solar Collectors

Four types of solar collectors are used for residential 

applications:

Flat‐plate collector

Integral collector‐storage systems

Batch system

Evacuated‐tube solar collectors

Page 36: Solar Domestic Hot Water Heating Systems Design, Installation and

Flat‐Plate Collector

Flat plate collectors are designed to heat water to medium 

temperatures (approximately 140 degrees Fahrenheit). 

Page 37: Solar Domestic Hot Water Heating Systems Design, Installation and

Flat plate collectors typically include the following components:

1.Enclosure: A box or frame that holds all the components together.

2.Glazing: A transparent cover over the enclosure that allows the sun’s rays to pass through to the absorber. Most glazing is glass but some designs use clear plastic.

3.Glazing Frame: Attaches the glazing to the enclosure. Glazing gaskets prevent leakage around the glazing frame and allow for contraction and expansion.

4.Insulation: Material between the absorber and the surfaces it touches that blocks heat loss by conduction thereby reducing the heat loss from the collector enclosure.

5.Absorber: A flat, usually metal surface inside the enclosure that, because of its physical properties, can absorb and transfer high levels of solar energy.

6.Flow Tubes: Highly conductive metal tubes across the absorber through which fluid flows, transferring heat from the absorber to the fluid.

Page 38: Solar Domestic Hot Water Heating Systems Design, Installation and

Integral Collector Storage (ICS) Systems

In other solar water heating systems the collector and storage tank are separate components. In an integral collector storage (ICS) system, both collection and solar storage are combined within a single unit. Most ICS systems store potable water inside several tanks within the collector unit. The entire unit is exposed to solar energy throughout the day. The resulting water is drawn off either directly to the service location or as replacement hot water to an auxiliary storage tank as water is drawn for use.

Cutaway of an ICS system

Page 39: Solar Domestic Hot Water Heating Systems Design, Installation and

Batch solar water heater

Batch System

Page 40: Solar Domestic Hot Water Heating Systems Design, Installation and

The simplest of all solar water heating systems is a batch system.

It is simply one or several storage tanks coated with black, solar-absorbing material in an enclosure with glazing across the top and insulation around the other sides.

It is the simplest solar system to make. When exposed to sun during the day, the tank transfers the heat it absorbs to the water it holds.

The heated water can be drawn directly from the tank or it can replace hot water that is drawn from an interior tank inside the building.

Page 41: Solar Domestic Hot Water Heating Systems Design, Installation and

Evacuated Tube Solar Collectors

This type of system features parallel rows of transparent glass tubes.  

Each tube contains a glass outer tube and metal absorber tube attached 

to a fin.  The fin’s coating absorbs solar energy but inhibits radiative heat 

loss.  These collectors are used more frequently for commercial 

applications.

Page 42: Solar Domestic Hot Water Heating Systems Design, Installation and

Evacuated-tube collectors generally have a smaller solar collecting surface because this surface must be encased by an evacuated glass tube. They are designed to deliver higher temperatures (approximately 300 degrees Fahrenheit). The tubes themselves comprise the following elements:

1.Highly tempered glass vacuum tubes, which function as both glazing and insulation.

2.An absorber surface inside the vacuum tube. The absorber is surrounded by a vacuum that greatly reduces the heat loss.

Page 43: Solar Domestic Hot Water Heating Systems Design, Installation and

Active Solar Water Heating Systems

There are two Solar Water Heating System types: Active and Passive

There are two types of Active Solar Water Heating Systems:

Direct Circulation Systems

Indirect Circulation Systems

Page 44: Solar Domestic Hot Water Heating Systems Design, Installation and

Direct Circulation Systems

Pump 

circulates 

domestic 

water 

through 

the 

collector(s) 

and 

into

the 

building.    This 

type 

of 

system 

works 

well 

in 

climates 

where 

it 

rarely 

freezes.

Page 45: Solar Domestic Hot Water Heating Systems Design, Installation and

Direct Pumped System

Page 46: Solar Domestic Hot Water Heating Systems Design, Installation and

Direct System with Photovoltaic‐Powered Pump

Page 47: Solar Domestic Hot Water Heating Systems Design, Installation and

Direct System with Automatic Drain-down system configuration

Page 48: Solar Domestic Hot Water Heating Systems Design, Installation and

The direct pumped system has one or more solar energy collectors

installed on the roof and a 

storage 

tank 

located 

somewhere 

within 

the 

building.   A 

pump 

circulates 

the 

water 

from 

the 

tank 

up 

to 

the 

collector 

and 

back again.   This 

is 

called 

direct 

(or 

open 

loop) 

system 

because 

the sun’s heat is transferred directly to the potable water circulating through the collector and 

storage tank.  Neither an anti‐freeze nor heat exchanger is involved.

This 

system 

has 

differential 

controller 

that 

senses 

temperature 

differences 

between 

water 

leaving 

the 

solar 

collector 

and 

the 

coldest 

water 

in 

the 

storage

tank.   When 

the 

water 

in 

the 

collector is about 15‐20°F warmer than the water in the storage tank, the pump is turned on by 

the controller.  When the temperature difference drops to about 3‐5°F, the pump is turned off.

