sistemas digitales - memorias, convertidor

34
República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Bolivariana Maracay – Estado Aragua UNEFA Aragua – Extensión Maracay SISTEMAS DIGITALES MEMORIAS, CONVERTIDOR DIGITAL-ANALÓGICO, CONVERTIDOR ANALÓGICO-DIGITAL

Upload: luis-sira

Post on 08-Aug-2015

42 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sistemas Digitales - Memorias, Convertidor

República Bolivariana de VenezuelaMinisterio del Poder Popular para la DefensaUniversidad Nacional Experimental Politécnica de la Fuerza Armada BolivarianaMaracay – Estado AraguaUNEFA Aragua – Extensión Maracay

SISTEMAS DIGITALESMEMORIAS, CONVERTIDOR DIGITAL-ANALÓGICO,

CONVERTIDOR ANALÓGICO-DIGITAL

Docente: Alumno:Ing. Reynold Luis Sira

Karlo GaleanoSección 502

Maracay, 2013

Page 2: Sistemas Digitales - Memorias, Convertidor

Índice

Introducción 03 Memorias 04

o Jerarquía de Almacenamiento 04o Características de las memorias 06o Tecnologías, dispositivos y medios 09

Convertidores Digital-Analógica (DAC), Analógica-Digital (ADC) 11o Características 12o Conversores tipo Digital-Analógica (DAC) 17o Conversores tipo Analógica-Digital (ADC) 19

Conclusiones 25 Bibliografía 26

Page 3: Sistemas Digitales - Memorias, Convertidor

Introducción

Una de las ventajas de los sistemas digitales frente a los sistemas analógicos, es su capacidad de retener y almacenar información que luego la puede utilizar para procesar datos. La información digital se almacena en memorias, que son dispositivos de diversa naturaleza según la cantidad de datos que ha de guardar, el tiempo que han de permanecer, y las tareas que se han de realizar con ellos.

El desarrollo de los microprocesadores y procesadores digitales de señal (DSP), ha permitido realizar tareas que durante años fueron hechas por sistemas electrónicos analógicos. Por otro lado, como que el mundo real es análogo, una forma de enlazar las variables analógicas con los procesos digitales es a través de los sistemas llamados conversores de analógico - digital (ADC- Analogue to Digital Converter) y conversores digital - analógico (DAC- Digital to Analogue Converter).

El objetivo básico de un ADC es transformar una señal eléctrica análoga en un número digital equivalente. De la misma forma, un DAC transforma un número digital en una señal eléctrica análoga.

Esta función exige que los pasos intermedios se realicen de forma óptima para no perder información. Según el tipo de componente y su aplicación existen distintos parámetros que lo caracterizan, éstos pueden ser: la velocidad de conversión, la resolución, los rangos de entrada, etc. Por ejemplo, una mayor cantidad de bit, implica mayor precisión, pero también mayor complejidad. Un incremento en un solo bit permite disponer del doble de precisión (mayor resolución), pero hace más difícil el diseño del circuito, además, la conversión podría volverse más lenta. Dentro de las de aplicaciones de estos sistemas está el manejo de señales de vídeo, audio, los discos compactos, instrumentación y control industrial. En la siguiente investigación se describen las funciones de la memoria, los conceptos básicos de conversión de señal, técnicas de implementación para los ADC o DAC, características y parámetros que los definen. Se revisarán las configuraciones más clásicas, atendiendo a criterios de velocidad y manejo de datos.

Page 4: Sistemas Digitales - Memorias, Convertidor

Memorias

En informática, la memoria (también llamada almacenamiento) se refiere a parte de los componentes que integran una computadora. Son dispositivos que retienen datos informáticos durante algún intervalo de tiempo. Las memorias de computadora proporcionan una de las principales funciones de la computación moderna, la retención o almacenamiento de información. Es uno de los componentes fundamentales de todas las computadoras modernas que, acoplados a una unidad central de procesamiento (CPU por su sigla en inglés, central processing unit), implementa lo fundamental del modelo de computadora de Arquitectura de von Neumann, usado desde los años 1940.

En la actualidad, memoria suele referirse a una forma de almacenamiento de estado sólido conocido como memoria RAM (memoria de acceso aleatorio, RAM por sus siglas en inglés random access memory) y otras veces se refiere a otras formas de almacenamiento rápido pero temporal. De forma similar, se refiere a formas de almacenamiento masivo como discos ópticos y tipos de almacenamiento magnético como discos duros y otros tipos de almacenamiento más lentos que las memorias RAM, pero de naturaleza más permanente. Estas distinciones contemporáneas son de ayuda porque son fundamentales para la arquitectura de computadores en general.

Además, se refleja una diferencia técnica importante y significativa entre memoria y dispositivos de almacenamiento masivo, que se ha ido diluyendo por el uso histórico de los términos "almacenamiento primario" (a veces "almacenamiento principal"), para memorias de acceso aleatorio, y "almacenamiento secundario" para dispositivos de almacenamiento masivo. Esto se explica en las siguientes secciones, en las que el término tradicional "almacenamiento" se usa como subtítulo por conveniencia.

Jerarquía de Almacenamiento

Los componentes fundamentales de las computadoras de propósito general son la CPU, el espacio de almacenamiento y los dispositivos de entrada/salida. La habilidad para almacenar las instrucciones que forman un programa de computadora y la información que manipulan las instrucciones es lo que hace versátiles a las computadoras diseñadas según la arquitectura de programas almacenados.

