semitransparent pistons

49
The Problem Zeta Function Semitransparent Pistons Questions Semitransparent Pistons Pedro Morales-Almaz´ an Department of Mathematics Baylor University pedro [email protected] April, 15th 2011 Pedro Morales-Almaz´ an Math Department Semitransparent Pistons

Upload: pedro-morales

Post on 04-Aug-2015

279 views

Category:

Education


3 download

TRANSCRIPT

The Problem Zeta Function Semitransparent Pistons Questions

Semitransparent Pistons

Pedro Morales-Almazan

Department of MathematicsBaylor University

pedro [email protected]

April, 15th 2011

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Outline

1 The ProblemCasimir Effect

Mathematical Model

2 Zeta FunctionDefinition

3 Semitransparent PistonsEigenvalue Problem

Operator DeterminantCasimir Force

4 Questions

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Outline

1 The ProblemCasimir Effect

Mathematical Model

2 Zeta FunctionDefinition

3 Semitransparent PistonsEigenvalue Problem

Operator DeterminantCasimir Force

4 Questions

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Outline

1 The ProblemCasimir Effect

Mathematical Model

2 Zeta FunctionDefinition

3 Semitransparent PistonsEigenvalue Problem

Operator DeterminantCasimir Force

4 Questions

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Outline

1 The ProblemCasimir Effect

Mathematical Model

2 Zeta FunctionDefinition

3 Semitransparent PistonsEigenvalue Problem

Operator DeterminantCasimir Force

4 Questions

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Casimir Effect

Is a quantum field effect that arises when considering vacuumfluctuations

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

History

• Predicted theoretically in 1948 by Hendrik B. G. Casimir andDirk Polder when Casimir was trying to compute van derWaals forces between polarizable molecules.

• Confirmed experimentally in 1997 by S. K. Lamoreaux.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

History

• Predicted theoretically in 1948 by Hendrik B. G. Casimir andDirk Polder when Casimir was trying to compute van derWaals forces between polarizable molecules.

• Confirmed experimentally in 1997 by S. K. Lamoreaux.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Why is so important?

• Believed to explain the stability of an electron

• Very sensitive to the geometry of the space (Quantum andComsmological implications)

• Provides a better understanding of the zero-point energy

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Why is so important?

• Believed to explain the stability of an electron

• Very sensitive to the geometry of the space (Quantum andComsmological implications)

• Provides a better understanding of the zero-point energy

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Why is so important?

• Believed to explain the stability of an electron

• Very sensitive to the geometry of the space (Quantum andComsmological implications)

• Provides a better understanding of the zero-point energy

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Mathematical Model

In order to calculate the Casimir Energy of a system, consider aRiemannian manifold M possibly with boundary and theeigenvalue problem

(∆ + V )φ = λφ

where ∆ is the Laplacian on M, V is a potential and φ ∈ L2(M).If ∂M 6= ∅ boundary conditions must be imposed.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Mathematical Model

In order to calculate the Casimir Energy of a system, consider aRiemannian manifold M possibly with boundary and theeigenvalue problem

(∆ + V )φ = λφ

where ∆ is the Laplacian on M, V is a potential and φ ∈ L2(M).If ∂M 6= ∅ boundary conditions must be imposed.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Mathematical Model

In order to calculate the Casimir Energy of a system, consider aRiemannian manifold M possibly with boundary and theeigenvalue problem

(∆ + V )φ = λφ

where ∆ is the Laplacian on M, V is a potential and φ ∈ L2(M).If ∂M 6= ∅ boundary conditions must be imposed.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Definition of Casimir Energy

The self energy of the system is defined to be

E =1

2

∑λ

√λ

Since the self-adjointness of ∆, the eigenvalues λ are unboundedand hence, E is not well defined. Regularization methods to avoidinfinities are required.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Definition of Casimir Energy

The self energy of the system is defined to be

E =1

2

∑λ

√λ

Since the self-adjointness of ∆, the eigenvalues λ are unboundedand hence, E is not well defined.