In this way, the water always gains heat from the collector when

the pump operates.

flush‐type 

freeze 

protection 

valve 

installed 

near 

the 

collector 

provides 

freeze 

protection.  

Whenever 

temperatures 

approach 

freezing, 

the 

valve 

opens 

to 

let 

warm 

water 

flow 

through 

the collector.

The 

collector 

should 

always 

allow 

for 

manual 

draining 

by 

closing

the 

isolation 

valves 

(located 

above the storage tank) and opening the drain valves.

Automatic recirculation is another means of freeze protection.  When the water in the collector 

reaches 

temperature 

near 

freezing, 

the 

controller 

turns 

the 

pump 

on 

for 

few 

minutes 

to 

warm the collector with water from the storage tank.

Page 49: Solar Domestic Hot Water Heating Systems Design, Installation and

Direct System Advantages

• Service water used directly from collector loop.

• No heat exchanger – more efficient heat transfer to storage.

• Circulation pump (if needed) needs only to overcome frictionlosses – system pressurized.

Page 50: Solar Domestic Hot Water Heating Systems Design, Installation and

Direct System Disadvantages

• Quality of service water must be good to prevent corrosion, scaleor deposits in components.

• Freeze protection depends on mechanical valves.

• Recommended in climates with minimal/no freeze potential, and good water quality.

Page 51: Solar Domestic Hot Water Heating Systems Design, Installation and

Indirect Circulation Systems

Pump circulates a non‐freezing, heat transfer fluid through the collector(s) 

and a heat exchanger.  

This heats the water that then flows into the home.  

This type of system works well in climates prone to freezing temperatures.

Page 52: Solar Domestic Hot Water Heating Systems Design, Installation and

Indirect Pumped System Using Anti‐Freeze Solution

Page 53: Solar Domestic Hot Water Heating Systems Design, Installation and

This 

system 

design 

is 

common 

in 

northern 

climates, 

where 

freezing 

weather 

occurs more frequently.  An anti‐freeze solution circulates through the collector, 

and 

heat 

exchanger 

transfers 

the 

heat 

from 

the 

anti‐freeze 

solution 

to 

the 

storage tank water.  When toxic heat exchanger fluids are used, a double‐walled 

exchanger 

is 

required.    Generally, 

if 

the 

heat 

exchanger 

is 

installed 

in 

the 

storage tank, it should be located in the lower half of the tank.

heat 

transfer 

solution 

is 

pumped 

through 

the 

collector 

in 

closed 

loop.   The 

loop includes the collector, connecting piping, the pump, an expansion tank and 

heat 

exchanger.   A 

heat 

exchanger 

coil 

in 

the 

lower 

half 

of 

the 

storage 

tank 

transfers 

heat 

from 

the 

heat 

transfer 

solution 

to 

the 

potable 

water 

in 

the 

solar 

storage tank.  An alternative of this design is to wrap the heat

exchanger around 

the tank.  This keeps it from contact with the potable water.

The 

differential 

controller, 

in 

conjunction 

with 

the 

collector 

and 

tank 

sensors, 

determines when the pump should be activated to direct the heat transfer fluid 

through 

the 

collector.   The 

photovoltaic 

panel 

located 

on 

the 

roof 

supplies 

the 

power to operate the circulating pump. 

Page 54: Solar Domestic Hot Water Heating Systems Design, Installation and

Indirect Pumped System Using Anti‐Freeze Solution 

and Wrap Around Heat Exchanger

Page 55: Solar Domestic Hot Water Heating Systems Design, Installation and

A fail‐safe method of ensuring that collectors and collector loop piping never freeze 

is to remove all the water from the collectors and piping when the system is not 

collecting heat.  This is a major feature of the drain back system.  Freeze protection 

is provided when the system is in the drain mode.   Water in the

collectors and 

exposed piping drains into the insulated drain‐back reservoir tank each time the 

circulating pump shuts off.  A slight tilt of the collectors is required in order to allow 

complete drainage.  A sight glass attached to the drain‐back reservoir tank shows 

when the reservoir tank is full and the collector has been drained.

In this particular system, distilled water is recommended to be used as the collector 

loop fluid‐transfer solution.  Using distilled water increases the heat transfer 

characteristics and prevents possible mineral buildup of the transfer solution.

When the sun shines again, the circulating pump is activated by a differential 

controller.  Water is pumped from the reservoir to the collectors, allowing heat to 

be collected.  The water stored in the reservoir tank circulates

in a closed loop 

through the collectors and a heat exchanger at the bottom of the

storage tank.

The heat exchanger transfers heat from the collector loop fluid to the potable water 

located in the storage tank.

Page 56: Solar Domestic Hot Water Heating Systems Design, Installation and

Indirect System Advantages

• Freeze protection provided by antifreeze fluid or drainback.

• Collector/piping protected from aggressive water.

Page 57: Solar Domestic Hot Water Heating Systems Design, Installation and

Indirect System Disadvantages

• Must account for reduced heat transfer efficiency through heat

exchanger.

• Added materials = added cost.

• If not using water, fluids require maintenance.

• Most designs require added pumping cost.

