schaums vector analysis

234
7/24/2019 Schaums Vector Analysis http://slidepdf.com/reader/full/schaums-vector-analysis 1/234 VEC TO R AN ALYSIS AN D AN IN TR O D U C T IO N TO TEN SO R AN ALYSIS q ll C ove-age of all course fundam entals for vector a n a ly s is, w ith an introduction to tensor analysis T heories, concepts, and definitions 480 fully w orked problem s q ll H u n d re d s o f a d d itio n a l practice problem s U se w ith these courses. 9E 1ectrom agnetics 9 M echanics 9 E lectrom agnetic Theory 9 A erodynam ics

Upload: tint-tiger

Post on 13-Apr-2018

389 views

Category:

Documents


26 download

TRANSCRIPT

Page 1: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 1/234

V E C T O R A N A L Y S I S

A N D A N I N T R O D U C T I O N T O T E N S O R A N A L Y S I S

q l l

C o v e - a g e o f a l l c o u r s e f u n d a m e n t a l s f o r v e c t o r

a n a l y s i s , w i t h a n i n t r o d u c t i o n t o t e n s o r a n a l y s i s

T h e o r i e s , c o n c e p t s , a n d d e f i n i t i o n s

4 8 0 f u l l y w o r k e d p r o b l e m s

q l l

H u n d r e d s o f a d d i t i o n a l p r a c t i c e

p r o b l e m s

U s e w i t h t h e s e c o u r s e s . 9 E 1 e c t r o m a g n e t i c s 9 M e c h a n i c s 9 E l e c t r o m a g n e t i c

T h e o r y 9 A e r o d y n a m i c s

Page 2: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 2/234

S c h a u m s

O u t l i n e

o f

T H E O R Y a n d P R O B L E M S

o f

. L 1 1 S 1

1 a

L 1 a a 1 1 a 1 [ .

l a C L L L 1 1 1 L L 1 J l

L

L l \ 1

. \

. 1

. . \

V E C T O R A N A L Y S I S

a n d a n i n t r o d u c t i o n t o

T E N S O R A N A L Y S I S

e r r . r . r r r . r r .

r

r

r a y R S p i e g e l , P h D

I i , r m r r

P : u f r

' 1 1 a n d ( h u t r » r n r t

t f a t h r m n n r c D e p a r t m e n t

R r r r . , r l n r r I ' u 1 t r / I a n o f n s t a t u t e

I l a r t f m d ( . r a d u n t e ( r r r t r r

S C H A l l n t ' S O U T L I N E S E R I E S

% I l { r a - A - H { I I

N r . l \ n r l .

t i a r a I t a n . r ' i t r

N a . h i n g t o n f ) (

A u . k l a n d

I f i r t r r r t a

(

i r j , , j %

I r c h v n

I \ r n d l r n l

t 1 . n I r r d

M r k i k i i U m M i l a n

\ l u n t r . . i l

N r a I ) c l h i S a n J u a n 1 r n a g ' ' r c

S % J a i r

I t ' k

. r

I l r r l l n t r l

Page 3: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 3/234

C o p y r i g h t Q 1 9 5 9 b y M c G r a w - H i l l , I n c .

A l l R i g h t s R e s e r v e d . P r i n t e d i n t h e

U n i t e d S t a t e s o f A m e r i c a . N o p a r t o f t h i s p u b l i c a t i o n m a y b e r e p r o d u c e d ,

s t o r e d i n a r e t r i e v a l s y s t e m , o r t r a n s m i t t e d , i n a n y f o r m o r b y a n y m e a n s ,

e l e c t r o n i c , m e c h a n i c a l . p h o t o c o p y i n g . r e c o r d i n g . o r o t h e r w i s e . w i t h o u t t h e p r i o r

w r i t t e n p e r m i s s i o n o f t h e p u b l i s h e r .

I S B N 0 7 - 0 6 0 2 2 8 - X

2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 S H S H 8 7 6

Page 4: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 4/234

P r e f a c e

V e c t o r a n a l y s i s , w h i c h h a d i t s b e g i n n i n g s i n t h e m i d d l e o f t h e 1 9 t h c e n t u r y , h a s i n r e c e n t

y e a r s b e c o m e a n e s s e n t i a l p a r t o f t h e m a t h e m a t i c a l b a c k g r o u n d r e q u i r e d o f e n g i n e e r s , p h y -

s i c i s t s , m a t h e m a t i c i a n s a n d o t h e r s c i e n t i s t s . T h i s r e q u i r e m e n t i s f a r f r o m a c c i d e n t a l , f o r n o t

o n l y d o e s v e c t o r a n a l y s i s p r o v i d e a c o n c i s e n o t a t i o n f o r p r e s e n t i n g e q u a t i o n s a r i s i n g f r o m

m a t h e m a t i c a l f o r m u l a t i o n s o f p h y s i c a l a n d g e o m e t r i c a l p r o b l e m s b u t i t i s a l s o a n a t u r a l a i d

i n f o r m i n g m e n t a l p i c t u r e s o f p h y s i c a l a n d g e o m e t r i c a l i d e a s . I n s h o r t , i t m i g h t v e r y w e l l b e

c o n s i d e r e d a m o s t r e w a r d i n g l a n g u a g e a n d m o d e o f t h o u g h t f o r t h e p h y s i c a l s c i e n c e s .