Una computadora digital representa toda la información usando el sistema binario. Texto, números, imágenes, sonido y casi cualquier otra forma de información puede ser transformada en una sucesión de bits, o dígitos binarios, cada uno de los cuales tiene un valor de 1 ó 0. La unidad de almacenamiento más común es el byte, igual a 8 bits. Una determinada información puede ser manipulada por cualquier computadora cuyo espacio de almacenamiento sea suficientemente grande como para que quepa el dato correspondiente o la representación binaria de la información. Por ejemplo, una computadora con un espacio de almacenamiento de ocho millones de bits, o un megabyte, puede ser usada para editar una novela pequeña.

Se han inventado varias formas de almacenamiento basadas en diversos fenómenos naturales. No existen ningún medio de almacenamiento de uso práctico universal y todas las formas de almacenamiento tienen sus desventajas. Por tanto, un sistema informático contiene varios tipos de almacenamiento, cada uno con su propósito individual.

Page 5: Sistemas Digitales - Memorias, Convertidor

Almacenamiento primario:

La memoria primaria está directamente conectada a la CPU de la computadora. Debe estar presente para que la CPU funcione correctamente. El almacenamiento primario consiste en tres tipos de almacenamiento:

Los registros del procesador son internos de la CPU. Técnicamente, es el sistema más rápido de los distintos tipos de almacenamientos de la computadora, siendo transistores de conmutación integrados en el chip de silicio del microprocesador (CPU) que funcionan como "flip-flop" electrónicos.

La memoria caché es un tipo especial de memoria interna usada en muchas CPU para mejorar su eficiencia o rendimiento. Parte de la información de la memoria principal se duplica en la memoria caché. Comparada con los registros, la caché es ligeramente más lenta pero de mayor capacidad. Sin embargo, es más rápida, aunque de mucha menor capacidad que la memoria principal. También es de uso común la memoria caché multi-nivel - la "caché primaria" que es más pequeña, rápida y cercana al dispositivo de procesamiento; la "caché secundaria" que es más grande y lenta, pero más rápida y mucho más pequeña que la memoria principal.

La memoria principal contiene los programas en ejecución y los datos con que operan. Se puede transferir información muy rápidamente entre un registro del microprocesador y localizaciones del almacenamiento principal. En las computadoras modernas se usan memorias de acceso aleatorio basadas en electrónica del estado sólido, que está directamente conectada a la CPU a través de buses de direcciones, datos y control.

Almacenamiento secundario:

La memoria secundaria requiere que la computadora use sus canales de entrada/salida para acceder a la información y se utiliza para almacenamiento a largo plazo de información persistente. Sin embargo, la mayoría de los sistemas operativos usan los dispositivos de almacenamiento secundario como área de intercambio para incrementar artificialmente la cantidad aparente de memoria principal en la computadora.(A esta utilización del almacenamiento secundario se le denomina memoria virtual). La memoria secundaria también se llama "de almacenamiento masivo". Un disco duro es un ejemplo de almacenamiento secundario.

Habitualmente, la memoria secundaria o de almacenamiento masivo tiene mayor capacidad que la memoria primaria, pero es mucho más lenta. En las computadoras modernas, los discos duros suelen usarse como dispositivos de almacenamiento masivo. El tiempo necesario para acceder a un byte de información dado almacenado en un disco duro de platos magnéticos es de unas milésimas de segundo (milisegundos). En cambio, el tiempo para acceder al mismo tipo de información en una memoria de acceso aleatorio (RAM) se mide en mil-millonésimas de segundo (nanosegundos).

Esto ilustra cuan significativa es la diferencia entre la velocidad de las memorias de estado sólido y la velocidad de los dispositivos rotantes de almacenamiento magnético u óptico: los discos duros son del orden de un millón de veces más lentos que la memoria (primaria). Los dispositivos rotantes de almacenamiento óptico (unidades de CD y DVD) son incluso más lentos que los discos duros, aunque es probable que su velocidad de acceso mejore con los avances tecnológicos.

Page 6: Sistemas Digitales - Memorias, Convertidor

Por lo tanto, el uso de la memoria virtual, que es cerca de un millón de veces más lenta que memoria “verdadera”, ralentiza apreciablemente el funcionamiento de cualquier computadora. Muchos sistemas operativos implementan la memoria virtual usando términos como memoria virtual o "fichero de caché". La principal ventaja histórica de la memoria virtual es el precio; la memoria virtual resultaba mucho más barata que la memoria real. Esa ventaja es menos relevante hoy en día. Aun así, muchos sistemas operativos siguen implementándola, a pesar de provocar un funcionamiento significativamente más lento.

Almacenamiento terciario:

La memoria terciaria es un sistema en el que un brazo robótico montará (conectará) o desmontará (desconectará) un medio de almacenamiento masivo fuera de línea (véase el siguiente punto) según lo solicite el sistema operativo de la computadora. La memoria terciaria se usa en el área del almacenamiento industrial, la computación científica en grandes sistemas informáticos y en redes empresariales. Este tipo de memoria es algo que los usuarios de computadoras personales normales nunca ven de primera mano.

Almacenamiento fuera de línea:

El almacenamiento fuera de línea es un sistema donde el medio de almacenamiento puede ser extraído fácilmente del dispositivo de almacenamiento. Estos medios de almacenamiento suelen usarse para transporte y archivo de datos. En computadoras modernas son de uso habitual para este propósito los disquetes, discos ópticos y lasmemorias flash, incluyendo las unidades USB. También hay discos duros USB que se pueden conectar en caliente. Los dispositivos de almacenamiento fuera de línea usados en el pasado son cintas magnéticas en muchos tamaños y formatos diferentes, y las baterías extraíbles de discos Winchester.