Page 58: Solar Domestic Hot Water Heating Systems Design, Installation and

Passive Solar Water Heaters

Passive solar water heaters rely on gravity and the tendency for water to naturally circulate as it is heated.

Passive solar water heater systems contain no electrical components, are generally more reliable, easier to maintain, and possibly have a longer work life than active solar water heater systems.

The two most popular types of passive solar water heater systems are: Integral-Collector Storage (ICS) andThermosyphon systems.

Page 59: Solar Domestic Hot Water Heating Systems Design, Installation and

Integral Collector Storage System

Page 60: Solar Domestic Hot Water Heating Systems Design, Installation and

In an integral collector storage system, the hot water storage system is the collector.  

Cold water flows progressively through the collector where it is

heated by the sun.  

Hot water is drawn from the top, which is the hottest, and replacement water flows 

into 

the 

bottom.    This 

system 

is 

simple 

because 

pumps 

and 

controllers 

are 

not 

required.  

On 

demand, 

cold 

water 

from 

the 

building 

flows 

into 

the 

collector

and 

hot 

water 

from the collector flows to a standard hot water auxiliary tank within the building.

A flush‐type freeze protection valve is installed in the top piping near

the collector.  

As 

temperatures 

near 

freezing, 

this 

valve 

opens 

to 

allow 

relatively 

warm 

water 

to 

flow through the collect to prevent freezing.  

In 

areas 

of 

the 

country, 

the 

thermal 

mass 

of 

the 

large 

water 

volume 

within 

the 

integral collector storage collector provides a means of freeze protection.

Page 61: Solar Domestic Hot Water Heating Systems Design, Installation and

Thermosyphon System

Page 62: Solar Domestic Hot Water Heating Systems Design, Installation and

As 

the 

sun 

shines 

on 

the 

collector, 

the 

water 

inside 

the 

collector 

flow‐

tubes 

is 

heated.   As 

it 

heats, 

this 

water 

expands 

slightly 

and 

becomes 

lighter than the cold water in the solar storage tank mounted above the 

collector.  Gravity then pulls heavier, cold water down from the

tank and 

into the collector inlet.  The cold water pushes the heated water through 

the collector outlet and into the top of the tank, thus heating the water 

in the tank.

In 

thermosiphon 

system 

there 

is 

no 

need 

for 

circulating 

pump

and 

controller.   Potable 

water 

flows 

directly 

to 

the 

tank 

on 

the 

roof.   Solar 

heated 

water 

flows 

from 

the 

rooftop 

tank 

to 

the 

auxiliary 

tank 

installed 

at ground level whenever water is used with the building.

The 

thermosiphon 

system 

features 

thermally 

operated 

valve 

that

protects 

the 

collector 

from 

freezing.    It 

also 

includes 

isolation 

valves, 

which 

allow 

the 

solar 

system 

to 

be 

manually 

drained 

in 

case 

of 

freezing 

conditions, or to be bypassed completely.

Page 63: Solar Domestic Hot Water Heating Systems Design, Installation and

Typical Components of a Direct Flat Plate Collector System

Page 64: Solar Domestic Hot Water Heating Systems Design, Installation and

AIR VENT

Allows air that has entered the system to escape, and in turn prevents air locks that would restrict flow of the heat-transfer fluid. An air vent must be positioned vertically and is usually installed at the uppermost part of the system. In active direct systems supplied by pressurized water, an air vent should be installed anywhere air could be trapped in pipes or collectors. Indirect systems that use glycol as the heat-transfer fluid use air vents to remove any dissolved air left in the system after it has been pressurized or charged with the heat-transfer fluid. Once the air has been purged in these indirect systems, the air vent mechanism is manually closed.

TEMPERATURE-PRESSURE RELIEF VALVE

Protects system components from excessive pressures and temperatures. A pressure- temperature relief valve is always plumbed to the solar storage (as well as auxiliary) tank. In thermosiphon and ICS systems, where the solar tanks are located on a roof, these tanks may also be equipped with a temperature-pressure relief valve since they are in some jurisdictions considered storage vessels. These valves are usually set by the manufacturer at 150 psi and 210° F. Since temperature pressure relief valves open at temperatures below typical collector loop operating conditions, they are not commonly installed in collector loops.

PRESSURE RELIEF VALVE

Protects components from excessive pressures that may build up in system plumbing. In any system where the collector loop can be isolated from the storage tank, a pressure relief valve must be installed on the collector loop. The pressure rating of the valve (typically 125 psi) must be lower than the pressure rating of all other system components, which it is installed to protect. The pressure relief valve is usually installed at the collector.

Page 65: Solar Domestic Hot Water Heating Systems Design, Installation and

PRESSURE GAUGE

Is used in indirect systems to monitor pressure within the fluid loop. In both direct and indirect systems, such gauges can readily indicate if a leak has occurred in the system plumbing.

VACUUM BREAKER

Admits atmospheric pressure into system piping, which allows the system to drain. This valve is usually located at the collector outlet plumbing but also may be installed anywhere on the collector return line. The vacuum breaker ensures proper drainage of the collector loop plumbing when it is either manually or automatically drained. A valve that incorporates both air vent and vacuum breaker capabilities is also available.

