slides electromechanical

412
AV-222 Electromechanical Systems Dr Salman Aslam Wing Commander, PAF Associate Professor Avionics Department College of Aeronautical Engineering PAF Academy Risalpur ,

Upload: salmanmaslam

Post on 23-Jan-2018

409 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: Slides electromechanical

AV-222Electromechanical Systems

Dr Salman Aslam

Wing Commander, PAFAssociate Professor

Avionics DepartmentCollege of Aeronautical Engineering

PAF Academy Risalpur

,

Page 2: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Textbook

These slides are under construction. Should be done bythe end of the semester around Aug 2015.

2 / 412

Page 3: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Textbook3 / 412

Page 4: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Famous scientistsAndre Marie Ampere

http://en.wikipedia.org/wiki/Andre-Marie_Ampere

4 / 412

• 1775-1836, France

• Started teaching himself advanced math at the age of 12

• Ampere showed that two parallel wires carrying electric currentsattract or repel each other, depending on whether the currentsflow in the same or opposite directions, respectively - this laid thefoundation of electrodynamics

Page 5: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Famous scientistsMichael Faraday

http://en.wikipedia.org/wiki/Michael_Faraday

5 / 412

• 1791-1867, England

• Discovered benzene and electromagnetic induction

• When asked by the British government to advise on theproduction of chemical weapons for use in the Crimean War(1853-1856), Faraday refused to participate citing ethical reasons

Page 6: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Course OverviewMagnetic field creation and 3 applications

• This course is about transformers, motors and generators

• Magnetic fields are the fundamental mechanism by which energyis converted from one form to another in all these devices

• Create a magnetic field: This is the first step.(Creation, Ampere’s Law): A current carrying wire produces amagnetic field in the area around it. Now that a magnetic fieldhas been generated, one of the following 3 are possible if you havea conductor placed in a magnetic field:

1 Change a magnetic field to create a voltage(transformer action, Faraday’s Law): A time-changingmagnetic field induces a voltage in a coil of wire if it passesthrough that coil

2 Put a current-carrying wire in the magnetic field(motor action, Lorentz Law): A current-carrying wire inthe presence of a magnetic field has a force induced on it

3 Put a moving wire in the magnetic field(generator action, Faraday’s Law): A moving wire in thepresence of a magnetic field has a voltage induced on it

Chapman 5th ed, pg 8

6 / 412

Page 7: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Voltage, Current and ResistanceAn overview

http://www.build-electronic-circuits.com/wp-content/uploads/2014/09/

Ohms-law-cartoon-by_unknown.jpg

7 / 412

Page 8: Slides electromechanical

Maxwell’s equationsSummary

• E and H are the electric and magnetic field intensities measured in V/m and A/m respectively.• D and B are the electric and magnetic field densities respectively, measured in coulombs and

teslas respectively.• D = εE, where ε is permittivity. The permittivity of free space is ε0 = 8.854x10−12 F/m.• B = µH, where µ is permeability. The permeability of free space is µ0 = 4πx10−7 H/m.• J is current density measured in A/m2.• φ is flux measured in Webers.

Ampere’s Law I =∮

LH.d` =

∫A

(J + ∂D∂t ).dA ∇×H =J + ∂D

∂t

Faraday’s Law V =∮

LE.d` = −

∫A∂B∂t .dA = − dφ

dt ∇× E =−∂B∂t

Gauss’s Law∮

AB.dA =0 ∇.B =0

Gauss’s Law∮

AD.dA =ρ ∇.D =ρ

• Maxwell introduced 2 new things:

• The induced voltage∫

A∂B∂t.dA

• The displacement current∫

A∂D∂t.dA

• The conduction current density is J = σE (Ohm’s Law) while the displacement current density isJD = ∂D

∂t. Therefore, conduction current I =

∫A J.dA and displacement current ID =

∫A JD.dA.

The displacement current is a result of the time-varying electric field, eg, current through acapacitor when a time-varying voltage is applied to its plates.

• For the time invariant form, ∂B∂t

= ∂D∂t

= 0. This means that the divergence equations remain thesame and only the curl equations change.

,

Page 9: Slides electromechanical

Maxwell’s equationsSummary

• E and H are the electric and magnetic field intensities measured in V/m and A/m respectively.• D and B are the electric and magnetic field densities respectively, measured in coulombs and

teslas respectively.• D = εE, where ε is permittivity. The permittivity of free space is ε0 = 8.854x10−12 F/m.• B = µH, where µ is permeability. The permeability of free space is µ0 = 4πx10−7 H/m.• J is current density measured in A/m2.• φ is flux measured in Webers.

Ampere’s Law I =∮

LH.d` =

∫A

(J + ∂D∂t ).dA ∇×H =J + ∂D

∂t

Faraday’s Law V =∮

LE.d` = −

∫A∂B∂t .dA = − dφ

dt ∇× E =−∂B∂t

Gauss’s Law∮

AB.dA =0 ∇.B =0

Gauss’s Law∮

AD.dA =ρ ∇.D =ρ

• We see that• ∫

A B.dA = φ (from Faraday’s Law)• ∮

A B.dA = 0 (from Gauss’ Law for a closed surface, meaning that no monopole exists)

• Also, notice• ∫

A(J + ∂D∂t

).dA = σ∫

A E.dA + ε∫

A∂E∂t.dA = I (from Ampere’s Law)

• ∫A B.dA = µ

∫A H.dA = φ (from Faraday’s Law)

• Now, notice parallels between• E and H (intensities)• B and J,D (densities)• I and φ (what flows in circuits)• µ and σ, ε (material constants) ,

Page 10: Slides electromechanical

Maxwell’s equationsSummary

• E and H are the electric and magnetic field intensities measured in V/m and A/m respectively.• D and B are the electric and magnetic field densities respectively, measured in coulombs and

teslas respectively.• D = εE, where ε is permittivity. The permittivity of free space is ε0 = 8.854x10−12 F/m.• B = µH, where µ is permeability. The permeability of free space is µ0 = 4πx10−7 H/m.• J is current density measured in A/m2.• φ is flux measured in Webers.

Ampere’s Law I =∮

LH.d` =

∫A

(J + ∂D∂t ).dA ∇×H =J + ∂D

∂t

Faraday’s Law V =∮

LE.d` = −

∫A∂B∂t .dA = − dφ

dt ∇× E =−∂B∂t

Gauss’s Law∮

AB.dA =0 ∇.B =0

Gauss’s Law∮

AD.dA =ρ ∇.D =ρ

• For a conductor of length ` meters in a uniform magnetic flux density B,

• Motor action: If the conductor carries current i , then the force on it is F = i(`× B)• Generator action: If the conductor moves with velocity v, the voltage induced in it is

e = (v × B).`

,

Page 11: Slides electromechanical

Maxwell’s equationsSummary

• E and H are the electric and magnetic field intensities measured in V/m and A/m respectively.• D and B are the electric and magnetic field densities respectively, measured in coulombs and

teslas respectively.• D = εE, where ε is permittivity. The permittivity of free space is ε0 = 8.854x10−12 F/m.• B = µH, where µ is permeability. The permeability of free space is µ0 = 4πx10−7 H/m.• J is current density measured in A/m2.• φ is flux measured in Webers.

Ampere’s Law I =∮

LH.d` =

∫A

(J + ∂D∂t ).dA ∇×H =J + ∂D

∂t

Faraday’s Law V =∮

LE.d` = −

∫A∂B∂t .dA = − dφ

dt ∇× E =−∂B∂t

Gauss’s Law∮

AB.dA =0 ∇.B =0

Gauss’s Law∮

AD.dA =ρ ∇.D =ρ

• For an inductor, the voltage that is induced by the time variations in the current of a circuit iscalled the electromotive force (emf) of self-induction, and is expressed in terms of theself-inductance L by

e = N dφdt

= L dIdt

⇒ Nφ = LI

⇒ L = NφI

Inductance is therefore the flux linkage per ampere

,

Page 12: Slides electromechanical

From Current to Induced VoltageAn overview

electric charges

separation motion

Electric field Magnetic field

current(amperes)

Ampere's Law

magnetic fieldintensity

magnetic flux density

magneticflux

if changing

"magnetic current" Faraday's Law(induced voltage)

In a magnetic circuit, such as a transformer core,

where,

,

12 / 412

Page 13: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Ampere’s Law (1/4)

Ampere’s circuit law states that the line integral of thetangential component of H around a closed path is thesame as the net current Ienc enclosed by the path

∮H.d` = Ienc

H is the magnetic field intensity measured inampere-turns/m

Chapman, pg 8Elements of Electromagnetics, Sadiku pg 273

13 / 412

Page 14: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Ampere’s Law (2/4)

Example 1: wire ∮H.d` = Ienc

⇒∮

Bµ .d` = Ienc

⇒2π∮0

Brdθ = µIenc

⇒ B = µ2π

Iencr

- http://www.physics.upenn.edu/courses/gladney- also see Biot-Savart Law

14 / 412

Page 15: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Ampere’s Law (3/4)

Example 2: wire wound on core

• We have a core with a winding of N turns of wire wrapped aboutone leg of the core

• If the core is made of ferromagnetic material, then all themagnetic field produced by the current will remain inside the core

• Therefore, the path of integration in Ampere’s Law is the meanpath length of the core, `c

Chapman, pg 8

15 / 412

Page 16: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Ampere’s Law (4/4)

Example 2: wire wound on core cont.∮H.d` = Ienc

⇒ H`c = Ni

⇒ Bµ `c = Ni

⇒ B = Ni`cµ

(B = µH)

⇒ φ = Ni`cµA

(φ = BA)

⇒ = NiR (R = `c

µA )

• Ni is the mmf (magnetomotive force, F), equivalent to voltage

• B is the magnetic flux density measured in webers/m2, or teslas

• φ is the total flux measured in webers and is equivalent to current

• The reluctance R is equivalent to resistance

Note- H is linearly related to F (think voltage)

- B is linearly related to φ (think current)

16 / 412

Page 17: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Faraday’s Law (1/5)

If a flux passes through a turn of a coil of a wire, avoltage will be induced in the turn of wire that isdirectly proportional to the rate of change in the fluxwith respect to time

eind = −dφ

dt

where eind is the voltage induced in the turn of the coiland φ is the flux passing through the turn.

The minus sign in the equation is an expression ofLenz’s Law

17 / 412

Page 18: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Faraday’s Law (2/5)

If a coil has N turns and if the same flux passes throughall of them, then the voltage induced across the wholecoil is given by

eind = −Ndφ

dt

18 / 412

Page 19: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Faraday’s Law (3/5)

Determine polarity of eind using Lenz’s Law

Lenz’s Law states that the direction of voltage buildupin the coil in Faraday’s Law is such that if the coil endswere short-circuited, it would produce current thatwould cause a flux opposing the original flux change

To see this clearly, consider the example on the nextslide

Chapman, pg 30

19 / 412

Page 20: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Faraday’s Law (4/5)

Determine polarity of eind using Lenz’s Law

• In the left figure below, φ is increasing and willtherefore induce a voltage eind in the coil

• In the right figure below, a current i flowing asshown would produce a flux in the oppositedirection of φ

• The polarity of the voltage will be such that itcould drive the current i in an external circuit

Chapman, pg 30

20 / 412

Page 21: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Faraday’s Law (5/5)

Determine polarity of eind using Lenz’s Law cont.

21 / 412

Page 22: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Analogy between electric and magneticcircuits (1/3)

Conductivity σ Permeability µField intensity E Field intensity HCurrent I =

∫J.dA Magnetic flux φ =

∫B.dA

Current density J = IA

= σE Flux density B = φA

= µH

Electromotive force (emf) V Electromotive force (mmf) FResistance R Reluctance RConductance G = 1/R Permeance P = 1/R

• Permeability is the measure of the ability of a material to supportthe formation of a magnetic field within itself. Hence, it is thedegree of magnetization that a material obtains in response to anapplied magnetic field.

• In SI units, permeability is measured in henries per meter.

• A good magnetic core material must have high permeability.

Elements of Electromagnetics, Sadiku, pg 348

22 / 412

Page 23: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Analogy between electric and magneticcircuits (2/3)

Chapman, pg 11

23 / 412

Page 24: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Analogy between electric and magneticcircuits (3/3)

Determine polarity of mmf in magnetic circuit

Chapman, pg 12

24 / 412

Page 25: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Hysteresis

https://www.kjmagnetics.com/blog.asp?p=magnet-grade

25 / 412

Page 26: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetization curve (1/2)

Chapman, pg 22

26 / 412

Page 27: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetization curve (2/2)

Chapman, pg 26

27 / 412

Page 28: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

AC circuitsPowers

Voltage V = V∠αCurrent I = I∠βPhase lag θ = α− β (θ is negative for inductive circuit)

Power factor PF = cos θ

PowerReal P = V I cos θ (equal to average power)

Reactive Q = V I sin θ

Complex S = P + jQ= V I cos θ + jV I sin θ= V I∠θ= V I∠(α− β)= V∠αI∠−β= VI∗

Apparent S = V I= |S|

Instantaneous p(t) =√

2V cos(ωt)√

2I cos(ωt − θ) (assume α = 0)

= 2V I cosωt cos(ωt − θ)= V I cos θ(1 + cos 2ωt) + V I sin θ sin 2ωt= P + P cos(2ωt) + Q sin(2ωt)

Chapman 5th ed, pg 47-51

28 / 412

Page 29: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

DC Motor Drivers (1/5)

Stepper → Driver stage → L298

29 / 412

Step 1: Pick an L-298.

Connect 2 voltages (5V, 36V), 2 capacitors (100 nF), 2 resistors (RSA,RSB ), and ground it.

Page 30: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

DC Motor Drivers (2/5)

Stepper → Driver stage → L298

30 / 412

Step 2: Study the circuit.

Notice that we have 2 similar circuits which are totally independent ofeach other. The left circuit is controlled by EnA while the right circuitis controlled by EnB.

Page 31: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

DC Motor Drivers (3/5)

Stepper → Driver stage → L298

31 / 412

Step 3: Let’s focus on only one side of the circuit. Theother side works exactly the same way.

Let’s use the left side. Connect a coil (motor winding) as shown.

Page 32: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

DC Motor Drivers (4/5)

Stepper → Driver stage → L298

32 / 412

Step 4a: Current flow.

Let EnA=1n1=5V. This causes current to flow through the coil.

Page 33: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

DC Motor Drivers (5/5)

Stepper → Driver stage → L298

33 / 412

Step 4b: Current flow.

Let EnA=1n2=5V. This causes current to flow through the coil in theopposite direction.

Page 34: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotionDisplacement, velocity, acceleration

• Displacement• Linear: r• Angular: θ (radians)

• Velocity• Linear: v = dr/dt• Angular: ω = dθ/dt

• ωm: radians/sec• fm: revs/sec• nm: revs/min

• Acceleration• Linear: a = dv/dt• Angular: α = dω/dt

Chapman 5th ed, pg 3-4

34 / 412

Page 35: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotionForce, torque, work, power

• Force: F• Torque: τ = rF sin θ

• Work: W =∫

Fdr• Work: W =

∫τdθ (rotational motion)

• Power: P = dW /dt = d(Fr)/dt = Fdr/dt = Fv• Power: P = dW /dt = d(τθ)/dt = τdθ/dt = τω (rotational motion)

Chapman 5th ed, pg 5-8

35 / 412

Page 36: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Modeling (1/4)

Constant acceleration model

s(t) = a

t∫t0

s(τ)dτ =t∫

t0

a dτ

s(τ)|tt0= a τ |tt0

s(t)− s(t0) = at − at0 Notice this is vf = vi + at

t∫t0

s(τ)dτ −t∫

t0

s(t0)dτ =t∫

t0

aτdτ −t∫

t0

at0dτ

s(τ)|tt0− s(t0)τ |tt0

= 12

a τ2∣∣tt0− at0τ |tt0

s(t)− s(t0)− s(t0)t + s(t0)t0 = 12

at2 − 12

at02 − at0t + at0

2

let initial time t0 = 0, initial distance s(t0) = s i = 0, and some initialvelocity s(t0) = vi , to get the familiar equation,

s(t) = vi t +1

2at2

36 / 412

Page 37: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Modeling (2/4)

Constant acceleration model• The equations s = s i + vi t + 1

2at2 and vf = vi + at

can be written in discrete time with sampling time T as,[svf

]=

[1 T0 1

] [si

vi

]+

[12

T 2

T

]a

and writing in terms of states x , we get,

xkT =

[xkT

xkT

]=

[1 T0 1

] [xkT−1

xkT−1

]+

[12

T 2

T

]a

• For simplicity, let T = 1,

xk =

[xk

xk

]=

[1 10 1

] [xk−1

xk−1

]+

[121

]a

• It may be noted that the following subsitution may be used sincef = ma and using f seems more logical to use as input. Keep inmind that both formulations are equivalent.

[12

T 2

T

]a =

12

T 2

m

Tm

f

37 / 412

Page 38: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Modeling (3/4)

Classical mechanics

Description Symbol Formula Units

radius r - m

angular velocity ω dθdt

rad/sec

1 linear momentum p mv kg m/sec2 force F ma kg m/sec2 = N3 angular momentum L r × p = Iω kg m2/sec4 torque τ r × F kg m2/sec2 = N m5 moment of inertia I mr2 kg m2

First, focus only on blue, then focus only on green

http://en.wikipedia.org/wiki/Torque

38 / 412

Page 39: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Modeling (4/4)

Damping

Applied force

displacement

damping coefficient,in this case, wall friction b

spring constant k

Oscillatory force(Hooke's Law)

Damping force

Net force

3constants

k, b, M

Mass M

Unitsk: N/m = kg/s2

b: N s/m=kg/s M: kg

Dorf pg 45, http://en.wikipedia.org/wiki/Damping

39 / 412

Page 40: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (1/12)

Magnetic circuit

• A Transformer is a device that changes AC electric power at onevoltage level to AC electric power at another voltage level throughthe action of a magnetic field.

• It consists of two or more coils of wire wrapped around a commonferromagnetic core. These coils are not directly connected. Theonly connection between the coils is the common magnetic fluxpresent within the core.

Chapman, pg 18

Page 41: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (2/12)

Turn ratios

Vp

Vs= Is

Ip=

Np

Ns= a

Vp/IpVs/Ip

= a

⇒ Vp/IpVs/(Is/a) = a

⇒ Zp

Zs= a2

Chapman, pg 89

41 / 412

Page 42: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (3/12)

Equivalent circuit

• The losses that occur in real transformers have to be accountedfor in any accurate model of transformer behavior.

• The major items to be considered in the construction of such a

model are:

• Windings: Copper I 2R losses• Windings: Leakage flux• Core: Eddy current losses• Core: Hysteresis losses

• It is possible to construct an equivalent circuit that takes intoaccount all the major imperfections in real transformers.