T h i s b o o k i s d e s i g n e d t o b e u s e d e i t h e r a s a t e x t b o o k f o r a f o r m a l c o u r s e i n v e c t o r

a n a l y s i s o r a s a v e r y u s e f u l s u p p l e m e n t t o a l l c u r r e n t s t a n d a r d t e x t s . I t s h o u l d a l s o b e o f

c o n s i d e r a b l e v a l u e t o t h o s e t a k i n g c o u r s e s i n p h y s i c s , m e c h a n i c s , e l e c t r o m a g n e t i c t h e o r y ,

a e r o d y n a m i c s o r a n y o f t h e n u m e r o u s o t h e r f i e l d s i n w h i c h v e c t o r m e t h o d s a r e e m p l o y e d .

E a c h c h a p t e r b e g i n s w i t h a c l e a r s t a t e m e n t o f p e r t i n e n t d e f i n i t i o n s , p r i n c i p l e s a n d

t h e o r e m s t o g e t h e r w i t h i l l u s t r a t i v e a n d o t h e r d e s c r i p t i v e m a t e r i a l . T h i s i s f o l l o w e d b y

g r a d e d s e t s o f s o l v e d a n d s u p p l e m e n t a r y p r o b l e m s . T h e s o l v e d p r o b l e m s s e r v e t o i l l u s t r a t e

a n d a m p l i f y t h e t h e o r y , b r i n g i n t o s h a r p f o c u s t h o s e f i n e p o i n t s w i t h o u t w h i c h t h e s t u d e n t

c o n t i n u a l l y f e e l s h i m s e l f o n u n s a f e g r o u n d , a n d p r o v i d e t h e r e p e t i t i o n o f b a s i c p r i n c i p l e s

s o v i t a l t o e f f e c t i v e t e a c h i n g . N u m e r o u s p r o o f s o f t h e o r e m s a n d d e r i v a t i o n s o f f o r m u l a s

a r e i n c l u d e d a m o n g t h e s o l v e d p r o b l e m s . T h e l a r g e n u m b e r o f s u p p l e m e n t a r y p r o b l e m s

w i t h a n s w e r s s e r v e a s a c o m p l e t e r e v i e w o f t h e m a t e r i a l o f e a c h c h a p t e r .

T o p i c s c o v e r e d i n c l u d e t h e a l g e b r a a n d t h e d i f f e r e n t i a l a n d i n t e g r a l c a l c u l u s o f v e c -

t o r s , S t o k e s ' t h e o r e m , t h e d i v e r g e n c e t h e o r e m a n d o t h e r i n t e g r a l t h e o r e m s t o g e t h e r w i t h

m a n y a p p l i c a t i o n s d r a w n f r o m v a r i o u s f i e l d s . A d d e d f e a t u r e s a r e t h e c h a p t e r s o n c u r v i l i n -

e a r c o o r d i n a t e s a n d t e n s o r a n a l y s i s w h i c h s h o u l d p r o v e e x t r e m e l y u s e f u l i n t h e s t u d y o f

a d v a n c e d e n g i n e e r i n g , p h y s i c s a n d m a t h e m a t i c s .

C o n s i d e r a b l y m o r e m a t e r i a l h a s b e e n i n c l u d e d h e r e t h a n c a n b e c o v e r e d i n m o s t f i r s t

c o u r s e s . T h i s h a s b e e n d o n e t o m a k e t h e b o o k m o r e f l e x i b l e , t o p r o v i d e a m o r e u s e f u l b o o k

o f r e f e r e n c e , a n d t o s t i m u l a t e f u r t h e r i n t e r e s t i n t h e t o p i c s .

T h e a u t h o r g r a t e f u l l y a c k n o w l e d g e s h i s i n d e b t e d n e s s t o M r . H e n r y H a y d e n f o r t y p o -

g r a p h i c a l l a y o u t a n d a r t w o r k f o r t h e f i g u r e s . T h e r e a l i s m o f t h e s e f i g u r e s a d d s g r e a t l y t o

t h e e f f e c t i v e n e s s o f p r e s e n t a t i o n i n a s u b j e c t w h e r e s p a t i a l v i s u a l i z a t i o n s p l a y s u c h

a n i m -

p o r t a n t r o l e .

M . R . S P i E G E L

R e n s s e l a e r P o l y t e c h n i c I n s t i t u t e

J u n e , 1 9 5 9

Page 5: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 5/234

Page 6: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 6/234

C o n t e n t s

C H A P T E R

P A G E

1 . V E C T O R S A N D S C A L A R S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1

V e c t o r s . S c a l a r s . V e c t o r a l g e b r a . L a w s o f v e c t o r a l g e b r a . U n i t v e c t o r s . R e c t a n g u l a r u n i t

v e c t o r s . C o m p o n e n t s o f a v e c t o r . S c a l a r f i e l d s . V e c t o r f i e l d s .

