silniki elektryczne prĄdu...

19
SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach przemysłowych maszyną elektryczną jest silnik indukcyjny zwany również asynchronicznym; ta druga nazwa pochodzi stąd, że silnik indukcyjny jest głównym reprezentantem maszyn zwanych asynchronicznymi. 1. Trójfazowy silnik asynchroniczny 1. Konstrukcja a) b) Rys.1. a) Zasada budowy silnika indukcyjnego: 1 - stojan, 2 – wirnik b) Przykład wykroju blach stojana i wirnika: 1 – zęby, 2 - żłobki Zasadę budowy silnika indukcyjnego ilustruje rys.1a. Część nieruchoma (stojan) ma kształt wydrążonego wewnątrz walca. W wewnętrznej przestrzeni stojana znajduje się część wirująca maszyny zwana wirnikiem, również w kształcie walca. Obwód magnetyczny stojana i wirnika jest wykonany w postaci rdzenia z blachy stalowej z dodatkiem krzemu (tzw. blachy elektrotechnicznej), zwykle grubości 0,5 mm; wirniki dużych maszyn indukcyjnych są wykonane z blach o grubości 1-2 mm. Szczelina powietrzna między stojanem i wirnikiem ma w małych maszynach wymiar od 0,1 do 0,5 mm, w dużych (powyżej 20 kW) od 1 do 3 mm. Na wewnętrznej stronie rdzenia stojana i zewnętrznej stronie rdzenia wirnika są wykonane na całej długości maszyny specjalnego kształtu rowki zwane żłobkami, w których umieszczone są uzwojenia. Elementy obwodu magnetycznego między żłobkami noszą nazwę zębów. Żłobki i zęby mogą mieć żne kształty, jedną z form ilustruje rys. 1b. Najczęściej stosowane są silniki indukcyjne trójfazowe. Silnik taki ma na stojanie uzwojenie trójfazowe. Fazy uzwojenia w czasie pracy są skojarzone w gwiazdę lub trójkąt. Uzwojenie stojana, wykonane z drutu nawojowego (izolowanego), jest zwykle impregnowane i mocno usztywnione, by na skutek drgań silnika nie uległo uszkodzeniu. Przez impregnację zwiększa się rezystancja izolacji i ulegają poprawie warunki odprowadzania ciepła wydzielanego w uzwojeniu. ZU XV YW Z Y X U W V R T S Z Y X U W V R T S a) b) c) Rys.2. Uzwojenie stojana: a) rozmieszczenie uzwojenia, b) tabliczka zaciskowa przy połączeniu w , c) tabliczka zaciskowa przy połączeniu w

Upload: buidung

Post on 27-Feb-2019

242 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO

Najpowszechniej stosowaną w napędach przemysłowych maszyną elektryczną jest silnik indukcyjny zwany również asynchronicznym; ta druga nazwa pochodzi stąd, że silnik indukcyjny jest głównym reprezentantem maszyn zwanych asynchronicznymi. 1. Trójfazowy silnik asynchroniczny 1. Konstrukcja a) b)

Rys.1. a) Zasada budowy silnika indukcyjnego: 1 - stojan, 2 – wirnik b) Przykład wykroju blach stojana i wirnika: 1 – zęby, 2 - żłobki

Zasadę budowy silnika indukcyjnego ilustruje rys.1a. Część nieruchoma (stojan) ma kształt

wydrążonego wewnątrz walca. W wewnętrznej przestrzeni stojana znajduje się część wirująca maszyny zwana wirnikiem, również w kształcie walca. Obwód magnetyczny stojana i wirnika jest wykonany w postaci rdzenia z blachy stalowej z dodatkiem krzemu (tzw. blachy elektrotechnicznej), zwykle grubości 0,5 mm; wirniki dużych maszyn indukcyjnych są wykonane z blach o grubości 1-2 mm. Szczelina powietrzna między stojanem i wirnikiem ma w małych maszynach wymiar od 0,1 do 0,5 mm, w dużych (powyżej 20 kW) od 1 do 3 mm. Na wewnętrznej stronie rdzenia stojana i zewnętrznej stronie rdzenia wirnika są wykonane na całej długości maszyny specjalnego kształtu rowki zwane żłobkami, w których umieszczone są uzwojenia. Elementy obwodu magnetycznego między żłobkami noszą nazwę zębów. Żłobki i zęby mogą mieć różne kształty, jedną z form ilustruje rys. 1b.