Chapman 5th ed, Sec 2.5, pg 86-94

42 / 412

Page 43: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (4/12)

Equivalent circuit # 1

Chapman 5th ed, Sec 2.5, pg 86-94

43 / 412

Page 44: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (5/12)

Equivalent circuit # 2

Chapman 5th ed, Sec 2.5, pg 86-94

44 / 412

Page 45: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (6/12)

Equivalent circuit # 3

• We will mostly be using the simplified equivalent circuit givenbelow

• The magnetizing branch has been moved to make calculationseasier

Chapman 5th ed, Sec 2.5, pg 86-94

45 / 412

Page 46: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (7/12)

Equivalent circuit # 4

• A very simplified equivalent circuit that will not be used much

• The magnetizing branch has been completely eliminated

Chapman 5th ed, Sec 2.5, pg 86-94

46 / 412

Page 47: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (8/12)

Equivalent circuit

For the magnetizing branch,

Resistance, (Ω) = Rc

Reactance, (Ω) = Xm

Impedance, (Ω) = ZE

= Rc//jXm

= jRc Xm

Rc +jXm

Conductance, (Siemens) = Gc = 1Rc

Susceptance, (Siemens) = Bm = 1Xm

Admittance, (Siemens) = YE = 1ZE

= Rc +jXm

jRc Xm

= 1Rc− j 1

Xm

Chapman 5th ed, Sec 2.5, pg 86-94

47 / 412

Page 48: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (9/12)

Equivalent circuit

Open Circuit Test

• One transformer winding is open-circuited and theother winding is connected to full rated line voltage

Chapman 5th ed, Sec 2.5, pg 86-94

48 / 412

Page 49: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (10/12)

Autotransformer

VCVSE

= ISEIC

= NCNSE

VLVH

= IHIL

= NCNSE +NC

SWSIO

= NSENSE +NC

Chapman, pg 110-113

49 / 412

Page 50: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (11/12)

Autotransformer

50 / 412

Page 51: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Transformers (12/12)

Regulation

• Because a real transformer has series impedance within it, theoutput voltage of a transformer varies with the load if the inputvoltage remains constant

• To conveniently compare transformers in this respect, it iscustomary to define a quantity called voltage regulation (VR)

• Full-load voltage regulation is a quantity that compares theoutput voltage of the transformer at no load with the outputvoltage at full load

• It is defined as

VR =VS,nl−VS,fl

VS,fl× 100%

=Vpa−VS,fl

VS,fl× 100% since Vs =

Vpa

at no load

• Usually, it is good practice to have as small a voltage regulationas possible

• For an ideal transformer, VR=0 %

Chapman 5th ed, pg 99-102

Page 52: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotorsDefinition

A motor is an electrical machine that coverts electricalenergy to mechanical energy

Chapman 5th ed, pg 1

52 / 412

Page 53: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotorsTheory

The figure below shows a conductor present in a uniformmagnetic flux density B, pointing into the page. The conductor is `meters long and contains a current of i amperes.

The force induced on the conductor is given by,

F = i(`× B)

Chapman 5th ed, pg 33

53 / 412

Page 54: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotorsTheory cont.

The direction of ` defined to be in the direction of current flow

The direction of the force is given by the right hand rule

(see Example 1.7 )

Chapman 5th ed, pg 33

54 / 412

Page 55: Slides electromechanical

MotorsTypes

WoundRotor

SquirrelCage

ShadedPole Capacitor Split

Phase

CapacitorStart

PermanentSplit

Capacitor

Two ValveCapacitor

ReluctanceStart

WoundField

Perm.Magnet

Reluctance HysteresisMultipleSpeedPole

Switching

suonorhcnySnoitcudnI

Single/PolyphaseSingle-PhasePolyphase

MultipleSpeed

SingleSpeed

SynchronousPhase-Locked LoopSteppers

Synchronous Induction

Switched SynchronousReluctanceReluctance

ReluctancePerm.

MagnetInverter PM Assisted

SynchronousReluctance

Driven

RotorControl

StatorControl

Perm.Magnet

WoundRotor

ElectronicCommu-

tationHybrid

VariableFrequency

BrushlessDC Motor

SquareDrive

SineDrive

Series

AC-DC Split Field

ConventionalConstruction

MovingCoil

DCTorquer

dnuopmoCtengaM .mrePtnuhS

(universal)

(bru

shed

)

SMMA, The Motor & Motion Association, http://www.smma.org/technical-info.htm- The words ”universal” and ”brushed” have been added later- All these motors are rotating motors, linear DC and AC motors also exist ,

55 / 412

Page 56: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotorsTypes cont.

• In this course, we aim to study the following six types of motors:

1 DC linear2 DC brushed

3 AC synchronous4 AC induction

5 Electronically controlled: brushless (BLDC)6 Electronically controlled: stepper

• In the next slide, we present the voltages on the rotor and statorfor these kinds of motors, followed by a uniform graphicalrepresentation of magnetic, electrical and mechanical signals

56 / 412

Page 57: Slides electromechanical

MotorsComparison of voltages on rotor and stator

Rotor(DC voltage)

Rotor(no voltage)

Rotor(permanent magnet)

Stator (DC voltage)1. Linear DC motor(Strictly speaking,should not use theword ”rotor” heresince there is linearmotion)

- -

Stator(DC voltage appliedthrough commuta-tor)

Mechanicalcommutation2. Brushed DCmotor

- Electroniccommutation5. Brushless DC(BLDC)motor

6. Stepper motorStator(AC 3-phase) 3. Synchronous AC

motor4. Induction ACmotor

-

http://electronics.stackexchange.com/questions/93710/

how-do-dc-motors-work-with-respect-to-current-and-what-consequence-is-the-curre,

57 / 412

Page 58: Slides electromechanical

1. Linear DC MotorElectrical, magnetic and mechanical signal flow

Electromagnet (linearly moving conductor)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied DC

voltage

+-

Inducedvoltage Lorentz

forceNewton's2nd Law

Faraday'sLaw

1

23

4

Electromagnet (stator)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied DC

voltage

,

58 / 412

Page 59: Slides electromechanical

2. Brushed DC MotorElectrical, magnetic and mechanical signal flow

Electromagnet (stator)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied DC

voltage

Electromagnet (rotor)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied DC

voltage

+-

Inducedvoltage

Mechanicalcommutation

Lorentzforce

TorqueNewton's2nd Law

Faraday'sLaw

1

23

4

,

59 / 412

Page 60: Slides electromechanical

3. AC Synchronous MotorElectrical, magnetic and mechanical signal flow

Electromagnet (stator)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied 3-phase AC

voltage

Electromagnet (rotor)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied DC

voltage

+-

Inducedvoltage

Slip rings(rotary joints)

Lorentzforce

TorqueNewton's2nd Law

Faraday'sLaw

1

23

4

rotating

,

60 / 412

Page 61: Slides electromechanical

4. AC Induction MotorElectrical, magnetic and mechanical signal flow

Electromagnet (stator)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied 3-phase AC

voltage

Electromagnet (rotor)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

Current

Inducedvoltage Lorentz

force

TorqueNewton's2nd Law

Faraday'sLaw

2

34

1

rotating

,

61 / 412

Page 62: Slides electromechanical

5. Brushless DC (BLDC) MotorElectrical, magnetic and mechanical signal flow

Electromagnet (stator)

Magneticflux density

Magneticfield intensity

KVLAmpere's

LawMaterial

propertiesMagnetic "current"

Magneticflux

Magnetomotiveforce (mmf)

Caterfor turns

CurrentApplied DC

voltage

+Electrical

commutation

- 1

Permanent magnet (rotor)

Magneticflux density

Magnetic "current"

Magneticflux

TorqueNewton's2nd Law

Faraday'sLaw

23

4

,

62 / 412

Page 63: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotorsFeature Comparison

http://www.nidec.com/en-NA/technology/capability/brushless/

63 / 412

Page 64: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MotorsWindings

There are 2 kinds of windings in electromechanical machines:

1 Field winding: In general, this term applies to the windings that

produce the main magnetic field

• For synchronous machines, the field windings are on therotor (Chapman, pg 267)

• For DC machines, the field windings are on the stator(Chapman, pg 520)

2 Armature winding: This term applies to the windings where themain voltage is induced (Chapman, pg 267, 520)

64 / 412

Page 65: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (1/12)

Overview

• A linear DC motor is the simplest and easiest-to-understand DCmotor

• Yet, it operates according to the same principles and exhibits thesame behavior as real motors

Chapman 5th ed, pg 36-41

65 / 412

Page 66: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (2/12)

Overview cont.

• A linear DC motor is shown below

• It consists of a battery and a resistance connected through aswitch to a pair of smooth, frictionless rails

• Along the bed of this ”railroad track”, is a constant,uniform-density magnetic field directed into the page

• A bar of conducting metal is lying across the tracks

Chapman 5th ed, pg 36-41

66 / 412

Page 67: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (3/12)

Overview cont.

• The behavior of the linear DC motor, like any DC motor, is

governed by four equations that come into play in the following

sequence:

1 Kirchoff’s Law i = VB−eindR

2 Lorentz Force F = i(`× B)3 Newton’s 2nd Law Fnet = ma4 Faraday’s Law eind = (v × B).`

Chapman 5th ed, pg 36-41

67 / 412

Page 68: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (4/12)

Starting at no load

To start the motor, simply close the switch. After this, thefollowing sequence of events happens:

1 Kirchoff’s Law: compute current

• A current flows in the bar which is given by i = VB−eindR

• Since the bar is initially at rest, eind = 0 and so i = VBR• The current flows down through the bar across the tracks

2 Lorentz Force: compute force

• A current flowing through a wire in the presence of amagnetic field induces a force on the wire

• This force is F = i`B to the right

3 Newton’s 2nd Law: compute acceleration

• The bar will accelerate to the right (due to Newton’s Law)• The velocity of the bar begins to increase

4 Faraday’s Law: compute induced voltage

• A voltage appears across the bar which is given byeind = vB`

• This voltage reduces the current in the bar due toKirchoff’s Law (back to step 1!)

Chapman 5th ed, pg 36-41

68 / 412

Page 69: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (5/12)

Starting at no load cont.

Given below is the linear DC motor under starting conditions and noload.

Chapman 5th ed, pg 36-41

69 / 412

Page 70: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (6/12)

Starting at no load cont.

• The result of this action is that the bar will eventually reach aconstant steady-state speed where the net force on the bar is zero

• This will occur when eind has risen all the way up to equal thevoltage VB

• At this time, the bar will be moving at a speed given by

VB = eind = vss B`, and so vss = VBB`

• The bar will continue to coast along at this no-load speed foreverunless some external force disturbs it (Newton’s first law ofmotion)

• This is precisely the behavior observed in real motors on starting

• On the next slide, we show the velocity v , induced voltage eind

and induced force Find , from when the motor is started till itstarts running at no-load steady-state

Chapman 5th ed, pg 36-41

70 / 412

Page 71: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (7/12)

Starting at no load cont.

Chapman 5th ed, pg 36-41

71 / 412

Page 72: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (8/12)

Applying an external load

• Assume that the linear DC motor is initially running at theno-load steady-state conditions described previously

• What will happen to this motor if an external load is applied to it?

• Examine the figure below where the load is applied to the baropposite to the direction of motion

• Since the bar was initially moving with steady state velocity,application of the force Fload will result in a net force on the bar inthe direction opposite the direction of motion (Fnet = Fload −Find )

• The effect of this force will be to slow the bar

Chapman 5th ed, pg 36-41

72 / 412

Page 73: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (9/12)

Applying an external load cont.

• But just as soon as the bar begins to slow down, the inducedvoltage on the bar drops

• As the induced voltage decreases, the current flow in the bar rises

• Therefore the induced force rises too

• The overall result of this chain of events is that the induced forcerises until it is equal and opposite to the load force, and the baragain travels in steady state, but at a slower speed

• On the next slide, we show the velocity v , induced voltage eind

and induced force Find , from when a load is attached to a motorrunning at steady state, and compare with starting at no load

Chapman 5th ed, pg 36-41

73 / 412

Page 74: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (10/12)

Applying an external load cont.

Chapman 5th ed, pg 36-41

74 / 412

Page 75: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (11/12)

Applying an external load cont.

• A question that can come to mind is, why is the steady statevelocity slower than before?

• Remember that the force that the motor must supply hasincreased, and since power P is a product of induced force Find

and velocity v , the velocity must decrease

• The power consumed by the bar is eind i

• This power is converted to Find v

• Therefore, Pconv = eind i = Find v

Chapman 5th ed, pg 36-41

75 / 412

Page 76: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC Motor (12/12)

Construction

https://www.youtube.com/watch?v=o_VjkUTZQXg

76 / 412

Page 77: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC generator (1/2)

Operation

• Once again, consider the Linear DC machine initially running atno-load steady-state conditions

• Now, what will happen if we apply a force in the direction ofmotion to it?

• See the figure below

• Fapp is applied to the bar in the direction of motion

Chapman, pg 41

77 / 412

Page 78: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Linear DC generator (2/2)

Operation cont.

1 Increasing velocity and voltage Since the bar was initially atsteady state, application of the force Fapp will result in a net forceon the bar in the direction of motion Fnet = Fapp − Find . Theeffect of this force will be to speed up the bar causing the inducedvoltage eind to increase and become more than VB .

2 Increasing reverse current and force As the induced voltageincreases, the current i starts to increase in the reverse direction.This creates an increasing induced force to the left.

New steady state (faster constant velocity) The overall result of this

chain of events is that the induced force increases till it is equal and

opposite to the applied force and the bar again travels in steady state,

but at a faster speed

78 / 412

Page 79: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (1/86)

Introduction

• A very simple motor can be made from two permanent magnets,one static, one able to rotate, and the interaction of thesemagnets creates rotation

• But there is a problem here, the rotating magnet will not rotate ifits north pole is aligned with the stationary magnet’s south pole

• So, we need to keep changing polarities of the rotating magnet, aprocess called commutation

commutation

commutation

79 / 412

Page 80: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (2/86)

Introduction cont.

• How to change polarities, i.e, how to do commutation?

• Well, first of all, make the rotating magnet an electromagnet sowe have control over its polarities

• Now, there are 2 ways of changing polarities of the electromagnet

1 Mechanical commutation: This gives us a brushed DCmotor

2 Electrical commutation: This gives us a brushless DC motor(BLDC)

• This gives us the simplest DC motor

• Simplest DC motor: consists of one permanent magnet and one

electromagnet

• The permanent magnet produces a uniform magnetic field• The electromagnet is made from a simple DC current

carrying loop• Let us see a couple of animations of this before getting into

the mathematics and explanation

80 / 412

Page 81: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (3/86)

Definitions

• Mechanical

• Rotor: The rotating part of the motor.• Stator: The stationary part of the motor.

• Electrical

• Armature: The power-producing component of the motor.The armature can be on either the rotor or the stator.

• Field: The magnetic field component of the motor. Thefield can be on either the rotor or the stator and can beeither an electromagnet or a permanent magnet.

• For a brushed DC motor, the armature is on the rotor and thefield is on the stator

• The armature circuit is represented by an ideal voltage source EA

(also written as eind ) and a resistor RA.

• This representation is really the Thevenin equivalent of the entirerotor structure, including rotor coils, interpoles, and compensatingwindings, if present.

http://en.wikipedia.org/wiki/Armature_(electrical_engineering)

Chapman 5th ed, pg 467

81 / 412

Page 82: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (4/86)

Definitions cont.

• The distortion of the flux in a machine as the load is increased iscalled armature reaction.

• To take care of this, compensating windings are connected inseries with the rotor windings, so that whenever the load changesin the rotor, the current in the compensating windings changes,too

Chapman 5th ed, pg 433 (armature reaction), 443 (compensating windings)

82 / 412

Page 83: Slides electromechanical

Brushed DC Motor (5/86)

Single rotating loop in uniform magnetic field (1/15)

http://web.ncf.ca/ch865/englishdescr/DCElectricMotor.html ,

83 / 412

Page 84: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (6/86)

Single rotating loop in uniform magnetic field (2/15)

• On the previous animation, the method of connecting the wire tothe commutator is not shown

• This is done through brushes

• On the next slide, we look at another animation to get a betterfeel for how a DC current carrying loop placed in a magnetic fieldworks

• This animation clearly shows brushes

84 / 412

Page 85: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (7/86)

Single rotating loop in uniform magnetic field (3/15)

https:

//nationalmaglab.org/education/magnet-academy/watch-play/interactive/dc-motor

85 / 412

Page 86: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (8/86)

Single rotating loop in uniform magnetic field (4/15)

• The Lorentz force is given by F = i(`× B)

• The direction of ` defined to be in the direction of current flow

• The direction of the force is given by the right hand rule

• Note that there is zero force on the wire sides that are parallel tothe magnetic flux B

• When the loop is in the horizontal position, current flow isstopped and it tips over using its momentum

Chapman 5th ed, pg 156

86 / 412

Page 87: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (9/86)

Single rotating loop in uniform magnetic field (5/15)

• The figure below shows a simple DC motor consisting of a largestationary magnet producing an essentially constant and uniformmagnetic field B and a DC current carrying loop of wire abcdplaced within that field.

• The rotating part of the motor, the loop, is called the rotor.

• The stationary part of the machine, the stationary magnet, iscalled the stator.

Chapman 5th ed, pg 156

87 / 412

Page 88: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (10/86)

Single rotating loop in uniform magnetic field (6/15)

• The magnetic field B always points to the right and is in theplane of the paper

• Segments ab and cd are always out of the plane of the page andare perpendicular to B

• Segments bc and da are always in the plane of the page and arecontinuously changing angles with B

Chapman 5th ed, pg 156

88 / 412

Page 89: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (11/86)

Single rotating loop in uniform magnetic field (7/15)

Segment ab

• Lorentz force F = i(`× B)

• The angle between ` and B is always 90 deg• The induced force is Fab = i`B down

• Torque τ = r × F

• The angle between r and F changes between 0 and 90 deg• The induced torque τab = ri`B sin(θab) clockwise

Chapman 5th ed, pg 156-160

89 / 412

Page 90: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (12/86)

Single rotating loop in uniform magnetic field (8/15)

Segment bc

• Lorentz force F = i(`× B)

• In this segment, the angle between ` and B changesbetween 0 and 180 deg

• The induced force is Fbc = i`B into the page

• Torque τ = r × F

• The angle between r and F is always 0 deg• The induced torque τbc = 0

Chapman 5th ed, pg 156-160

90 / 412

Page 91: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (13/86)

Single rotating loop in uniform magnetic field (9/15)

Segment cd

• Lorentz force F = i(`× B)

• The induced force is Fcd = i`B up.• The angle between ` and B is always 90 deg

• Torque τ = r × F

• The angle between r and F changes between 0 and 90 deg• The induced torque τcd = ri`B sin(θcd ) clockwise

Chapman 5th ed, pg 156-160

91 / 412

Page 92: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (14/86)

Single rotating loop in uniform magnetic field (10/15)

Segment da

• Lorentz force F = i(`× B)

• In this segment, the angle between ` and B changesbetween 0 and 180 deg

• The induced force is Fda = i`B out of the page.

