sejarah arsitektur komputer
Embed Size (px)
TRANSCRIPT
Sejarah Arsitektur Komputer
Eri Prasetyohttp://staffsite.gunadarma.ac.id/eri
Mechanical devices
Abakus, 3000 BC (?)
1822 Charles Babbage
1642, add & sub, Blaise Pascal
Electromechanical Machines Based on Relays Konrad Zuse (1910-1995)
The Zuse Z3 & Z4Z1 / 1938, Z3 / 1941: mesin pemrograman Pertama di dunia Z3 dan Z4 dapat dilihat di musium jerman , Padeborn
Electronic Computers First Generation No mechanical components anymore Vacuum Tubes
Principle Basic: Triode Controllable flow within diode by a fence On / Off
1946: ENIAC machine Electronic Numerical Integrator And Computer
Elektronika Tabung1906 Lee de Forest menemukan tabung elektronikkatoda Filamen pemanas gate anoda
Penguatan signal
6,3v
Polarisasi gate menarik elektron Filamen memanaskan katoda yang menyebarkan electrons : termo emission
Lee de Forest
Elektronika tabungMasalah Utama :Tegangan besar Mudah panas Ukuran komponen 300 V Plaque
6,3v Cathode
Grille 50 V
Aplikasi Pertama
Radio penerima
Audio Amplifier
Radio Pemancar
Mesin Hitung tabung Pertama1945 Mesin hitung tabung I bernama (ENIAC) Electronic Numerical Integrator And Computer 30 tonnes Luas 1500 m2 Jumlah 17000 tabung Daya 140 KW 5000 penambahan setiap detik Makan tempat
Semi konduktor ????1874 Braun peletak dasar semi-conducteur
besi
selenium K. F. Braun
Dioda Pertama1940 Schottky menemukan mtal/semi-conducteur.
contact
Pointe mtallique Ge Masih digunakan sampai sekarang untuk HF
W. Schottky 1942 Produksi pertama dioda dengan bahan germanium berhasil untuk teknologi micromave dan radar
Transistor bipolar1947 Group dari Shockley mempunyai ide membuat dua dioda dari bahan yang sama (germanium).
Emetor
Collector
Base
W. Schockley
Transistor bipolar (2)
Fenomena nama baru
transistor = transfer + resistor
Transistor bipolar (3)Base Ge In Emetteur Type n In Collecteur Type p
Sebuah awal fabrikasi (sangat berjasa ) Kesulitan utama : Reproduksi, ketebalan.
Temuan hasil penelitian lebih lanjut untuk bahan (Silikon atau Germanium).
Transistor bipolar silikon1952 Bell Labs memperkenalkan metode untuk merealisasiakn printing Silikon monocristallin dengan kemurnian 99,7%.
Purification
Tirage
Si amorphe
Si polycristallin
Si monocristallin
1954
Pemakaian pertama Silikon sebagai pengganti germanium
Komputer transistor pertama1957 Seymour
pertama secara komersial
Cray
menciptakan
CDC
1604,
komputer
processeur 4-8 bits, cycle mmoire : 5 micro detik.
Penemuan rangkaian terpadu ( IC)1958 Jack
rangkaian terpadu pertama dengan 5 komponen pasif.