Najczęściej stosowane są silniki indukcyjne trójfazowe. Silnik taki ma na stojanie uzwojenie trójfazowe. Fazy uzwojenia w czasie pracy są skojarzone w gwiazdę lub trójkąt.

Uzwojenie stojana, wykonane z drutu nawojowego (izolowanego), jest zwykle impregnowane i mocno usztywnione, by na skutek drgań silnika nie uległo uszkodzeniu. Przez impregnację zwiększa się rezystancja izolacji i ulegają poprawie warunki odprowadzania ciepła wydzielanego w uzwojeniu.

Z U X V Y W

Z YX

U WV

R TS

Z YX

U WV

R TS

a) b) c)

Rys.2. Uzwojenie stojana: a) rozmieszczenie uzwojenia, b) tabliczka zaciskowa przy połączeniu w , ∧

c) tabliczka zaciskowa przy połączeniu w ∆

Page 2: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Uzwojenie wirnika silnika indukcyjnego może być wykonane, podobnie jak stojana, z drutu nawojowego albo może mieć kształt nieizolowanych prętów, umieszczonych w żłobkach i połączonych ze sobą po obu stronach wirnika.

Do obwodu uzwojenia wirnika można przyłączyć dodatkowe elementy, zwiększające rezystancję każdej fazy. Do tego celu służą umieszczone na wale wirnika tzw. pierścienie ślizgowe, do których przylegają szczotki, połączone z dodatkowymi zewnętrznymi elementami. Taką zmianę rezystancji obwodu elektrycznego wirnika stosuje się dla dokonania rozruchu, regulacji prędkości lub hamowania silnika.

Ze względu na to, że charakterystycznym elementem omawianego typu silnika są pierścienie ślizgowe, nazywa się go silnikiem indukcyjnym pierścieniowym. Z reguły silnik ma trzy pierścienie, gdyż uzwojenie wirnika jest najczęściej trójfazowe, połączone w gwiazdę; niekiedy stosowane jest uzwojenie dwufazowe, ale równiez z trzema wyprowadzonymi końcami, a więc i w tym przypadku silnik ma trzy pierścienie ślizgowe. Schemat obwodów elektrycznych silnika pierścieniowego z dodatkowymi elementami rezystancyjnymi ilustruje rys. 3a.

Często wirnik wyposażony jest w urządznie do podnoszenia szczotek umożliwiające zwieranie pierścieni po zakończeniu rozruchu, przy czy szczotki zostają podniesione, a maszyna pracuje jak silnik z wirnikiem klatkowym.

Rys. 3. Schematy obwodów elektrycznych silników indukcyjnych: a) silnika pierścieniowego, b) silnika klatkowego 1 - pierścienie ślizgowe, 2 - szczotki, 3 - rezystancje przyłączone do obwodu wirnika

Jeżeli obwód elektryczny wirnika jest wykonany z nieizolowanych prętów, to pręty te są

połączone po obu stronach wirnika pierścieniami zwierającymi. Tym samym obwód wirnika jest zawsze zwarty, a zatem żadnych dodatkowych elementów przyłączać do niego nie można (rys. 3b). Silnik taki nosi nazwę silnika indukcyjnego zwartego, nazywany bywa też klatkowym ze względu na to, że pręty wirnika połączone pierścieniami tworzą jak gdyby klatkę.

Pręty wirnika są najczęściej odlewane z aluminium, łącznie z pierścieniami zwierającymi i skrzydełkami wentylatora. Zadaniem wentylatora jest spowodowanie intensywnego przepływu powietrza chłodzącego silnik, a jednocześnie, przez zwiększenie powierzchni chłodzenia, ułatwienie oddawania do otoczenia ciepła, które wydziela się w prętach i pierścieniach wirnika.