Almacenamiento de red:

El almacenamiento de red es cualquier tipo de almacenamiento de computadora que incluye el hecho de acceder a la información a través de una red informática. Discutiblemente, el almacenamiento de red permite centralizar el control de información en una organización y reducir la duplicidad de la información. El almacenamiento en red incluye:

El almacenamiento asociado a red es una memoria secundaria o terciaria que reside en una computadora a la que otra de éstas puede acceder a través de una red de área local, una red de área extensa, una red privada virtual o, en el caso de almacenamientos de archivos en línea, internet.

Las redes de computadoras son computadoras que no contienen dispositivos de almacenamiento secundario. En su lugar, los documentos y otros datos son almacenados en un dispositivo de la red.

Características de las memorias

La división entre primario, secundario, terciario, fuera de línea se basa en la jerarquía de memoria o distancia desde la unidad central de proceso. Hay otras formas de caracterizar a los distintos tipos de memoria.

Page 7: Sistemas Digitales - Memorias, Convertidor

Volatilidad de la información:

La memoria volátil requiere energía constante para mantener la información almacenada. La memoria volátil se suele usar sólo en memorias primarias. La memoria RAM es una memoria volátil, ya que pierde información en la falta de energía eléctrica.

La memoria no volátil retendrá la información almacenada incluso si no recibe corriente eléctrica constantemente, como es el caso de la memoria ROM. Se usa para almacenamientos a largo plazo y, por tanto, se usa en memorias secundarias, terciarias y fuera de línea.

La memoria dinámica es una memoria volátil que además requiere que periódicamente se refresque la información almacenada, o leída y reescrita sin modificaciones.

Habilidad para acceder a información no contigua:

Acceso aleatorio significa que se puede acceder a cualquier localización de la memoria en cualquier momento en el mismo intervalo de tiempo, normalmente pequeño.

Acceso secuencial significa que acceder a una unidad de información tomará un intervalo de tiempo variable, dependiendo de la unidad de información que fue leída anteriormente. El dispositivo puede necesitar buscar (posicionar correctamente el cabezal de lectura/escritura de un disco), o dar vueltas (esperando a que la posición adecuada aparezca debajo del cabezal de lectura/escritura en un medio que gira continuamente).

Habilidad para cambiar la información:

Las memorias de lectura/escritura o memorias cambiables permiten que la información se reescriba en cualquier momento. Una computadora sin algo de memoria de lectura/escritura como memoria principal sería inútil para muchas tareas. Las computadoras modernas también usan habitualmente memorias de lectura/escritura como memoria secundaria.

Las memorias de sólo lectura retienen la información almacenada en el momento de fabricarse y la memoria de escritura única (WORM) permite que la información se escriba una sola vez en algún momento tras la fabricación. También están las memorias inmutables, que se utilizan en memorias terciarias y fuera de línea. Un ejemplo son los CD-ROMs.

Las memorias de escritura lenta y lectura rápida son memorias de lectura/escritura que permite que la información se reescriba múltiples veces pero con una velocidad de escritura mucho menor que la de lectura. Un ejemplo son los CD-RW.

Direccionamiento de la información:

En la memoria de localización direccionable, cada unidad de información accesible individualmente en la memoria se selecciona con su dirección de memoria numérica. En las computadoras modernas, la memoria de localización direccionable se suele limitar a memorias primarias, que se leen internamente por programas de computadora ya que la localización direccionable es muy eficiente, pero difícil de usar para los humanos.

Page 8: Sistemas Digitales - Memorias, Convertidor

En las memorias de sistema de archivos, la información se divide en Archivos informáticos de longitud variable y un fichero concreto se localiza en directorios y nombres de archivos "legible por humanos". El dispositivo subyacente sigue siendo de localización direccionable, pero el sistema operativo de la computadora proporciona la abstraccióndel sistema de archivos para que la operación sea más entendible. En las computadora modernas, las memorias secundarias, terciarias y fuera de línea usan sistemas de archivos.

En las memorias de contenido direccionable (content-addressable memory), cada unidad de información legible individualmente se selecciona con una valor hash o un identificador corto sin relación con la dirección de memoria en la que se almacena la información. La memoria de contenido direccionable pueden construirse usando software ohardware; la opción hardware es la opción más rápida y cara.

Capacidad de memoria:

Memorias de mayor capacidad son el resultado de la rápida evolución en tecnología de materiales semiconductores. Los primeros programas de ajedrez funcionaban en máquinas que utilizaban memorias de base magnética. A inicios de 1970 aparecen las memorias realizadas por semiconductores, como las utilizadas en la serie de computadoras IBM 370.

La velocidad de los computadores se incrementó, multiplicada por 100.000 aproximadamente y la capacidad de memoria creció en una proporción similar. Este hecho es particularmente importante para los programas que utilizan tablas de transposición: a medida que aumenta la velocidad de la computadora se necesitan memorias de capacidad proporcionalmente mayor para mantener la cantidad extra de posiciones que el programa está buscando.

Se espera que la capacidad de procesadores siga aumentando en los próximos años; no es un abuso pensar que la capacidad de memoria continuará creciendo de manera impresionante. Memorias de mayor capacidad podrán ser utilizadas por programas con tablas de Hash de mayor envergadura, las cuales mantendrán la información en forma permanente.

Minicomputadoras: se caracterizan por tener una configuración básica regular que puede estar compuesta por un monitor, unidades de disquete, disco, impresora, etc. Su capacidad de memoria varía de 16 a 256 kbytes.

Macrocomputadoras: son aquellas que dentro de su configuración básica contienen unidades que proveen de capacidad masiva de información, terminales (monitores), etc. Su capacidad de memoria varía desde 256 a 512 kbytes, también puede tener varios megabytes o hasta gigabytes según las necesidades de la empresa.