ISOLATION VALVES

These valves are used to manually isolate various subsystems. Their primary use is to isolate the collectors or other components before servicing.

DRAIN VALVES

Used to drain the collector loop, the storage tank and, in some systems, the heat exchanger or drain-back reservoir. In indirect systems, they are also used as fill valves. The most common drain valve is the standard boiler drain or hose bib.

Page 66: Solar Domestic Hot Water Heating Systems Design, Installation and

CHECK VALVES

Allow fluid to flow in only one direction. In solar systems, these valves prevent thermosiphoning action in the system plumbing. Without a check valve, water that cools in the elevated (roof-mounted) collector at night will fall by gravity to the storage tank, displacing lighter, warmer water out of the storage tank and up to the collector. Once begun, this thermosiphoning action can continue all night, continuously cooling all the water in the tank. In many cases, it may lead to the activation of the back-up-heating element, thereby causing the system to lose even more energy.

FREEZE-PROTECTION VALVES

Are set to open at near freezing temperatures, and are installed on the collector return line in a location close to where the line penetrates the roof.

Warm water bleeds through the collector and out this valve to protect the collector and pipes from freezing. A spring-loaded thermostat or a bimetallic switch may control the valve.

TEMPERATURE GAUGES

Provide an indication of system fluid temperatures.

A temperature gauge at the top of the storage tank indicates the temperature of the hottest water available for use.

Temperature wells installed at several points in the system will allow the use of a single gauge in evaluating system operation.

Page 67: Solar Domestic Hot Water Heating Systems Design, Installation and

Selecting a Solar Water Heating System

Investigate local codes, covenants, and regulations. 

Consider the economics of a solar water heating system.

Evaluate the site’s solar resource.

Determine the correct system size.

Estimate and compare system costs.

Page 68: Solar Domestic Hot Water Heating Systems Design, Installation and

Building Codes, Covenants, and Regulations for Solar Water Heating Systems

Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. A building permit will probably be required to install a solar energy system onto an existing building.

Not every community or municipality initially welcomes renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, compliance with existing building and permit procedures to install a system is unavoidable.

The matter of building code and zoning compliance for a solar system installation is typically a local issue. Even if a statewide building code is in effect, it's usually enforced locally by the city, county, or parish. Common problems owners have encountered with building codes include the following:

Exceeding roof load Unacceptable heat exchangers Improper wiring Unlawful tampering with potable water supplies.

Page 69: Solar Domestic Hot Water Heating Systems Design, Installation and

Potential zoning issues include the following:

Obstructing sideyards Erecting unlawful protrusions on roofs Siting the system too close to streets or lot boundaries.

Special area regulations—such as local community, subdivision, or homeowner's association covenants—also demand compliance. These covenants, historic district regulations, and flood-plain provisions can easily be overlooked.

Building Codes, Covenants, and Regulations for Solar Water Heating Systems Continued

Page 70: Solar Domestic Hot Water Heating Systems Design, Installation and

Renewable Energy Funding Sources

The Database of State Incentives for Renewables & Efficiency (DSIRE) is a comprehensive source of information on state, local, utility, and federal incentives that promote renewable energy and energy efficiency. The website is http://www.dsireusa.org.

Page 71: Solar Domestic Hot Water Heating Systems Design, Installation and

Federal Level Funding

Federal Incentives for Renewable Energy

U.S. Department of Treasury - Renewable Energy Grants

Eligible Renewable Technologies:

Solar Water Heating, Solar Space Heating, & Photovoltaic Systems

Energy Efficient Mortgages

Federal Housing Authority (FHA) & Veterans Affairs (VA) programs

Eligible Renewable Technologies:

Solar Water Heating, Solar Space Heating, & Photovoltaic Systems

Page 72: Solar Domestic Hot Water Heating Systems Design, Installation and

State Level Funding

State of Ohio Incentives for Renewable Energy

Ohio Department of Development - Advanced Energy Program Grants- Multi-Family Residential Solar Thermal Incentive

Eligible Renewable Technologies:

Solar Water Heating & Solar Space Heating Systems

Applicable Sectors: Multi-Family Residential, Low-Income Residential

Ohio Department of Development - Advanced Energy Program Grants- Non-Residential Renewable Energy

Eligible Renewable Technologies:

Solar Water Heating, Wind, & Photovoltaic Systems

Applicable Sectors: Commercial, Industrial, Nonprofit, Schools, LocalGovernment, State Government, Agricultural, Institutional

Page 73: Solar Domestic Hot Water Heating Systems Design, Installation and

Site Assessment

Page 74: Solar Domestic Hot Water Heating Systems Design, Installation and

Solar Path Finder

http://www.solarpathfinder.com

Page 75: Solar Domestic Hot Water Heating Systems Design, Installation and
Page 76: Solar Domestic Hot Water Heating Systems Design, Installation and

Collector Positioning Flat-plate collectors for solar water heating are generally mounted on a building or the ground in a fixed position at prescribed angles. The angle will vary according to geographic location, collector type and use of the absorbed heat. Since residential hot water demand is generally greater in the winter than in the summer, the collector ideally should be positioned to maximize wintertime energy collection, receiving sunshine during the middle six to eight daylight hours of each day. Minimize shading from other buildings, trees or other collectors. Plan for lengthening winter shadows, as the sun's path changes significantly with the seasons.