2 . T H E D O T A N D C R O S S P R O D U C T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 6

D o t o r s c a l a r p r o d u c t s . C r o s s o r v e c t o r p r o d u c t s . T r i p l e p r o d u c t s . R e c i p r o c a l s e t s o f

v e c t o r s .

3 . V E C T O R D I F F E R E N T I A T I O N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 5

O r d i n a r y d e r i v a t i v e s o f v e c t o r s . S p a c e c u r v e s . C o n t i n u i t y a n d d i f f e r e n t i a b i l i t y . D i f f e r e n -

t i a t i o n f o r m u l a s . P a r t i a l d e r i v a t i v e s o f v e c t o r s

D i f f e r e n t i a l s o f v e c t o r s . D i f f e r e n t i a l

g e o m e t r y . M e c h a n i c s .

4 . G R A D I E N T , D I V E R G E N C E A N D C U R L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5 7

T h e v e c t o r d i f f e r e n t i a l o p e r a t o r d e l . G r a d i e n t . D i v e r g e n c e . C u r l . F o r m u l a s i n v o l v i n g d e l .

I n v a r i a n c e .

5 . V E C T O R I N T E G R A T I O N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

8 2

O r d i n a r y i n t e g r a l s o f v e c t o r s . L i n e i n t e g r a l s . S u r f a c e i n t e g r a l s . V o l u m e i n t e g r a l s .

6 . T H E D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M ,

A N D R E L A T E D I N T E G R A L T H E O R E M S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 6

T h e d i v e r g e n c e t h e o r e m o f G a u s s . S t o k e s ' t h e o r e m . G r e e n ' s t h e o r e m i n t h e p l a n e . R e -

l a t e d i n t e g r a l t h e o r e m s . I n t e g r a l o p e r a t o r f o r m f o r d e l .

7 . C U R V I L I N E A R C O O R D I N A T E S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 3 5

T r a n s f o r m a t i o n o f c o o r d i n a t e s . O r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s . U n i t v e c t o r s i n

c u r v i l i n e a r s y s t e m s . A r c l e n g t h a n d v o l u m e e l e m e n t s . G r a d i e n t , d i v e r g e n c e a n d c u r l .

S p e c i a l o r t h o g o n a l c o o r d i n a t e s y s t e m s . C y l i n d r i c a l c o o r d i n a t e s . S p h e r i c a l c o o r d i n a t e s .

P a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s . P a r a b o l o i d a l c o o r d i n a t e s . E l l i p t i c c y l i n d r i c a l c o o r d i n a t e s .

P r o l a t e s p h e r o i d a l c o o r d i n a t e s . O b l a t e s p h e r o i d a l c o o r d i n a t e s . E l l i p s o i d a l c o o r d i n a t e s .

B i p o l a r c o o r d i n a t e s .

8 . T E N S O R A N A L Y S I S

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 6 6

P h y s i c a l l a w s . S p a c e s o f N d i m e n s i o n s . C o o r d i n a t e t r a n s f o r m a t i o n s . T h e s u m m a t i o n

c o n v e n t i o n . C o n t r a v a r i a n t a n d c o v a r i a n t v e c t o r s . C o n t r a v a r i a n t , c o v a r i a n t a n d m i x e d

t e n s o r s . T h e K r o n e c k e r d e l t a . T e n s o r s o f r a n k g r e a t e r t h a n t w o . S c a l a r s o r i n v a r i a n t s .

T e n s o r f i e l d s . S y m m e t r i c a n d s k e w - s y m m e t r i c t e n s o r s . F u n d a m e n t a l o p e r a t i o n s w i t h

t e n s o r s . M a t r i c e s . M a t r i x a l g e b r a . T h e l i n e e l e m e n t a n d m e t r i c t e n s o r . C o n j u g a t e o r

r e c i p r o c a l t e n s o r s . A s s o c i a t e d t e n s o r s . L e n g t h o f a v e c t o r . A n g l e b e t w e e n v e c t o r s . P h y s i c a l

c o m p o n e n t s . C h r i s t o f f e l ' s s y m b o l s . T r a n s f o r m a t i o n l a w s o f C h r i s t o f f e l ' s s y m b o l s . G e o -

d e s i c s . C o v a r i a n t d e r i v a t i v e s . P e r m u t a t i o n s y m b o l s a n d t e n s o r s . T e n s o r f o r m o f g r a d i e n t ,

d i v e r g e n c e a n d c u r l . T h e i n t r i n s i c o r a b s o l u t e d e r i v a t i v e . R e l a t i v e a n d a b s o l u t e t e n s o r s .

I N D E X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 1 8

Page 7: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 7/234

Page 8: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 8/234

A V E C T O R i s a q u a n t i t y h a v i n g b o t h m a g i i i t u d a n d d i r e c t i o n s u c h a s d i s p l a c e m e n t , _ v e l o c i t y , f o r c e

a n d a c c e l e r a t i o n .