Page 3: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

2. Zasada działania silnika pierścieniowego

Pole wirujące stojana

y

x

U

X

W

Z

Y

V

1200 1200

1200

iA(t)

iC(t)

iB(t)

ΒR(t)

ΒC(t) ΒB(t)

a)

x

ωt = t1

t = t2 > t1

1y

1x0

Β

Β

b)∈ΒA(t)

y

Rys.3. Pole magnetyczne wirujące w stojanie silnika trójfazowego: a) trzy cewki w układzie symetrycznym zasilane

symetrycznym prądem trójfazowym, b) wykres wektorowy indukcji pola magnetycznego Dla symetrycznego układu trzech cewek, zasilonych prądem trójfazowym symetrycznym mamy:

( ) ( ) }.240sin)( ,120sin)( ,sin)( 00 −=−== tBtBtBtBtBtB mCmBmA ωωω

yx 11BBBB yxCBA +=++= . Składowe skalarne x oraz y tego wektora wypadkowego są następujące:

[ ]

[ ]

−−=++=

−=++=

.)()(21)(240cos)(120cos)(0cos)(

,)()(23

150cos)(30cos)(90cos)(x

000

000

tBtBtBtBtBtBy

tBtBtBtBtB

CBACBA

CBCBA

=−= .sin23 ,cos

23 tBytBx mm ωω

mByxB2322 =+=

Zatem w każdej chwili czasu t współrzędne wektora wypadkowego indukcji magnetycznej spełniają równanie okręgu

222

23

=+ mByx

Wypadkowe pole magnetyczne układu trzech cewek, rozmieszczonych w przestrzeni jedna względem drugiej o kąt 1200 i zasilanych symetrycznym prądem trójfazowym, jest polem wirującym kołowym, którego wektor indukcji o amplitudzie 3

2 Bm wiruje z prędkością kątową ω.

Page 4: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Prędkość obrotowa pola wirującego, tzw. prędkość synchroniczna, zależy zatem od częstotliwości

prądu w stojanie π

ω21 =f i liczby par biegunów uzwojenia stojana p

obr/min 60 1

pfns = .

Oddziaływanie pola z wirnikiem

Wirujące pole magnetyczne indukuje w uzwojeniu wirnika siłę elektromotoryczną: E2 = B l v (v jest względną prędkością ruchu przewodu względem strumienia magnetycznego), która powoduje przepływ prądu w wirniku. W skutek wzajemnego oddziaływania między tym prądem a wirującym polem magnetycznym powstaje siła mechaniczna F = B l I2. Na każdą parę przewodów z prądem działa para sił F, tworząca moment obrotowy, starający się obrócić wirnik w kierunku wirowania pola magnetycznego. Moment ten jest różny od zera aż do chwili, w której prędkość obrotowa wirnika zrówna się z prędkością synchroniczną. Wtedy prędkość względna v=0 i przestają płynąć prądy indukowane w uzwojeniu wirnika. Aby zatem na wirnik działał moment obrotowy, musi się on obracać z prędkością mniejszą od synchronicznej, czyli asynchronicznie.

Różnicę między prędkością obrotową pola wirującego a prędkością n wirnika, odniesioną do prędkości synchronicznej ns, nazywa się poślizgiem silnika asynchronicznego

s

s

nnns −

= .

Pole magnetyczne stojana indukuje siły elektromotoryczne o częstotliwości f1: − w uzwojeniu stojana:

mukzfE Φ= 1111 44.4

− w nieruchomym uzwojeniu winika: mukzfE Φ= 22120 44.4

Napięcie indukowane uzwojeniu winika przy niezerowej prędkości obrotowej n ma postać:

mukzfE Φ= 2222 44.4 , gdzie: z1 i z2 są liczbami zwojów stojana i wirnika, a ku1 i ku2 są współczynnikami uzwojenia fazy stojana i wirnika.

Częstotliwość napięcia indukowanego w uzwojeniach poruszającego się wirnika zależy od prędkości wirowania pola względem wirnika:

( )602

nnpf s −= .

Uwzględniając definicję prędkości synchronicznej mamy: 12 fsf = .