Page 77: Solar Domestic Hot Water Heating Systems Design, Installation and

Ideally, the collector should face directly south in the northern hemisphere and directly north in the southern hemisphere.

However, facing the collector within 30° to 45° either east or west of due south or north reduces performance by only about 10 percent.

A compass may be used to determine true south or north.

The closer to the equator, the less the need to maintain the orientation and direction of the collector, but be aware of the seasonal position of the sun in the sky and how it may affect the seasonal performance of the system.

Page 78: Solar Domestic Hot Water Heating Systems Design, Installation and

The optimum tilt angle for the collector is about the same as the site's latitude plus or minus 15°. An inexpensive inclinometer will aid in determining tilt angles. If collectors will be mounted on a sloped roof, check the roof's inclination to determine whether the collectors should be mounted parallel to the roof or at a different tilt. In general, collectors should be mounted parallel to the plane of a sloped roof unless the performance penalty is more than 30 percent. The mounted collector should not detract from the appearance of the roof.

Total length of piping from collector to storage should not exceed 100 feet. The longer the pipe run, the greater the heat loss. If a greater length is necessary, an increase in piping diameter or pump size may be required.

If the collectors will be roof-mounted, they should not block drainage or keep the roof surface from properly shedding rain. Water should not gather or pool around roof penetrations. Roof curbs may be require.

Page 79: Solar Domestic Hot Water Heating Systems Design, Installation and

To Estimate Shading of a Rooftop/Pole Mount on the Future Site

Page 80: Solar Domestic Hot Water Heating Systems Design, Installation and

To Estimate Needed Pole Height to Avoid Shading

Page 81: Solar Domestic Hot Water Heating Systems Design, Installation and

To Estimate How Much to Crop Tree to Avoid Shading

Page 82: Solar Domestic Hot Water Heating Systems Design, Installation and

During the site visit, the assessor should provide:

A basic analysis of the project’s energy needs.

Recommendations for energy efficiency in order to reduce the 

size and cost of the proposed renewable energy system.

Provide an evaluation of the renewable energy resource at the 

site.

Information regarding the best place to site the solar system.

Additionally, the assessor should follow‐up with a written report 

detailing the site assessment information.

Page 83: Solar Domestic Hot Water Heating Systems Design, Installation and

Site Assessment Benefits

A renewable energy site assessment conducted by a certified 

assessor provides an opportunity to discuss with an experienced,

objective third party about the characteristics of the property and 

learn about a variety of equipment and options. 

A site assessment is essential when considering a solar project.

The site assessors report can be used to present a summary of 

information and options to decision makers for their approval.

Page 84: Solar Domestic Hot Water Heating Systems Design, Installation and

Cost of a Renewable Energy Site Assessment

Certified assessors establish their own fees for their services.

On 

average, 

the 

full 

cost 

of 

an 

assessment 

is 

between 

$300 

and 

$500.   The 

cost 

varies 

depending 

on 

the 

number 

of 

technologies 

being 

assessed 

and 

the 

complexity 

of 

the 

system, 

as 

well 

as 

the 

assessor’s travel costs.  

When 

arranging 

for 

site 

assessment, 

discuss 

with 

the 

assessor 

your 

expectations 

so 

that 

you 

can 

receive 

an 

accurate 

cost 

estimate.

Page 85: Solar Domestic Hot Water Heating Systems Design, Installation and

Sizing the Solar Hot Water Heating System

Just 

as 

you 

have 

to 

choose 

30‐, 

40‐, 

or 

50‐gallon 

conventional 

water 

heater, 

you 

need 

to 

determine 

the 

right 

size 

solar 

water 

heater 

to 

install. 

Sizing 

solar 

water 

heater 

involves 

determining 

the 

total 

collector 

area 

and 

the 

storage 

volume 

required to provide 100% of your household's hot water during the 

summer. 

Solar‐

equipment 

experts 

use 

worksheets 

or 

special 

computer 

programs 

to

assist 

you 

in 

determining how large a system you need.

Solar storage tanks are usually 50‐, 60‐, 80‐, or 120‐gallon capacity. A small (50 to 60 

gallon) 

system 

is 

sufficient 

for 

to 

people, 

medium 

(80‐gallon) 

system 

is 

adequate 

for 

3‐

or 

4‐person 

household, 

and 

large 

(120‐gallon) 

system 

is 

appropriate for 4 to 6 people.

A rule of thumb for sizing collectors: allow about 20 square feet of collector area for 

each 

of 

the 

first 

two 

family 

members 

and 

square 

feet 

for 

each 

additional 

family 

member if you live in the Sun Belt. Allow 12 to 14 additional square feet per person 

if you live in the northern United States.

Page 86: Solar Domestic Hot Water Heating Systems Design, Installation and

Sizing the Solar Hot Water Heating System

Continued

ratio 

of 

at 

least 

1.5 

gallons 

of 

storage 

capacity 

to 

square 

foot 

of 

collector 

area 

prevents the system from overheating when the demand for hot water is low. 

