sébastien galais s. galais, j. kneller, c. volpe and j. gava

55
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]

Upload: rinah-solomon

Post on 04-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique. Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]. Plan. Introduction. Diffuse Supernova Neutrino Background (DSNB) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

The shockwave impact upon the Diffuse Supernova Neutrino

Background

GDR Neutrino, Ecole Polytechnique

Sébastien GALAIS

S. Galais, J. Kneller, C. Volpe and J. GavaPhys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]

Page 2: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Plan

Diffuse Supernova Neutrino Background (DSNB) Motivations

o Introduction

The neutrino self-interaction The shockwave effects in supernova

o Theoretical Framework

on the fluxes on the events rates

o Results

o Simplified model to reproduce the shockwave effects

Page 3: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Introduction

Introduction Theoretical Framework Results Simplified Model Conclusions

neutrinos

NeutronStar

1. The interaction : neutrinos interact each other giving rise to collective effects.

- J. T. Pantaleone, Phys. Rev. D 46 510 (1992).- S. Samuel, Phys. Rev. 48, 1462 (1993).- G. Sigl and G. G. Raffelt, Nucl. Phys. B 406 423 (1993).- Y. Z. Qian and G. M. Fuller, Phys. Rev. D 51 1479 (1995).- H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. 74, 105014 (2006), 0606616,…

Neutrino-sphere

Core-collapse supernova explosion

99 % of the energy is released by (anti)neutrinos of all flavors (about 1053 ergs for about 10 seconds).

Page 4: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Introduction

neutrinos

NeutronStar

matter

2. The shockwave effects : The shock will modify the density profile and therefore the MSW resonance.

- R. C. Schirato and G. M. Fuller (2002), 0205390.- C. Lunardini and A. Y. Smirnov, JCAP 0306, 009 (2003), 0302033.- G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Phys. Rev. 68, 033005 (2003), 0304056.- J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys. Rev. 77, 045023 (2008), 0705.3835.- …

Neutrino-sphere

MSW

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 5: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Diffuse Supernova Neutrino Background (DSNB)

Supernova explosion

Neutrinos are emitted with a Fermi-Dirac distribution:

• from a localized region.

• during a finite time.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 6: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Neutrinos are emitted with a Fermi-Dirac distribution:

• from all directions (past and invisible SN).

• the background is there.

DSNB

Energies are redshifted due the distance between the SN and Earth:

Much progress have been done on its ingredients such as star formation rate. - S. Ando and K. Sato, New Journal of Physics 6, 170 (2004), 0410061- L. E. Strigari, J. F. Beacom, T. P. Walker and P. Zhang, JCAP 0504, 017 (2005), 0502150- C. Lunardini, Astroparticle Physics 26, 190 (2006), 0509233- H. Yüksel and J. F. Beacom, Phys. Rev. 76, 083007 (2007), 0702613)- …

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 7: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Motivations Numerical simulations are close to the upper limits for relic neutrinos fluxes (Super Kamiokande, LSD).

Detection window for relic neutrinos.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 8: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Future observatories should be able to observe these fluxes.

• MEMPHYS: 440 kTon Water Čerenkov detector.Main detection channel:

• GLACIER: 100 kTon liquid argon detector.Main detection channel:

Our aim is to explore:1)the shockwave effects (in the supernova) upon the DSNB.

2)the sensitivity to the oscillations parameters (Hierarchy, 13, phase).

• LENA: 44 kTon scintillator detector.Main detection channel:

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 9: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

• z: redshift• : energy of the neutrino at emission (neutrinosphere)• RSN: core-collapse supernova rate per unit comoving volume• : differential spectra emitted by the supernova

Theoretical framework

Diffuse Supernova Neutrino Background (DSNB) flux at Earth.

Flat universe and ΛCDM model:

ΩΛ=0.7 Ωm=0.3 H0=70 km s-1 Mpc-1

Introduction Theoretical Framework Results Simplified Model Conclusions

Supernova Rate RSN. Many constraints (Gamma-ray bursts, rest-frame UV, NIR Hα, and

FIR/sub-millimeters observations)

Page 10: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Star Formation Rate (RSF)

Star formation rate RSF from [1], where RSF is divided in three parts.

[1] H. Yuksel, M. D. Kistler, J. F. Beacom, and A. M. Hopkins, Astrophys. J. 683, L5 (2008).

with

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 11: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

The propagation in supernovae

e

e-

NeutronStar

MSW effect interaction Vacuum osc

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 12: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

The propagation in supernovae

e

e-

NeutronStar

MSW effect interaction Vacuum osc

Hierarchy13

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 13: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

The propagation in supernovae

e

e-

NeutronStar

MSW effect interaction Vacuum osc

SHOCK

Hierarchy13

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 14: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Our simulationWe use a 3 flavour code in which we solve the propagation of the amplitudes. We include the interaction (single angle approximation).