Dla zatrzymanego wirnika (n=0) częstotliwości te są sobie równe: f2 = f1. Stosunek napięć:

ϑ==22

11

2

1

u

u

kzkz

EE

nosi nazwę przekładni napięciowej. Uwaga: Suma prędkości wirnika i prędkości pola wytwarzanego przez prąd wirnika jest stała i równa ns. Oznacza to, że pole magnetyczne wytworzone przez prąd stojana i wirnika są względem siebie nieruchome. Jest to potwierdzenie ogólnej zasady odnoszącej się do wszystkich maszyn elektrycznych: w stanach stalonych pola względem siebie nie wirują.

Page 5: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Z definicji poślizgu można wyznaczyć zależność prędkości obrotowej od poślizgu: ( )snn s −= 1 i określić pięć stanów pracy maszyny indukcyjnej (rys. 4)

0

n

s

1

ns

n > ns

n < ns

n < 0

s > 1s < 0 0 < s < 1

Pracaprądnicowa

Pracasilnikowa

Hamowanieprzeciwprądowe

Sync

hron

izm

(bie

g jało

wy)

Post

ój

(zw

arci

e)

Rys.4. Zakresy pracy maszyny asynchronicznej

W całym zakresie prędkości maszyny indukcyjnej istnieją dwa szczególne stany pracy: gdy n=0 (s = l) i gdy n=ns (s = 0).

Jeżeli wirnik jest nieruchomy (n = 0), to przy otwartym obwodzie wirnika mamy stan podobny do stanu jałowego w transformatorze, natomiast przy zwartym wirniku jest to stan analogiczny do stanu zwarcia. Ponieważ n = 0, więc moc mechaniczna nie występuje, a energia pobrana z sieci zamienia się całkowicie na ciepło w obwodzie elektrycznym i magnetycznym maszyny.

Przy prędkości wirnika równej prędkości synchronicznej (n = ns) w wirniku nie indukuje się napięcie, bo jego obwód elektryczny nie przecina linii pola. Nie ma więc w obwodzie wirnika prądu, a więc nie ma momentu obrotowego. Aby wirnik obracał się z prędkością synchroniczną, musiałby być napędzany mocą potrzebną do pokrycia strat mechanicznych. Z sieci pobierana jest moc elektryczna, która wydziela się jako ciepło w obwodzie elektrycznym i magnetycznym stojana; wirnik nie jest przemagnesowywany. Prąd pobierany z sieci ma dużą składową bierną (prąd magnesujący Iµ ) dla wytworzenia strumienia, natomiast składowa czynna przy n = ns jest mała, gdyż straty są małe. Maszyna jest więc przy n = ns odbiornikiem tego typu, co dławik lub transformator w stanie jałowym.

Przy prędkości O < n < ns, czyli przy poślizgu l > s > 0, maszyna indukcyjna jest silnikiem. Moc pobrana z sieci jest częściowo tracona na ciepło w miedzi i w stali, znaczna jej część jest zamieniana na moc mechaniczną. Jest to najczęstszy stan pracy maszyny indukcyjnej.

W czasie pracy maszyny indukcyjnej, połączonej z inną maszyną elektryczną lub odpowiednimi urządzeniami może się zdarzyć, że prędkość wirnika będzie większa od prędkości pola magnetycznego. Wówczas pręty przecinają pole w odwrotnym kierunku niż przy pracy si1nikowej, zmienia się zwrot napięcia i prądu, zmienia się też kierunek momentu, który działa teraz w stronę przeciwną do kierunku wirowania. Wynika stąd, te maszyna musi być napędzana, czyli musi pobrać na wale moc mechaniczną. Moc tę częściowo traci się na straty w miedzi i stali, a częściowo jest w postaci mocy elektrycznej oddawana do sieci. Maszyna indukcyjna jest więc przy n > ns (s < 0) prądnicą. Maszyna ta oddaje do sieci moc czynną elektryczną, ale musi pobrać z

Page 6: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

tej sieci moc bierną (prąd magnesujący) do wytworzenia strumienia magnetycznego. Gdyby wirnik maszyny włączonej do sieci był obracany w kierunku przeciwnym do

kierunku wirowania pola magnetycznego, to pręty wirnika byłyby przecinane przez pole z prędkością większą od prędkości synchronicznej. Napięcie indukowane w wirniku byłoby większe od E20, częstotliwość tego napięcia większa od f1 (n < 0 , s > l). Aby wirnik obracał się w kierunku przeciwnym do kierunku wirowania pola, w kierunku wirowania wirnika musi działać moment zewnętrzny. Maszyna pobiera zatem moc mechaniczną na wale i cała ta moc łącznie z mocą elektryczną pobieraną z sieci jest w maszynie zamieniana na ciepło. Ponieważ moment maszyny działa w kierunku wirowania pola, a więc w kiernku przeciwnym do momentu zewnętrznego, maszyna jest hamulcem elektrycznym.