Regularization methods to avoidinfinities are required.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Casimir Effect

Definition of Casimir Energy

The self energy of the system is defined to be

E =1

2

∑λ

√λ

Since the self-adjointness of ∆, the eigenvalues λ are unboundedand hence, E is not well defined. Regularization methods to avoidinfinities are required.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Definition

Zeta Function

Given a self-adjoint operator P with eigenvalues λn∞n=1, the zetafunction is defined by

ζP(s) =∞∑n=1

λ−sn

which is convergent for <s large enough.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Definition

Zeta Function

Given a self-adjoint operator P with eigenvalues λn∞n=1, the zetafunction is defined by

ζP(s) =∞∑n=1

λ−sn

which is convergent for <s large enough.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Definition

• Values at s = −1/2, 0 provide information of the Casimirenergy and the operator determinant

• An analytic continuation of the zeta function is required

• Lack of explicit eigenvalues requires an indirect method forcalculations

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Definition

• Values at s = −1/2, 0 provide information of the Casimirenergy and the operator determinant

• An analytic continuation of the zeta function is required

• Lack of explicit eigenvalues requires an indirect method forcalculations

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Definition

• Values at s = −1/2, 0 provide information of the Casimirenergy and the operator determinant

• An analytic continuation of the zeta function is required

• Lack of explicit eigenvalues requires an indirect method forcalculations

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Eigenvalue Problem

Consider the piston configuration modeled by

Pφ = λ2φ

where P is the Laplace-type differential operator defined on[0, L]×N

P = − ∂2

∂x2−∆N + σδ(x − a)

N is a compact Riemannian manifold and we have Dirichletboundary conditions φ(0) = φ(L) = 0.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Eigenvalue Problem

Consider the piston configuration modeled by

Pφ = λ2φ

where P is the Laplace-type differential operator defined on[0, L]×N

P = − ∂2

∂x2−∆N + σδ(x − a)

N is a compact Riemannian manifold and we have Dirichletboundary conditions φ(0) = φ(L) = 0.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Eigenvalue Problem

Consider the piston configuration modeled by

Pφ = λ2φ

where P is the Laplace-type differential operator defined on[0, L]×N

P = − ∂2

∂x2−∆N + σδ(x − a)

N is a compact Riemannian manifold and we have Dirichletboundary conditions φ(0) = φ(L) = 0.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Configuration

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Separation of variables

Using separation of variables

λ2k` = ν2

k + η2`

where ν2k and η2

` are the eigenvalues for the Laplacian on [0, L] andN respectively

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Zeta Function

ζ(s) =∞∑k=1

∞∑`=1

λ−2sk` =

∞∑k=1

∞∑`=1

(ν2k + η2

` )−s

Remark The eigenvalues ν2k cannot be calculated explicitly, an

indirect way of finding the zeta function is required

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Zeta Function

ζ(s) =∞∑k=1

∞∑`=1

λ−2sk` =

∞∑k=1

∞∑`=1

(ν2k + η2

` )−s

Remark The eigenvalues ν2k cannot be calculated explicitly, an

indirect way of finding the zeta function is required

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Contour Integration

Cauchy’s residue Theorem

Let f be a meromorphic function defined on a simply connectedregion Ω of the complex plane and let aknk=1 be its poles on Ω.Let γ be a closed curve in Ω, then

1

2πı

∫γf (z)dz =

n∑k=1

I (ak , γ) Res(f (z))|z=ak

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Integral Representation

ζ(s) =1

2πı

∞∑`=1

∫γ`

dν (ν2 + η2` )−s

d

dνlog F (ν)

where

F (ν) =σ sin(ν(L− a) sin(νa))

ν2+

sin(νL)