G r a p h i c a l l y a v e c t o r i s r e p r e s e n t e d b y a n a r r o w O P ( F i g . l ) d e -

f i n i n g t h e d i r e c t i o n , t h e m a g n i t u d e o f t h e v e c t o r b e i n g i n d i c a t e d b y

t h e l e n g t h o f t h e a r r o w . T h e t a i l e n d 0 o f t h e a r r o w i s c a l l e d t h e

o r i g i n o r i n i t i a l p o i n t o f t h e v e c t o r , a n d t h e h e a d P i s c a l l e d t h e

t e r m i n a l p o i n t o r t e r m i n u s .

A n a l y t i c a l l y a v e c t o r i s r e p r e s e n t e d b y a l e t t e r w i t h a n a r r o w

o v e r i t , a s A i n F i g . 1 , a n d i t s m a g n i t u d e i s d e n o t e d b y

I A I o r A . I n

p r i n t e d w o r k s , b o l d f a c e d t y p e , s u c h a s A , i s u s e d t o i n d i c a t e t h e

v e c t o r A w h i l e J A I o r A i n d i c a t e s i t s m a g n i t u d e . W e s h a l l u s e t h i s

b o l d f a c e d n o t a t i o n i n t h i s b o o k . T h e v e c t o r O P i s a l s o i n d i c a t e d a s

O P o r O P ; i n s u c h c a s e w e s h a l l d e n o t e i t s m a g n i t u d e b y O F , O P I ,

o r o f .

F i g . 1

A S C A L A R i s a q u a n t i t y h a v i n g m a g n i t u d e b u t ( n

d i r e c t i o n , e . g .

m

a

I S h , t f e , t e m e r

a n d

a n y r e a l n u m b e r . S c a l a r s a r e i n d i c a t e d b y l e t t e r s i n o r d i n a r y t y p e a s i n e l e m e n t a r y a l g e -

b r a . O p e r a t i o n s w i t h s c a l a r s f o l l o w t h e s a m e r u l e s a s i n e l e m e n t a r y a l g e b r a .

V E C T O R A L G E B R A . T h e o p e r a t i o n s o f a d d i t i o n , s u b t r a c t i o n a n d m u l t i p l i c a t i o n f a m i l i a r i n t h e a l g e -

b r a o f n u m b e r s o r s c a l a r s a r e , w i t h s u i t a b l e d e f i n i t i o n , c a p a b l e o f e x t e n s i o n

t o a n a l g e b r a o f v e c t o r s . T h e f o l l o w i n g d e f i n i t i o n s a r e f u n d a m e n t a l .

1 . T w o v e c t o r s A a n d B a r e e q u a l i f t h e y h a v e t h e s a m e m a g n i t u d e a n d d i r e c t i o n r e g a r d l e s s o f

t h e p o s i t i o n o f t h e i r i n i t i a l p o i n t s . T h u s A = B i n F i g . 2 .

2 . A v e c t o r h a v i n g d i r e c t i o n o p p o s i t e t o t h a t o f v e c t o r A b u t h a v i n g t h e s a m e m a g n i t u d e i s d e -

n o t e d b y - A ( F i g . 3 ) .

F i g . 2 F i g . 3

Page 9: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 9/234

2

V E C T O R S a n d S C A L A R S

3 .

T h e s u m o r r e s u l t a n t o f v e c t o r s A a n d B i s a

v e c t o r C f o r m e d b y p l a c i n g t h e i n i t i a l p o i n t o f B

o n t h e t e r m i n a l p o i n t o f A a n d t h e n j o i n i n g t h e

i n i t i a l p o i n t o f A t o t h e t e r m i n a l p o i n t o f B

( F i g . 4 ) . T h i s s u m i s w r i t t e n A + B , i . e . C = A + B .

T h e d e f i n i t i o n h e r e i s e q u i v a l e n t t o t h e p a r -

a l l e l o g r a m l a w f o r v e c t o r a d d i t i o n ( s e e P r o b . 3 ) .

E x t e n s i o n s t o s u m s o f m o r e t h a n t w o v e c t o r s

a r e i m m e d i a t e ( s e e P r o b l e m 4 ) .

F i g . 4

4 . T h e d i f f e r e n c e o f v e c t o r s A a n d B , r e p r e s e n t e d b y A - B , i s t h a t v e c t o r C w h i c h a d d e d t o B

y i e l d s v e c t o r A .

E q u i v a l e n t l y , A - B c a n b e d e f i n e d a s t h e s u m A + ( - B ) .

I f A = B , t h e n A - B i s d e f i n e d a s t h e n u l l o r z e r o v e c t o r a n d i s r e p r e s e n t e d b y t h e s y m -

b o l 0 o r s i m p l y 0 .

I t h a s z e r o m a g n i t u d e a n d n o s p e c i f i c d i r e c t i o n . A v e c t o r w h i c h i s n o t

n u l l i s a p r o p e r v e c t o r . A l l v e c t o r s w i l l b e a s s u m e d p r o p e r u n l e s s o t h e r w i s e s t a t e d .

5 . T h e p r o d u c t o f a v e c t o r A b y a s c a l a r m i s a v e c t o r m A w i t h m a g n i t u d e

I m f t i m e s t h e m a g n i -

t u d e o f A a n d w i t h d i r e c t i o n t h e s a m e a s o r o p p o s i t e t o t h a t o f A , a c c o r d i n g a s m i s p o s i t i v e

o r n e g a t i v e . I f m = 0 , m A i s t h e n u l l v e c t o r .