Maszyna indukcyjna wytwarza moment hamujący wówczas, gdy jest on skierowany przeciwnie do kierunku jej wirowania, a zachodzi to przy pracy hamulcowej i prądnicowej. Przy pracy prądnicowej zmienia się faza napięcia E2, stąd może ono być w tym zakresie pracy traktowane jako ujemne. Schemat zastępczy i wykres wektorowy. Jeżeli 222 2 LfX π= oznacza indukcyjność wirującego wirnika, a 2120 2 LfX π= indukcyjność nieruchomego wirnika, mamy

202 sXX = Reaktancja wirnika zmienia się zatem razem z poślizgiem, więc zależnie od obciążenia silnika.

Schemat zastępczy dla jednej fazy silnika z uwzględnieniem rezystancji i reaktancji dodatkowej w obwodzie wirnika przedstawiono na rys. 5a.

Prąd płynący w uzwojeniu wirnika:

220

22

20

220

22

202

)()()(

dddd XX

sRR

E

sXsXRR

sEI

++

+

=+++

=

zależy od poślizgu. Z ostatniej zależności wynika, że poślizg wpływa tylko na wartość (R2 +Rd), natomiast E20 i (X2 + Xd) są stałe, tak jak dla wirnika nieruchomego. Można zatem narysować schemat zastępczy, w którym częstotliwość w obwodzie wirnika jest równa tej w stojanie (rys. 5b).

Rezystancję rzeczywistą s

RR d+2 można przedstawić jako rezystancję rzeczywistą uzwojenia

wirnika R2, rezystancję rzeczywistą dodatkową Rd oraz "rezystancję obciążenia" Robc zależną od poślizgu:

obcdd RRR

sRR

++=+

22

Stąd otrzymuje się:

)(12 dobc RR

ssR +

−=

Wartość tej "rezystancji obciążenia" zmienia się od zera dla s =1 (stan zwarcia) do nieskończoności dla s = 0 (idealny bieg jałowy). Wtedy schemat zastępczy silnika asynchronicznego przedstawia się tak jak na rys. 5c.

Page 7: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Rys.5. Schemat zastępczy silnika indukcyjnego pierścieniowego: a) schemat rzeczywisty b) jednakowa częstotliwość, c) wydzielona rezystancja obciążenia, d) sprowadzenie wielkości obwodu wirnika na stronę stojana

Dla wyrażenia wielkości elektrycznych strony stojana i wirnika w tej samej skali sprowadza

się wielkości elektryczne wirnika na stronę stojana tak, jak dla transfomatora uwzględniając przekładnię napięciową ϑ:

ϑ2020' EE = ,

ϑ2

2

12

' ImmI =

oraz

2

122

'2

' )()(mmRRRR dd ϑ+=+

2

1220

'20

' )()(mmXXXX dd ϑ+=+

gdzie m1 jest liczbą faz stojana, a m2 liczbą faz wirnika. Sprowadzony schemat zastępczy przedstawiono na rys. 5d.

Page 8: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Wykres wskazowy odpowiadający uzyskanemu schematowi przedstawiony jest na rys. 6. Spadki napięć R1I1, jX1I1, R’2I’2, jX’20I’2, ze względu na czytelność wykresu są narysowane przesadnie duże. W układzie rzeczywistym spadki te są o wiele mniejsze.