In 

very 

warm, 

sunny 

climates, 

experts 

suggest 

that 

the 

ratio 

should 

be 

at 

least 

gallons of storage to 1 square foot of collector area. 

For example, a family of four in a northern climate would need between 64 and 68 

square feet of collector area and a 96‐

to 102‐gallon storage tank.

(This assumes 20 square feet of collector area for the first person, 20 for the second 

person, 12 to 14 for the third person, and 12 to 14 for the fourth person. 

This equals 64 to 68 square feet, multiplied by 1.5 gallons of storage capacity, which 

equals 96 to 102 gallons of storage.) 

Because you might not be able to find a 96‐gallon tank, you may want to get a 120‐

gallon tank to be sure to meet your hot water needs.

Page 87: Solar Domestic Hot Water Heating Systems Design, Installation and

Resources

Analysis Tools

Preliminary 

Screening:

To 

determine 

if 

project 

is 

possible 

candidate for solar hot water heating, try using the Federal Renewable 

Energy Screening Assistant (FRESA) software.  This is a windows based 

software tool which screens projects for economic feasibility.  It is able 

to 

evaluate 

many 

renewable 

technologies 

including 

solar 

hot 

water, 

photovoltaics, and wind.

Another 

and 

somewhat 

more 

detailed 

screening 

tool, 

Retscreen, 

is

provided 

by 

Natural 

Resources 

Canada. 

Go 

to 

http://www.retscreen.net/

to download the simulation software.

Page 88: Solar Domestic Hot Water Heating Systems Design, Installation and

Resources Continued

Analysis Tools

Detailed 

Performance:

Once 

preliminary 

viability 

has 

been 

established, 

it 

will 

eventually 

be 

necessary 

to 

evaluate 

system 

performance 

to 

generate 

more 

precise 

engineering data and economic analysis.  This can be accomplished based upon hourly 

simulation 

software 

or 

by 

hand 

correlation 

methods 

based 

on 

the 

results 

of 

hourly 

simulations.  Two software programs which are available include:

FCHART,

a correlation method available from the University of Wisconsin.  Go to 

http://www.fchart.com/

to download the simulation software.

TRNSYS,

software available from the University of Wisconsin.  Go to 

http://sel.me.wisc.edu/trnsys/

to download the simulation software.

Page 89: Solar Domestic Hot Water Heating Systems Design, Installation and

FCHART can be used with the following:

Collector Types Flat-Plates Evacuated Types Integral Collectors

System Types Water Storage Heating Building Storage Heating Domestic Water Heating Integral Collector-Storage DHW Indoor and Outdoor Pool Heating

FeaturesLife-cycle economics with cash flow Weather data for over 300 locations Weather data can be added Monthly parameter variation 2-D incidence angle modifiers English and SI units Approved for use in California Versions for Mac, DOS, and Windows

Page 90: Solar Domestic Hot Water Heating Systems Design, Installation and

F-ChartExample Input

Parameter Input Screen for Flat-Plate Collector

Page 91: Solar Domestic Hot Water Heating Systems Design, Installation and

F-ChartExample Input

Parameter Input Screen for General Solar Heating System

Page 92: Solar Domestic Hot Water Heating Systems Design, Installation and

F-ChartExample Output

Page 93: Solar Domestic Hot Water Heating Systems Design, Installation and

F-ChartExample Output

Graphical Output Screen showing Solar vs. Month

Page 94: Solar Domestic Hot Water Heating Systems Design, Installation and

Installation

Page 95: Solar Domestic Hot Water Heating Systems Design, Installation and

Installation of the Solar Hot Water System

The proper installation of solar water heating systems depends on many 

factors.  

These factors include solar resource, climate, local building code requirements, 

and safety issues. 

Page 96: Solar Domestic Hot Water Heating Systems Design, Installation and

Wind Loading

A mounted collector is exposed not only to sunlight and the rigors of ultraviolet light but also to wind forces. For example, in parts of the world that are vulnerable to hurricanes or extreme wind storms, the collector and its mounting structure need to be able to withstand intermittent wind loads up to 146 miles per hour. This corresponds to a pressure of about 75 pounds per square foot. Winds, and thermal contraction and expansion may cause improperly installed bolts and roof seals to loosen over time. As always, follow local code requirements for wind loading.

Page 97: Solar Domestic Hot Water Heating Systems Design, Installation and

Example of a Collector mounted down from roof ridge to reduce wind loading and heat losses

Roof Mounting Considerations

Do not mount collectors near the ridge of a roof or other places where the wind load may be unusually high. The figure below shows a desirable location for a roof-mounted collector. Mounting collectors parallel to the roof plane helps reduce wind loads and heat loss.

Page 98: Solar Domestic Hot Water Heating Systems Design, Installation and

Ground Mounting

In an alternative to roof mounting, the collector for a solar water heating system may be mounted at ground level. The lower edge of the collector should be at least one foot above the ground so it will not be obstructed by vegetation or soaked by standing water.