L A W S O F V E C T O R A L G E B R A . I f A , B a n d C a r e v e c t o r s a n d m a n d n a r e s c a l a r s , t h e n

1 . A + B = B + A

C o m m u t a t i v e L a w f o r A d d i t i o n

2 . A + ( B + C ) _ ( A + B ) + C

A s s o c i a t i v e L a w f o r A d d i t i o n

3 . m A = A m

C o m m u t a t i v e L a w f o r M u l t i p l i c a t i o n

4 . m ( n A ) _ ( m n ) A

A s s o c i a t i v e L a w f o r M u l t i p l i c a t i o n

5 .

( m + n ) A = m A + n A

D i s t r i b u t i v e L a w

6 . m ( A + B ) = m A + m B

D i s t r i b u t i v e L a w

N o t e t h a t i n t h e s e l a w s o n l y m u l t i p l i c a t i o n o f a v e c t o r b y o n e o r m o r e s c a l a r s i s u s e d . I n C h a p -

t e r 2 , p r o d u c t s o f v e c t o r s a r e d e f i n e d .

T h e s e l a w s e n a b l e u s t o t r e a t v e c t o r e q u a t i o n s i n t h e s a m e w a y a s o r d i n a r y a l g e b r a i c e q u a t i o n s .

F o r e x a m p l e , i f A + B = C t h e n b y t r a n s p o s i n g A = C - B .

A U N I T V E C T O R i s a v e c t o r h a v i n g u n i t m a g n i t u d e , i f

A i s a v e c t o r w i t h m a g n i t u d e A 0 ,

t h e n A / A i s a u n i t v e c t o r h a v i n g t h e s a m e - - d i r e c t i o n a s

A .

A n y v e c t o r A c a n b e r e p r e s e n t e d b y a u n i t v e c t o r a

i n t h e d i r e c t i o n o f A m u l t i p l i e d b y t h e m a g n i t u d e o f A . I n

s y m b o l s , A = A a .

T H E R E C T A N G U L A R U N I T V E C T O R S i , j , k . A n i m p o r -

t a n t s e t o f

u n i t v e c t o r s a r e t h o s e h a v i n g t h e d i r e c t i o n s o f t h e p o s -

i t i v e x , y , a n d z a x e s o f a t h r e e d i m e n s i o n a l r e c t a n g u -

l a r c o o r d i n a t e s y s t e m , a n d a r e d e n o t e d r e s p e c t i v e l y b y

i , j , a n d k ( F i g . 5 ) .

W e s h a l l u s e r i g h t - h a n d e d r e c t a n g u l a r c o o r d i n a t e

s y s t e m s u n l e s s o t h e r w i s e s t a t e d . S u c h a s y s t e m d e r i v e s

z

F i g . 5

Y

Page 10: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 10/234

V E C T O R S a n d S C A L A R S

i t s n a m e f r o m t h e f a c t t h a t a r i g h t t h r e a d e d s c r e w r o t a t -

e d t h r o u g h 9 0 0 f r o m O x t o O y w i l l a d v a n c e i n t h e p o s -

i t i v e z d i r e c t i o n , a s i n F i g . 5 a b o v e .

I n

g e n e r a l , t h r e e v e c t o r s A , B a n d C w h i c h h a v e

c o i n c i d e n t i n i t i a l p o i n t s a n d a r e n o t c o p l a n a r , i . e . d o

n o t l i e i n o r a r e n o t p a r a l l e l t o t h e s a m e p l a n e , a r e s a i d

t o f o r m a r i g h t - h a n d e d s y s t e m o r d e x t r a l s y s t e m i f a

r i g h t t h r e a d e d s c r e w r o t a t e d t h r o u g h a n a n g l e l e s s t h a n

1 8 0 ° f r o m A t o B w i l l a d v a n c e i n t h e d i r e c t i o n C a s

s h o w n i n F i g . 6 .

C O M P O N E N T S O F A V E C T O R . A n y v e c t o r A i n 3 d i -

m e n s i o n s c a n

a r e p r e -

s e n t e d w i t h i n i t i a l p o i n t a t t h e o r i g i n 0 o f a r e c a n g u l a r

c o o r d i n a t e

s y s t e m

( F i g . 7 ) . L e t ( A l , A 2 , A 3 )

b e t h e

r e c t a n g u l a r c o o r d i n a t e s o f t h e t e r m i n a l p o i n t o f v e c t o r A

w i t h i n i t i a l p o i n t a t 0 . T h e v e c t o r s A l i , A 2 j , a n d A 3 k

a r e c a l l e d t h e r e c t a l a r c o m p o n e n t v e c t o r s o r s i m p l y

c o m p o n e n t v e c t o r s o f A i n t h e x , y a n d z d i r e c t i o n s r e -

s p e c t i v e l y .

A 1 , A 2 a n d A 3 a r e c a l l e d t h e r e c t a n g u l a r

c o m p o n e n t s o r s i m p l y c o m p o n e n t s o f A i n t h e x , y a n d z

d i r e c t i o n s r e s p e c t i v e l y .

