Skeletal physiology

Download Skeletal physiology

Post on 21-May-2015




1 download

Embed Size (px)


<ul><li> 1. SkeletalPhysiologyGatlin Group B8</li></ul> <p> 2. Fibrous Joint StructureThese types of joints are held together byfibrous connective tissue, no joint cavity ispresent. Either slightly mobile or immobile. 3. Synovial Joint StructureMade up of synovial fluid, freely movable andcharacterize most joints.Subtypes-Hyaline Cartilage- Covers the end of the boneSynovial Membrane- Surrounds synovial cavity.Fibrous capsule- Made up of ligaments ( dense,irregular connective tissue)Articulate capsule- Both synovial and fibrousmembrane. 4. Types Of MovementSYNOVIAL JOINTS- All are freely movable(diarthrosis)Gliding- Two sliding surfacesHinge- Concave surface with convex surface,diathrosisPivot- Rounded end fits into ringCondyloid- oval condyle with oval cavitySaddle- each surface is concave or convexBall&amp;Socket- Ball shaped head, and cupshaped pocket 5. Joint Types PicturesSynovial Fibrous Cartilaginous 6. The Four Types of Bones Long Bones Short Bones Flat Bones Irregular Bones 7. Long BonesThese bones typically have an elongated shaft and twoexpanded ends one on either side of the shaft. The shaft isknown as diaphysis and the ends are called epiphyses.Normally the epiphyses are smooth and articular. The shafthas a central medullary cavity where lies the bone marrow.Examples include the humerus, femur, radius, ulna, tibiaand fibula 8. Short BonesThese bones are short in posture and canbe of any shape. Most of them are namedaccording to their shape.Examples of this class of bones includecuboid, cuneiform, scaphoid, trapezoidetc. In fact all the carpal and tarsal bonesare included in this category. 9. Flat BonesThese bones are flat in appearance andhave two prominent surfaces. Theyresemble shallow plates and formboundaries of certain body cavities.Examples include scapula, ribs, sternumetc. 10. Irregular BonesThe shape of these bones is completelyirregular and they do not fit into anycategory of shape.Examples of this type of bones arevertebrae, hip bone and bones in thebase of skull. 11. Major Structures of a LongBone The diaphysis, or shaft, is the long tubular portion of long bones. It iscomposed of compact bone tissue. The epiphysis (plural, epiphyses) is the expanded end of a long bone. Itis in the epiphyses where red blood cells are formed. The metaphysis is the area where the diaphysis meets the epiphysis. Itincludes the epiphyseal line, a remnant of cartilage from growing bones. The medullary cavity, or marrow cavity, is the open area within thediaphysis. The adipose tissue inside the cavity stores lipids and forms theyellow marrow. Articular cartilage covers the epiphysis where joints occur. The periosteum is the membrane covering the outside of the diaphysis(and epiphyses where articular cartilage is absent). It containsosteoblasts (bone-forming cells), osteoclasts (bone-destroying cells),nerve fibers, and blood and lymphatic vessels. Ligaments and tendonsattach to the periosteum. The endosteum is the membrane that lines the marrow cavity. 12. The Typical Long Bone 13. Bone as a TissueThere are two different kinds of bone tissue: Compact and Spongy bone.Compact bone Is made up of concentric rings of matrix that surround central canals whichcontain blood vessels. Embedded in this bone tissue are small cave-like spaces called lacunae,which are connected to each other through small tunnels called canaliculi. The lacunae contain osteocytes cells. As just discussed, osteocytes helpmaintain healthy bone tissue and are involved in the bone remodelingprocess that will be outlined later in this lesson.Spongy bone Looks like an irregular latticework (or sponge) with lots of spacesthroughout. These spaces are filled with red bone marrow which is the site ofhematopoiesis or formation of blood cells. 14. The Haversian SystemA Haversian System consists of many cylinder-shapedstructural units. There are four types of structures that make upeach Haversian system. (1)1.Lamellae concentric, cylinder-shaped layers of calcifiedmatrix2.Lacunae small spaces containing tissue fluid in whichbone cells lie imprisoned between the hard layers of the lamellae3.Canaliculi ultrasmall canals radiating in all directionsfrom the lacunae and connecting them to each other and into alarger canal, the haversian canal4.Haversian canal extends lengthwise through the centerof each Haversian system; contains blood vessels, lymphaticvessels, and nerves from the Haversian canal; nutrients andoxygen move through canaliculi to the lacunae and their bonecells a short distance of about 0.1 mm or less. 15. Three Major Types of CellsFound in Bones1.Osteoblasts bone-formingcells2.Osteoclasts bone-resorbingcells3.Osteocytes mature bone cells 16. OsteoblastsOsteoblasts are small cells that synthesizeand secrete a specialized organic matrix,called osteoid. (1) 17. OsteoclastsOsteoclasts are giant multinucleate cellsthat are responsible for the active erosion ofbone minerals. (1) 18. OsteocytesOsteocytes are mature, non-dividingosteoblasts that have become surroundedby matrix and now lie within lacunae. (1) 19. Homeostatic Functions ofBones1.Support: contributes to the shape, alignment, andpositioning of the body parts2.Protection: hard, bony boxes that serve to protect thedelicate structures they enclose3.Movement: bones with their joints constitute levers,muscles are anchored firmly to bones, as muscles contractand shorten, they pull on bones. Making it movement in a joint4.Mineral storage: depends on changes in the rate ofcalcium movement between the blood and bones5.Hematopoiesis: blood cell formation(1) 20. Intramembranous andEndochondral boneIntramembranous and Endochondral bone are two essential processes duringfetal development of the mammalian skeletal system by which bone tissue iscreatedIntramembranous: Cartilage is not present during intramembranous ossification Intramembranous ossification is essential process during the naturalhealing of bone fractures and the rudimentary formation of bones ofthe headEndochondral: Cartilage is present during endochondral ossification Essential process during the rudimentary formation of long bones,the growth of the length of long bones, and the natural healing of bonefractures. 21. Bone Fracture Repair1. White blood cells move in to the area to clean up debris created by the break, which creates inflammation, in turn triggering the growth of new blood cells2. New blood vessels develop to begin the healing process3. Soft callus also known as cartilage or soft fibrous tissue, begins to form to bridge the gap from the break.4. A harder cartilage develops in place of the soft cartilage, forming a more solid bond within the gap5. Through a process called remodeling, old bone is continually replaced by new bone, completing the process of bone fracture healing. 22. Bone and Cartilage A bone is a rigid organ that constitutes part of theendoskeleton of vertebrates. It supports and protects thevarious organs of the body, produces red and white bloodcells and stores minerals. Bone is made up of osteoblasts,osteocytes, osteoclasts, and bone lining cells whichregulate the movement of calcium Cartilage is a flexible connective tissue found in manyareas in the bodies of humans and other animals, includingthe joints between bones. Cartilage is made up ofchondroblasts, chondrocytes, and dense matrix made up ofcollagen and elastic fibers</p>