• Torque τ = r × F

• The angle between r and F is always 0 deg• The induced torque τda = 0

Chapman 5th ed, pg 156-160

92 / 412

Page 93: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (15/86)

Single rotating loop in uniform magnetic field (11/15)

• Torque is only produced by segments ab and cd

• θab = θcd = θ

• The total induced torque is τind = 2ri`B sin θ

• Notice that the torque is maximum when the plane of the loop isparallel to the magnetic field, and the torque is 0 when the planeof the loop is perpendicular to the magnetic field

• Given below is the variation of torque as the loop rotates

Chapman 5th ed, pg 156-160

93 / 412

Page 94: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (16/86)

Single rotating loop in uniform magnetic field (12/15)

Define Bloop = µiG, G depends on the geometry of the loop

⇒ i =Bloop G

µ

τind = 2r i`Bs sin θ B=Bs (s for stator) to distinguish from Bloop

= 2rBloop G

µ`Bs sin θ Substitute i =

Bloop G

µ

= AGµ

BloopBs sin θ Substitute A = 2r` is the area of the loop

= kBloopBs sin θ k depends on the construction of the machine

= kBloop × Bs

• θab=θcd =θ is also the angle between Bloop and Bs

Chapman 5th ed, pg 156-160

94 / 412

Page 95: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (17/86)

Single rotating loop in uniform magnetic field (13/15)

τind = kBloop × Bs

• This produces a torque vector into the page, indicating that thetorque is clockwise, with the magnitude given by kBloopBs sin θ

• Thus, the torque produced in the loop is proportional to

• The strength of the loop’s magnetic field• The strength of the external magnetic field• The sine of the angle between them• A constant representing the construction of the machine

(geometry, etc.)

Chapman 5th ed, pg 156-160

95 / 412

Page 96: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (18/86)

Single rotating loop in uniform magnetic field (14/15)

• Now, mapping our newly created Bloop onto segments ab and cd ,shown in the left and right figures below

Chapman 5th ed, pg 156-160

96 / 412

Page 97: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (19/86)

Single rotating loop in uniform magnetic field (15/15)

• τind = kBloop × Bs

• τind is directed into the plane of the paper, i.e., the torqueis clockwise

• The torque induced in the loop is proportional to thestrength of the loop’s magnetic field, the strength of theexternal magnetic field, and the sine of the angle betweenthem

• This equation also shows that if there are 2 magnetic fieldspresent in a machine, a torque will be created that will tendto line up the magnetic fields

• The torque therefore depends on

1 Rotor magnetic field2 Stator magnetic field3 Sine of the angle between them4 A constant representing the construction of the machine

(geometry etc.)

Chapman 5th ed, pg 156-160

97 / 412

Page 98: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (20/86)

Single rotating loop in magnetic field generated bycurved pole faces(1/3)

• The loop of rotor wire lies in a slot carved in a ferromagnetic core• The iron rotor, together with the curved shape of the pole faces,

provides a constant-width air gap between the rotor and stator• The reluctance of air is much higher than the reluctance of the

iron in the machine

Chapman 5th ed, pg 411-413

98 / 412

Page 99: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (21/86)

Single rotating loop in magnetic field generated bycurved pole faces(2/3)

• To minimize the reluctance of the flux path through the machine,the magnetic flux must take the shortes t possible path throughthe alr between the pole face and the rotor surface

• Since the magnetic flux must take the shortest path through theair, it is per- pendicular to the rotor surface everywhere under thepole faces

• Also, since the air gap is of uniform width, the reluctance is thesame everywhere under the pole faces

• The uniform reluctance means that the magnetic flux density isconstant everywhere under the pole faces

Chapman 5th ed, pg 411-413

99 / 412

Page 100: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (22/86)

Single rotating loop in magnetic field generated bycurved pole faces(3/3)

• As before, the torque is τind = 2ri`B sin θ = 2ri`B, since θ = 90o

• Since there are two poles, the area of the rotor under each pole(ignoring the small gaps between poles) is Ap = πrl

• Therefore, φ = BAp

• We can therefore rewrite τind = 2π

Ap iB = 2πφi

• Thus, the torque produced in the machine is the product of theflux in the machine and the current in the machine, times somequantity representing the me- chanical construction of themachine (the percentage of the rotor covered by pole faces)

• In general, the torque in any real machine will depend on th e

same three factors:

1 The flux in the machine2 The current in the machine3 A constant representing the construction of the machine

Chapman 5th ed, pg 411-413

100 / 412

Page 101: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (23/86)

Working

http://www.learnengineering.org/2014/09/DC-motor-Working.html

101 / 412

Page 102: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (24/86)

Types

1 Separately excited (pg 468)

• Field circuit is supplied from a separate constant-voltagepower supply

2 Shunt (parallel) (pg 469)

• Field circuit gets its power directly across the armatureterminals

3 Series (pg 493)

• Field windings consist of a relatively few turns connected inseries with the armature circuit

4 Compound (pg 500)

• A motor with both a shunt and series field

5 Permanent magnet (pg 491)

• Field comes from a permanent magnet rather than a circuit

Chapman 5th ed, pg 468-469

102 / 412

Page 103: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (25/86)

Type # 1: Separately excited

• The equivalent circuit of a DC motor is given below• In this figure, the armature circuit is represented by an ideal

voltage source EA and a resistor RA

• The brush voltage drop is represented by a small battery Vbrush

opposing the direction of current flow in the circuit• The field coils, which produce the magnetic flux, are represented

by inductor LF and resistor RF

• The separate resistor Radj represents an external variable resistorused to control the amount of current in the field circuit

Chapman 5th ed, pg 467-469

103 / 412

Page 104: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (26/86)

Type # 1: Separately excited cont.

• There are a few variations and simplifications of the basicequivalent circuit

• The brush drop voltage is often small, and therefore in caseswhere it is not too critical, the brush drop voltage may be left outor approximately included in the value of RA

• Also, the internal resistance of the field coils is sometimes lumpedtogether with the variable resistor, and the total is called RF

Chapman 5th ed, pg 467-469

104 / 412

Page 105: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (27/86)

Type # 1: Separately excited cont.

So, there are 4 equations required to analyze a DC motor:

1 KVL, IA = VT−EARA

2 The induced torque τind = KφIA

3 The internally generated voltage EA = Kφω

4 The magnetization curve relates EA with the field current IF

1.

2.

Armature

4. Magnetization curve

Relation betweenfield circuit andarmature circuit

3.

Chapman 5th ed, pg 467-469

105 / 412

Page 106: Slides electromechanical

Brushed DC Motor (28/86)

Type # 1: Separately excited cont.

ampere-turns

webers

Magnetization curve of a ferromagnetic material Magnetization curve of a DC motor

Chapman 5th ed, pg 467-469 ,

106 / 412

Page 107: Slides electromechanical

Brushed DC Motor (29/86)

Type # 1: Separately excited cont.

ampere-turns

webers

Magnetization curve of a ferromagnetic material Magnetization curve of a DC motor (3D)

Chapman 5th ed, pg 467-469 ,

107 / 412

Page 108: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (30/86)

Type # 1: Separately excited cont.

So, how can we use the magnetization curve?

• IF → φ

• If I change my field current IF by a certain ratio, the ratiowith which the resulting flux φ changes is linear up to acertain point before saturation sets in

• Using the magnetization curve, if I know the ratio withwhich IF changes, I can find the ratio with which the flux φchanges despite the non-linearity due to saturation

• So, for IF 1 and IF 2, read the corresponding EA1 and EA2

from the magnetization curve• Remember that the magnetization curve is given for a fixed

value of ω• Then,

EA1EA2

= Kφ1ωKφ2ω

⇒ φ1φ2

=EA1EA2

• This idea is used in Example 8.3

Chapman 5th ed, pg 467-469

108 / 412

Page 109: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (31/86)

Type # 2: Shunt

• In a separately excited motor, two power supplies are used,

1 VF to supply the field circuit2 VT to supply the armature circuit

• If only one power supply is used for both field and armaturecircuits, we get a shunt DC motor

Therefore,a shunt DC motor is equivalent to aseparately excited DC motor,as long as VF = VT

Chapman 5th ed, pg 469-491

109 / 412

Page 110: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (32/86)

Type # 2: Shunt cont.

Chapman 5th ed, pg 469-491

110 / 412

Page 111: Slides electromechanical

Brushed DC Motor (33/86)

Type # 2: Shunt cont.

Motor winding on left and terminal characteristics on right

+

-

+ -

http://www.learnengineering.org/2014/09/DC-motor-Working.html ,

111 / 412

Page 112: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (34/86)

Type # 2: Shunt cont.

• The voltage supplied by the user, VT , which is constant in most

cases and is parallel to VF , is used for the generation of 2 kinds of

currents:

1 Stator: Field current IF which generates a magnetic fieldφF .

2 Rotor: Armature current IA which generates a magneticfield whose interaction with φF causes the rotor to rotate,in turn inducing a voltage EA

• Therefore, the current supplied by the user, the load current, canbe given by IL = IF + IA

Chapman 5th ed, pg 469-491

112 / 412

Page 113: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (35/86)

Type # 2: Shunt cont.

• How does a shunt dc motor respond to a load?

• Suppose that the load on the shaft of a shunt motor is increased

• Step 2: Then, the load torque τload will exceed induced torqueτind = KφIA

• Step 3: The motor will start to slow down

• Step 4: When the motor slows down, its internal generatedvoltage EA = Kφω drops

• Step 1: This causes the armature current to increase, sinceVT = EA + IARA

• Step 2: As the armature current increases, so does the inducedtorque until it equals the load torque at a lower mechanical speedof rotation

Chapman 5th ed, pg 469-491

113 / 412

Page 114: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (36/86)

Type # 2: Shunt cont.

• For a motor, the output quantities are shaft torqueand speed

• Therefore, the terminal characteristic of a motor is a plot of itsoutput torque versus speed

VT = EA + IARA

= Kφωm + τindKφ

RA

⇒ ωm = VTKφ

− RA(Kφ)2 τind

• This equation is just a straight line with a negative slope

Chapman 5th ed, pg 469-491

114 / 412

Page 115: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (37/86)

Type # 2: Shunt cont.

Speed control can be achieved by

1 Adjusting the field resistance RF and thus the field flux

2 Adjusting the terminal voltage applied to the armature

3 Inserting a resistor in series with the armature circuit (lesscommon)

Chapman 5th ed, pg 469-491

115 / 412

Page 116: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (38/86)

Type # 3: Series

• A series DC motor is a DC motor whose field windings consist ofa relatively few turns connected in series with the armature circuit

• The equivalent circuit is shown below

• Armature current, field current and line current are the same

• KVL isVT = EA + IA(RA + RS )

Chapman 5th ed, pg 493-499

116 / 412

Page 117: Slides electromechanical

Brushed DC Motor (39/86)

Type # 3: Series cont.

Motor winding on left and terminal characteristics on right

http://www.learnengineering.org/2014/09/DC-motor-Working.html ,

117 / 412

Page 118: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (40/86)

Type # 3: Series cont.

• The terminal characteristics of a series DC motor is very differentfrom that of the shunt motor

• The basic behavior of a series DC motor is due to the fact thatthe field flux is directly proportional to the armature current(φ ∝ IA), at least until saturation is reached

• As the load on the motor increases, its armature current increases,and so does the field flux

• An increase in flux decreases the speed of the motor

• So we have a ”double drop” in velocity

• Therefore, a series DC motor has a sharply drooping torque-speedcharacteristic

Chapman 5th ed, pg 493-499

118 / 412

Page 119: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (41/86)

Type # 3: Series cont.

• The equations are

τind = KφIAφ = cIA

⇒ τind = KcIA2

• Since torque is directly proportional to the armature currentsquared, the series DC motor gives more torque per ampere thanany other DC motor

• It is therefore used in applications requiring very high torque

• Examples of such applications are the starter motors in cars,elevator motors, and tractor motors in locomotives

Chapman 5th ed, pg 493-499

119 / 412

Page 120: Slides electromechanical

Brushed DC Motor (42/86)

Type # 3: Series cont.

• To determine the terminal characteristics of a series DC motor, an analysis will becarried out based on the assumption of a linear magnetization curve

• In a magnetization curve, we plot φ vs IF , but since IA = IF , it is a plot of φ vs IA, implyingthat φ = cIA

• As shown earlier,τind = KcIA

2 (but IA = φc)

= Kcφ2

⇒ φ =√

cK

√τind

• The KVL equation is,

VT = EA + IA(RA + RS )

= Kφω +√τindKc

(RA + RS )

= K√

cK

√τindω +

√τindKc

(RA + RS )

VT −√τindKc

(RA + RS ) =√

Kc√τindω

⇒ ω = VT√Kc√τind− RA+RS

Kc

• A problem here is that if τind = 0, then its speed goes to ∞

Chapman 5th ed, pg 493-499 ,

120 / 412

Page 121: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (43/86)

Type # 3: Series cont.

• In practice, the torque can never go to zero because of themechanical, core and stray losses that must be overcome

• However, if no other load is connected to the motor, it can turnfast enough to seriously damage itself

• Never completely unload a series motor, and never connect one toa load by a belt or other mechanism that could break

• If that were to happen, and the motor were to become unloadedwhile running, the results could be serious

Chapman 5th ed, pg 493-499

121 / 412

Page 122: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (44/86)

Type # 3: Series cont.

• Unlike with the shunt DC motor, there is only one efficient way tochange the speed of a series DC motor

• This method is to change the terminal voltage of the motor

• If the terminal voltage is increased, the first term in

ω = VT√Kc√τind− RA+RS

Kcincreases, resulting in a higher speed for

any given torque

• Until the last 40 years or so, there was no convenient way tochange VT , so the only method of speed control available was thewasteful series resistance method

• That has all changed today with the introduction of solid-statecontrol circuits

Chapman 5th ed, pg 493-499

122 / 412

Page 123: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (45/86)

Type # 4: Compound

• A compounded DC motor has both a shunt (parallel) and a seriesfield

• There are 2 ways to connect this motor, long shunt and shortshunt

• So, there are 2 field coils and one armature coil

• If the mmf of the shunt field coil enhances the mmf of the seriesfield coil, the situation is called cumulative compounding

• If the mmf of the shunt field coil diminshes the mmf of the seriesfield coil, the situation is called differential compounding

• The advantage of this motor is that it combines the speedregulation of a shunt motor with the high starting torque of aseries motor

Chapman 5th ed, pg 500-505

123 / 412

Page 124: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (46/86)

Type # 4: Compound: long shunt

Chapman 5th ed, pg 500-505http://www.electrical4u.com/compound-wound-dc-motor-or-dc-compound-motor/

124 / 412

Page 125: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (47/86)

Type # 4: Compound: short shunt

Chapman 5th ed, pg 500-505http://www.electrical4u.com/compound-wound-dc-motor-or-dc-compound-motor/

125 / 412

Page 126: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (48/86)

Type # 5: Permanent magnet

http://autosystempro.com/tag/motor/

126 / 412

Page 127: Slides electromechanical

Brushed DC Motor (49/86)

Comparison of equivalent circuits

3. SERIES

2. SHUNT1. SEPARATELY EXCITED

5a. COMPOUNDED(cumulatively)

5b. COMPOUNDED(differentially)

t

4. PERMANENT MAGNET

,

127 / 412

Page 128: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (50/86)

Power flow and losses

Chapman 5th ed, pg 455-457

128 / 412

Page 129: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (51/86)

Efficiency

Chapman 5th ed, pg 524-526

129 / 412

Page 130: Slides electromechanical

Brushed DC Motor (52/86)

Modeling

Dorf pg 63-65 ,

130 / 412

Page 131: Slides electromechanical

Brushed DC Motor (53/86)

Modeling cont.

Laplace Domain

1

2

plug I(s) from eqn 1 into eqn 2+

-

+

-

angular velocity (rad/sec) multiply by 60/2pi to go to rpm

angular distance (rad)

Typical values are:R: electric resistance 1 OhmL: electric inductance 0.5 HJ: moment of inertia of the rotor 0.01 kg.m^2b: motor viscous friction constant 0.1 N.m.sKb: electromotive force constant 0.01 V/rad/secKm: motor torque constant 0.01 N.m/AmpGiving:

1

2motor torqueload torque

back emfarmature voltage

Time Domain

1

2

differential equations

state space

Dorf uses va, ia, Ra, La, while we use v, i, R, L for armature values

Dorf pg 63-65, http://ctms.engin.umich.edu/CTMS/index.php ,

131 / 412

Page 132: Slides electromechanical

Brushed DC Motor (54/86)

Modeling cont.

Laplace Domain

1

2

plug I(s) from eqn 1 into eqn 2+

-

+

-

angular velocity (rad/sec) multiply by 60/2pi to go to rpm

angular distance (rad)

Typical values are:R: electric resistance 1 OhmL: electric inductance 0.5 HJ: moment of inertia of the rotor 0.01 kg.m^2b: motor viscous friction constant 0.1 N.m.sKb: electromotive force constant 0.01 V/rad/secKm: motor torque constant 0.01 N.m/AmpGiving:

1

2motor torqueload torque

back emfarmature voltage

Time Domain

1

2

differential equations

state space

Dorf uses va, ia, Ra, La, while we use v, i, R, L for armature values

Dorf pg 63-65, http://ctms.engin.umich.edu/CTMS/index.php ,

132 / 412

Page 133: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (55/86)

Modeling cont.

In z domain, the open loop transfer function of a DC motoris given by,

G(z) = Z

G0(s)Gp(s)

= Z(

1−e−sT

s

)(2

s2+12s+20.02

)

= (1− z−1)Z

2s3+12s2+20.02s

= (1− z−1)Z

0.0999s− 0.1249

s+2.0025+ 0.025

s+9.9975

= (1− z−1)

0.09991−z−1 − 0.1249

1−e−2.0025T z−1 + 0.0251−e−9.9975T z−1

= 0.0999− 0.1249(1−z−1)

1−e−2.0025T z−1 + 0.025(1−z−1)

1−e−9.9975T z−1

133 / 412

Page 134: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (56/86)

Modeling cont.

[x1

x2

]=

[−R/L −Kb/LKm/J −b/J

] [x1

x2

]+

[1/L

0

]v

⇒[

x1

x2

]=

[−2 −0.021 −10

] [x1

x2

]+

[20

]v

y =[0 1

] [x1

x2

]

134 / 412

Page 135: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (57/86)

Modeling cont.

C(sI− A)−1B =[0 1

] [s + 2 0.02−1 s + 10

]−1 [20

]

=[0 1

]s + 10 1−0.02 s + 2

T

(s+2)(s+10)−(0.02)(−1)

[20

]

=[0 1

]s + 10 −0.02

1 s + 2

s2+12s+20.02

[20

]

=

[1 s − 2

]20

s2+12s+20.02

= 2s2+12s+20.02

135 / 412

Page 136: Slides electromechanical

Brushed DC Motor (58/86)

Modeling cont.

G1(s) =θ(s)

V(s)=

1

s

Km

[(Ls + R)(Js + b) + KbKm]

Gp(s) =θ(s)

V (s)=

Km

[(Ls + R)(Js + b) + KbKm]

Note that we have set Td (s) = 0 to compute G1(s) and Gp (s).

Dorf pg 64 ,

136 / 412

Page 137: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (59/86)

Modeling cont.

A motor can be represented simply as an integrator. Avoltage applied to the motor will cause rotation. Whenthe applied voltage is removed, the motor will stop andremain at its present output position. Since it does notreturn to its initial position, we have an angulardisplacement output without an input to the motor.See Nise pg 381 for a discussion on finding the transferfunction of a motor.See Nise pg 451 for a nice motor transfer functiondiagram.

Nise pg 343

137 / 412

Page 138: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (60/86)

Computing parameters

• A brushed DC motor has 6 parameters, but we have to measure 5:

1 Armature resistance Ra

2 Armature inductance La

3 Moment of inertia of the rotor J4 Viscous friction coefficient B5 Back emf constant Kb = Torque constant KT

• The first 4 parameters can be seen in the figure of the armaturebelow:

• The equation is given by ea = iaRa + Ladiadt

+ eb

• The input voltage is ea, the resultant current is ia and eb is theback EMF

https://www.coursehero.com/file/1801696/ge320Lab2/

138 / 412

Page 139: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (61/86)

Computing parameters cont.