Page 99: Solar Domestic Hot Water Heating Systems Design, Installation and

Example of a Rack-mounted collector

Roof Mounted Collectors

There are four ways to mount flat-plate collectors on roofs:

1. Rack Mounting. This method is used on homes with flat roofs. Collectors are mounted at the prescribed angle on a structural frame. The structural connection between the collector and frame and between the frame and building, or site must be adequate to resist maximum potential wind loads.

Page 100: Solar Domestic Hot Water Heating Systems Design, Installation and

Example of a Standoff-mounted collector

2. Standoff Mounting. Standoffs separate the collector from the finished roof surface; they allow air and rainwater to pass under the collector and minimize problems of mildew and water retention. Standoffs must have adequate structural properties. They are sometimes used to support collectors at slopes that differ from that of the roof angle. This is the most common mounting method used.

Page 101: Solar Domestic Hot Water Heating Systems Design, Installation and

Example of a Direct- or flush-mounted collector

3. Direct Mounting. Collectors can be mounted directly on the roof surface. Generally, they are placed on a waterproof membrane covering the roof sheathing. Then the finished roof surface, the collector's structural attachments, and waterproof flashing are built up around the collector. A weatherproof seal must be maintained between the collector and the roof to avoid leaks, mildew and rotting.

Page 102: Solar Domestic Hot Water Heating Systems Design, Installation and

Example of an Integral-mounted collector

4. Integral Mounting. Integral mounting places the collector within the roof construction itself. The collector is attached to and supported by the structural framing members. The top of the collector serves as the finished roof surface. Weather tightness is crucial in avoiding water damage and mildew. Only collectors designed by the manufacturer to be integrated into the roof should be installed as the water/moisture barrier of buildings. The roofing materials and solar collectors expand and contract at different rates and have the potential for leaks. A well sealed flashing material allows the expansion and contraction of the materials to maintain a water seal.

Page 103: Solar Domestic Hot Water Heating Systems Design, Installation and

Roof Work Considerations

The most demanding aspects of installing roof-mounted collectors are the actual mounting and roof penetrations. Standards and codes are sometimes ambiguous about what can and cannot be done to a roof. Always follow accepted roofing practices, be familiar with local building codes, and communicate with the local building inspector. These are prime roof work considerations:

1. Perform the installation in a safe manner.

2. Take precautions to avoid (or minimize) damage to the roof area.

3. Position collectors for the maximum performance compatible with acceptable mounting practices.

4. Seal and flash pipe and sensor penetrations in accordance with good roofing practices. Use permanent sealants such as silicone, urethane or butyl rubber.

5. Locate collectors so they are accessible for needed maintenance.

Page 104: Solar Domestic Hot Water Heating Systems Design, Installation and

Maintenance

Page 105: Solar Domestic Hot Water Heating Systems Design, Installation and

Maintenance

Regular 

maintenance 

on 

simple 

systems 

can 

be 

as 

infrequent 

as 

every 

3‐5 

years, preferably by a qualified contractor with experience and knowledge of 

solar hot water heating systems.  Systems with electrical components usually 

require a replacement part or two after 10 years.

Page 106: Solar Domestic Hot Water Heating Systems Design, Installation and

Corrosion and Scaling in Solar Water Heating Systems

The 

two 

major 

factors 

affecting 

the 

performance 

of 

properly 

sited 

and 

installed 

solar 

water heating systems include scaling and corrosion.

CorrosionMost 

well‐designed 

solar 

systems 

experience 

minimal 

corrosion. 

When 

they 

do, 

it 

is 

usually 

galvanic 

corrosion, 

an 

electrolytic 

process 

caused 

by 

two 

dissimilar 

metals 

coming into contact with each other. One metal has a stronger positive electrical charge 

and pulls electrons from the other, causing one of the metals to

corrode. 

The 

heat‐transfer 

fluid 

in 

some 

solar 

energy 

systems 

sometimes 

provides 

the 

bridge 

over which this exchange of electrons occurs.

Oxygen 

entering 

into 

an 

open 

loop 

solar 

system 

will 

cause 

rust 

in 

any 

iron 

or 

steel 

component. 

Such 

systems 

should 

have 

copper, 

bronze, 

brass, 

stainless 

steel, 

plastic, 

rubber components in the plumbing loop, and plastic or glass lined storage tanks.

Page 107: Solar Domestic Hot Water Heating Systems Design, Installation and

ScalingDomestic water that is high in mineral content ("hard water") may cause the buildup or 

scaling 

of 

mineral 

(calcium) 

deposits 

in 

solar 

heating 

systems. 

Scale 

buildup 

reduces 

system performance in a number of ways. If the system uses domestic water as the heat 

transfer fluid, scaling can occur in the collector, distribution

piping, and heat exchanger. 

In systems that use other types of heat‐transfer fluids (such as glycol), scaling can occur 

on the surface of the heat exchanger that transfers heat from the solar collector to the 

domestic water. Scaling may also cause valve and pump failures on the domestic water 

loop.

Scaling 

can 

be 

avoided 

by 

using 

water 

softener(s) 

or 

by 

circulating 

mild 

acidic 

solution (such as vinegar) through the collector or domestic water loop every 3–5 years, 

or as necessary depending on water conditions. 