Microcomputadores y computadoras personales: con el avance de la microelectrónica en la década de los 70 resultaba posible incluir todos los componente del procesador central de una computadora en un solo circuito integrado llamado microprocesador. Ésta fue la base de creación de unas computadoras a las que se les llamó microcomputadoras. El origen de las microcomputadoras tuvo lugar en los Estados Unidos a partir de la comercialización de los primeros microprocesadores (INTEL 8008, 8080). En la década de los 80 comenzó la verdadera explosión masiva, de los ordenadores personales (Personal Computer PC) de IBM. Esta máquina, basada en el microprocesador INTEL 8008, tenía características interesantes que hacían más amplio su campo de operaciones, sobre todo porque su nuevo sistema operativo estandarizado (MS-DOS, Microsoft Disk Operating

Page 9: Sistemas Digitales - Memorias, Convertidor

Sistem) y una mejor resolución óptica, la hacían más atractiva y fácil de usar. El ordenador personal ha pasado por varias transformaciones y mejoras que se conocen como XT(Tecnología Extendida), AT(Tecnología Avanzada) y PS/2...

Tecnologías, dispositivos y medios

Memorias magnéticas:

Las memorias magnéticas usan diferentes patrones de magnetización sobre una superficie cubierta con una capa magnetizada para almacenar información. Las memorias magnéticas son no volátiles. Se llega a la información usando uno o más cabezales de lectura/escritura. Como el cabezal de lectura/escritura solo cubre una parte de la superficie, el almacenamiento magnético es de acceso secuencial y debe buscar, dar vueltas o las dos cosas. En computadoras modernas, la superficie magnética será de alguno de estos tipos:

Disco magnético. Disquete, usado para memoria fuera de línea. Disco duro, usado para memoria secundario. Cinta magnética, usada para memoria terciaria y fuera de línea.

En las primeras computadoras, el almacenamiento magnético se usaba también como memoria principal en forma de memoria de tambor, memoria de núcleo, memoria en hilera de núcleo, memoria película delgada, memoria de Twistor o memoria burbuja. Además, a diferencia de hoy, las cintas magnéticas se solían usar como memoria secundaria.

Memoria de semiconductor:

La memoria de semiconductor usa circuitos integrados basados en semiconductores para almacenar información. Un chip de memoria de semiconductor puede contener millones de minúsculos transistores o condensadores. Existen memorias de semiconductor de ambos tipos: volátiles y no volátiles. En las computadoras modernas, la memoria principal consiste casi exclusivamente en memoria de semiconductor volátil y dinámica, también conocida como memoria dinámica de acceso aleatorio o más comúnmente RAM, su acrónimo inglés. Con el cambio de siglo, ha habido un crecimiento constante en el uso de un nuevo tipo de memoria de semiconductor no volátil llamado memoria flash. Dicho crecimiento se ha dado, principalmente en el campo de las memorias fuera de línea en computadoras domésticas. Las memorias de semiconductor no volátiles se están usando también como memorias secundarias en varios dispositivos de electrónica avanzada y computadoras especializadas y no especializadas.

Memorias de disco óptico:

Las memorias en disco óptico almacenan información usando agujeros minúsculos grabados con un láser en la superficie de un disco circular. La información se lee iluminando la superficie con un diodo láser y observando la reflexión. Los discos ópticos son no volátiles y de acceso secuencial. Los siguientes formatos son de uso común:

CD, CD-ROM, DVD: Memorias de simplemente solo lectura, usada para distribución masiva de información digital (música, vídeo, programas informáticos).

Page 10: Sistemas Digitales - Memorias, Convertidor

CD-R, DVD-R, DVD+R: Memorias de escritura única usada como memoria terciaria y fuera de línea.

CD-RW, DVD-RW, DVD+RW, DVD-RAM: Memoria de escritura lenta y lectura rápida usada como memoria terciaria y fuera de línea.

Blu-ray: Formato de disco óptico pensado para almacenar vídeo de alta calidad y datos. Para su desarrollo se creó la BDA, en la que se encuentran, entre otros, Sony o Phillips.

HD DVD

Se han propuesto los siguientes formatos:

HVD Discos cambio de fase Dual

Memorias de discos magneto-ópticos:

Las Memorias de disco magneto óptico son un disco de memoria óptica donde la información se almacena en el estado magnético de una superficie ferromagnética. La información se lee ópticamente y se escribe combinando métodos magnéticos y ópticos. Las memorias de discos magneto ópticos son de tipo no volátiles, de acceso secuencial, de escritura lenta y lectura rápida. Se usa como memoria terciaria y fuera de línea.

Otros métodos iniciales:

Las tarjetas perforadas fueron utilizadas por primera vez por Basile Bouchon para el control de telares textiles en Francia. En 1801 el sistema de Bouchon fue perfeccionado por Joseph Marie Jacquard, quien desarrolló un telar automático, conocido como telar de Jacquard. Herman Hollerith desarrolló la tecnología de procesamiento de datos de tarjetas perforadas para el censo de Estados Unidos de 1890 y posteriormente fundó la Tabulating Machine Company, una de las precursoras de IBM. IBM desarrolló la tecnología de la tarjeta perforada como una potente herramienta para el procesamiento de datos empresariales y produjo una línea extensiva demáquinas de registro que utilizaban papel perforado para el almacenamiento de datos y su procesado automático. En el año 1950, las tarjetas IBM y las unidades máquinas de registro IBM se habían vuelto indispensables en la industria y el gobierno estadounidense. Durante los años 1960, las tarjetas perforadas fueron gradualmente reemplazadas por las cintas magnéticas, aunque su uso fue muy común hasta mediados de los años 1970 con la aparición de los discos magnéticos. La información se grababa en las tarjetas perforando agujeros en el papel o la tarjeta. La lectura se realizaba por sensores eléctricos (más tarde ópticos) donde una localización particular podía estar agujereada o no.