Step 1. Find Ra

1 Original equation: ea = iaRa + Ladiadt

+ eb

2 Rotation: no, therefore eb = 0 since eb ∝ ω3 Response: steady state, therefore dia

dt= 0

4 Extra steps: none

5 New equation: ea = iaRa

6 Measure: ea, ia

Step 2. Find La

1 Original equation: ea = iaRa + Ladiadt

+ eb

2 Rotation: no, therefore eb = 0 since eb ∝ ω3 Response: transient

4 Extra steps: put a resistor Rs in series with the motor so that wecan then measure the voltage drop Vs across Rs to graphicallyobtain τ

5 New equation: ea = ia(Ra + Rs ) + Ladiadt⇒ τ = La

Ra+Rs

6 Measure: Vs (to get ia = Vs/Rs ) with time to get τ

https://www.coursehero.com/file/1801696/ge320Lab2/

139 / 412

Page 140: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (62/86)

Computing parameters cont.

Step 3. Find Kb (KT = Kb)

1 Original equation: ea = iaRa + Ladiadt

+ eb

2 Rotation: yes

3 Response: steady state, therefore diadt

= 0

4 Extra steps: none

5 New equation: ea = iaRa + Kbω

6 Measure: ea, ia, ω

Step 4. Find B

1 Original equation: Tm = KT ia = J dωdt

+ Bω

2 Rotation: yes

3 Response: steady state, so dωdt

= 0

4 Extra steps: none

5 New equation: KT ia = Bω

6 Measure: ia, ω

https://www.coursehero.com/file/1801696/ge320Lab2/

140 / 412

Page 141: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (63/86)

Computing parameters cont.

Step 5. Find J

1 Original equation: Tm = KT ia = J dωdt

+ Bω

2 Rotation: yes

3 Response: transient

4 Extra steps: cut current so that ia = 0

5 New equation: 0 = J dωdt

+ Bω ⇒ τ = JB

6 Measure: ω with time to get τ

https://www.coursehero.com/file/1801696/ge320Lab2/

141 / 412

Page 142: Slides electromechanical

Brushed DC Motor (64/86)

Construction: brushes but no commutator

https://www.youtube.com/watch?v=WKklyuzghQg ,

142 / 412

Page 143: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (65/86)

Construction in IE workshop at CAE

• Basic structure

143 / 412

Page 144: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (66/86)

Construction in IE workshop at CAE

• Basic structure

144 / 412

Page 145: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (67/86)

Construction (Porter Cable 690 Router motor)

• This is the serviceable portion of the brush assembly.

• The unit consists of a graphite brush and integral spring assembly.

• Observe the curvature of the brush where it mates with themotor’s commutator.

• Also notice there is plenty of length remaining in this brush, somany more years of service may be expected from this brush.

http://www.ncwoodworker.net/forums/content.php?r=

33-Brush-Inspection-and-Maintenance-for-Universal-Motors

145 / 412

Page 146: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (68/86)

Construction (Porter Cable 690 Router motor)

• Notice the smooth face where the brush mates with the motor’scommutator.

• A little bit of wear along the trailing edge can be seen, but this istypical of normal wear.

• A brush in good condition will look much like this brush – smoothfaces, plenty of length, and no signs of abnormal wear, arcing orpitting

http://www.ncwoodworker.net/forums/content.php?r=

33-Brush-Inspection-and-Maintenance-for-Universal-Motors

146 / 412

Page 147: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (69/86)

Construction (Porter Cable 690 Router motor)

• The photo below shows the brush housing (brass housing at left),the graphite brush (center, just visible between brush housing andmotor commutator), and the motor commutator (the circulararray of copper conduction strips).

http://www.ncwoodworker.net/forums/content.php?r=

33-Brush-Inspection-and-Maintenance-for-Universal-Motors

147 / 412

Page 148: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (70/86)

Construction (Porter Cable 690 Router motor)

• Notice how intimately the brush and commutator mate with oneanother, indicative of a well seated brush.

• Also notice no obvious damage, pitting, or overheating in thecommutator (the copper strips).

http://www.ncwoodworker.net/forums/content.php?r=

33-Brush-Inspection-and-Maintenance-for-Universal-Motors

148 / 412

Page 149: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (71/86)

Construction (Porter Cable 690 Router motor)

• The blackening is normal and is residue from the graphite brush –it also provides lubrication between the brush and commutator.

http://www.ncwoodworker.net/forums/content.php?r=

33-Brush-Inspection-and-Maintenance-for-Universal-Motors

149 / 412

Page 150: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (72/86)

Construction (Porter Cable 690 Router motor)

• A view from another angle of brush housing, brush, andcommutator.

• Also visible in the background are the motor windings.

http://www.ncwoodworker.net/forums/content.php?r=

33-Brush-Inspection-and-Maintenance-for-Universal-Motors

150 / 412

Page 151: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (73/86)

Construction: rotor windings

• Three ways to classify1 connection (need a better word!)

• progressive• retrogressive

2 plex• simplex• duplex• triplex• multiplex

3 sequence• lap• wave• frog-leg

Chapman, pg 492

151 / 412

Page 152: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (74/86)

Construction: Wave winding

http://www.sciencedirect.com/science/article/pii/S0736584512000828

152 / 412

Page 153: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (75/86)

Construction: Wave winding

http://www.gotwind.org/forum/viewtopic.php?t=3545

153 / 412

Page 154: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (76/86)

Construction: Lap vs Wave winding

http://www.tpub.com/neets/book5/15g.htm

154 / 412

Page 155: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (77/86)

Construction: Lap vs Wave winding

• Lap winding• Advantage: If high current is required, it can be

split among several paths, so the size of individualrotor conductors remains reasonable

• Disadvantage: A very tiny imbalance among thevoltages in the parallel paths will cause largecirculating currents through the brushes andpotentially serious heating problems

• Wave (series) winding• Advantage: Can be used to build high-voltage DC

machines• Disadvantage:

Chapman, pg 493

155 / 412

Page 156: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (78/86)

Construction: Winding table

http://forumrc.alexba.eu/nutpol e.htm

156 / 412

Page 157: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (79/86)

Construction: Commutator

http://encyclopedia2.thefreedictionary.com/Commutation

157 / 412

Page 158: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (80/86)

Construction: Commutator

http://www.daviddarling.info/encyclopedia/C/commutator.html

158 / 412

Page 159: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (81/86)

Construction: Commutator (clean)

http://homerecording.com/bbs/general-discussions/analog-only/reel-motors-tascam-34b-grind-halt-296058/

159 / 412

Page 160: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (82/86)

Construction: Commutator (dirty)

http://homerecording.com/bbs/general-discussions/analog-only/reel-motors-tascam-34b-grind-halt-296058/

160 / 412

Page 161: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (83/86)

Construction: Commutator

http://mrmackenzie.co.uk/category/standard-grade/using-electricity/

161 / 412

Page 162: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (84/86)

Construction: Commutator

http://www.rctech.net/forum/rookie-zone/522906-boosted.html

162 / 412

Page 163: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Motor (85/86)

Construction: Commutator

http://www.answers.com/topic/commutator

163 / 412

Page 164: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (1/10)

Single rotating loop in uniform magnetic field (1/7)

• This is the simplest possible machine that produces a sinusoidal

ac voltage (and dc voltage with a commutator installed)

• This case is not representative of real ac machines, sincethe flux in real ac machines is not constant in eithermagnitude or direction

• However, the factors that control the voltage and torque onthe loop will be the same as the factors that control thevoltage and torque in real ac machines

Chapman, pg 230-238

164 / 412

Page 165: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (2/10)

Single rotating loop in uniform magnetic field (2/7)

• The figure below shows a simple generator consisting of a largestationary magnet producing an essentially constant and uniformmagnetic field and a rotating loop of wire within that field.

• The rotating part of the machine is called the rotor.

• The stationary part of the machine is called the stator.

Chapman 5th ed, pg 153

165 / 412

Page 166: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (3/10)

Single rotating loop in uniform magnetic field (3/7)

• e = (v × B).`

166 / 412

Page 167: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (4/10)

Single rotating loop in uniform magnetic field (4/7)

• (v × B)

• The magnetic field B always points to the right and is inthe plane of the paper

• The velocity v takes on every possible direction incounter-clockwise direction for all segments and is always inthe plane of the page

• v × B is therefore always out of the plane of the page

• (v × B).`

• Segments ab and cd are always out of the plane of the pageand so voltage is induced in them

• Segments bc and da are always in the plane of the page andso voltage is not induced in them

167 / 412

Page 168: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (5/10)

Single rotating loop in uniform magnetic field (5/7)

1 Induced voltage for segments in the plane of the page

1 Segment ab: eba = vB` sin(θab) into the page2 Segment cd: edc = vB` sin(180o − θcd ) =vB` sin(θcd ) out of the

page

2 Induced voltage for segments out of the plane of the page

1 Segment bc: ebc = 02 Segment da: eda = 0

168 / 412

Page 169: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (6/10)

Single rotating loop in uniform magnetic field (6/7)

• Since both induced emfs reinforce each other, the total inducedvoltage eind = 2vB` sin θ

169 / 412

Page 170: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (7/10)

Single rotating loop in uniform magnetic field (7/7)

• eind = 2vB` sin θ

• θ = ωt• v = rω (r is the radius of rotation)

• eind = 2rωB` sin(ωt)

• A = 2r` (area of the loop)

• eind = ABω sin(ωt)

• φmax = AB (maximum flux)

• eind = φmaxω sin(ωt)

• Therefore, the induced voltage is sinusoidal, and dependson the flux and the speed of rotation

170 / 412

Page 171: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (8/10)

Single rotating loop in magnetic field generated bycurved pole faces (1/3)

• Single loop of wire rotating about a fixed axis

• If the rotor is rotated, a voltage will be induced in the wire loop

given by Faraday’s Law

Chapman 5th ed, pg 411-413

171 / 412

Page 172: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (9/10)

Single rotating loop in magnetic field generated bycurved pole faces (2/3)

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motorac.html

172 / 412

Page 173: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushed DC Generator (10/10)

Single rotating loop in magnetic field generated bycurved pole faces (3/3)

This is the same as a single rotating loop in a uniformmagnetic field for the DC motor case except that the commutator isreplaced with slip rings

Chapman 5th ed, pg 156-160

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motorac.html

173 / 412

Page 174: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

3φ Synchronous & Induction AC motorsRotating magnetic field (1/7)

• In a current carrying loop placed in a magnetic field,τind = kBloop × Bs

• This equation shows that if there are 2 magnetic fields present ina machine, a torque will be created that will tend to line up themagnetic fields

• If one magnetic field is produced by the stator of an ac machine,and the other one is produced by the rotor of the machine, then atorque will be induced in the rotor which will cause the rotor toturn and align itself with the stator magnetic field

Chapman 5th ed, pg 160-169

174 / 412174 / 412

Page 175: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

3φ Synchronous & Induction AC motorsRotating magnetic field (2/7)

• If there were some way to make the stator magnetic field rotate,then the induced torque in the rotor would cause it to constantly”chase” the stator magnetic field around in a circle

• This in a nutshell, is the basic principle of all ac motor operation

• How can the stator magnetic field be made to rotate?

• The fundamental principle of ac machine operation is that if athree-phase set of currents, each of equal magnitude and differingin phase by 120o , flows in a three phase winding, then it willproduce a rotating magnetic field of constant magnitude

• The three-phase winding consists of three separate windingsspaced 120 electrical degrees apart around the surface of themachine

Chapman 5th ed, pg 160-169

175 / 412175 / 412

Page 176: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

3φ Synchronous & Induction AC motorsRotating magnetic field (3/7)

• The rotating magnetic field concept is illustrated inthe simplest case by an empty stator containing justthree coils, each 120o apart

• Since such a winding effectively produces only one north and onesouth pole, it is a two pole winding

• In the figure below, current• iaa(t) in coil aa flows into the a end and out of the a′ end• ibb(t) in coil bb flows into the b end and out of the b′ end• icc (t) in coil cc flows into the c end and out of the c ′ end

Chapman 5th ed, pg 160-169

176 / 412176 / 412

Page 177: Slides electromechanical

3φ Synchronous & Induction AC motorsRotating magnetic field (4/7)

• The orientation of the three coils in the previous figure can be visualized better in this figure• The three coils are placed 120o apart• Notice the resultant rotating magnetic field, shown by the green letters N and S

http://www.learnengineering.org/2013/08/

three-phase-induction-motor-working-squirrel-cage.html ,

177 / 412177 / 412

Page 178: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

3φ Synchronous & Induction AC motorsRotating magnetic field (5/7)

• The currents in the three coils are given by

iaa′ (t) = IM sin(ωt) Aibb′ (t) = IM sin(ωt − 120o ) Aicc′ (t) = IM sin(ωt − 240o ) A

• The magnetic field intensites are given as follows. The angles arespatial angles.

Haa′ (t) = HM sin(ωt)∠0o A.turns/mHbb′ (t) = HM sin(ωt − 120o )∠120o A.turns/mHcc′ (t) = HM sin(ωt − 240o )∠240o A.turns/m

Baa′ (t) = BM sin(ωt)∠0o TBbb′ (t) = BM sin(ωt − 120o )∠120o TBcc′ (t) = BM sin(ωt − 240o )∠240o T

• The magnetic flux densities are given by

Baa′ (t) = BM sin(ωt)∠0o TBbb′ (t) = BM sin(ωt − 120o )∠120o TBcc′ (t) = BM sin(ωt − 240o )∠240o T

Chapman 5th ed, pg 160-169

178 / 412178 / 412

Page 179: Slides electromechanical

3φ Synchronous & Induction AC motorsRotating magnetic field (6/7)

• We now compute the net magnetic flux density

Bnet (t) = Baa′ + Bbb′ + Bcc′

= BM sin(ωt)∠0o + BM sin(ωt − 120o )∠120o + BM sin(ωt − 240o )∠240o

= BM sin(ωt)x−0.5BM sin(ωt − 120o )x +

√3

2BM sin(ωt − 120o )y−

0.5BM sin(ωt − 240o )x−√

32

BM sin(ωt − 240o )y

=

(BM sin(ωt)− 0.5BM sin(ωt − 120o )− 0.5BM sin(ωt − 240o )

)x+(√

32

BM sin(ωt − 120o )−√

32

BM sin(ωt − 240o )

)y

= 1.5BM sin(ωt)x− 1.5BM cos(ωt)y

• The magnetic flux density is a constant 1.5BM and the angle changes continually in acounterclockwise direction at angular velocity ω.

Chapman 5th ed, pg 160-169 ,

179 / 412179 / 412

Page 180: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

3φ Synchronous & Induction AC motorsRotating magnetic field (7/7)

• The rotating magnetic field of the stator can be represented as anorth pole and a south pole

Chapman 5th ed, pg 160-169

180 / 412180 / 412

Page 181: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Simplest AC Motor (1/1)

Single rotating loop in uniform magnetic field

This is the same as a single rotating loop in a uniformmagnetic field for the DC motor case except that the commutator isreplaced with slip rings

Chapman 5th ed, pg 156-160

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motorac.html

181 / 412

Page 182: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsIntroduction

• Stator: Rotating magnetic field (created by 3-phase AC currents)

• Rotor: Fixed magnetic field (created by DC current)

Synchronous vs Induction motorStator sameRotor DC field vs no DC field on the rotor

• The basic principle of synchronous motor operation is that therotor ”chases” the rotating stator magnetic field around in acircle, never quite catching up with it

Chapman, pg 346

182 / 412

Page 183: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsOperation

• Given below is a 2-pole synchronous motor• The current in the stator produces a rotating

magnetic field BS• The current in the rotor produces magnetic field BR• Therefore, there are two magnetic fields present in the motor and

the rotor field will tend to line up with the stator field, just as twobar magnets will tend to line up if placed near each other

• Since the stator magnetic field is rotating, the rotor magnetic field(and the rotor itself) will constantly try to catch up

Chapman 5th ed, pg 272

183 / 412

Page 184: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsStarting

• The net starting torque is 0!

Chapman 5th ed, pg 290-297

184 / 412

Page 185: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsStarting

Three starting methods:

• Reduce the speed of the stator magnetic field.

• Use an external prime mover.

• Use amortisseur windings. This is by far the most popular way tostart a synchronous motor. Amortisseur windings are special barslaid into notches carved in the face of a synchronous motor’s rotorand then shorted out on each end by a large shorting ring.

Chapman 5th ed, pg 290-297http://en.wikipedia.org/wiki/Squirrel-cage_rotor

185 / 412

Page 186: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsStarting: amortisseur windings (squirrel cage)

• Squirrel cage for an actual motor

http://en.wikipedia.org/wiki/Squirrel-cage_rotor

186 / 412

Page 187: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsStarting: amortisseur windings (squirrel cage)

Chapman 5th ed, pg 290-297

187 / 412

Page 188: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsStarting: amortisseur windings (squirrel cage)

• The induced torque is sometimes counterclockwise and sometimes0 but it is always in the same direction

• Since there is a net torque in a single direction, the motor’s rotorspeeds up

• Although the motor’s rotor will speed up, it can never quite reachsynchronous speed

• Once the motor starts up, the rotor DC current is restored andthe motor locks into synchronous speed

Chapman 5th ed, pg 290-297

188 / 412

Page 189: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous MotorsEquivalent circuit (for each phase)

Chapman 5th ed, pg 273

189 / 412

Page 190: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Induction MotorsIntroduction

• Same as a synchronous motor with amortisseur windings

• In other words, there is no DC current in the rotor

• The stator is the same as the synchronous motor

Chapman, pg 346

190 / 412

Page 191: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous generatorY-connection

Chapman, pg 278

191 / 412

Page 192: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous generator∆-connection

Chapman, pg 278

192 / 412

Page 193: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous generatorEquivalent circuit (for each phase)

Chapman, pg 279

193 / 412

Page 194: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous generatorPower losses

Chapman, pg 281

194 / 412

Page 195: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Synchronous generatorOCC (open circuit characteristic)

1 Field current IF is set to 0

2 Terminals are disconnected from all loads, and therefore IA = 0and EA = Vφ

3 Then IF is increased gradually in steps, and VT is measured

4 Therefore, a plot of IF vs VT , the OCC, can be constructed

5 However, note that,

• In a Y-connection, VT =√

3Vφ• In a ∆-connection, VT = Vφ• Therefore, a plot of IF vs Vφ can also be constructed, and

it is also called the OCC

6 Also note that since we have an open circuit, EA = Vφ andtherefore a plot of IF vs EA, again also called the OCC, can beconstructed

7 Also worth noting is that Vφ or EA cannot be measured directlywhile VT can

• Although called OCC, the name is only because open circuit isused to make the plots

• Otherwise, you can see what field current IF is needed to createwhat induced EA even when a load is connected

Chapman, pg 283

195 / 412

Page 196: Slides electromechanical

Synchronous generatorOperating alone: changing load conditions

• Terminal voltage

• In DC machines, denoted by VT

• In AC machines, denoted by Vφ since it’s on a phase by phase basis

• Phasor directions

1 Vφ: Reference phasor direction is fixed at 0o

2 IA:

• Inductive load: lags Vφ (not necessarily by 90o )• Resistive load: has the same direction as Vφ• Capactive load: leads Vφ (not necessarily by 90o )

3 jXs IA: leads IA by 90o

4 EA: has constant magnitude, i.e., vector tip moves along a circle

Chapman, pg 290 ,

Page 197: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Induction Motors3 phase induction motor energy efficiencies over the years

US Department of Energy, Advanced Manufacturing Office, Premium Efficiency Motor Selectionand Application Guide,http://energy.gov/sites/prod/files/2014/04/f15/amo_motors_handbook_web.pdf

197 / 412

Page 198: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Induction MotorsEquivalent circuit (for each phase)

Chapman, pg 394

198 / 412

Page 199: Slides electromechanical

Stepper motor (1/11)

Sequence

http://wineyardstudents.blogspot.com/2011/05/stepper-motor.html ,

199 / 412

Page 200: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (2/11)

4 phase

http://cr4.globalspec.com/blogentry/1749/Making-a-Telescope-Part-3-The-Mount

200 / 412

Page 201: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (3/11)

4 phase

• Like other types of electric motors that produce a rotating force astepper motor consists of two primary components a stator whichis the stationary part of the motor and a rotor which is the partthat rotates and is used to drive whatever it is connected to.