Rys.6. Wykres wskazowy silnika indukcyjnego pierścieniowego

Bilans mocy, sprawność silnika

1111 cos3 ϕIUP =

Rys. 7. Wykres strumieniowy rozpływu mocy silnika indukcyjnego

1PPuz=η

Page 9: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Moment obrotowy

sMIUP ωϕ == 2222 cos3 Charakterystyka mechaniczna:

( )2

20

22

22

1

dd

d

f

XXs

RRs

RR

UcM++

+

+

= ,

gdzie: 2

3ϑω s

c = .

0

M

s

1

Mk

Pracaprądnicowa

Pracasilnikowa

Hamowanieprzeciwprądowe

-1 -sk

sk

Mr

część

-Mk

-Mr

niestatecznaczęść

stat

eczn

a

Rys.8. Charakterystyka momentu elektromagnetycznego maszyny asynchronicznej w funkcji poślizgu Dla pewnej wartości poślizgu zwanego poślizgiem krytycznym moment ma wartość

maksymalną. Rozwiązując równanie 0d

d=

sM otrzymuje się

d

dk XX

RRs++

±=20

2 .

A więc moment krytyczny wynosi

( )d

fk XX

UcM

+±=

20

2

1

2.

Przy poślizgu s=1 (n=0) silnik rozwija moment rozruchowy Mr

( ) ( )2

202

2

22

1dd

dfr XXRR

RRUcM+++

+= .

Page 10: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Stosunek:

n

k

MMk =

nazywany jest przeciążalnością mechaniczną (w praktyce od k = 1,7 ÷ 3). Wzór Klossa Wyznaczając moment M jako funkcję momentu krytycznego Mk dostajemy zależność zwaną wzorem Klossa:

k

k

k

ss

ss

MM+

=2 .

Przy bardzo małych poślizgach można w mianowniku wzoru Klossa pominąć drugi składnik dostając liniową zależność momentu od poślizgu. Dla dużych poślizgów można z kolei pominąć składnik pierwszy, a wtedy moment jest odwrotnie proporcjonalny do poślizgu. Analiza stabilności pracy silnika indukcyjnego

0

M

s

Mobc

Pracaprądnicowa

Pracasilnikowa

Hamowanieprzeciwprądowe

s=2

nk

s=sk

Mr

część

-Mk

niesta

teczn

aczęść

stateczna

Mk

s=1 s=0 -sk s = -1

A B

Rys.9. Zależność M = f(n) maszyny asynchronicznej

Page 11: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Charaktrystyki robocze

Właściwości silnika asynchronicznego określa się na podstawie tzw. charakterystyk roboczych otrzymywanych doświadczalnie z pomiarów w czasie prób obciążenia silnika. Są to zależności prędkości obrotowej n, prądu I1, cosϕ1, sprawności η oraz poślizgu s od użytecznej mocy mechanicznej oddawanej na wale silnika (rys.10).

0

I0

Pw

Pn

ns

cosϕ0

In

sn

cosϕn cosϕn

I1

sηηn

Rys.10. Charakterystyki robocze trójfazowego silnika asynchronicznego

Page 12: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

4. Rozruch silnika asynchronicznego pierścieniowego

Do pierścieni ślizgowych

Moment rozruchowy osiąga wartość maksymalną Mr = Mk, gdy sk = 1, tzn. gdy R2 + Rd = X20 + Xd. Zachodzi to oczywiście przy prądzie maksymalnym I2k

(dla silników pierścieniowych I2k/I20 = 7 ÷ 8). Zadaniem rozrusznika jest ograniczenie tego prądu.

Rys.11.Układ rozrusznika oporowego

R2 + r1

R2 + r2

R2 + r3

R2 + rm

R2

fazawirnika

s0sns1s2

s3

s4

sm

1

0 Mop M1 M2

M

0 I2nMk

A B

I21 I22 I2k

I2

a) b) c)s0sns1s2

s3

s4

sm

1

Rys.12. Rozruch silnika asynchronicznego: a) schemat połączeń, b) zmiany momentu obrotowego, c) zmiany prądu

wirnika 5. Regulacja prędkości obrotowej silnika asynchronicznego pierścieniowego

( )sP

fn −= 160 1

Zmiana liczby par biegunów

Różne liczby par biegunów otrzymuje się przez przełączanie jednego uzwojenia lub przez zastosowanie kilku uzwojeń. W praktyce, ze względu na skomplikowaną konstrukcję maszyny, sposób ten stosowany jest stosunkowo rzadko.