Para almacenar información, los tubos Williams usaban un tubo de rayos catódicos y los tubos Selectrón usaban un gran tubo de vacío. Estos dispositivos de memoria primaria tuvieron una corta vida en el mercado ya que el tubo de Williams no era fiable y el tubo de Selectron era caro.

La memoria de línea de retardo usaba ondas sonoras en una sustancia como podía ser el Mercurio para guardar información. La memoria de línea de retardo era una memoria dinámica volátil, ciclo secuencial de lectura/escritura. Se usaba como memoria principal.

Otros métodos propuestos:

Page 11: Sistemas Digitales - Memorias, Convertidor

La memoria de cambio de fase usa las fases de un material de cambio de fase para almacenar información. Dicha información se lee observando la resistencia eléctrica variable del material. La memoria de cambio de fase sería una memoria de lectura/escritura no volátil, de acceso aleatorio podría ser usada como memoria primaria, secundaria y fuera de línea. La memoria holográfica almacena ópticamente la información dentro de cristales o fotopolímeros. Las memorias holográficas pueden utilizar todo el volumen del medio de almacenamiento, a diferencia de las memorias de discos ópticos, que están limitadas a un pequeño número de superficies en capas. La memoria holográfica podría ser no volátil, de acceso secuencial y tanto de escritura única como de lectura/escritura. Puede ser usada tanto como memoria secundaria como fuera de línea.

La memoria molecular almacena la información en polímeros que pueden almacenar puntas de carga eléctrica. La memoria molecular puede ser especialmente interesante como memoria principal.

Recientemente se ha propuesto utilizar el spin de un electrón como memoria. Se ha demostrado que es posible desarrollar un circuito electrónico que lea el spin del electrón y lo convierta en una señal eléctrica.

Convertidores Digital-Analógica (DAC), Analógica-Digital (ADC)

Un transductor permite relacionar las señales del mundo real y sus análogas eléctricas. Para compatibilizar la información con un sistema digital, se requiere de convertidores de datos del tipo ADC o DAC, según corresponda.

Conversión análogo - digital.

El diagrama de bloques de la figura anterior se muestra la secuencia desde que la variable física entra al sistema hasta que es transformada a señal digital (código binario). Para dicha señal ingrese al convertidor análogo - digital, ésta debe ser muestreada, es decir, se toman valores discretos en instantes de tiempo de la señal análoga, lo que recibe el nombre de sampling. Matemáticamente es el equivalente a multiplicar la señal análoga por una secuencia de impulsos de periodo constante. Como resultado se obtiene un tren de impulsos con amplitudes limitadas por la envolvente de la señal analógica.

Page 12: Sistemas Digitales - Memorias, Convertidor

Para garantizar la toma de muestra y la conversión de forma correcta se debe considerar la velocidad de muestreo, para lo cual el Teorema de Nyquist, establece que la frecuencia de muestreo f s, debe ser como mínimo el doble que el ancho de banda de la señal muestreada como se indica a continuación:

f s>2 ∙ f m Si no ocurre esta situación, se tiene lugar el fenómeno denominado aliasing.

Proceso de conversión digital – análogo.

En el proceso inverso indicado en la figura anterior, en la cual la señal digital es transformada en señal eléctrica, para la recuperación de la señal eléctrica, la señal digital debe pasar por un convertidor del tipo digital - análogo. Esta señal modulada, es recuperada a través de un filtro pasa bajo e interpolada, obteniéndose la señal análoga equivalente.

Características:

La data digital es un número binario que se define considerando desde el bit de mayor peso (MSB, More Significative Bit) al bit de menor peso (LSB, Least Significative Bit) como se muestra en la siguiente figura

Data digital.

Page 13: Sistemas Digitales - Memorias, Convertidor

Cada conversor ADC o DAC, está determinado por una función de transferencia ideal de entrada – salida (ver la figura a continuación), que muestra la equivalencia entre el mundo digital y el análogo.

Curva de entrada - salida de un conversor ADC o DAC.

En el caso de una señal unipolar entre 0 a 10 [V], su equivalente digital para n bits sería entre 00..00 para 0[V] (zero - scale), 10..00 para 5[V] y 11..11 a 10[V] (full - scale).

Características estáticas:

a. Resolución:

Expresada en unidades de tensión, dependerá del escalón tomado como referencia con respecto a los niveles de tensión dado por el número de bit, por ejemplo, con n bit, habrá 2n niveles de tensión. En la práctica corresponde el valor de un LSB (bit menos significativo).

fullscale ∙ resolución= fullscale2n

b. La linealidad integral y el de linealidad diferencial:

Page 14: Sistemas Digitales - Memorias, Convertidor

Analizando la gráfica de transferencia entrada-salida en el caso ideal, el resultado es una línea recta formada por los puntos de transición de los valores de entrada que determinan cambios de nivel en la salida. Mientras más se ajuste el comportamiento real a esta recta, más preciso se considera al convertidor (ver siguiente figura)

. Curva de entrada - salida lineal.

La máxima desviación entre la gráfica real y la recta ideal se define como linealidad integral, y se expresa en LSB, porcentaje del valor de fondo de escala (%FSR- Font scale range). Como valor típico de linealidad integral es ± 0.5 LSB, con lo que es necesario que el conversor garantice, y para todas las condiciones de trabajo este valor. Si difiere en más de 0.5 LSB (tanto por encima como por debajo), se corre el riesgo de que identifique un valor con una combinación de bit que no le corresponde, y proporcionando de este modo un resultado erróneo.

La linealidad diferencial corresponde a la desviación máxima a partir de la amplitud ideal (1 LSB), y se expresa utilizando las mismas unidades que la linealidad integral.