T h e s u m o r r e s u l t a n t o f

A l i , A 2 j

v e c t o r A s o t h a t w e c a n w r i t e

a n d A 3 k

i s t h e

A = A 1 i + A 2 I

+ A k

T h e m a g n i t u d e o f A i s

A =

I A I

A l + A 2 + A 3

F i g . 6

F i g . 7

I n p a r t i c u l a r , t h e p o s i t i o n v e c t o r o r r a d i u s v e c t o r r f r o m 0 t o t h e p o i n t ( x , y , z ) i s w r i t t e n

r

= x i + y j + z k

a n d h a s m a g n i t u d e r

=

I r I

=

x 2 + y 2 + z 2 .

3

. y 0 , 1 t o $

.

S C A L A R F I E L D . I f t o e a c h p o i n t ( x , y , z ) o f a r e g i o n R i n s p a c e t h e r e c o r r e s p o n d s a n u m b e r o r s c a l a r

t h e n

i s c a l l e d a s c a l a r f u n c t i o n o f p o s i t i o n

o r s c a l a r p o i n t f u n c t i o n

a n d w e s a y t h a t a s c a l a r f i e l d 0 h a s b e e n d e f i n e d i n R .

E x a m p l e s . ( 1 ) T h e t e m p e r a t u r e a t a n y p o i n t w i t h i n o r o n t h e e a r t h ' s s u r f a c e a t a c e r t a i n t i m e

d e f i n e s a s c a l a r f i e l d .

( 2 ) c t ( x , y , z ) = x 3 y - z 2

d e f i n e s a s c a l a r f i e l d .

A s c a l a r f i e l d w h i c h i s i n d e p e n d e n t o f t i m e i s c a l l e d a s t a t i o n a r y o r s t e a d y - s t a t e s c a l a r f i e l d .

V E C T O R F I E L D . I f t o e a c h p o i n t ( x , y , z ) o f a r e g i o n R i n s p a c e t h e r e c o r r e s p o n d s a v e c t o r V ( x , y , z ) ,

t h e n V i s c a l l e d a v e c t o r f u n c t i o n o f p o s i t i o n o r v e c t o r p o i n t f u n c t i o n a n d w e s a y

t h a t a v e c t o r f i e l d V h a s b e e n d e f i n e d i n R .

E x a m p l e s . ( 1 ) I f t h e v e l o c i t y a t a n y p o i n t ( x , y , z ) w i t h i n a m o v i n g f l u i d i s k n o w n a t a c e r t a i n

t i m e , t h e n a v e c t o r f i e l d i s d e f i n e d .

( 2 ) V ( x , y , z )

= x y 2 i - 2 y z 3 j + x 2 z k d e f i n e s a v e c t o r f i e l d .

A v e c t o r f i e l d w h i c h i s i n d e p e n d e n t o f t i m e i s c a l l e d a s t a t i o n a r y o r s t e a d y - s t a t e v e c t o r f i e l d .

Page 11: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 11/234

4

V E C T O R S a n d S C A L A R S

S O L V E D P R O B L E M S

1 . S t a t e w h i c h o f t h e f o l l o w i n g a r e s c a l a r s a n d w h i c h a r e v e c t o r s .

( a ) w e i g h t

( c ) s p e c i f i c h e a t

( e ) d e n s i t y

( g ) v o l u m e

( i ) s p e e d

( b ) c a l o r i e

( d ) m o m e n t u m

( f ) e n e r g y ( h ) d i s t a n c e ( j ) m a g n e t i c f i e l d i n t e n s i t y

A n s . ( a ) v e c t o r

( c ) s c a l a r

( e ) s c a l a r

( g ) s c a l a r

( i ) s c a l a r

( b ) s c a l a r

( d ) v e c t o r ( f ) s c a l a r

( h ) s c a l a r

( j ) v e c t o r

2 . R e p r e s e n t g r a p h i c a l l y ( a ) a f o r c e o f 1 0 l b i n a d i r e c t i o n 3 0 ° n o r t h o f e a s t

( b ) a f o r c e o f 1 5 l b i n a d i r e c t i o n 3 0 ° e a s t o f n o r t h .

N

N

U n i t = 5 l b

W

S

E

W

F i g . ( a )

S

F i g . ( b )

C h o o s i n g t h e u n i t o f m a g n i t u d e s h o w n , t h e r e q u i r e d v e c t o r s a r e a s i n d i c a t e d a b o v e .

F

3 . A n a u t o m o b i l e t r a v e l s 3 m i l e s d u e n o r t h , t h e n 5 m i l e s n o r t h e a s t . R e p r e s e n t t h e s e d i s p l a c e m e n t s

g r a p h i c a l l y a n d d e t e r m i n e t h e r e s u l t a n t d i s p l a c e m e n t ( a ) g r a p h i c a l l y , ( b ) a n a l y t i c a l l y .

V e c t o r O P o r A r e p r e s e n t s d i s p l a c e m e n t o f 3 m i d u e n o r t h .

V e c t o r P Q o r B r e p r e s e n t s d i s p l a c e m e n t o f 5 m i n o r t h e a s t .