• In our case we have a four phase 9 stepper motor but there are afew other things that you may need to use:

• Definitions• Phases: This is the number of separate coils that make up

the system.• Step Angle: This is the angle that the motor steps through

every time the next coil in sequence is energized.• Holding Torque: This is the amount of force that is needed

to cause the rotor to turn while being locked in position byan energized coil.

• Driving or Dynamic Torque: This is the amount of torquethe motor can supply as it steps from one step to the next.

• Voltage: This is fairly obvious and is the voltage that isneeded to operate the motor.

• Holding Current: This is the current that the coils drawwhen in the locked position.

• Dynamic or Peak Current: This is the current the motordraws as it steps from one step to the next.

201 / 412

Page 202: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (4/11)

4 phase

• The Rotor

• It is the part of the motor that rotates.• Consists of a cylindrically shaped permanent magnet that

has multiple magnetic pole pairs arranged in a radialmanner around its axis.

• As the rotor turns a fixed point adjacent to itscircumference will see a sequence of alternating magneticpoles.

• The rotor can be though of as a series of horse shoemagnets arranged so their poles form a circle with equallyspaced around its circumference

• In this case we have 10 pole pairs labeled a-j andrepresented by the Grey U shapes arranged at 36increments with their polarity shown by the RED N for thenorth poles and BLUE S for the south poles.

• Something that is worth mentioning is that while each ofthe poles is separated by 18 it is the 36 angle between thepair of poles or next pole of the same polarity that isimportant.

202 / 412

Page 203: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (5/11)

4 phase

• The Stator

• This consists of a series of coils that are equally spaced• In our system we have 8 coils, but they are interconnected

so that electrically there are only 4 coils A-Red, B-Green,C-Blue, and E-Purple that are spaced at 45 intervals.

• When there is no power to the stepper motor the rotor willrotate fairly freely but it will try and stop so that one of thepoles aligns with one of the coils.

• In this instance the rotor will try and settle in increments of9 or 40 separate points.

203 / 412

Page 204: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (6/11)

4 phase

• Step 0

• In the image on the left shows what would happen whenpower was applied to the stator coils labeled A and drawnin red.

• The magnetic fields these coils produce will then cause therotor to turn till the North pole of magnet a aligns with theSouth pole of the red coil A.

• On the opposite side of the rotor the North pole of magnetf would align with the South pole of the other red A coil.

• Something worth noting is that provided the holding torqueis not exceeded the rotor will stay locked in this positionuntil the power is removed from the red A coils.

• Unlike other forms of electric motor a locked rotor will notresult in damage to the motor or burnt out coils.

204 / 412

Page 205: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (7/11)

4 phase

• Step 1

• If we now remove the power to the red A coils and apply itto the green B coils the rotor will rotate till the North ofrotor magnet b aligns with the South of stator green B coil.

• On the other side of the rotor the North of magnet g willalign with South of the other stator green B coil.

• The important thing to note here is that even though themagnetic field of the stator has rotated through 45 therotor has only rotated through 9.

• If we now continue to energize each of the coils red-A,green-B, blue-C and purple E in sequence the motor willstep through 9 each time a coil is energized.

205 / 412

Page 206: Slides electromechanical

Stepper motor (8/11)

4 phase

• Advantages

1 Simplified Feedback: There are several advantages related to feedback:

(a) Position: Since the motor can only be in one of the positions defined by the coils andpermanent magnets in the coil finding the position of the system. All you need to do isstart from a known position and then count the steps in either direction to calculatethe position.

(b) Speed: Since the speed the rotor turns at is governed by how rapidly you step fromphase to phase you don’t need a feedback mechanism to calculate the speed the motoris rotating at.

2 Locked Rotor: Unlike with other motors a locked rotor will not result in the currentthrough the coils causing them to overheat and burn out. It can also be very helpful insituations where there needs to be some sort of breaking mechanism that can hold it ina desired position.

3 Simplified Drive Electronics: Unlike other types of motor where the current and voltagebeing applied to the motor need to be controlled through a range stepper motor coilsonly need to be either on or off. This makes the driving circuit much simpler andconsequently more reliable and less expensive.

4 Reduced Maintenance: Since there is no commutator, brushes, etcetera that are proneto wear and contamination stepper motors require less maintenance and have longerlife expectancies than other DC or servo motors.

,

206 / 412

Page 207: Slides electromechanical

Stepper motor (9/11)

4 phase

• Disadvantages

1 Step Induced Oscillations: Because stepper motor move in a sudden jerky mannerbetween each step the steps can set up vibrations in the drive train that can bedetrimental to the process and equipment.

2 Fine Control: The staccato or jumping motion of stepper motors can be a seriousproblem. As the motors can only be in specific positions as designated by the geometryof the rotor and stator you can have problems in applications where a smooth orcontinuous drive is required. To a certain extent this can be overcome by having stepsthat are around an order of magnitude smaller than required in the application,however, it is something that engineers need to be aware of.

,

207 / 412

Page 208: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (10/11)

4 phase

http://www.instructables.com/id/How-to-make-an-H-bridge/step2/The-truth-about-H-bridges/

208 / 412

Page 209: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Stepper motor (11/11)

4 phase

• When the coils on ”Relay 1” and ”Relay 4” are pulled high(electricity is flowing through them), then the motor will spinforwards (see ”Image 1”).

• When the coils on ”Relay 2” and ”Relay 3” are pulled high(electricity is flowing through them), then the motor will spinbackwards (see ”Image 2”).

• When the coils on ”Relay 1” and ”Relay 2” are pulled high(electricity is flowing through them), then the motor will stopspinning (see ”Image 3”).

• When the coils on ”Relay 3” and ”Relay 4” are pulled high(electricity is flowing through them), then the motor will stopspinning (see ”Image 4”).

• ********WARNING***********• You want AVOID:• ”Relay 1” and ”Relay 3” being pulled high. This is a short circuit

since there is no load for the electricity to pass through. Badthings will happen! (see ”Image 5”)

• ”Relay 2” and ”Relay 4” being pulled high. This is a short circuitsince there is no load for the electricity to pass through. Badthings will happen! (imagine ”Image 6”)

• More than 2 relays being pulled high at one time. Bad things willhappen.

209 / 412

Page 210: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (1/28)

Analogy

http://www.nidec.com/en-NA/technology/capability/brushless/

210 / 412

Page 211: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (2/28)

Analogy

http://www.nidec.com/en-NA/technology/capability/brushless/

211 / 412

Page 212: Slides electromechanical

Brushless DC Motor (3/28)

Construction of a simple motor

https://www.youtube.com/watch?v=ms3KOZexkmI ,

212 / 412

Page 213: Slides electromechanical

Brushless DC Motor (4/28)

Construction of a simple motor

https://www.youtube.com/watch?v=Kudzft19coo ,

213 / 412

Page 214: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (5/28)

Analogy

• A humorous analogy help to remember it is to think of BLDCoperation like the story of the donkey and the carrot

• The donkey tries hard to reach the carrot, but the carrot keepsmoving out of reach

http://www.learnengineering.org/2014/10/Brushless-DC-motor.html

214 / 412

Page 215: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (6/28)

Introduction

http://www.freescale.com/files/sensors/doc/app note/AN3461.pdf

215 / 412

Page 216: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (7/28)

Introduction

The permanent magnet synchronous motor (PMSM)can be thought of as a cross between an AC inductionmotor and a brushless DC motor (BLDC). They haverotor structures similar to BLDC motors which containpermanent magnets. However, their stator structureresembles that of its ACIM cousin, where the windingsare constructed in such a way as to produce a sinusoidalflux density in the airgap of the machine. As a result,they perform best when driven by sinusoidal waveforms.

http://www.ti.com/lsds/ti/apps/motor/permanent magnet/overview.page

216 / 412

Page 217: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (8/28)

Construction

http://www.bavaria-direct.co.za/models/images/Mini300 Winding Instructions.png

217 / 412

Page 218: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (9/28)

Phases

• A single phase BLDC motor has current passingthrough one coil only

• A twp phase BLDC motor has current passingthrough two coils simultaneously

218 / 412

Page 219: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (10/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

219 / 412

Let’s look at the stator

• The stator above has 6 poles, or 3 pole pairs)

• Single wire is used for a pole pair, A and A create an oppositepolarity

Page 220: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (11/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

220 / 412

Step 1.

• To get that rotor to rotate, you need to commutate the statorfield such that the rotor is always chasing that magnetic field

• To do this, you turn on, in sequence, different pole pairs

Page 221: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (12/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

221 / 412

Step 2.

• Turn the current off in A and A and turn the current on in C andC creating a North and South electromagnetic pole

• The rotor is then attracted to it

Page 222: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (13/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

222 / 412

Step 3.

Page 223: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (14/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

223 / 412

Step 4.

Page 224: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (15/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

224 / 412

Step 5.

Page 225: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (16/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

225 / 412

Step 6.

Page 226: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (17/28)

Commutation Steps for Single Phase Machine

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

226 / 412

Back to where we started from.

Page 227: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (18/28)

Commutation Steps for Single Phase Machine

• The problem with the single phase setup is that only one windingis being used to create torque

https://www.youtube.com/watch?v=ZAY5JInyHXY

227 / 412

Page 228: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (19/28)

Commutation Steps for Two Phase Machine

S

N

S

N

S

N

S

N

A

BS

N

A

A

B

B

C

C

Current

Torque

Vcc

228 / 412

Step 1.

Page 229: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (20/28)

Commutation Steps for Two Phase Machine

S

N

S

N

S

N

S

N

A

CS

N

A

A

B

B

C

C

Current

Torque

Vcc

229 / 412

Step 2.

Page 230: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (21/28)

Commutation Steps for Two Phase Machine

N

S

N

S

S

N

S

N

BC

S N

A

A

B

B

C

C

Current

Torque

Vcc

230 / 412

Step 3.

Page 231: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (22/28)

Commutation Steps for Two Phase Machine

N

S

N

S

N

S

N

S

A

B

S

N

A

A

B

B

C

C

Current

Torque

Vcc

231 / 412

Step 4.

Page 232: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (23/28)

Commutation Steps for Two Phase Machine

N

S

N

S

N

S

N

S

A

C

S

N

A

A

B

B

C

C

Current

TorqueVcc

232 / 412

Step 5.

Page 233: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (24/28)

Commutation Steps for Two Phase Machine

S

N

S

N

N

S

N

S

BC

SN

A

A

B

B

C

C

Current

TorqueVcc

233 / 412

Step 6.

Page 234: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (25/28)

Commutation Steps for Two Phase Machine

• The trick is when do you turn on that adjacent pole

• There’s no positional information in the diagram shown, you don’tknow where the rotor is so you don’t know when you’re supposedto turn on that next magnetic pole

• The turning on, the timing is extremely critical, you always wantto maximize the torque

• If you turn on that field too early or too late, you will haveperformance issues

• Therefore, typically sensors are added to the system

http://www.ti.com/motor, https://www.youtube.com/watch?v=0mQunSe2 FM

234 / 412

Page 235: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (26/28)

Mathematical Model

Stator windings:• Total flux (as a result of stator currents and rotor permanent

magnet):ψa

ψb

ψc

=

Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc

iaibic

+

ψam

ψbm

ψcm

=

Ls −Ms −Ms

−Ms Ls −Ms

−Ms −Ms Ls

iaibic

+

ψam

ψbm

ψcm

• Terminal voltage:

va

vb

vc

=

Rs 0 00 Rs 00 0 Rs

iaibic

+

dψadt

dψbdt

dψcdt

http://www.ti.com/motor

235 / 412

Page 236: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (27/28)

Comparison

http://ww1.microchip.com/downloads/en/AppNotes/00885a.pdf

236 / 412

Page 237: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Brushless DC Motor (BLDC) (28/28)

Comparison

Also read http://www.teslamotors.com/blog/

induction-versus-dc-brushless-motors

http://ww1.microchip.com/downloads/en/AppNotes/00885a.pdf

237 / 412

Page 238: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

ServomotorsOverview

• A servomechanism, sometimes shortened to servo, is an automaticdevice that uses error-sensing negative feedback to correct theperformance of a mechanism and is defined by its function

• A servomotor is a rotary actuator that allows for precise control of

angular position, velocity and acceleration

• As the name suggests, a servomotor is a servomechanism• More specifically, it is a closed-loop servomechanism that

uses position feedback to control its motion and finalposition

• The input to its control is some signal, either analogue ordigital, representing the position commanded for the outputshaft

• It consists of a suitable motor coupled to a sensor forposition feedback

• It also requires a relatively sophisticated controller, often adedicated module designed specifically for use withservomotors

https://en.wikipedia.org/wiki/Servomechanism

https://en.wikipedia.org/wiki/Servomotor

238 / 412

Page 239: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

ServomotorsCan be AC or DC

• The type of motor is not critical to a servomotor and differenttypes may be used

• At the simplest, brushed permanent magnet DC motors are used,owing to their simplicity and low cost

• Small industrial servomotors are typically electronicallycommutated brushless motors

• For large industrial servomotors, AC induction motors are typicallyused, often with variable frequency drives to allow control of theirspeed

• For ultimate performance in a compact package, brushless ACmotors with permanent magnet fields are used, effectively largeversions of Brushless DC electric motors

https://en.wikipedia.org/wiki/Servomotor

239 / 412

Page 240: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Solenoid• A solenoid is simply a specially designed electromagnet

• A solenoid usually consists of a coil and a movable ironcore called the armature.

• When current flows through a wire, a magnetic field is set uparound the wire

• If we make a coil of many turns of wire, this magnetic fieldbecomes many times stronger, flowing around the coil andthrough its center in a doughnut shape

• When the coil of the solenoid is energized with current, the coremoves to increase the flux linkage by closing the air gap betweenthe cores

http://mechatronics.mech.northwestern.edu/design_ref/actuators/solenoids.html

240 / 412

Page 241: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Solenoid• The movable core is usally spring-loaded to allow the

core to retract when the current is switched off

• The force generated is approximately proportionalto the square of the current and inversely proportional to thesquare of the length of the air gap

• Solenoids are inexpensive, and their use is primarily limited toon-off applications such as latching, locking, and triggering

• They are frequently used in home appliances (e.g. washingmachine valves), office equipment (e.g. copy machines),automobiles (e.g. door latches and the starter solenoid), pinballmahines (e.g., plungers and bumpers), and factory automation

http://mechatronics.mech.northwestern.edu/design_ref/actuators/solenoids.html

241 / 412

Page 242: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Electric Vehicles (86/86)

Chevrolet FNR

http://www.extremetech.com/extreme/

203862-this-chevrolet-fnr-concept-car-is-science-fiction-made-real

242 / 412

Page 243: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

MagnetismWorld’s strongest magnet: 27T

• Built by MagLab, largest and highest powered magnetlab in the world

• Demonstrated on 5 June 2015

https://nationalmaglab.org/news-events/news/

maglab-claims-record-with-novel-superconducting-magnet

http://nextbigfuture.com/2015/06/new-superconducting-magnet-already-at.html

243 / 412

Page 244: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (1/12)

The Geomagnetic Field

• The magnitude of the Earth’s magnetic field (the geomagneticfield) varies over the surface of the earth from a minimum of22µT (0.22 Gauss) over S. America to a maximum of 67µT (0.67Gauss) south of Australia

• The heading of an eCompass is determined from the relativestrengths of the two horizontal geomagnetic field components andthese vary from zero at the magnetic poles to a maximum of42µT over E. Asia

• Detailed geomagnetic field maps are available from the WorldData Center for Geomagnetism athttp://wdc.kugi.kyoto-u.ac.jp/igrf/

http://cache.freescale.com/files/sensors/doc/app note/AN4247.pdf

244 / 412

Page 245: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (2/12)

The Geomagnetic Field cont.

• Although the Earth’s magnetic field is relatively stable over time,electric currents in the ionosphere can cause daily alterationswhich can deflect surface magnetic fields by as much as onedegree

• Normally, daily variations in field strength are on the order of0.025µT (0.25 mGuass), which would equate to about 0.03degree variation in heading

• This small change of heading is on the same order of magnitudeas the resolution of most MEMS based magnetometers, so inmost cases, the Earth’s magnetic field can be considered constantwrt time

http://www.vectornav.com/support/library/magnetometer

245 / 412

Page 246: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (3/12)

Magnetometer calibration

• Magnetic measurements will be subjected to distortions:

1 Hard iron: Created by objects that produce a magnetic field2 Soft iron: Deflections or alterations in the existing magnetic

field

http://www.vectornav.com/support/library/magnetometer

246 / 412

Page 247: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (4/12)

Magnetometer calibration cont.

• A common way of visualizing and correcting hard and soft irondistortions is to plot the output of the magnetometer on a 2Dgraph

• The following plot shows measurements taken by themagnetometer as the device is slowly rotated around the Z-axis

• In the event that there are no hard or soft iron distortions present,the measurements should form a circle centered at X=0, Y=0.

• The radius of the circle equals the magnitude of the magnetic field

http://www.vectornav.com/support/library/magnetometer

247 / 412

Page 248: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (5/12)

Magnetometer calibration cont.

• The effect of hard iron distortions on the plot will be to shift thecenter of the circle

• As shown in the plot the center of the circle with hard irondistortions is now at X=200, Y=100

• From this we can conclude that there is 200 mGauss hard ironbias in the X-axis and 100 mGauss hard iron bias in the Y-axis

• Hard iron distortions will only shift the center of the circle awayfrom the origin

• Hard iron distortions will not distort the shape of the circle.

http://www.vectornav.com/support/library/magnetometer

248 / 412

Page 249: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (6/12)

Magnetometer calibration cont.

• Soft iron distortions on the other hand distort and warp theexisting magnetic fields

• When you plot the magnetic output, soft iron distortions are easyto recognize since they will distort the circular output

• Soft iron effects warp the circle into an elliptical shape

• The center of the ellipse below is still located at X=200 mGaussand Y=100mGauss since the hard iron distortions are the same asbefore but now the major axis is aligned 30 degrees up from thebody frame X direction due to soft iron distortions

http://www.vectornav.com/support/library/magnetometer

249 / 412

Page 250: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (7/12)

Magnetometer calibration cont.