Linealidad Diferencial.

c. Monotonicidad:

Page 15: Sistemas Digitales - Memorias, Convertidor

Un conversor es monotónico cuando un incremento de tensión en la entrada le corresponda un incremento en la salida, y para una disminución de la entrada, el correspondiente descenso. Si un convertidor no es monotónico, el resultado es la pérdida del código. Si para una determinada combinación de bit no hay un aumento en función de un incremento de la entrada, sino un descenso, se identificará el valor analógico con el código que viene a continuación lo que provoca la no monotonicidad.

Error de monotonicidad.

d. El error de ganancia, el error de Desplazamiento (off-set) y el error de cuantificación:

En términos generales corresponden a la comparación y diferencia máxima entre la curva de transferencia ideal y la real en todo el margen de medidas. El error de ganancia es un parámetro que muestra la precisión de la función de transferencia del convertidor respecto a la ideal y se expresa en LSB (% FSR- font scale range).El error de off-set, se toma cuando todos los bit de entrada son ceros en el caso de un DAC, gráficamente se representa como un desplazamiento constante de todos los valores de la curva característica, como se muestra en la siguiente figura:

Error de Offset.

e. Velocidad:

En algunas aplicaciones, es necesario disponer de un convertidor capaz de tratar señales de elevada frecuencia. Siempre es importante disponer de una velocidad de muestreo que garantice la conversión de forma correcta, teniendo en cuenta el teorema de muestreo, según el

Page 16: Sistemas Digitales - Memorias, Convertidor

cual la frecuencia de muestreo debe ser, como mínimo el doble que el ancho de banda de la señal muestreada para que sea posible su digitalización. Como es lógico, la rapidez del conversor depende también del número de bits a la salida.

El código resultante se ve influida también, por el nivel de ruido que genera la conversión. Es interesante saber que la relación señal/ruido sea lo más elevada posible. La generación de señales espurias también influye negativamente sobre el funcionamiento del convertidor (SFDR - Spurious Free Dynamic Range).

Características Dinámicas:

a. Tiempos de conversión:

Es el tiempo desde que se aplica la señal a convertir hasta que la señal (análoga ó digital) esté disponible en la salida. Esto se determina de acuerdo a la ecuación:

t c=1

f ∙ π ∙2n+1

b. Tiempo de adquisición:

En el caso de conversores Análogo-Digital, es el tiempo durante el cual el sistema de muestreo y retención (Sample & Hold) debe permanecer en estado de muestreo (sample), para asegurarse que el consiguiente estado retención (hold) este dentro de la banda de error especificada para la señal de entrada.

c. Tiempo de asentamiento:

Es el intervalo de tiempo entre la señal de retención y el definitivo asentamiento de la señal (dentro de la banda de error especificada).

d. Slew rate:

Es la velocidad a la cual el valor de la salida del S&H converge al valor muestreado deseado. El proceso de con-versión análoga-digital requiere que la señal análoga de entrada permanezca en un valor constante de tal forma que el ADC pueda realizar su tarea en forma adecuada. Aparece aquí, un elemento llamado sample & hold, que toma una muestra de la señal seleccionada y mantiene su valor durante el tiempo que dura la conversión análoga - digital o T&H (track & hold), que se limita a detectar puntualmente el nivel de la señal analógica. El circuito básico S&H es el que se muestra en la siguiente figura:

Page 17: Sistemas Digitales - Memorias, Convertidor

Circuito Sample and Hold.

Conversores tipo Digital-Analógica (DAC):

Convierten las señales digitales en cantidades eléctricas analógicas relacionadas en forma directa con el número de entradas codificado digitalmente. Los DAC efectúan sus conversiones recibiendo la información en forma serial o paralela. La decisión de emplearlos en serie o paralelo se basa en el uso final, como por ejemplo en instrumentos de medida como osciloscopios de almacenamiento digital se emplea la conversión de tipo paralela y en aplicaciones del control de proceso como válvulas se puede efectuar en forma serie. Un sistema tipo DAC se basa en el diagrama que se muestra en la siguiente figura:

Esquema básico de un DAC

El registro acepta una entrada digital, sólo durante la duración de la señal convert. Después de la adquisición, el registro mantiene constante el número digital hasta que se reciba otro comando. Las salidas del registro controlan interruptores que permiten el paso de 0 [V] o el valor de la fuente de voltaje de referencia. Los interruptores dan acceso a una red sumadora resistiva que convierte cada bit en su valor en corriente y a continuación la suma obteniendo una corriente total. El valor total alimenta a un amplificador operacional que realiza la conversión a voltaje y el escalamiento de la salida. Cada resistor de la rama está ajustado según el bit que tenga a la entrada como se muestra en el esquema correspondiente a la siguiente figura:

Page 18: Sistemas Digitales - Memorias, Convertidor

Conversor básico escalera.

Luego, la tensión de salida de un conversor de n bits, está dada por:

v (t )=RfR ( a02n−1+ a1

2n−2+…+

an−120 )

Donde cada an representa la información binaria ”0” o ”1”.

El circuito de la figura del esquema básico de un DAC, presenta un grave inconveniente, pues, se requieren n resistores y los cuales se van duplicando en magnitud. Debido a las características estándar en la fabricación de las resistencias, es difícil encontrar en valor exacto de los resistores adecuados para un diseño en particular. Para evitar la necesidad de disponer de tantos valores resistivos, la estructura R/2R (mostrada en la siguiente figura) utiliza solo dos valores aunque necesita el doble de resistencias.