V e c t o r O Q o r C r e p r e s e n t s t h e r e s u l t a n t d i s p l a c e m e n t o r

s u m o f v e c t o r s A a n d B ,

i . e . C = A + B . T h i s , i s t h e t r i a n g l e

l a w o f v e c t o r a d d i t i o n .

T h e r e s u l t a n t v e c t o r O Q c a n a l s o b e o b t a i n e d b y c o n -

s t r u c t i n g t h e d i a g o n a l o f t h e p a r a l l e l o g r a m O P Q R h a v i n g v e c t o r s

O P = A a n d O R ( e q u a l t o v e c t o r P Q o r B ) a s s i d e s . T h i s i s t h e

p a r a l l e l o g r a m l a w o f v e c t o r a d d i t i o n .

( a ) G r a p h i c a l D e t e r m i n a t i o n o f R e s u l t a n t . L a y o f f t h e 1 m i l e

u n i t o n v e c t o r O Q t o f i n d t h e m a g n i t u d e 7 . 4 m i ( a p p r o x i m a t e l y ) .

A n g l e

E O Q = 6 1 . 5 ° , u s i n g a p r o t r a c t o r . T h e n v e c t o r O Q h a s

m a g n i t u d e 7 . 4 m i a n d d i r e c t i o n 6 1 . 5 ° n o r t h o f e a s t .

( b ) A n a l y t i c a l D e t e r m i n a t i o n o f R e s u l t a n t . F r o m t r i a n g l e O P Q ,

d e n o t i n g t h e m a g n i t u d e s o f

A , B . C b y A , B , C , w e h a v e b y

t h e l a w o f c o s i n e s

C 2 = A 2 + B 2 - 2 A B c o s

L O P Q

= 3 2 +

5 2

- 2 ( 3 ) ( 5 ) c o s 1 3 5 °

= 3 4 + 1 5 V 2 = 5 5 . 2 1

a n d C = 7 . 4 3 ( a p p r o x i m a t e l y ) .

B y t h e l a w o f s i n e s ,

A

C

T h e n

s i n L O Q P

s i n L O P Q

Page 12: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 12/234

V E C T O R S a n d S C A L A R S

5

s i n L O Q P =

A s i n L O P Q

_

3 ( 0 . 7 0 7 )

°

,

C

7 . 4 3

T h u s v e c t o r O Q h a s m a g n i t u d e 7 . 4 3 m i a n d d i r e c t i o n ( 4 5 ° + 1 6 ° 3 5 ' ) = 6 1 ° 3 5 ' n o r t h o f e a s t .

4 . F i n d t h e s u m o r r e s u l t a n t o f t h e f o l l o w i n g d i s p l a c e m e n t s :

A , 1 0 f t n o r t h w e s t ; B , 2 0 f t 3 0 ° n o r t h o f e a s t ; C , 3 5 f t d u e s o u t h .

S e e F i g . ( a ) b e l o w .

A t t h e t e r m i n a l p o i n t o f A p l a c e t h e i n i t i a l p o i n t o f B .

A t t h e t e r m i n a l p o i n t o f B p l a c e t h e i n i t i a l p o i n t o f C .

T h e r e s u l t a n t D i s f o r m e d b y j o i n i n g t h e i n i t i a l p o i n t o f A t o t h e t e r m i n a l p o i n t o f C , i . e . D = A + B + C .

G r a p h i c a l l y t h e r e s u l t a n t i s m e a s u r e d t o h a v e m a g n i t u d e o f 4 . 1 u n i t s = 2 0 . 5 f t a n d d i r e c t i o n 6 0 0 s o u t h o f E .

F o r a n a n a l y t i c a l m e t h o d o f a d d i t i o n o f 3 o r m o r e v e c t o r s , e i t h e r i n a p l a n e o r i n s p a c e s e e P r o b l e m 2 6 .

F i g . ( a )

F i g . ( b )

5 . S h o w t h a t a d d i t i o n o f v e c t o r s i s c o m m u t a t i v e , i . e . A + B = B + A .

S e e F i g . ( b ) a b o v e .

O P + P Q = O Q o r

A + B

=

C ,

a n d

O R + R Q = O Q

o r

B + A

=

C .

T h e n

A + B

= B + A .

6 .

S h o w t h a t t h e a d d i t i o n o f v e c t o r s i s a s s o c i a t i v e , i . e . A + ( B + C ) = ( A + B ) + C C .

a n d

O P + P Q

P Q + Q R

= O Q =

= P R =

( A + B ) ,

( B + C ) .

O P + P R

= O R = D , i . e . A + ( B + C )

= D .

O Q + Q R

= O R =

D , i . e . ( A + B ) + C =

D .

T h e n

A + ( B + C )

=

( A + B ) + C .

E x t e n s i o n s o f t h e r e s u l t s o f P r o b l e m s 5 a n d 6 s h o w

t h a t t h e o r d e r o f a d d i t i o n o f a n y n u m b e r o f v e c t o r s i s i m -

m a t e r i a l .

= =

0 . 2 8 5 5

a n d

L O Q P

= 1 6 3 5

.