Page 13: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Sterowanie częstotliwościowe

n

M

0 Mr3 Mr1 Mr2 Mk

ns3

ns1

ns2

f3

f1

f2

f2 < f1 < f3

Rys.13. Charakterystyki mechaniczne przy zespolonym sterowaniu częstotliwością i napięciem

Zmiana poślizgu

Prędkość wirowania pola magnetycznego nie ulega zmianie, zmienia się jedynie poślizg wirnika względem pola magnetycznego. Zmianę poślizgu uzyskuje się dwoma sposobami: zmieniając napięcie zasilające stojan oraz zmieniając rezystancję lub reaktancję w obwodzie wirnika. a) Zmiana napięcia zasilającego

n

M

0 Mk3 Mk2 Mk1

ns

n1

s = sk

n2

n3

Mop = kn2

U1 > U2 > U3

U3 U2 U1

Rys.14.Charakterystyki mechaniczne przy sterowaniu napięciowym

b) Rezystancje lub reaktancje dodatkowe w obwodzie wirnika

n

M

0 M* Mk

(s=0) ns

(s=sB)

Mop

(s=s1) n1

(s=sx) nx

(s=1)

A

B

R2 +R

x R2 +R

d2

R2+R

d1

R2

pierścienieślizgowe

R2

R2+Rd1

R2+Rd2

R2+Rx

a) b)

Rys.15. Rezystancje dodatkowe w obwodzie wirnika: a) schemat połączeń, b) charakterystyki mechaniczne przy

powiększeniu rezystancji obwodu wirnika

Page 14: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

6. Hamowanie silnika asynchronicznego pierścieniowego Hamowanie nadsynchroniczne (prądnicowe)

Pracę prądnicową silnika można uzyskać przez zmniejszenie częstotliwości zasilania przy potencjalnym momencie obciążenia oraz przez przełączenie liczby biegunów na większą ich liczbę. Hamowanie przeciwprądowe

n

M

n(M)

Mop0

ns

-ns

-sk

sk

Hamowanie prądem stałym (dynamiczne)

Silnik odłącza się od sieci prądu przemiennegoszczególnie nadaje się do szybkiego zatrzymania

Hamowanie jednofazowe

Maszynę zasila się z sieci jednofazowo. Spozakresie podsynchronicznych prędkości obrotowy

Rys.16. Charakterystyki hamowania przeciwprądem silnika asynchronicznego

, a stojan wzbudza się prądem stałym. Sposób ten napędu.

sób ten stosuje się w napędach dźwigowych w ch.

Page 15: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

2. Trójfazowy silnik asynchroniczny z wirnikiem klatkowym 1. Konstrukcja

Rys.17. Uzwojenie wirnika silnika klatkowego (zwartego)

a) b) c)

Rys.18. Kształty żłobków wirnika (przykłady):

a) klatkowego zwykłego, b) głębokożłobkowego prostokątnego, c) dwuklatkowego

2. Zasada działania silników klatkowych jest bardzo podobna jak dla pierścieniowych. Uzwojenie klatkowe można rozpatrywać jak uzwojenie wielofazowe, o liczbie faz równej liczbie prętów klatki. Liczba biegunów jest jest zawsze taka sama jak w stojanie. Schemat zastępczy, wykres wektorowy i charakterystyki robocze są podobne jak dla silnika pieścieniowego. 3. Rozruch silnika asynchronicznego klatkowego Przełączanie z gwiazdy w trójkąt

A

B

C

0

Y

∆AUZBVXCWY

P rz e łą c z n ik

S T O J A N

/∆

Y

Rys.19. Układ połączeń silnika asynchronicznego z przełącznikiem gwiazda - trójkąt

Page 16: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

3n

f

UU =∧ ,

3∆

∧∧ ==f

f

III .