Page 19: Sistemas Digitales - Memorias, Convertidor

Estructura R/2R

Con esta técnica se pueden fabricar conversores tipo ADC de 12 a 16 bit, sin embargo, la estabilidad de la fuente de poder y el ruido viene a jugar un papel crítico al aumentar el número de bit. Un entorno de aplicación especialmente importante para los conversores DAC es el audio, empujado por el desarrollo del disco compacto.

Conversores tipo Analógica-Digital (ADC):

Los dispositivos ADC convierten un nivel de tensión analógico en una palabra digital correspondiente. Si n es el número de bit obtenidos de la palabra, esto significa que habrá 2n niveles de tensión diferentes

Todo convertidor ADC debe procurar que el conjunto de bit obtenidos a la salida sea un reflejo lo más exacto posible del valor analógico correspondiente. Se usan un gran número de métodos para convertir señales analógicas a la forma digital, los que más usados son: Rampa de escalera, aproximaciones sucesivas, paralelo (flash), doble rampa, voltaje a frecuencia, tipo serie.

Rampa De Escalera:

Se basa en la comparación de la señal analógica de entrada con una señal de rampa definida con precisión. El esquema se muestra en la siguiente figura:

Page 20: Sistemas Digitales - Memorias, Convertidor

Conversor de rampa escalera

Se comienza activando un pulso de inicio en la lógica de control, con esta acción el contador se inicializará en cero, entregando en sus salidas el código binario del cero digital. La secuencia pasa directamente como entrada paralelo al DAC que responde con 0 [V] a la salida. Esta señal es usada como entrada de referencia a un comparador, el cual compara la magnitud de la señal analógica de entrada con el valor entregado por el conversor. Del valor que proporcione el comparador dependerá que el contador continúe contando o bien, se detenga, pues si el comparador entrega un ”1”, entonces el reloj continuará alimentando al comparador. De lo contrario si entrega un ”0”, el contador se detendrá.

La lógica del comparador es si la señal de entrada es mayor que la referencia, entonces el comparador responderá con un ”1”y se incrementa la cuenta en 1 digital, y así sucesivamente, sólo la cuenta se detendrá cuando la respuesta del DAC sea mayor que la entrada de la señal analógica. En este caso, el reloj se detendrá y se tendrá la salida digital del valor de cuenta anterior.

Aproximaciones Sucesivas:

Es una técnica de conversión más efectiva que la ante-rior. Se utiliza ampliamente debido a su combinación de alta resolución y velocidad. El esquema es prácticamente el mismo, difieren en que el contador dentro del registro no es un contador secuencial de uno en uno, sino un contador programable que se incrementa o decrementa de acuerdo a la influencia del bit de mayor peso (SAR). De esta manera no es necesario contar con 2n veces como lo hacía el contador tipo rampa, ahora la cuenta máxima solo es de n veces. El esquema de la siguiente figura muestra este convertidor.

Page 21: Sistemas Digitales - Memorias, Convertidor

Conversor de aproximación sucesiva

El SAR pone el bit MSB en ”1” y todos los restantes en ”0”. La cantidad es tomada por el DAC de tal manera que su equivalente analógico se compara con la señal de entrada. Si la salida del DAC es mayor que la entrada, se elimina el ”1” del bit MSB y se pone a ”1” el bit in-mediatamente anterior, con todos los demás bit en ”0”, y así sucesivamente hasta que se logre encontrar una secuencia análoga pero que resulta ser menor que la entrada de la señal, cuando ocurra esto, el bit mantendrá su valor y se pone a ”1” el bit inmediatamente anterior. El procedimiento anterior se repite hasta terminarse de probar ”1” en cada bit del contador. Lo anterior equivale a un tanteo digital, a medida que se avanza, el procedimiento se va estabilizando hasta llegar un valor estable y que corresponderá con el valor de la medición. La siguiente figura, muestra la salida característica de este tipo de conversor.

Curva de salida del DAC

El ADC de aproximaciones sucesivas es de los más utilizados, es posible encontrar modelos capaces de suministrar 16 bits en la salida y realizar la conversión en un tiempo de unas decenas de microsegundos. Los modelos de 12 y 8 bits, son los más comunes y ofrecen una elevada velocidad a un precio ajustado.

Page 22: Sistemas Digitales - Memorias, Convertidor

Paralelo (Flash):

Los conversores de tipo flash o conversión directa, parten de una concepción radicalmente opuesta: la velocidad es el objetivo básico de esta arquitectura y el costo que se debe pagar por ello es un circuito muy complejo aunque sencillo a nivel de concepto. Dos señales participan en la etapa de entrada, la propia señal analógica que se debe convertir y una señal de referencia. En la configuración básica, la señal analógica se aplica a las puertas no inversoras de un cierto número de amplificadores operacionales que, utilizados como comparadores, están dispuestos en paralelo, a la entrada de un decodificador. A la entrada inversora de cada comparador se aplica la tensión de referencia, que a su vez ataca una red de resistencia de valor idéntico y dispuestas en serie. El resultado es la diferencia de tensión entre dos comparadores sucesivos es de 1 LSB.

La complejidad de la arquitectura flash se deriva precisamente del elevado número de comparadores necesarios a medida que aumenta el número de bits que se desea obtener a la salida. El número de éstos es 2n−1, donde n es el número de bits de salida, no es de extrañar que los conversores de tipo flash ven limitada su resolución por su elevada integración.

El resultado es que no existe ningún convertidor flash que ofrezca una resolución de 16 bit, y que más allá no son prácticos teniendo en cuenta el tamaño del chip, el correcto funcionamiento de los comparadores e incluso el precio.

Este tipo de conversor por razón de velocidad es ampliamente usado en el campo de las telecomunicaciones, los instrumentos de medida y, en general, el tratamiento de señales rápidas como la de vídeo.