• It is possible to eliminate the effects of both hard and soft irondistortions on the magnetometer outputs

• VectorNavr products use the following calibration model tocorrect for hard and soft iron distortions

M =

C1 C2 C3

C4 C5 C6

C7 C8 C9

Hx − C10

Hy − C11

Hz − C12

• The above model consists of 12 hard and soft iron compensation

parameters

• The first 9 parameters correct for the soft iron while the lastthree, C10, C11, C12 parameters compensate for the hard iron

• For the previous figure, the hard and soft iron calibrationparameters would be

M =

C1 C2 C3

C4 C5 C6

C7 C8 C9

Hx − C10

Hy − C11

Hz − C12

http://www.vectornav.com/support/library/magnetometer

250 / 412

Page 251: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (8/12)

Magnetometer calibration cont.

• Measured magnetometer locus - no correction applied:

http://cache.freescale.com/files/sensors/doc/app note/AN4247.pdf

251 / 412

Page 252: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (9/12)

Magnetometer calibration cont.

• Measured magnetometer locus - hard iron correction applied:

http://cache.freescale.com/files/sensors/doc/app note/AN4247.pdf

252 / 412

Page 253: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (10/12)

Magnetometer calibration cont.

• Measured magnetometer locus - hard and soft iron correctionapplied:

http://cache.freescale.com/files/sensors/doc/app note/AN4247.pdf

253 / 412

Page 254: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (11/12)

Magnetometer calibration cont.

1 Raw mode. Put magnetometer in IMU mode, i.e., it should giveraw values and not fused values. These raw values will be inGauss or Teslas. For the NV-100, they are in Gauss. Note thatthese values must vary between 0.22 and 0.67 Gauss, and if thevalues are more than these values, we have hard and/or soft irondistortions

2 Find North and South poles. Rotate magnetometer 360 degrees

and observe the following:1 Hx must reach a maximum positive value when it is aligned with the North pole

of the Earth’s magnetic field.2 Turning it CW by 90 degrees should give a value of 0 since it is now orthogonal

to the Earth’s magnetic field and pointing towards East3 Turning it CW by another 90 degrees, i.e., a total of 180 degrees should give

you a maximum negative value showing it is pointing towards the South pole4 Turning it CW by another 90 degrees, i.e., a total of 270 degrees should again

give you a value of 0 showing it is pointing West5 Finally, turning it CW by another 90 degrees, i.e., a total of 360 degrees should

again give you a maximum positive value showing you are again aligned north6 The above process can be repeated with Hy7 Finding the angle as atan(Hy/Hx) or atan(-Hy/Hx) depending on how you set it

up should give you the angle of rotation

254 / 412

Page 255: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Magnetism (12/12)

Magnetometer calibration cont.

3 Plot Hx and Hy points. Now, rotate magnetometer through 360degrees and plot Hx vs Hy. You should get a zero-centered circleif there are no hard or soft iron distortions. If it is a shifted circle,you have hard iron distortions. If it is an ellipse instead of a circle,you have soft iron distortions. If you have a shifted ellipse, youhave hard and soft iron distortions.

4 Finding parameters of hard and soft iron distortions. Use the

following steps for manual removal. Automatic removal will

require knowledge of transforming a shifted ellipse to a centered

circle.

1 Shift the ellipse or circle to the center.2 See what angle the ellipse makes with the y-axis and find a

rotation matrix to rotate it so that one of the axes of theellipse is y-axis aligned

3 Compress Hx or Hy so that the ellipse is now a circle

5 Using above parameters to remove hard and soft irondistortions. Now, for every measurement of Hx and Hy, applyabove parameters and check that indeed as the magnetometerrotates, the angles are more accurate than before. Also, anglesshould be evenly spaced.

255 / 412

Page 256: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Tesla MotorsInduction motor in vehicles

256 / 412

Page 257: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 1: Lab and area familiarization

• Get familiar with the lab environment

• Get familiar with the MES environment

257 / 412

Page 258: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 2: Transformers LabMeasuring parameters

• This is the setup for an open circuit test in the lab:

258 / 412

Page 259: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 2: Transformers LabMeasuring parameters cont.

• This is the setup for a short circuit test in the lab:

259 / 412

Page 260: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 3: Matlab UsageNumericals and plots

• Be able to solve numericals related toelectromechanical systems in Matlab

• Be able to make plots related to electromechanicalsystems in Matlab

260 / 412

Page 261: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 4: DC motor modeling, Matlab

• Go to the University of Michigan websitehttp://ctms.engin.umich.edu

• Click ”MOTOR SPEED” at the top

• Complete SYSTEM MODELING and SYSTEM ANALYSIS parts

261 / 412

Page 262: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 5: DC motor modeling, Matlab(part 2)Electrical, magnetic and mechanical signal flow

• Solve Example 7.1, part (a) and (b)

• In this example, there is no notion of time, i.e., how longdoes it take the motor to reach no-load steady-state ω

• Now, instead of just using the formula to find no-load

steady-state ω, write a software loop to model the motor feedback

loop and find ω and τ in increments of 0.001 sec upto 0.5 sec

• Use moment of inertia of the rotor, J = 0.01 kg m2

• Make the following 3 plots:

1 ω against time2 τ against time3 ω against τ

• Verify that the results of this lab tally with the results ofthe solved example, as well as the results of the previous labprovided that L = 0 H and motor viscous friction constantb = 0 Nms

• Investigate the effect of varying J,R, φ

Chapman 5th ed, pg 413

262 / 412

Page 263: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 6: BKB Universal Lab MachineDC shunt motor

• Front panel, starter motor, motor, generator

263 / 412

Page 264: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 6: BKB Universal Lab MachineDC shunt motor cont.

• Load bank (bulbs), Power supply

264 / 412

Page 265: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 6: BKB Universal Lab MachineDC shunt motor cont.

• Front panel

265 / 412

Page 266: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 6: BKB Universal Lab MachineDC shunt motor cont.

• Stator coils

266 / 412

Page 267: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 6: BKB Universal Lab MachineDC shunt motor cont.

• Rotor coils

267 / 412

Page 268: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 6: BKB Universal Lab MachineDC shunt motor cont.

• Search coils

268 / 412

Page 269: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Lab # 6: BKB Universal Lab MachineDC shunt motor cont.

• Dynamometer

269 / 412

Page 270: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

All examples

• Ch 1, Intro to Machinery Principles: 11 examples

• Ch 2, Transformers: 10 examples

• Ch 3, AC Machinery Fundamentals: 3 examples

• Ch 4, Synchronous Generators: 2 examples

• Ch 5, Synchronous Motors: 8 examples

• Ch 6, Induction Motors: 3 examples

• Ch 7, DC Machinery Fundamentals: 8 examples

• Ch 8, DC Motors and Generators: 4 examples

• Ch 9, Single-phase and special purpose motors: 9 examples

• Total: 58

Chapman 5th ed

270 / 412

Page 271: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-1Magnetic circuits: computing flux

Chapman 5th ed, pg 14

271 / 412

Page 272: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-1 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 14

272 / 412

Page 273: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-1 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 14

273 / 412

Page 274: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-1 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 14

274 / 412

Page 275: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-2Magnetic circuits: computing flux

Chapman 5th ed, pg 17

275 / 412

Page 276: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-2 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 17

276 / 412

Page 277: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-2 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 17

277 / 412

Page 278: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-2 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 17

278 / 412

Page 279: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-3Magnetic circuits: computing flux

Chapman 5th ed, pg 19

279 / 412

Page 280: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-3 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 19

280 / 412

Page 281: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-3 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 19

281 / 412

Page 282: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-3 cont.

Magnetic circuits: computing flux

Chapman 5th ed, pg 19

282 / 412

Page 283: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-4Magnetic circuits: computing relative permeability

Chapman 5th ed, pg 24

283 / 412

Page 284: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-4 cont.

Magnetic circuits: computing relative permeability

Chapman 5th ed, pg 24

284 / 412

Page 285: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-4 cont.

Magnetic circuits: computing relative permeability

Chapman 5th ed, pg 24

285 / 412

Page 286: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-4 cont.

Magnetic circuits: computing relative permeability

Chapman 5th ed, pg 24

286 / 412

Page 287: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-5Magnetic circuits: current, relative permeability, reluctance

Chapman 5th ed, pg 25

287 / 412

Page 288: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-5 cont.

Magnetic circuits: current, relative permeability, reluctance

Chapman 5th ed, pg 25

288 / 412

Page 289: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-5 cont.

Magnetic circuits: current, relative permeability, reluctance

Chapman 5th ed, pg 25

289 / 412

Page 290: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-5 cont.

Magnetic circuits: current, relative permeability, reluctance

Chapman 5th ed, pg 25

290 / 412

Page 291: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 1-5Magnetic circuits: current, relative permeability, reluctance

Chapman 5th ed, pg 56

291 / 412

Page 292: Slides electromechanical

Problem 1-5 cont.

Magnetic circuits: current, relative permeability, reluctance

1 c l e a r ; c l c ; c l f ;2 %t u r n s3 N = 5 0 0 ;4 %p e r m e a b i l i t y5 mu0 = 4∗ p i ∗10E−7; % p e r m e a b i l i t y o f a i r (H/m)6 mur = 8 0 0 ; % r e l a t i v e p e r m e a b i l i t y7 %l e n g t h s8 l e n l e f t = (7.5+15+7.5) / 1 0 0 ; % l e n g t h ( me te r s )9 l e n t o p = (5+20+2.5) / 1 0 0 ; % l e n g t h ( mete r s )

10 l e n r i g h t = l e n l e f t ; % l e n g t h ( mete r s )11 l e n b o t t o m = l e n t o p ; % l e n g t h ( mete r s )12 %a r e a s13 a r e a l e f t = (10∗5) /1E4 ; % a r e a ( sq met e r s )14 a r e a t o p = (15∗5) /1E4 ; % a r e a ( sq met e r s )15 a r e a r i g h t = (5∗5) /1E4 ; % a r e a ( sq mete r s )16 a r e a b o t t o m = (15∗5) /1E4 ; % a r e a ( sq met e r s )17 %r e l u c t a n c e s18 R l e f t = l e n l e f t / (mu0 ∗ mur ∗ a r e a l e f t ) ; % r e l u c t a n c e (A t u r n s /Wb)19 R top = l e n t o p / (mu0 ∗ mur ∗ a r e a t o p ) ; % r e l u c t a n c e (A t u r n s /Wb)20 R r i g h t = l e n r i g h t / (mu0 ∗ mur ∗ a r e a r i g h t ) ; % r e l u c t a n c e (A t u r n s /Wb)21 R bottom = l e n b o t t o m / (mu0 ∗ mur ∗ a r e a b o t t o m ) ;% r e l u c t a n c e (A t u r n s /Wb)22 R = R l e f t+R top+R r i g h t+R bottom ; % t o t a l r e l u c t a n c e (A t u r n s /Wb)23 %f l u x24 p h i = 0 . 0 0 5 ; % f l u x ( webers )25 %p a r t ( a )26 I = p h i∗R/N; % c u r r e n t ( amperes )27 %p a r t ( b )28 B top = p h i / a r e a t o p ; % f l u x d e n s i t y ( t e s l a s )29 B r i g h t = p h i / a r e a r i g h t ; % f l u x d e n s i t y ( t e s l a s )

Chapman 5th ed, pg 56 ,

292 / 412

Page 293: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 1-7Motors: Lorentz force

In this , B = 0.25T, l = 1.0m, I = 0.5A, find F.

F = ilB sin θ = (0.5A)(1.0m)(0.25T ) sin(90o) = 0.125Nto the right

Chapman 5th ed, pg 33

293 / 412

Page 294: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-1Transformers: advantage

Chapman 5th ed, pg 73-76

294 / 412

Page 295: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-1 cont.

Transformers: advantage

Chapman 5th ed, pg 73-76

295 / 412

Page 296: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-1 cont.

Transformers: advantage

1 c l e a r ; c l c ;2 %Given3 V = 4 8 0 ; %v o l t a g e4 Z l i n e = 0 . 1 8 + 0 . 2 4 j ; %impedance ( l i n e )5 Z l o a d = 4 + 3 j ; %impedance ( l o a d )6 Z t o t a l = Z l i n e+Z l o a d ; %impedance ( t o t a l )7 a T1 = 0 . 1 ; %t u r n s r a t i o (T1)8 a T2 = 1 0 ; %t u r n s r a t i o (T2)9 % p a r t ( a )

10 %−−−−−−−−11 I l i n e = V/ Z t o t a l ; %c u r r e n t12 V l o a d = I l i n e ∗Z l o a d ; %v o l t a g e13 P l o s s e s = abs ( I l i n e ) ˆ2∗ r e a l ( Z l i n e ) ; %power14 % p a r t ( b )15 %−−−−−−−16 Z l o a d l e f t T 2 = a T2 ˆ2 ∗ Z l o a d ;17 Z l o a d l e f t T 2 l e f t T 1 = a T1 ˆ2 ∗ Z l o a d l e f t T 2 ;18 Z l i n e l e f t T 1 = a T1 ˆ2 ∗ Z l i n e ;19 Z t o t a l = Z l i n e l e f t T 1 + Z l o a d l e f t T 2 l e f t T 1 ;

21 I G = V/ Z t o t a l ;22 I l i n e = I G∗a T1 ;23 I l o a d = I l i n e ∗a T2 ;

25 V l o a d = I G∗Z l o a d ;

27 P l o s s e s = abs ( I l i n e ) ˆ2∗ r e a l ( Z l i n e )28 %Notes29 %To f i n d P l o s s e s , we used t h e magnitude o f c u r r e n t30 %and t h e r e a l p a r t o f Z l i n e

Chapman 5th ed, pg 73-76

296 / 412

Page 297: Slides electromechanical

Example 2-2Transformers: finding parameters

Chapman 5th ed, pg 92-94 ,

297 / 412

Page 298: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-2 cont.

Transformers: finding parameters

• For both the open circuit and short circuit tests, we have 8

variables:

1 P: can be measured (given in this example)2 V : can be measured (given in this example)3 I : can be measured (given in this example)4 cos θ5 Rc : transformer parameter to be computed6 Xm: transformer parameter to be computed7 Reqs : transformer parameter to be computed8 Xeqs : transformer parameter to be computed

• For the open circuit test, first find cos θ, then find Rc ,Xm.

• For the short circuit test, first find cos θ, then find Reqs ,Xeqs .

Chapman 5th ed, pg 92-94

298 / 412

Page 299: Slides electromechanical

Example 2-2 cont.

Transformers: finding parameters

Chapman 5th ed, pg 92-94 ,

299 / 412

Page 300: Slides electromechanical

Example 2-2 cont.

Transformers: finding parameters

Chapman 5th ed, pg 92-94 ,

300 / 412

Page 301: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-2 cont.

Transformers: finding parameters

Chapman 5th ed, pg 92-94

301 / 412

Page 302: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-2 cont.

Transformers: finding parameters

1 c l e a r ; c l c ;2 %GIVEN3 %−−−−−4 a = 8000/240; % t u r n s r a t i o5 %open c i r c u i t ( s e c o n d a r y s i d e , b e c a u s e low v o l t a g e )6 Voc = 2 4 0 ; % v o l t a g e7 I o c = 7 . 1 3 3 ; % c u r r e n t8 Poc = 4 0 0 ; % power9 %s h o r t c i r c u i t ( p r i m a r y s i d e , b e c a u s e low c u r r e n t )

10 Vsc = 4 8 9 ; % v o l t a g e11 I s c = 2 . 5 ; % c u r r e n t12 Psc = 2 4 0 ; % power13 %COMPUTATIONS14 %−−−−−−−−−−−−15 %open c i r c u i t t e s t16 PFoc = Poc /( Voc∗ I o c ) ; % power f a c t o r = cos (

→ t h e t a )17 t h e t a o c = −acos ( PFoc ) ; % n e g a t i v e s i g n f o r

→ l a g g i n g18 [ I x , I y ] = p o l 2 c a r t ( t h e t a o c , I o c ) ;19 I = I x + j∗ I y ;20 Y E = I /Voc ;21 Rc = 1/ r e a l ( Y E ) ;22 Xm = −1/imag ( Y E ) ; % Y E=(1/Rc )−j (1/Xm)23 %s h o r t c i r c u i t t e s t24 PFsc = Psc /( Vsc∗ I s c ) ; % power f a c t o r = cos (

→ t h e t a )25 t h e t a s c = −acos ( PFoc ) ; % n e g a t i v e s i g n f o r

→ l a g g i n g26 [ I x , I y ] = p o l 2 c a r t ( t h e t a s c , I s c ) ;27 I = I x + j∗ I y ;28 Z E = Vsc / I ;

Chapman 5th ed, pg 92-94

302 / 412

Page 303: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

303 / 412

Page 304: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

304 / 412

Page 305: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

305 / 412

Page 306: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

306 / 412

Page 307: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

307 / 412

Page 308: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

308 / 412

Page 309: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

309 / 412

Page 310: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

310 / 412

Page 311: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-5 cont.

Transformers: voltage regulation and efficiency

Chapman 5th ed, pg 102

311 / 412

Page 312: Slides electromechanical

Example 2-5 cont.

Transformers: voltage regulation and efficiency

1 c l e a r ; c l c ; format compact ; % a l l a n g l e s a r e i n r a d i a n s

3 % ===============================================4 % GIVEN5 % ===============================================6 S rated mag = 15000; % r a t e d v a l u e , VA7 p r i V r a t e d m a g = 2 3 0 0 ; % r a t e d v a l u e , V8 s e c V r a t e d m a g = 2 3 0 ; % r a t e d v a l u e , A9 a = p r i V r a t e d m a g / s e c V r a t e d m a g ; % t u r n s r a t i o

10 sec Voc mag = 2 3 0 ; % open c i r c u i t t e s t ( low v o l t a g e s i d e )11 s e c I o c m a g = 2 . 1 ; % open c i r c u i t t e s t ( low v o l t a g e s i d e )12 sec Poc mag = 5 0 ; % open c i r c u i t t e s t ( low v o l t a g e s i d e )13 p r i V s c m a g = 4 7 ; % s h o r t c i r c u i t t e s t ( h i g h v o l t a g e s i d e )14 p r i I s c m a g = 6 ; % s h o r t c i r c u i t t e s t ( h i g h v o l t a g e s i d e )15 p r i P s c m a g = 1 6 0 ; % s h o r t c i r c u i t t e s t ( h i g h v o l t a g e s i d e )

Chapman 5th ed, pg 102 ,

312 / 412

Page 313: Slides electromechanical

Example 2-5 cont.

Transformers: voltage regulation and efficiency

1 % ===============================================2 % COMPUTATIONS3 % ===============================================

5 % I . OPEN CIRCUIT TEST ( g o a l i s to f i n d Rc , Xm)6 %−−−−−−−−−−−−−−−−−−−−7 % f i n d power f a c t o r8 PFoc = sec Poc mag / ( sec Voc mag∗ s e c I o c m a g ) ; % power f a c t o r

10 % f i n d complex open c i r c u i t v o l t a g e and c u r r e n t11 s e c V o c = sec Voc mag∗(1+0 j ) ; %a r b i t r a r i l y g i v e n an a n g l e o f 0

13 I o c t h e t a = −acos ( PFoc ) ; % n e g a t i v e s i g n f o r l a g g i n g14 [ I x I y ] = p o l 2 c a r t ( I o c t h e t a , s e c I o c m a g ) ;15 s e c I o c = I x + j∗ I y ;

17 % f i n d a d m i t t a n c e18 sec YE = s e c I o c / s e c V o c ; % YE=(1/Rc )−j (1/Xm)19 s e c R c = 1/ r e a l ( sec YE ) ;20 sec Xm = −1/imag ( sec YE ) ;

Chapman 5th ed, pg 102 ,

313 / 412

Page 314: Slides electromechanical

Example 2-5 cont.