3n

f

II =∆ . nII

31

=∧ .

s

0

sn

sp

sk

1

0 Mr Mr∆ Mrp

Mop

Mk

M

Mk∆

M∆

M

s

0

sn

sp

sk

1

0

I I∆

I

Ir Irp Ir∆

b)a)

Rys.20. Rozruch silnika asynchronicznego za pomocą przełącznika / ∆: a) przebieg momentu obrotowego, ∧

b) przebieg prądu (sp - poślizg w chwili przełączenia) Rozruch autotransformatorem

A

B

C

M3 ~

Un

W1 W2

UV

WϑUn

ϑ

Rys.21. Symetryczny układ rozruchowy z autotransformatorem

Page 17: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

Rozruch z rezystancjami lub reaktancjami w obwodzie stojana

W1

M3 ~

W2

Un

ABC

U V W

X Y Z

Rd

Xd

Rys.22. Symetryczny układ rozruchowy z rezystorami lub dławikami w obwodzie stojana 4. Regulacja prędkości obrotowej silnika asynchronicznego klatkowego

Często stosowaną metodą regulacji prędkości obrotowej silników klatkowych jest zmiana liczby par biegunów (dla czterech stopni prędkości obrotowych). Stosuje się też sterowanie częstotliwościowe oraz zmianę napięcia zasilającego (przez włączanie w obwód stojana rezystancji lub reaktancji).

5. Hamowanie silnika asynchronicznego klatkowego

Do silników klatkowych stosuje się hamowanie nadsynchroniczne, przeciwprądowe i prądem stałym (dynamiczne). Hamowanie nadsynchroniczne stosuje się do hamowania momentów potencjalnych.

Page 18: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

3. Jednofazowy silnik asynchroniczny

U V

F 0~

W Z

C

ω

1

2

4

3

2

1

M

n

ns

-ns

Mr

0

Rys.23. Jednofazowy silnik asynchroniczny: 1 - uzwojenie główne, 2 - uzwojenie pomocnicze, 3 - wirnik, 4 - wyłącznik odśrodkowy

Rys.24. Charakterystyki mechaniczne silnika jednofazowego: 1 - silnik bez uzwojenia pomocniczego, 2 - silnik z kondensatorem

21800UP

C n= ,

gdzie pojemność C wyrażona jest w µF, moc znamionowa Pn w W oraz napięcie U w V.

Mr = 3 M n

Mr = 2 Mn

Mr = 0,3 - 0,4 Mn

U = 220 VCµF

160

120

80

40

00 0,2 0,4 0,6 0,8 1,0 kW

P

Rys.25. Wartości pojemności kondensatora rozruchowego

a) 0 F

~

C

b) 0 F~

C

Rys.26. Układy niesymetrycznych połączeń silników jednofazowych z uzwojeniem trójfazowym:

a - połączenie w gwiazdę, b - połączenie w trójkąt Trzeba jednak pamiętać, że moc rozwijana przez silnik trójfazowy zasilany jednofazowo (rys.26)

wynosi 50÷60 % jego mocy znamionowej.

Page 19: SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGOwykladowcy.pwsz.raciborz.edu.pl/krzysztof.simek/ETiME/silniki2.pdf · SILNIKI ELEKTRYCZNE PRĄDU PRZEMIENNEGO Najpowszechniej stosowaną w napędach

4. Jednofazowy komutatorowy silnik szeregowy

Silniki małej mocy (do 750 W) bez uzwojeń kompensacyjnych i biegunów zwrotnych stosuje się w urządzeniach gospodarstwa domowego i w napędach narzędzi elektrycznych. Prędkość obrotowa tych silników jest 3000 do 24000 obr/min, najczęściej 3000÷8000 obr/min. Silniki te (małej mocy) nazywane są silnikami uniwersalnymi, gdyż można je zasilać zarówno z sieci prądu przemiennego, jak i z sieci prądu stałego o tym samym napięciu.

1

R

M

3

2

U

Rys.27. Silnik komutatorowy jednofazowy: 1 - uzwojenie wzbudzające, 2 - uzwojenie kompensacyjne, 3 - uzwojenie biegunów zwrotnych

Mśr

M

M(t)

t

n

M

U = Un

U = 0,7 UnU = 0,5 Un

Rys.28. Przebieg czasowy momentu obrotowego Rys.29. Charakterystyki mechaniczne jednofazo-

wego komutatorowego silnika szeregowego