Kilby
dari
Texas
Instruments
menciptakan
Kemajuan Transistor1960 Lab. Fairchild semiconductor teknik planar menyempurnakan dengan
R.N. Noyce
Rangkaian terpadu pertama dengan teknik planar
Daya tarik transistors planarDi dalam transistor Planar, semua koneksi ada di permukaan dan pada sisi yang sama.Base Emetteur Collecteur
P N
N
Penemuan Transistor MOS1960 Atalla dan Kahng dari Fairchild semiconductor peletak dasar transistor pertama MOS
Source
gate
Drain
1.5 mm
1963
Hofstein & Heiman dari RCA membuat pertama IC dengan transistors MOS (8 paires de NMOS)
Structure MOSLe MOS est parfaitement symtrique et on appelle SOURCE (d'lectrons) le cot le plus ngatifAu dbut (1962) la grille tait en Aluminium d'o le nom MOS:
Mtal/Oxyde/SemiconducteurSource
Grille Drain Isolant
Substrat la masse ( Vdd pour les PMos)
N+ P
N+
Fonctionnement dun NMOSConditions normales de fonctionnement :
Vgs > 0 et Vds > 0
Vgs > 0 Source
Grille Isolant
Drain
Vds > 0
N+ P
N+
Fonctionnement dun NMOSAccumulation de charges positives sur la grille
Vgs > 0 Source
Grille Isolant
Drain
Vds > 0
N+ P
N+
Fonctionnement dun NMOSCration dun
champ lectrique E sur la capacit MOS
Vgs > 0 Source
Grille Isolant
Drain
Vds > 0
EN+ P N+
Fonctionnement dun NMOSTrous majoritaires du substrat repousss
Vgs > 0 Source
Grille Isolant
Drain
Vds > 0
EN+ P N+
Fonctionnement dun NMOSElectrons minoritaires du substrat attirs vers la grille
Vgs > 0 Source
Grille Isolant
Drain
Vds > 0
EN+ P N+
Fonctionnement dun NMOSCration dun canal de type N sous lisolant (couche dinversion)
Vgs > 0 Source
Grille Isolant
Drain
Vds > 0
IdN+
EN+ P
CaractristiquesCaractristiques similaires celle dun transistor JFET
Id (mA)Vgs = 8 V Vgs = 6 V Vgs = 2 V
La valeur de Vgs > 0 influence directement la densit de porteurs minoritaires attirs sous la capacit MOS La valeur de Vds > 0 influence directement la valeur du champ E et donc de la saturation de Id
Vds (V)
Cas du MOS appauvrissementPour Vgs drainId (mA)Vgs = 4 V Vgs = 2 V Vgs = 0 V Vgs = -2 V Vgs = -4 V
= 0, existence du canal N entre la source et le
Lexistence du canal garantit une conduction du transistor pour des valeurs ngatives et positives de Vgs
Vds (V)
CaractristiquesCaractristiques similaires celle dun transistor JFET
Id (mA)Vgs = 8 V Vgs = 6 V Vgs = 2 V
3 zones de fonctionnement : Zone ohmique, Pincement, Saturation.
Vds (V)
Mengapa terpadu ?kelebihan :Systme lectronique Circuit lectronique Composant: Circuit intgr
Tempat ringkas
Hemat energi
modular
Lebih Aman
ORGANIZATION Pertanyaan : Bagimana bentuk mesin komputasinya ? Bagaimana mengontrolnya ? Original Work ( 1946 ) Burks, Goldstine, von Neumann: Mulai diskusi untuk merancang logika instrumen komputasi elektronik
Hasil : von Neumann Architecture Arsitektur yang sangat dominan bahkan sampai sekarang
The IAS machine Dikembangkan 1952 oleh von Neumann Mesin pertama berbasiskan prinsip rancangannya Institute for Advanced Studies computer
The von Neumann architecture General purpose machine Independent of applications Flexible & Programmable
4 main units Control unit (Instruction counter) Arithmetic unit (Accumulator) Input/Output unit (Connection to the outside) Main memory
Interconnected by simple buses
Von Neumann OverviewInstructions / Program
Main Memory
Arithmetic UnitAC
Control UnitPC IR SR
Addresses
Input/Output Unit E.g. Storage
Von Neumann Details (1) System structure is application independent Fully programmable
Programs and Data are stored in the same memory Main Memory Can be manipulated by the machine
Main memory is divided into cells Equal size Consecutively numbered (addresses)
Von Neumann Details (2) Program is composed of a sequence of instructions Read one after the other from main memory
Program execution can be altered Conditional or unconditional jumps Change the current execution Done by loading new value into PC register
Von Neumann Details (3) Usage of binary numbers Just two values allowed per digit: 0/1 Easy to implement: voltage yes or no
Von Neumann Today Still the dominant architecture in current systems Used in all popular systems / chips
Only minor modifications Control und Arithmetic unit combined Result: CPU (Central Processing Unit) New memory paths between memory and I/O Direct Memory Access (DMA)
Additions to the concept Multiple arithmetic units / Multiple CPUs Parallel processing
Technology Development Vacuum tubes replaced Transistors Smaller, more power efficient DEC PDP-1, IBM 7094 Still large machines