Transformers: voltage regulation and efficiency

1 % I I . SHORT CIRCUIT TEST ( g o a l i s to f i n d Req , Xeq )2 %−−−−−−−−−−−−−−−−−−−−−−3 % f i n d power f a c t o r4 PFsc = p r i P s c m a g /( p r i V s c m a g∗ p r i I s c m a g ) ; % power f a c t o r

6 % f i n d complex s h o r t c i r c u i t v o l t a g e and c u r r e n t7 p r i V s c = p r i V s c m a g∗(1+0 j ) ; %j u s t g i v e n an a n g l e o f 0

9 I s c t h e t a = −acos ( PFsc ) ; % n e g a t i v e s i g n f o r l a g g i n g10 [ I x I y ] = p o l 2 c a r t ( I s c t h e t a , p r i I s c m a g ) ;11 p r i I s c = I x + j∗ I y ;

13 % f i n d impedance14 p r i Z E = p r i V s c / p r i I s c ;15 p r i R e q = r e a l ( p r i Z E ) ;16 p r i X e q = imag ( p r i Z E ) ;

19 % I I I . REFERRING Rc , Xm, Req , Xeq TO OPPOSITE SIDES20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−21 p r i R c = ( a ˆ2)∗ s e c R c ; %r e f e r r e d to p r i m a r y22 pri Xm = ( a ˆ2)∗sec Xm ;

24 s e c R e q = (1/ a ˆ2)∗p r i R e q ; %r e f e r r e d to s e c o n d a r y25 sec Xeq = (1/ a ˆ2)∗p r i X e q ;

Chapman 5th ed, pg 102 ,

314 / 412

Page 315: Slides electromechanical

Example 2-5 cont.

Transformers: voltage regulation and efficiency

1 % IV . REGULATION2 %−−−−−−−−−−−−−−3 r e g u l 1 = func POWER TRANSFORMER RegulationVsKnown ( S rated mag , s e c V r a t e d m a g , 0 . 8 , →−1, sec Req , sec Xeq )

4 r e g u l 2 = func POWER TRANSFORMER RegulationVsKnown ( S rated mag , s e c V r a t e d m a g , 1 . 0 , →0 , sec Req , sec Xeq )

5 r e g u l 3 = func POWER TRANSFORMER RegulationVsKnown ( S rated mag , s e c V r a t e d m a g , 0 . 8 , →1 , sec Req , sec Xeq )

7 % ===============================================8 % PRINT RESULTS9 % ===============================================

10 d i s p ( ’On p r i m a r y s i d e ’ )11 d i s p ( ’−−−−−−−−−−−−−−−’ )12 p r i R c13 pri Xm14 p r i R e q15 p r i X e q16 d i s p ( ’ ’ )17 d i s p ( ’On s e c o n d a r y s i d e ’ )18 d i s p ( ’−−−−−−−−−−−−−−−−−’ )19 s e c R c20 sec Xm21 s e c R e q22 sec Xeq23 d i s p ( ’ ’ )24 d i s p ( ’ R e g u l a t i o n ’ )25 d i s p ( ’−−−−−−−−−−’ )26 s p r i n t f ( ’ r e g u l a t i o n : %.2 f p e r c e n t ’ , r e g u l 1 )27 s p r i n t f ( ’ r e g u l a t i o n : %.2 f p e r c e n t ’ , r e g u l 2 )28 s p r i n t f ( ’ r e g u l a t i o n : %.2 f p e r c e n t ’ , r e g u l 3 )

Chapman 5th ed, pg 102,

315 / 412

Page 316: Slides electromechanical

Example 2-5 cont.

Transformers: voltage regulation and efficiency

1 %Vp , Vs need to be both r e f l e c t e d on p r i m a r y s i d e , o r both on s e c o n d a r y s i d e

3 f u n c t i o n r e g u l = func POWER TRANSFORMER Regulation (Vp , Vs )

5 % use same names as book6 Vnl = abs (Vp) ;7 V f l = abs ( Vs ) ;

9 % s t e p 3 : f i n d r e g u l a t i o n10 r e g u l = ( Vnl−V f l ) / V f l ∗100;

Chapman 5th ed, pg 102 ,

316 / 412

Page 317: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 2-7Transformers: regulation

Chapman 5th ed, pg 146

317 / 412

Page 318: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 2-7 cont.

Transformers: regulation

Chapman 5th ed, pg 146

318 / 412

Page 319: Slides electromechanical

Problem 2-7 cont.

Transformers: regulation

1 c l e a r ; c l c ; format compact ; % a l l a n g l e s a r e i n r a d i a n s2 % ===============================================3 % GIVEN4 % ===============================================5 Srated mag = 30000; % r a t e d v a l u e , VA6 p r i V r a t e d m a g = 8 0 0 0 ; % r a t e d v a l u e , V7 s e c V r a t e d m a g = 2 3 0 ; % r a t e d v a l u e , A

9 p r i R c = 100E3 ; % m a g n e t i z i n g branch10 pri Xm = 20E3 ; % ”11 p r i Z e q = 20+100 j ; % t r a n s f o r m e r impedance

14 a = p r i V r a t e d m a g / s e c V r a t e d m a g ; % t u r n s r a t i o

Chapman 5th ed, pg 146 ,

319 / 412

Page 320: Slides electromechanical

Problem 2-7 cont.

Transformers: regulation

1 % ===============================================2 % COMPUTATIONS3 % ===============================================4 a = p r i V r a t e d m a g / s e c V r a t e d m a g ; % t u r n s r a t i o

6 %g i v e n7 p r i V p = 7967∗(1+0 j ) ;8 s e c Z L = 2+0.7 j ; %use −3j f o r p a r t ( b )

10 %c o m p u t a t i o n s on p r i m a r y s i d e11 p r i Z L = aˆ2∗ s e c Z L ;12 p r i Z t o t = p r i Z e q + p r i Z L ;13 p r i I s = p r i V p / p r i Z t o t ; %p r i I s = s e c I s /a14 p r i V s = p r i I s ∗ p r i Z L ;15 VR = func POWER TRANSFORMER Regulation ( p r i V p , abs ( p r i V s ) )

17 %c o m p u t a t i o n s on s e c o n d a r y s i d e18 sec Vp = p r i V p /a ;19 s e c Z t o t = p r i Z t o t /a ˆ 2 ;20 s e c I s = sec Vp / s e c Z t o t ;21 s e c V s = s e c I s ∗ s e c Z L ;22 VR = func POWER TRANSFORMER Regulation ( sec Vp , s e c V s )

Chapman 5th ed, pg 146 ,

320 / 412

Page 321: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-7Transformers: autotransformer

Chapman 5th ed, pg 113

321 / 412

Page 322: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-7 cont.

Transformers: autotransformer

Chapman 5th ed, pg 113

322 / 412

Page 323: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-7 cont.

Transformers: autotransformer

Chapman 5th ed, pg 113

323 / 412

Page 324: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 2-7 cont.

Transformers: autotransformer

Chapman 5th ed, pg 113

324 / 412

Page 325: Slides electromechanical

Problem 2.14Transformer

I = VGZline +Zload

= 13,20060 ∠53.1o +500 ∠36.87o = 23.66∠−38.6o A

SG = VG I∗ = 13, 200(23.66∠38.6o ) = 312, 312 ∠38.6o VA

Chapman, pg 148 ,

325 / 412

Page 326: Slides electromechanical

Problem 2.14 cont.

Transformer

Vline = Zline I = (60 ∠53.1o )(23.66 ∠−38.6o ) = 1, 419.6 ∠14.5o V

Sline = Vline I∗ = (1, 419.6 ∠14.5o )(23.66 ∠38.6o ) = 33, 587.74 ∠53.1o VA

= |Vline |2|Zline |2

Zline = 1,419.62

602 (60 ∠53.1o )

= |I|2Zline = (23.662)(60 ∠53.1o )

Pline = Sline cos θ = 33, 587.74 cos(53.1o ) = 20.1 kW

= |Vline |2|Zline |2

Rline = 1,419.62

602 ∗ 60 cos(53.1o )

= |I|2Rline = 23.662 ∗ 60 cos(53.1o )

,

326 / 412

Page 327: Slides electromechanical

Problem 2.14 cont.

Transformer

Vload = Zload I = (500 ∠36.87o )(23.66 ∠−38.6o ) = 11, 830 ∠−1.73o V

Sload = Vload I∗ = (11, 830 ∠−1.73o )(23.66 ∠38.6o ) = 279, 898 ∠36.87o VA

= |Vload |2|Zload |2

Zload = 11,8302

5002 (500 ∠36.87o )

= |I|2Zload = (23.662)(500 ∠36.87o )

Pload = Sload cos θ = 279, 898 cos(36.87o ) = 223.9 kW

= |Vload |2|Zload |2

Rload = 11,8302

5002 ∗ 500 cos(36.87o )

= |I|2Rload = 23.662 ∗ 500 cos(36.87o )

,

327 / 412

Page 328: Slides electromechanical

Problem 2.14 cont.

Transformer

I = VGZline +Zload

= 13,2000.6 ∠53.1o +500 ∠36.87o = 26.37∠−36.89o A

SG = VG I∗ = 13, 200(26.37∠36.89o ) = 278, 393 ∠36.89o VA

,

328 / 412

Page 329: Slides electromechanical

Problem 2.14 cont.

Transformer

Vline = Zline I = (0.6 ∠53.1o )(26.37 ∠−36.89o ) = 15.82 ∠16.2o V

Sline = Vline I∗ = (15.82 ∠16.2o )(26.37 ∠36.89o ) = 417.17 ∠53.1o VA

= |Vline |2|Zline |2

Zline = 15.822

0.62 (0.6 ∠53.1o )

= |I|2Zline = (26.372)(0.6 ∠53.1o )

Pline = Sline cos θ = 417.17 cos(53.1o ) = 250 W

= |Vline |2|Zline |2

Rline = 15.822

0.62 ∗ 0.6 cos(53.1o )

= |I|2Rline = 26.372 ∗ 0.6 cos(53.1o )

,

329 / 412

Page 330: Slides electromechanical

Problem 2.14 cont.

Transformer

Vload = Zload I = (500 ∠36.87o )(26.37 ∠−36.89o ) = 13, 185 ∠−0.02o V

Sload = Vload I∗ = (13, 185 ∠−0.02o )(26.37 ∠36.89o ) = 347, 688 ∠36.87o VA

= |Vload |2|Zload |2

Zload = 13,1852

5002 (500 ∠36.87o )

= |I|2Zload = (26.372)(500 ∠36.87o )

Pload = Sload cos θ = 347, 688 cos(36.87o ) = 278.15 kW

= |Vload |2|Zload |2

Rload = 13,1852

5002 ∗ 500 cos(36.87o )

= |I|2Rload = 26.372 ∗ 500 cos(36.87o )

,

330 / 412

Page 331: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 2.14 cont.

Transformer

• Initially, the ratio of the load voltage magnitude tothe input voltage was |VL|

|VG | = 11,83013,200 = 0.896

• This increased to |VL||VG | = 13,185

13,200 = 0.9989

• Initially, the line losses were Pline = 20.1 kW

• These decreased by 80 times to Pline = 250 W

331 / 412

Page 332: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 2.15Transformer

SW = 5000 VA480/120600V source to 120V load ⇒ NSE = 4NC

Chapman, pg 148

332 / 412

Page 333: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 2.15 cont.

Transformer

SWSIO

= NSENSE +NC

5000SIO

= 4NC4NC +NC

⇒ SIO = 54 (5000) = 6250 VA

Ipmax = 6250600 = 10.4 A

Ismax = 6250120 = 52.1 A

SIO is 1.2 times SW

Chapman, pg 148

333 / 412

Page 334: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 2.16Transformer

SW = 5000 VA480/120600V source to 480V load ⇒ NSE = 1/4NC

Chapman, pg 149

334 / 412

Page 335: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 2.16 cont.

Transformer

SWSIO

= NSENSE +NC

5000SIO

= NSENSE +4NSE

⇒ SIO = 5(5000) = 25, 000 VA

Ipmax = 25,000600 = 41.67 A

Ismax = 25,000480 = 52.1 A

SIO is 5 times SW

335 / 412

Page 336: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 5.2Synchronous generator: changing load conditions

Chapman, pg 291

336 / 412

Page 337: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 5.2 cont.

Synchronous generator: changing load conditions

337 / 412

Page 338: Slides electromechanical

Example 5.2 cont.

Synchronous generator: changing load conditionsNote: VT = Vφ since we have a 3 phase ∆-connected machine.For part (c), use IL to find IA, use IA to find a new higher EA when the load is connected.Find IF corresponding to this new EA from the OCC curve. But the OCC curve is for VT , not EA!How can you use the OCC curve? The way to look at this is as follows: By looking at the OCC curve, you find the IF needed for opencircuit VT , but this then will drop to 480V when the load is connected.

Voltage = 480VFrequency, fe = 60HzConnection = ∆Number of poles, p = 4Synchronous reactance,Xs = 0.1ΩArmature resistance,RA = 0.015ΩFull load current, IL = 1200A, 0.8 PF lagg.

= 1200A∠−36.87o

Full load friction/windage losses = 40 kWFull load core losses = 30 kW(a) Speed of rotation, fm =?(b) Field current If if no load VT = 480V =?(c) Field current If if IL = 1200A, 0.8 PF lagging load and VT = 480V =?(d) Input power Pin, output power Pout , efficiency η =?(e) If load suddenly disconnected ,VT =?(f) Field current If if IL = 1200A, 0.8 PF leading load and VT = 480V =?

∆-connection ⇒ VT = Vφ, IL =√

3Iφ =√

3IANo load ⇒ VT = EA

,

338 / 412

Page 339: Slides electromechanical

Example 5.2 cont.

Synchronous generator: changing load conditions

(a) fm = fep/2

= 604/2

= 30Hz = 1800rpm

(b) If = 4.5A read directly from OCC curve (VT vs If plot)

(c) IA = Iφ = IL√3

= 1200∠−36.87o√

3= 692.8∠−36.87o

EA = Vφ + RAIA + jXs IA= 480∠0o + (0.015)(692.8∠−36.87o ) + j(0.1)(692.8∠−36.87o ) = 532∠5.3o

If = 5.7A from OCC curve

,

339 / 412

Page 340: Slides electromechanical

Example 5.2 cont.

Synchronous generator: changing load conditions(d) Pout =

√3VT IL cos θ

=√

3(480)(1200) cos(−36.87o )= 798 kW

Pelec. losses = 3IA2RA

= 3(692.8)2(0.015)= 21.6 kW

Pin − P stray losses − Pfric.&wind. losses − Pcore losses − PCu losses = Pout

⇒ Pin − P stray losses − Pmech. losses − Pcore losses − Pelec. losses = Pout

⇒ Pin − 0 kW − 40 kW − 30 kW − 21.6 kW = 798 kW⇒ Pin = 889.6 kW

efficiency η = PoutPin× 100% = 798 kW

889.6 kW× 100% = 89.75%

,

340 / 412

Page 341: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1DC motors: simple rotating loop

Chapman 5th ed, pg 413

341 / 412

Page 342: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loopFor this motor,

• The area of the rotor under each pole is A = Ap = πrldue to the curved nature of the stator poles

• K = 2π

Chapman 5th ed, pg 413, 406 (figure)

342 / 412

Page 343: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

Chapman 5th ed, pg 413

343 / 412

Page 344: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

Chapman 5th ed, pg 413

344 / 412

Page 345: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

Chapman 5th ed, pg 413

345 / 412

Page 346: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

Chapman 5th ed, pg 413

346 / 412

Page 347: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

Chapman 5th ed, pg 413

347 / 412

Page 348: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

Chapman 5th ed, pg 413

348 / 412

Page 349: Slides electromechanical

Example 7-1 cont. I

DC motors: simple rotating loop

1 %Example 7 . 1 , Chapman 5 th ed , pg 4132 c l e a r ; c l c ; format compact

4 % =================================5 % INITIALIZATION6 % =================================7 % p h y s i c a l8 r = 0 . 5 ; % r a d i u s ( mete r s )9 l = 1 ; % l e n g t h ( mete r s )

10 A = p i∗ r∗ l ; % a r e a ( mete r s ˆ2)11 K = 2/ p i ; % machine c o n s t a n t ( no u n i t s )

13 % e l e c t r i c a l14 R = 0 . 3 ; % r e s i s t a n c e ( ohms )15 VB = 1 2 0 ; % a p p l i e d v o l t a g e ( v o l t s )

17 % magnet ic18 B = 0 . 2 5 ; % magnet ic f l u x d e n s i t y ( t e s l a s )19 p h i = B∗A ; % p h i ( webers )

21 % =================================22 % COMPUTATIONS23 % =================================24 %p a r t ( b )25 %−−−−−−−−26 I s t a r t = VB/R ; %s t a r t u p

28 e i n d = VB; %no l o a d s t e a d y s t a t e , c u r r e n t =029 w = e i n d /(K∗p h i ) ; %”

,

349 / 412

Page 350: Slides electromechanical

Example 7-1 cont. II

DC motors: simple rotating loop

31 %p a r t ( c )32 %−−−−−−−−33 tau = 1 0 ; % l o a d t o r q u e (Nm)34 I = tau /(K∗p h i ) ; % s t e p 2 : f o r c e / t o r q u e e q u a t i o n35 e i n d = VB−I∗R ; % s t e p 1 : KVL ( motor e q u a t i o n )36 w = e i n d /(K∗p h i ) ; % s t e p 4 : Faraday

38 P mech = tau ∗ w ; % output power : m e c h a n i c a l39 P e l e c = VB ∗ I ; % i n p u t power : e l e c t r i c a l

41 %p a r t ( d )42 %−−−−−−−−43 tau = 7 . 5 ; % l o a d t o r q u e (Nm)44 I = tau /(K∗p h i ) ; % s t e p 2 : f o r c e / t o r q u e e q u a t i o n45 e i n d = VB+I∗R ; % s t e p 1 : KVL ( g e n e r a t o r e q u a t i o n )46 w = e i n d /(K∗p h i ) ; % s t e p 4 : Faraday

48 %p a r t ( e )49 %−−−−−−−−50 B = 0 . 2 ;51 p h i = B∗A ; % p h i ( webers )52 e i n d = VB; % no l o a d s t e a d y s t a t e , c u r r e n t =053 w = e i n d /(K∗p h i ) ; % ”

Chapman 5th ed, pg 413 ,

Page 351: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

• Dimensions

• r = 0.5 m• ` = 1.0 m

• Field

• B = 0.25 T = 0.25 Wb/m2

• φ = BAp = B(πr`) = (0.25 T)(π × 0.5 m× 1.0 m) =0.125π Wb

• Ap is area of rotor under pole face

• External

• VB = 120 V• R = 0.3 Ω

Chapman 5th ed, pg 413, 409 (Ap )

351 / 412

Page 352: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

(a) At t = 0, the following sequence occurs

1 Voltage and velocity: eind = 0, ω = 0

2 Current and torque: i = VB−eindR

= 1200.3

= 400 A,

τind = 2πφi = 2

π(0.125π)(400) = 100 NM

3 Velocity and voltage ↑: Motor starts to rotate, i.e., ω starts

to increase causing eind = 2πφω to increase

4 Current and torque ↓: This decreases i and therefore τind

Steady state is reached with τind = 0 and eind = VB . So, we wentfrom eind = 0 to eind = VB

Chapman 5th ed, pg 413

352 / 412

Page 353: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

(b) i = 400 A (see previous part)

eind = 2πφω

120 = 2π

(0.125π)ω

⇒ ω = 480 rad/sec

Chapman 5th ed, pg 413

353 / 412

Page 354: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

(c)

τind = 2πφi

10 = 2π

(0.125π)i

⇒ i = 40 A

eind = VB − iR motor

= 120 V− (40 A)(0.3Ω)

= 108 V

eind = 2πφω

108 = 2π

(0.125π)ω

⇒ ω = 432 rad/sec

Power supplied to shaft = τω = (10 NM)(432 rad/sec) = 4, 320WPower out of battery shaft = VB i = (120 V)(40A) = 4, 800W

Chapman 5th ed, pg 413

354 / 412

Page 355: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

(d)

τind = 2πφi

7.5 = 2π

(0.125π)i

⇒ i = 30 A

eind = VB + iR generator

= 120 V + (30 A)(0.3Ω)

= 129 V

eind = 2πφω

129 = 2π

(0.125π)ω

⇒ ω = 516 rad/sec

Chapman 5th ed, pg 413

355 / 412

Page 356: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 7-1 cont.