ν

where γ` is a contour enclosing νk∞k=1

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Integral Representation

ζ(s) =1

2πı

∞∑`=1

∫γ`

dν (ν2 + η2` )−s

d

dνlog F (ν)

where

F (ν) =σ sin(ν(L− a) sin(νa))

ν2+

sin(νL)

ν

where γ` is a contour enclosing νk∞k=1

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Contour Deformation

After deforming the contours γ` to the imaginary axis, the zetafunction becomes

ζ(s) =sin(πs)

π

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )−s

d

dνlog F (ıν)

which converges for <s big enough

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Contour Deformation

After deforming the contours γ` to the imaginary axis, the zetafunction becomes

ζ(s) =sin(πs)

π

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )−s

d

dνlog F (ıν)

which converges for <s big enough

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Analytic Continuation

In order to extend analytically ζ(s) to the left in the complexplane, we subtract the asymptotic behavior of log F (ıν),

log F (ıν) ∼ Lν − 2ν +∞∑n=1

(−1)n+1

n

( σ2ν

)n

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Finite Part

Subtracting the asymptotic terms enlarges the convergence region

ζ(s) = ζ(f )(s) + ζ(as)(s)

where

ζ(f )(s) =

sin(πs)

π

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )−s

d

dν[log F (ıν)− asymptotics]

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Finite Part

Subtracting the asymptotic terms enlarges the convergence region

ζ(s) = ζ(f )(s) + ζ(as)(s)

where

ζ(f )(s) =

sin(πs)

π

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )−s

d

dν[log F (ıν)− asymptotics]

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Asymptotic Part

ζ(as)(s) =sin(πs)

π

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )−s

d

dν[asymptotics]

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

The operator determinant for the differential operator P is definedas

Operator Determinant

exp(ζ ′(0))

which after some algebra, is computed to be...

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

The operator determinant for the differential operator P is definedas

Operator Determinant

exp(ζ ′(0))

which after some algebra, is computed to be...

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

ζ ′(0) =∞∑`=1

(log F (ıη`)− Lη` + log(2η`) +

N∑n=1

(−1)n+1

n

2η`

)n)

−L(

FPζN (−1

2)− ResζN (−1

2)(−2 + log 4)

)− 1

2ζ ′N (0)

+2N∑

n=1

(−1)n

n

(σ2

)n [FPζN

(n2

)+ ResζN

(n2

(γ + ψ(n

2

)))]

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Casimir Force

The casimir force is defined to be

Casimir Force

−1

2

∂aζ

(−1

2

)

which after some small algebra, is computed to be...

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Casimir Force

The casimir force is defined to be

Casimir Force

−1

2

∂aζ

(−1

2

)which after some small algebra, is computed to be...

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Casimir Force

1

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )1/2 ∂

∂a

∂νlog F (ıν)

which after a lot of algebra, is computed to be... negative for0 < a < L/2 and positive for L/2 < a < L.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Casimir Force

1

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )1/2 ∂

∂a

∂νlog F (ıν)

which after a lot of algebra, is computed to be...

negative for0 < a < L/2 and positive for L/2 < a < L.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Casimir Force

1

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )1/2 ∂

∂a

∂νlog F (ıν)

which after a lot of algebra, is computed to be... negative for0 < a < L/2

and positive for L/2 < a < L.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Casimir Force

1

∞∑`=1

∫ ∞η`

dν (ν2 − η2` )1/2 ∂

∂a

∂νlog F (ıν)

which after a lot of algebra, is computed to be... negative for0 < a < L/2 and positive for L/2 < a < L.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Eigenvalue Problem

Piston Behavior

Piston Behavior

Given the second order differential operator

P = − ∂2

∂x2−∆N + σδ(x − a) defined on [0, L]×N with Dirichlet

boundary conditions, the piston is then attracted to the closestwall.

Pedro Morales-Almazan Math Department

Semitransparent Pistons

The Problem Zeta Function Semitransparent Pistons Questions

Questions

Thanks

Pedro Morales-Almazan Math Department

Semitransparent Pistons