Next step: Integrated Circuits Many transistors packed on one die High density & reliability, low power IBM 360 family & first Intel chips
Many subsequent improvements
Manufacturing Layered design Base: Silicon Light sensitive layers Projection of masks Erase parts using acid Clean
Any particle can cause errors Special fabs required Rising costs
room fabrication
IBM
Comparison of TechnologiesGen. 1 2 3 4 5 Dates 1946-1957 1958-1964 1965-1971 1972-1977 1978Technology Vacuum tube Transistor Small and medium integrated circuits Large scale integration Very large scale integration Speed 40 KHz 200 KHz 1 MHz 10 MHz 100 MHz Time/Ops 25 s 5 s 1 s 100 ns 10 ns
Main trend: smaller and faster Trend still continues today Processor speeds now over 3 GHz, but problems arise
Microprocessor History 2001: 30th Anniversary! 4-Bit, 8-Bit Processors Intel 4004 (~1971) Intel 8008
16-Bit Processors Texas Instruments TMS 9900 (~1977) Intel 8086 Zilog Z8000 (~1978-1980) Motorola MC68000 National Semiconductor NS16016
- 2300 Transistors, 108 Khz
http://www.intel4004.com
Intel 4004
Intel 4004 First Microcomputer
INTEL 4004 First Microcomputer
INTEL 4004 First Microcomputer
Microprocessor History16/32-bit Processors (external 16-bit Bus, internal 32 Bit Structure) Motorola MC68010 National Semiconductor NS16032 Additional Functionality on the Chip Direct Memory Access (DMA) (Intel 80186) Virtual memory management (MC68010, Intel 80286) Optional Coprocessor (Intel 8086/80286, NS16032) Extended Address Space
Microprocessor History 32-bit Processors CISC Processors Motorola MC680x0 Intel i386 / i486 / Pentium National Semiconductor NS32x32 Concept of a Processor Family Binary Compatibility Compatible with 16 Bit Processors
RISC Processors Advanced Micro Devices Am29000 (~1987) Sun Microsystems SPARC MIPS technologies MIPS R2000 / MIPS R3000
Pentium 4 ( 55 Juta transistors )
Microprocessor History 64/32-bit Processors SUN Microsystems SuperSPARC Motorola 88110 IBM, Motorola PowerPC 601 (MPC601)
Modern Processors 64-bit Structure Internal Parallelism Instruction pipelining Arithmetic Pipelining
Instruction and Data Caches Advanced Memory and Peripheral Connections
ITANIUM ( 25.4 JUTA TRANSISTORS )
AMD Opteron (100 Million Transistors)
ITANIUM 2 ( 221 JUTA TRANSISTOR )
First Implementation of Key Features: MontecitoCore
Core
Core 1L3 Cache
Core 2L3 Cache
Key Processor Features Intels first dual-core processor Intels first processor with >1 billion transistors 24 MB L3 cache Multi-threading Compatible with existing Itanium 2-based systemsSystem Bus1MB L2I 2 Way Multi-threading
90nmPower Management/ Frequency Boost (Foxton)
Dualcore
Targeting H22005
1.7 Billion Transistors
2x12MB L3 caches with Pellston
Arbiter
Multiple cores, Multiple threads and L3 Cache on ONE die
Trends in transistor count42 M transistors Number of transistors doubles every 2.3 years (acceleration over the last 4 years: 1.5 years)
Increase: ~20K
2.25 K transistors
(From: http://www.intel.com)
Technological DevelopmentModel 4004 8008 8080 8086 80286 80386 80486 Pentium Pentium-II Pentium-III Pentium 4 Year 1971 1972 1974 1978 1982 1985 1989 1993 1997 1999 2000 # of transistors 2250 2500 5000 29000 120000 275000 1180000 3100000 7500000 24000000 42000000
Moores Law (2) Published in Electronics in 1965 Revised in 1975
Why does this work? (Dr. R. Isaac, IBM) 50 % Lithography 25 % Device and Circuit Innovation 25 % Chip size reduction
How long does this continue? Problem 1: Power density Problem 2: The Lithography Wall
Breaking Moores law Can we compensate for loss or gain more Architectural improvements Massively Parallel Systems
Example 1: ASCI Program in USA Fastest machines in the world Both military and research use Capabilities grow faster than Moores law
Example 2: Hitachi RS 8000 @ LRZ/TUM Innovative node design Large number of individual processors
Massively Parallel Systems
IBM Blue Gene / L, LLNL, 128k processors
High Performance Clusters
Applications: Grand Challenges What applications can take use of this? Long running
Climate Modeling Fluid Turbulences Pollution Disturbation Ocean Circulation Combustion Systems Semiconductor Modeling Vision and Cognition
Very often: Numerical simulations High computational demands Often solving of special physical equations (PDEs)
Some other codes from imaging/business