J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418.

Inverted hierarchy; 13=9, 23=40

Movies realized by S. Galais.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 15: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Synchronized regionBipolar oscillations

Spectral split region

Inverted hierarchy; 13=9, 23=40

Our simulation

J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418. Movies realized by S. Galais.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 16: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Inverted hierarchy; 13=9, 23=40

Our simulation

J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418. Movies realized by S. Galais.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 17: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Inverted hierarchy; 13=9, 23=40

Synchronized regionBipolar oscillations

Spectral split region

Our simulation

J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418. Movies realized by S. Galais.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 18: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Shockwave effects in supernovae

E=20 MeV

Evolution of the density profile with time in the MSW region.

1. Before the shock (adiabatic propagation).

Without .

Impact on the probability.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 19: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

E=20 MeV

2. The shock arrives (non-adiabatic prop.).

Without .

Shockwave effects in supernovae

Evolution of the density profile with time in the MSW region.

1. Before the shock (adiabatic propagation).

Impact on the probability.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 20: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

E=20 MeV

3. Phase effects appear.

Without .

Shockwave effects in supernovae

2. The shock arrives (non-adiabatic prop.).

Evolution of the density profile with time in the MSW region.

1. Before the shock (adiabatic propagation).

Impact on the probability.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 21: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Without .

E=20 MeV

4. Post-shock propagation.

Shockwave effects in supernovae

3. Phase effects appear.

2. The shock arrives (non-adiabatic prop.).

Evolution of the density profile with time in the MSW region.

1. Before the shock (adiabatic propagation).

Impact on the probability.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 22: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

A complete calculation including the shockwave has been realized.

Now we’re aiming at: seeing its impacts on the fluxes and events rates.

exploring the sensitivity to oscillations parameters: 13, hierarchy.

Page 23: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Normal Hierarchy for .

Inverted Hierarchy for .

+ shock (numerical).

RESULTS: relic electron (anti-)neutrino fluxes

For 13 we have two cases: L and S.

+ no shock (analytical).13 Small.

Results for 13 large are valid for the range:

(Me

V-1 c

m-2 s

-1)

13 Small. + no shock. + shock.

(Me

V-1 c

m-2 s

-1)

Chooz limit Best limit for future facilities

exp window

(argon detector)

exp window

(Čerenkov detector)

Normal Hierarchy for .

Inverted Hierarchy for .

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 24: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

+ shock. + no shock.

Here is plotted the ratio

Shockwave impacts:

• 10-20% effect from numerical calculations.

+ no shock. + shock.NH IH

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 25: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

+ shock. + no shock.

Here is plotted the ratio

Shockwave impacts:

• 10-20% effect from numerical calculations.

+ no shock. + shock.NH IH

• reduction of the sensitivity to 13.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 26: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Water Čerenkov, scintillator detectors and Inverted Hierarchy (with )

Analytical (no shock) Numerical (shock)

Nevents Detection window L L

19.3-30 MeV 0.066 0.078

Argon detectors and Normal Hierarchy

17.5-41.5 MeV 0.074 0.066

DSNB event rates (per kTon per year)

+18%

-11%

• 10-20% variation only due to the presence of the shock.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 27: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Water Čerenkov, scintillator detectors

Inverted Hierarchy (with )

Nevents Detection window L (no shock) L (shock) S

19.3-30 MeV 0.066 0.078 0.089

Argon detectors and Normal Hierarchy

17.5-41.5 MeV 0.074 0.066 0.058

• The sensitivity to 13 is reduced.• 10-20% variation only due to the presence of the shock.

-12%

+14%

DSNB event rates (per kTon per year)

-26%

-28%

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 28: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

• Loss of the sensitivity to collective effects in the L case.• The sensitivity to 13 is reduced.• 10-20% variation only due to the presence of the shock.

Water Čerenkov, scintillator detectors

Inverted Hierarchy (with shock)

Nevents Detection window L (with ) L (without )

19.3-30 MeV 0.078 0.078

9.3-25 MeV 0.211 0.210

+0%

+0%

DSNB event rates (per kTon per year)

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 29: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

What have we learnt?

one should include the shockwave in future simulations because its effects are significant.

To do so, we propose a simplified model to account for these effects.

Page 30: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

1. From the numerical evolution of , we extract the 3 times.

ts: shock arrives

tp: phase effects

t∞: post-shock

2. We average the value of in each part because is independent of the energy.

A simplified model to account for the shockwave

This model based upon the general behaviour of the shockwave in supernova to calculate the flux.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 31: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

1. From the numerical evolution of , we extract the 3 times.

ts: shock arrives

tp: phase effects

t∞: post-shock

2. We average the value of in each part because is independent of the energy.

A simplified model to account for the shockwave

This model based upon the general behaviour of the shockwave in supernova to calculate the flux.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 32: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Survival probability evolution with times and energy.