There 

may 

be 

the 

need 

to 

carefully 

clean 

heat 

exchanger 

surfaces

with 

medium‐grain 

sandpaper. 

"wrap‐around" 

external 

heat 

exchanger 

is 

an 

alternative 

to 

heat 

exchanger located inside a storage tank.

Page 108: Solar Domestic Hot Water Heating Systems Design, Installation and

Periodic Inspection ListThe following are some suggested inspections of solar system components.

Collector shadingVisually 

check 

for 

shading 

of 

the 

collectors 

during 

the 

day 

(mid‐morning, 

noon, 

and 

mid‐afternoon) 

on 

an 

annual 

basis. 

Shading 

can 

greatly 

affect 

the 

performance 

of 

solar 

collectors. 

Vegetation 

growth 

over 

time 

or 

new 

construction 

on 

the 

building 

or 

adjacent 

property 

may 

produce 

shading 

that 

wasn't there when the collector(s) were installed. 

Collector soilingDusty 

or 

soiled 

collectors 

will 

perform 

poorly. 

Periodic 

cleaning 

may 

be 

necessary in dry, dusty climates. 

Collector glazing and sealsLook 

for 

cracks 

in 

the 

collector 

glazing, 

and 

check 

to 

see 

if 

seals 

are 

in 

good 

condition. Plastic glazing, if excessively yellowed, may need to

be replaced.

Piping and wiring connectionsLook for fluid leaks at pipe connections. All wiring connections

should be tight.

Piping and wiring insulationLook for damage or degradation of insulation covering pipes and wiring.

Page 109: Solar Domestic Hot Water Heating Systems Design, Installation and

Roof penetrationsFlashing 

and 

sealant 

around 

roof 

penetrations 

should 

be 

in 

good 

condition.

Support structuresCheck all nuts and bolts attaching the collectors to any support

structures for 

tightness.

Pressure relief valve (on liquid solar heating collectors)Make sure the valve is not stuck open or closed.

PumpsVerify that distribution pump(s) are operating. Check to see if they come on 

when 

the 

sun 

is 

shining 

on 

the 

collectors 

after 

mid‐morning. 

If 

the 

pump 

is 

not operating, then either the controller or pump has malfunctioned.

Heat transfer fluidsAntifreeze 

solutions 

in 

solar 

heating 

collectors 

need 

to 

be 

replaced 

periodically. 

If 

water 

with 

high 

mineral 

content 

(i.e., 

hard 

water) 

is 

circulated 

in 

the 

collectors, 

mineral 

buildup 

in 

the 

piping 

may 

need 

to 

be 

removed 

by 

adding 

de‐scaling 

or 

mild 

acidic 

solution 

to 

the 

water 

every 

few years.Storage systemsCheck storage tanks, etc., for cracks, leaks, rust, or other signs of corrosion.

Page 110: Solar Domestic Hot Water Heating Systems Design, Installation and

Manufacturers

ACR Solar International Corporation

http://www.solarroofs.com

FAFCO, Inc.

http://www.fafco.com

Velux America

http://www.veluxusa.com

Heliodyne, Inc.

http://www.heliodyne.com

Silicon Solar Inc.

http://sunmaxxsolar.com

Solarhart

http://www.solarhart.com

SunEarth, Inc.

http://www.sunearthinc.com

Solene, LLC

http://www.solene‐usa.com

Thermo Technologies

http://www.thermomax.com

Page 111: Solar Domestic Hot Water Heating Systems Design, Installation and

Trade Associations

American Solar Energy Society (ASES)

http://www.ases.org

Florida Solar Energy Center (FSEC) 

http://www.fsec.ucf.edu

Solar Energy Industries Association (SEIA)

http://www.seia.org

Solar Rating & Certification Corporation (SRCC) http://www.solar‐rating.org

Page 112: Solar Domestic Hot Water Heating Systems Design, Installation and

About the American Solar Energy Society

Established in 1954, the American Solar Energy Society (ASES) is the nonprofit organization dedicated to increasing the use of solar energy, energy efficiency, and other sustainable technologies in the United States

Page 113: Solar Domestic Hot Water Heating Systems Design, Installation and

About the Florida Solar Energy Center

The Florida Solar Energy Center (FSEC) was created by the Florida Legislature in 1975 to serve as the state’s energy research institute. The main responsibilities of the center are to conduct research, test and certify solar systems and develop education programs.

Page 114: Solar Domestic Hot Water Heating Systems Design, Installation and

About the Solar Energy Industries Association

Founded in 1974, the Solar Energy Industries Association (SEIA) is the leading national trade association for the solar energy industry. The mission of the Solar Energy Industries Association is to expand markets, strengthen research and development, remove market barriers and improve education and outreach for solar energy professionals.

Page 115: Solar Domestic Hot Water Heating Systems Design, Installation and

About the Solar Rating and Certification Corporation

In 1980 the Solar Rating and Certification Corporation (SRCC) was incorporated as a non-profit organization whose primary purpose is the development and implementation of certification programs and national rating standards for solar energy equipment.

Page 116: Solar Domestic Hot Water Heating Systems Design, Installation and

The End