Doble Rampa:

Los de tipo rampa tienen como punto fuerte la precisión, y al mismo tiempo, sólo pueden aplicarse a señales cuyo nivel oscile de forma muy lenta (un valor típico de velocidad de muestreo es de 10 muestras por segundo). Este dispositivo consiste en un integrador basado en un amplificador operacional.

Page 23: Sistemas Digitales - Memorias, Convertidor

Conversor doble rampa.

Para dos entradas, la señal analógica que se va a digitalizar y una señal de referencia de valor constante. Un interruptor se encarga de que una de las dos esté conectada en todo momento al amplificador integrador. Otro interruptor se halla en paralelo con el condensador, el que permite la intervención que éste o no. El resultado de la actuación coordinada de ambos interruptores es que en la salida se obtenga una señal de doble rampa.

Una de subida (la carga del condensador con la tensión analógica en la entrada) y la de bajada (con la tensión de referencia a la entrada). El cálculo de la señal digitalizada se fundamenta en la relación entre los tiempos de subida y bajada, de acuerdo con la siguiente ecuación:

t stm

=V refV a

Donde t s, es el tiempo de subida o de muestreo y tm el de bajada o de medida, V ref es la tensión de referencia y V a es la tensión analógica.

Los tiempos de muestreo y de medida son detectados por un contador que se encuentra a la salida del integrador y dependen de la resistencia, el condensador y la tensión de entrada.

Dada sus especiales características, los ADC de doble rampa se utilizan, por ejemplo, en los voltímetros digitales, por su exactitud e inmunidad al ruido. Pueden alcanzar una resolución de hasta 18 o 20 bits.

Page 24: Sistemas Digitales - Memorias, Convertidor

Voltaje Frecuencia

En este tipo de conversores, el voltaje continuo de entrada se convierte en un conjunto de pulsos cuya frecuencia es proporcional a la magnitud del voltaje de alimentación. Los pulsos se cuentan mediante un contador electrónico, durante un intervalo de tiempo específico y la cuenta resultante se exhibe como una representación digital del voltaje.

. Conversor Voltaje - Frecuencia

El esquema es el que se muestra en la figura anterior. Cuando se aplica un voltaje de entrada el integrador genera un voltaje de salida de rampa con una pendiente proporcional al voltaje aplicado. Esta rampa se aplica a un generador monoestable el cual genera un pulso de amplitud definido por el voltaje de entrada rampa. El pulso es realimentado a un conmutador que descarga el condensador integrador, terminando así la rampa.

Su utilización es adecuada en ambientes ruidosos, por su alta inmunidad al ruido y exactitud. Las frecuencias típicas del convertidor voltaje frecuencia son entre 10 KHz a 1 MHz.

Serie:

Dentro de los nuevos dispositivos, están los de conversión serie, la cual permite entregar una secuencia digital de ocho bit (o más) de salida en forma serial. La transmisión serie emplea una sola trayectoria para transportar bits de información, lo que la hace ideal para comunicaciones a grandes distancias, por su bajo costo en cableado. Esta transmisión es realizada de forma síncrona o asíncrona. Muchos de estos dispositivos están basados en el método de capacitor conmutado, el cual se describe a continuación.

La data paralelo entra al conversor de capacitor conmutado, que corresponde a una red de condensadores en serie a cada bit y a un interruptor conectado al voltaje de referencia (V ref ). Este valor de voltaje establece los límites superiores e inferiores de la salida analógica. La conversión está directamente relacionada con el valor de tensión que se carga el condensador, cada condensador de la rama está ajustado según el bit que tenga a la entrada, lo que va a determinar el tiempo de carga. En la generación de la señal analógica, la carga de cada condensador es conmutada y sumada, obteniéndose la señal por intervalos de tiempo y suma en el punto inversor del amplificador operacional de la entrada.

Page 25: Sistemas Digitales - Memorias, Convertidor

Conclusiones

Los sistemas ADC y DAC son necesarios cuando se realiza procesamiento digital de señales, permiten el nexo entre ambos espacios, del mundo real y el digital. Son muy utilizados en sistemas de instrumentación y adquisición de datos. Cada convertidor posee sus propias características y parámetros que lo definen. Estos parámetros y medidas se toman con respecto a curvas ideales de transferencia, o sea, cuando más se ajuste un determinado modelo en su funcionamiento a estas curvas, más preciso será para obtener un buen funcionamiento de cada convertidor, es importante destacar los parámetros que aporta el fabricante de cada dispositivo y las condiciones de trabajo en que fueron medidas.

En todo ADC el conjunto de bits obtenidos a la salida sea un reflejo lo más exacto posible del valor analógico correspondiente. Si el ADC, está situado a la salida de un sensor (que habitualmente aporta una señal de amplitud débil) es esencial que en la etapa de conversión no se genere un nivel de ruido que impida la conversión real de la señal de entrada.

La arquitectura más extendida entre los ADC es la basada en el método de las aproximaciones sucesivas. Su éxito se fundamenta en conseguir tanto una resolución como una velocidad aceptable para una gran variedad de aplicaciones. Normalmente se trata de redes resistivas conectadas a los bits de entrada, con cada valor de resistencia ajustado al valor del bit de entrada, como estructura básica.

Page 26: Sistemas Digitales - Memorias, Convertidor

Bibliografía

http://electrouni.files.wordpress.com/2010/08/unidad-3.pdf http://www.el.uma.es/marin/Tema7_practica4.pdf http://es.wikipedia.org/wiki/Memoria_(inform%C3%A1tica) http://www.informatica-hoy.com.ar/hardware-pc-desktop/Tipos-de-memorias-de-una-

computadora.php http://es.wikipedia.org/wiki/Memoria_(inform%C3%A1tica)