A simplified model to account for the shockwave Introduction Theoretical Framework Results Simplified Model Conclusions

Page 33: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Interval 0→ts ts→tp tp→t t→

With 0.5436 0.0634 0.3092 0.2548

Without 0.1611 0.6356 0.3531 0.4835

Times fitting with polynomials functions.

The simulations using these functions reproduce the full calculation to less than 2%.

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 34: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Conclusions First complete calculation with interaction and shockwave for relic supernova neutrinos.

The shock affects significantly the DSNB fluxes and event rates.

We propose a model that can be used in future calculations to include shockwave effects.

S. Galais, J. Kneller, C. Volpe and J. Gava, Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]

Introduction Theoretical Framework Results Simplified Model Conclusions

Page 35: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Our predictions for future observatories after 10 years

MEMPHYS, UNO

440 kTon290 < Nevents < 392

LENA

50 kTon84 < Nevents < 96

GLACIER

100 kTon58 < Nevents < 66

IH

NH

S. Galais, J. Kneller, C. Volpe and J. Gava, Phys.Rev.D81:053002,2010 / arxiv:0906.5294 [hep-ph]

Page 36: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava
Page 37: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Simplified model VS Numerical calculation

Here is plotted the ratio

Page 38: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Modification of the parameters

Variation of the cooling time .

Addition of a temporal offset t to ti.

Luminosity decreases like:

Change the arrival time of the shock.

Results are robust to variations of the cooling time and the arrival time.

Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions

Page 39: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

interaction as a pendulum

S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, 105010 (2006), 0608695.

Page 40: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Inverted Hierarchy: with without

Nevents Detection window L S

19.3-30 MeV 0.078 (0.078) 0.089 (0.066)

9.3-25 MeV 0.211 (0.210) 0.224 (0.196)

Normal Hierarchy

Detection window L or S

19.3-30 MeV 0.066

9.3-25 MeV 0.196

Inverted Hierarchy: with without

Nevents Detection window L or S

17.5-41.5 MeV 0.059 (0.058)

4.5-41.5 MeV 0.099 (0.096)

Normal Hierarchy

Detection window L S

17.5-41.5 MeV 0.066 0.058

4.5-41.5 MeV 0.106 0.096

Page 41: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

A simplified model to account for the shockwave

SHOCK

NO SHOCK

Page 42: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

A simplified model to account for the shockwaveNO SHOCK

Nevents(without ) > Nevents(with )

Page 43: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

A simplified model to account for the shockwaveSHOCK

Page 44: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

A simplified model to account for the shockwaveSHOCK

Nevents(with ) increasesNevents(without ) decreases

Nevents(with ) Nevents(without )

Page 45: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Interval 0→ts ts→tp tp→t t→

With 0.5436 0.0634 0.3092 0.2548

Without 0.1611 0.6356 0.3531 0.4835

Times a0 a1 a2 a3 a4 a5

ts 1.02 10-2 1.72 10-1 -6.88 10-3 1.4 10-4 -1.2 10-6 4.2 10-9

tp 9.83 10-2 1.39 10-1 -2.47 10-3 4 10-5 -4.4 10-7 1.9 10-9

t 3.75 9.5 10-2 -5 10-4

This model can be used in future calculations of DSNB fluxes and rates to include shockwave effects.

Page 46: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava
Page 47: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Survival probability evolution with times and energy.

Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions

A simplified model to account for the shockwave

Page 48: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Evolution of times with energy.

Introduction DSNB Motivations Theoretical Framework Results Simplified Model Conclusions

BUT the luminosity decreasesSo we must do :

A simplified model to account for the shockwave

AND

AND

Page 49: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

1. The interaction.

- J. T. Pantaleone, Phys. Rev. D 46 510 (1992).- S. Samuel, Phys. Rev. 48, 1462 (1993).- G. Sigl and G. G. Raffelt, Nucl. Phys. B 406 423 (1993).- Y. Z. Qian and G. M. Fuller, Phys. Rev. D 51 1479 (1995).- S. Pastor, G. G. Raffelt, and D. V. Semikoz, Phys. Rev. 65, 053011 (2002), 0109035.- H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. 74, 105014 (2006), 0606616.- S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. 74, 105010 (2006), 0608695.- A. B. Balantekin and Y. Pehlivan, J. Phys. 34, 47 (2007), 0607527.- G. G. Raffelt and A. Y. Smirnov, Phys. Rev. 76, 125008 (2007), 0709.4641.- …

Recent developments in neutrino propagation in SN:

After the explosion of the star, the neutrinos density is so high that neutrinos interact each other giving rise to collective effects like synchronization, bipolar oscillations and spectral split.