DC motors: simple rotating loop

(e) φ = BAp = B(πr`) = (0.2 T)(π × 0.5 m× 1.0 m) = 0.1π Wb

eind = 2πφω

120 = 2π

(0.1π)ω

⇒ ω = 600 rad/sec

When the flux decreases, the speed increases !

Chapman 5th ed, pg 413

356 / 412

Page 357: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1DC shunt motor

Chapman 5th ed, pg 472

357 / 412

Page 358: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

Chapman 5th ed, pg 472

358 / 412

Page 359: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

Chapman 5th ed, pg 472

359 / 412

Page 360: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

Chapman 5th ed, pg 472

360 / 412

Page 361: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

Chapman 5th ed, pg 472

361 / 412

Page 362: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

Chapman 5th ed, pg 472

362 / 412

Page 363: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

Chapman 5th ed, pg 472

363 / 412

Page 364: Slides electromechanical

Example 8-1 cont. I

DC shunt motor

1 %Example 8 . 1 , Chapman 5 th ed , pg 4722 c l e a r ; c l c ; format compact ;

4 w vec = [ ] ;5 t a u v e c = [ ] ;

7 V T = 2 5 0 ;8 R A = 0 . 0 6 ;9 R F = 5 0 ;

10 w n l = 1 2 0 0 ;

12 % p a r t ( a )13 I L = 1 0 0 ;14 I F = V T/R F ;15 I A = I L − I F ;16 E A = V T−I A∗R A ;17 w = (1200/250)∗E A ;18 tau = E A∗ I A /(w∗2∗ p i /60) ;19 w vec = [ w vec w ] ;20 t a u v e c = [ t a u v e c tau ] ;

22 % p a r t ( b )23 I L = 2 0 0 ;24 I F = V T/R F ;25 I A = I L − I F ;26 E A = V T−I A∗R A ;27 w = (1200/250)∗E A ;28 tau = E A∗ I A /(w∗2∗ p i /60) ;29 w vec = [ w vec w ] ;

,

364 / 412

Page 365: Slides electromechanical

Example 8-1 cont. II

DC shunt motor

30 t a u v e c = [ t a u v e c tau ] ;

32 % p a r t ( c )33 I L = 3 0 0 ;34 I F = V T/R F ;35 I A = I L − I F ;36 E A = V T−I A∗R A ;37 w = (1200/250)∗E A ;38 tau = E A∗ I A /(w∗2∗ p i /60) ;39 w vec = [ w vec w ] ;40 t a u v e c = [ t a u v e c tau ] ;

42 % p a r t ( d )43 p l o t ( t a u v e c , w vec ) ;44 ho ld on ;45 p l o t ( t a u v e c , w vec , ’ o ’ ) ;46 g r i d on ;

Chapman 5th ed, pg 472 ,

Page 366: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

150 200 250 300 350 400 450 500 550 6001110

1120

1130

1140

1150

1160

1170

1180

Torque (NM)

Ang

ular

vel

ocity

(rp

m)

Chapman 5th ed, pg 472

366 / 412

Page 367: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

1 Input: constantTerminal voltage, VT = 250 V is constant.(remember that terminal voltage supplied by the user is used togenerate both field and armature currents)

2 System: unchanged

1 Stator (field): Since field resistance and VT are constant, IFis constant and so flux φ is constant

2 Rotor (armature): The input and system are unchanged,

and soEA0EA1

= ω0ω1

3 Output: changingLoad current IL increases from 100A to 200A to 300A

4 No load conditions IL = 0⇒ EA = VT

EA0=250 V

ω0 = 1200 rev/min60 sec/min

= 20 rev/sec

Chapman 5th ed, pg 472

367 / 412

Page 368: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

• I need ω1, ω2, ω3 but I do not have EA1,EA2

,EA3

• All I have is IL1, IL2

, IL3

• So, let’s see how to get EA for a given IL

• We have 7 variables (3 unknown) and 3 equations:

1 VT

2 IL

3 IF : unknown4 RF

5 EA: unknown6 IA: unknown7 RA

VT = EA + IARA

VT = IF RF

IL = IF + IA

Chapman 5th ed, pg 472

368 / 412

Page 369: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

• I want a relation between IL and EA. We have:

(a) IA = IL − IF (b) IF = VTRF

and therefore, IA = IL − VTRF

,

VT = EA +

(IL − VT

RF

)RA

⇒ 250 = EA +

(IL − 250

50

)0.06

⇒ EA = 250− 0.06(IL − 5)⇒ EA1

= 244.3V (IL1= 100A)

⇒ EA2= 238.3V (IL2

= 200A)⇒ EA3

= 232.3V (IL3= 300A)

Chapman 5th ed, pg 472

369 / 412

Page 370: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-1 cont.

DC shunt motor

EA0EA1

= n0n1⇒ 250

244.3 = 1200n1

⇒ n1 = 1173 rpm

EA0EA2

= n0n2⇒ 250

238.3 = 1200n2

⇒ n2 = 1144 rpm

EA0EA3

= n0n3⇒ 250

232.3 = 1200n3

⇒ n3 = 1115 rpm

Chapman 5th ed, pg 472

370 / 412

Page 371: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 8-1DC shunt motor

Chapman 5th ed, pg 553

371 / 412

Page 372: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 8-1 cont.

DC shunt motor

Chapman 5th ed, pg 553

372 / 412

Page 373: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 8-1 cont.

DC shunt motor

In this question, we useEA1EA2

= Kφ1ω1Kφ2ω2

= ω1ω2

, where φ1 = φ2

since the field current does not change.First, the no load condition gives us the first two lines below, while KVLand the magnetization curve gives us the third and fourth lines:

IF = 0.96Aω1 = ? rpm

EA1 = 240 V (at no load)

ω1 = 1800 rpmEA1 = 241 V (acting as generator)

This question can be done in 1 step:

1 We haveEA1EA2

= ω1ω2⇒ 240

241= ω1

1800⇒ ω1 = 1793 rpm

NOTE: Just because rated velocity is 1800 rpm DOES NOT MEAN

that this is no-load velocity. It appears like that in Example 8.1(pg 472),

but over there, it is clearly mentioned that no load ω is 1200 rpm which

happens to be the same as the rated ω

Chapman 5th ed, pg 553

373 / 412

Page 374: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Problem 8-1DC shunt motor

• Notice that IF is held constant at 0.96A, whether no load or

whether loaded

• First operationg point: For the above IF , one possibleoperating point that we get from the magnetization curve isEA = 241 V and ω = 1800, and it appears that thisoperating point is achieved IF the machine is acting as agenerator

• Second operationg point: For the above IF , anotherpossible operating point is at EA = 240 V, i.e., no load

Chapman 5th ed, pg 553

374 / 412

Page 375: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-3DC shunt motor

• The distortion of the flux in a machine as the load is increased iscalled armature reaction.

• To take care of this, compensating windings are connected inseries with the rotor windings, so that whenever the load changesin the rotor, the current in the compensating windings changes,too

Chapman 5th ed, pg 486, 433 (armature reaction), 443 (compensating windings)

375 / 412

Page 376: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-3 cont.

DC shunt motor

Chapman 5th ed, pg 486

376 / 412

Page 377: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-3 cont.

DC shunt motor

Chapman 5th ed, pg 486

377 / 412

Page 378: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-3 cont.

DC shunt motor

Chapman 5th ed, pg 486

378 / 412

Page 379: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-3 cont.

DC shunt motor

Chapman 5th ed, pg 486

379 / 412

Page 380: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-3 cont.

DC shunt motor

Chapman 5th ed, pg 486

380 / 412

Page 381: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-3 cont.

DC shunt motorIn this question, we use

EA1EA2

= Kφ1ω1Kφ2ω2

= φ1ω1φ2ω2

. First, simple

KVL and the given fact that EA does not change, gives usthe first two lines below, while the magnetization curve gives us thethird and fourth lines:

IF 1 = 6A IF 1 = 5A

ω1 = 1103 rpm ω2 = ? rpmEA1 = 246.4 V EA2 = 246.4 V

ω1 = 1200 rpm ω2 = 1200 rpmEA1 = 268 V EA2 = 250 V

This question can be done in 2 steps:

1 We use the magnetization curve data (third and fourth lines) asexplained in this slide to getEA1EA2

= φ1ωφ2ω⇒ 268

250= φ1

φ2⇒ φ1

φ2= 1.076

2 Now, using the KVL data (first and second lines), we getEA1EA2

= φ1ω1φ2ω2

⇒ 1 = 1.076 1103ω2⇒ ω2 = 1187 rpm

Notice that the field current ratioIF 1IF 2

= 65

= 1.2 is different from the

flux ratio φ1φ2

= 1.076 showing the non-linearity due to saturation effects

Chapman 5th ed, pg 486

381 / 412

Page 382: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-4DC shunt motor

Chapman 5th ed, pg 490

382 / 412

Page 383: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-4 cont.

DC shunt motor

Chapman 5th ed, pg 490

383 / 412

Page 384: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-4 cont.

DC shunt motor

Chapman 5th ed, pg 490

384 / 412

Page 385: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-4 cont.

DC shunt motor

The important thing to note in this question is that although VA

changes, IA does not change as the load torque and flux are constant

EA1 = VA − IARA = 250− 120 ∗ 0.03 = 246.4VEA2 = VA − IARA = 200− 120 ∗ 0.03 = 196.4V

So,EA1EA2

= Kφ1ω1Kφ2ω2

246.4196.4

= 1103ω2

⇒ ω2 = 879 rpm

Therefore, if we decrease the voltage VA on the rotor, its speed

decreases

Chapman 5th ed, pg 490

385 / 412

Page 386: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-5DC series motor

Chapman 5th ed, pg 497

386 / 412

Page 387: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-5 cont.

DC series motor

Chapman 5th ed, pg 497

387 / 412

Page 388: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-5 cont.

DC series motor

Chapman 5th ed, pg 497

388 / 412

Page 389: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-5 cont.

DC series motor

Chapman 5th ed, pg 497

389 / 412

Page 390: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-5 cont.

DC series motor

In this question, we useEA1EA2

= Kφ1ω1Kφ2ω2

= ω1ω2

, where φ1 = φ2 since the

field current does not change.First, simple KVL gives us the first two lines below, while themagnetization curve gives us the third and fourth lines:

IA = 50A (NIA = 1250A)

ω1 = ? rpmEA1 = 246 V

ω1 = 1200 rpmEA1 = 80 V

This question can be done in 1 step:

1 We haveEA1EA2

= ω1ω2⇒ 246

80= ω1

1200⇒ ω1 = 3690 rpm

Chapman 5th ed, pg 497

390 / 412

Page 391: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-5 cont.

DC series motor

Pconv = EAIA = τindω

⇒ τind = EAIAω

= (246 V)(50 A)(3690 rpm)(2π rad/rev)(1 min/60 sec)

= 31.8 NM

Chapman 5th ed, pg 497

391 / 412

Page 392: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-8DC shunt motor: efficiency

Chapman 5th ed, pg 525

392 / 412

Page 393: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-8 cont.

DC shunt motor: efficiency

Chapman 5th ed, pg 525

393 / 412

Page 394: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-8 cont.

DC shunt motor: efficiency

Chapman 5th ed, pg 525

394 / 412

Page 395: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9DC separately excited generator

Chapman 5th ed, pg 532

395 / 412

Page 396: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC separately excited generator

Chapman 5th ed, pg 532

396 / 412

Page 397: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC separately excited generator

Chapman 5th ed, pg 532

397 / 412

Page 398: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC separately excited generator

Chapman 5th ed, pg 532

398 / 412

Page 399: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC separately excited generator

Chapman 5th ed, pg 532

399 / 412

Page 400: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC separately excited generator

Chapman 5th ed, pg 532

400 / 412

Page 401: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC separately excited generator

Chapman 5th ed, pg 532

401 / 412

Page 402: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC separately excited generator

Chapman 5th ed, pg 532

402 / 412

Page 403: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC generator: separately excited

(a)

IF = VFRadj +RF

= 43063+20

= 5.2 A

From the magnetization curve, this corresponds to EA = 430 V at1800 rpm. However, the generator is rotating at 1600 rpm.

EA0EA

= n0n

derivation

430EA

= 18001600

⇒ EA = 430×16001800

= 382 V

Since this is no-load, VT = EA = 382 V

Chapman 5th ed, pg 532

403 / 412

Page 404: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC generator: separately excited

(b)IA = 360 A

EA = IARA + VT

382 = 360(0.05) + VT

⇒ VT = 364 V

Chapman 5th ed, pg 532

404 / 412

Page 405: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC generator: separately excited

(c) No compensating windings ⇒ armature reaction

IF = VFRadj +RF

− 450 A turns1000 turns

= 43063+20

− 0.45

= 4.75 A

From the magnetization curve, this corresponds to EA = 410 V at1800 rpm. However, the generator is rotating at 1600 rpm.

EA0EA

= n0n

derivation

410EA

= 18001600

⇒ EA = 410×16001800

= 364 V

EA = IARA + VT

364 = 360(0.05) + VT

⇒ VT = 346 V (lower than before due to armature reaction)

Chapman 5th ed, pg 532

405 / 412

Page 406: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC generator: separately excited

(d) To restore VT to that in part (a), we need to increase EA.For this, we need to increase IF .For this, we need to decrease Radj .

Chapman 5th ed, pg 532

406 / 412

Page 407: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Example 8-9 cont.

DC generator: separately excited

(e) We have compensating windings, i.e., part (b) and wewant to restore VT from 364 V (part (b)) to the no-load 382 V(part (a))

EA = IARA + VT

= (360)(0.05) + 382

= 400 V at 1600 rpm

400EA

= 16001800

⇒ EA = 450 V at 1800 rpm

From the magnetization curve, this corresponds to IF = 6.15 A at1800 rpm.

IF = VFRadj +RF

6.15 = 430Radj +20

⇒ Radj = 49.9Ω ≈ 50Ω

Chapman 5th ed, pg 532

407 / 412

Page 408: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Sample quizQuestions

1 What is the difference between field and armature?

2 Draw the equivalent circuit of a DC motor.

3 In a DC machine, torque depends on which 2 quantities?

4 In a DC machine, induced voltage depends on which 2 quantities?

5 What is meant by flux?

6 What does the magnetization curve show?

7 In a transformer, what causes the voltage from the primary toappear on the secondary?

8 Why is the startup current of a motor high?

9 If I want to develop an emf on a wire, what should i do?

10 If I want to develop a force on a wire, what should i do?

408 / 412

Page 409: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Sample quiz cont.

Answers

1 What is the difference between field and armature? ”Field”windings applies to the windings that produce the main magneticfield in a machine, and the term ”armature” windings applies tothe windings where the main voltage is induced (Chapman, pg267).

2 Draw the equivalent circuit of a DC motor. see here

3 In a DC machine, torque depends on which 2 quantities?I = KφIA

4 In a DC machine, induced voltage depends on which 2 quantities?v = Kφω

5 What is meant by flux? B field passing through a surface

6 What does the magnetization curve show? Plot of flux vs themmf producing it (Chapman, pg 21), or EA vs IF for a fixed speedfor a DC machine (537)

409 / 412

Page 410: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Sample quiz cont.

Answers

7 In a transformer, what causes the voltage from the primary to

appear on the secondary? Refer to Chapman, pg 78

1 Voltage ep is applied on primary coil2 Current ip flows through primary coil according to ep = ipRp

3 Flux φ is created according to Ampere’s Law which flowsthrough core

4 Since the flux is not changing, it does not induce a voltagees on the secondary coil

5 Now, change voltage ep on the primary side. This causes achanging current on the primary side, and therefore achanging flux.

6 This changing flux causes an induced voltage s on thesecondary coil according to Faraday’s Law.

410 / 412

Page 411: Slides electromechanical

AV-222Electromechanical Systems

readme1. Introduction2. Theory

(a) Electromagnetics(b) Power(c) Drive electronics(d) Mechanics(e) Transformers(f) Motors & Generators

- DC- Linear- Brushed

- AC- Synchronous- Induction

- Other- Universal motor- Reluctance motor- Hysteresis motor- Stepper motor- BLDC motor- Servo motor

3. Applications4. Labs5. Problems

,

Sample quiz cont.

Answers

8 Why is the startup current of a motor high? Refer to Chapman,pg 573

9 If I want to develop an emf on a wire, what should i do?eind = (v × B).`, i.e. move the wire with length ` at velocity vthrough a magnetic field B

10 If I want to develop a force on a wire, what should i do?Find = i(`×B), i.e. pass a current i through wire with length ` inpresence of magnetic field B

411 / 412

Page 412: Slides electromechanical

Sample OHTQuestions

1 A 50-hp 250-V, 1200 r/min dc shunt motor with compensating windings has an armatureresistance (including brushes, compensating windings, and interpoles) of 0.06 Ω. Its field currenthas a total resistance Radj + RF of 50 Ω, which produces a no-load speed of 1200 r/min. Thereare 1200 turns per pole on the shunt field windings. Find the speed of this motor when its inputcurrent is (a) 100A (b) 200A (c) 300A.

2 A 480-V, 60-Hz, ∆-connected, four-pole synchronous generator has the OCC shown below:

The generator has a synchronous reactance of 0.1Ω, and an armature resistance of 0.015Ω. Atfull load, the machine supplies 1200A at 0.8PF lagging. Under full-load conditions, the frictionand windage losses are 40kW, and the core losses are 30kW. Ignore any field current losses.(a) What is the speed of rotation? (b) How much IF must be supplied to the generator to makeVT = 480V at no load? (c) If the generator is now connected to a load and the load draws1200A at 0.8 PF lagging, how much IF will be required to keep VT = 480V? (d) How muchpower is the generator now supplying? (e) How much power is supplied by the prime mover?

3 Explain the operation of a synchronous generator operating at lagging power factor.4 What is the difference between a DC machine, a synchronous machine and an induction machine?

,