Introduction

Page 50: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

2. The shockwave effects.

- R. C. Schirato and G. M. Fuller (2002), 0205390.- C. Lunardini and A. Y. Smirnov, JCAP 0306, 009 (2003), 0302033.- K. Takahashi, K. Sato, H. E. Dalhed, and J. R. Wilson, Astropart. Phys. 20, 189 (2003), 0212195.- G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Phys. Rev. 68, 033005 (2003), 0304056.- R. Tomas, M. Kachelrieß, G. Raffelt, A. Dighe, H.-T. Janka, and L. Scheck, JCAP 0409, 015 (2004), 0407132.- G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, JCAP 4, 2 (2005), 0412046.- S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. D74, 053010 (2006), 0605255.- B. Dasgupta and A. Dighe, Phys. Rev. 75, 093002 (2007), 0510219.- S. Choubey, N. P. Harries, and G. G. Ross, Phys. Rev. 76, 073013 (2007), 0703092.- J. P. Kneller, G. C. McLaughlin, and J. Brockman, Phys. Rev. 77, 045023 (2008), 0705.3835.- J. P. Kneller and G. C. McLaughlin, Phys. Rev. 73, 056003 (2006), 0509356.- …

Introduction

The shock propagates through the matter in which it will modify the density profile and therefore the MSW resonance.

Introduction DSNB Motivations Theoretical Framework Results Conclusions

Page 51: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

- …- I.K. Baldry and K. Glazebrook, Astrophys. J. 593, 258 (2003).- S. Ando and K. Sato, New Journal of Physics 6, 170 (2004), 0410061.- L. E. Strigari, J. F. Beacom, T. P. Walker and P. Zhang, JCAP 0504, 017 (2005), 0502150. - C. Lunardini, Astroparticle Physics 26, 190 (2006), 0509233.- H. Yüksel and J. F. Beacom, Phys. Rev. 76, 083007 (2007), 0702613.- S. Chakraborty, S. Choubey, B. Dasgupta, and K. Kar, JCAP 0809, 013 (2008), 08053131.- …

3. Progress on the Diffuse Supernova Neutrino Background (DSNB).

Introduction

There have been much progress on the ingredients of the DSNB such as star formation rate, initial mass function.

Page 52: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Normal Hierarchy Analytic (no shock) Numeric (shock)

Nevents Detection window L L

17.5-41.5 MeV 0.074 0.066

4.5-41.5 MeV 0.116 0.106

Argon detectors.

Inverted Hierarchy: with Analytic (no shock) Numeric (shock)

Nevents Detection window L L

19.3-30 MeV 0.066 0.078

9.3-25 MeV 0.196 0.211

Water Cerenkov and scintillator detectors. per kTon per year

DSNB event rates in -observatories

+18%

+8%

- 9%

-11%

• 10% variation only due to the presence of the shock.

Page 53: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Inverted Hierarchy: with + shock

Nevents Detection window L S

19.3-30 MeV 0.078 0.089

9.3-25 MeV 0.211 0.224

Normal Hierarchy

Nevents Detection window L S

17.5-41.5 MeV 0.066 0.058

4.5-41.5 MeV 0.106 0.096

Argon detectors.

per kTon per year

DSNB event rates in -observatories

Water Cerenkov and scintillator detectors.

+14%

- 6%

-12%

• Same variation due to 13.• 10% variation only due to the presence of the shock.

Page 54: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

Inverted Hierarchy: with + shock

Nevents Detection window L (with L (without

19.3-30 MeV 0.078 0.078

9.3-25 MeV 0.211 0.210

Normal Hierarchy

Nevents Detection window L

17.5-41.5 MeV 0.066

4.5-41.5 MeV 0.106

Argon detectors.

per kTon per year

DSNB event rates in -observatories

Water Cerenkov and scintillator detectors.

• Loss of the sensitivity to collective effects in the L case.• Same variation due to 13.

+0%

+0%

• 10% variation only due to the presence of the shock.

Page 55: Sébastien GALAIS S. Galais, J. Kneller, C. Volpe and J. Gava

The method usedWe use a 3 flavour code in which we solve the propagation of the amplitudes. We include the interaction (single angle approximation).

J. Gava, C. Volpe, Phys.Rev.D78:083007(2008), 0807.3418.

3. Spectral split.

This gives our at the supernova.

interactionInverted Hierarchy.

1. Synchronized region.

2. Bipolar oscillations.

MSW effect

DSNB Motivations Theoretical Framework Results Conclusions