7 . F o r c e s F 1 , F 2 0

. . .

, F 6 a c t a s s h o w n o n o b j e c t P . W h a t f o r c e i s n e e d e d t o p r e v e n t P f r o m m o v -

i n g ?

Page 13: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 13/234

s

V E C T O R S a n d S C A L A R S

S i n c e t h e o r d e r o f a d d i t i o n o f v e c t o r s i s i m m a t e r i a l , w e m a y s t a r t w i t h a n y v e c t o r , s a y F l . T o F l a d d

F 2 , t h e n F 3 ,

e t c . T h e v e c t o r d r a w n f r o m t h e i n i t i a l p o i n t o f F l t o t h e t e r m i n a l p o i n t o f F 6 i s t h e r e s u l t a n t

R , i . e . R = F 1 + F 2 + F 3 + F µ + F 5 + F 6 .

T h e f o r c e n e e d e d t o p r e v e n t P f r o m m o v i n g i s - R w h i c h i s a v e c t o r e q u a l i n m a g n i t u d e t o R b u t o p p o s i t e

i n d i r e c t i o n a n d s o m e t i m e s c a l l e d t h e e q u i l i b r a n t .

F 4

8 . G i v e n v e c t o r s A , B a n d C ( F i g . 1 a ) , c o n s t r u c t ( a ) A - B + 2 C ( b ) 3 C - - z ( 2 A - B ) .

( a )

F i g . 1 ( a )

( b )

F i g . 2 ( a )

F i g . 1 ( b )

F i g . 2 ( b )

Page 14: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 14/234

V E C T O R S a n d S C A L A R S

9 . A n a i r p l a n e m o v e s i n a n o r t h w e s t e r l y d i r e c t i o n a t

1 2 5 m i / h r r e l a t i v e t o t h e g r o u n d , d u e t o t h e f a c t

t h e r e i s a w e s t e r l y w i n d o f 5 0 m i / h r r e l a t i v e t o

t h e g r o u n d . H o w f a s t a n d i n w h a t d i r e c t i o n w o u l d

t h e p l a n e h a v e t r a v e l e d i f t h e r e w e r e n o w i n d ?

L e t W

= w i n d v e l o c i t y

V a = v e l o c i t y o f p l a n e w i t h w i n d

V b = v e l o c i t y o f p l a n e w i t h o u t w i n d

- w

T h e n V a =

V b + W

o r

V b

= V a - W =

V a + ( - W )

V b h a s m a g n i t u d e 6 . 5 u n i t s = 1 6 3 m i / h r a n d d i r e c t i o n 3 3 ° n o r t h o f w e s t .

7

1 0 . G i v e n t w o n o n - c o l l i n e a r v e c t o r s a a n d b , f i n d a n e x p r e s s i o n f o r a n y v e c t o r r l y i n g i n t h e p l a n e d e -

t e r m i n e d b y a a n d b .

N o n - c o l l i n e a r v e c t o r s a r e v e c t o r s w h i c h a r e n o t p a r a l l e l t o

t h e s a m e l i n e .

H e n c e w h e n t h e i r i n i t i a l p o i n t s c o i n c i d e , t h e y

d e t e r m i n e a p l a n e . L e t r b e a n y v e c t o r l y i n g i n t h e p l a n e o f a

a n d b a n d h a v i n g i t s i n i t i a l p o i n t c o i n c i d e n t w i t h t h e i n i t i a l

p o i n t s o f a a n d b a t O . F r o m t h e t e r m i n a l p o i n t R o f r c o n s t r u c t

l i n e s p a r a l l e l t o t h e v e c t o r s a a n d b a n d c o m p l e t e t h e p a r a l l e l -

o g r a m O D R C b y e x t e n s i o n o f t h e l i n e s o f a c t i o n o f a a n d b i f

n e c e s s a r y . F r o m t h e a d j o i n i n g f i g u r e

O D = x ( O A ) = x a , w h e r e x i s a s c a l a r

O C = y ( O B ) = y b , w h e r e y i s a s c a l a r .

B u t b y t h e p a r a l l e l o g r a m l a w o f v e c t o r a d d i t i o n

O R = O D + O C

o r

r = x a + y b

w h i c h i s t h e r e q u i r e d e x p r e s s i o n . T h e v e c t o r s x a a n d y b a r e c a l l e d c o m p o n e n t v e c t o r s o f r i n t h e d i r e c t i o n s

a a n d b r e s p e c t i v e l y . T h e s c a l a r s x a n d y m a y b e p o s i t i v e o r n e g a t i v e d e p e n d i n g o n t h e r e l a t i v e o r i e n t a t i o n s

o f t h e v e c t o r s . F r o m t h e m a n n e r o f c o n s t r u c t i o n i t i s c l e a r t h a t x a n d y a r e u n i q u e f o r a g i v e n a , b , a n d r .

T h e v e c t o r s a a n d b a r e c a l l e d b a s e v e c t o r s i n a p l a n e .

1 1 . G i v e n t h r e e n o n - c o p l a n a r v e c t o r s a , b , a n d c , f i n d a n e x p r e s s i o n f o r a n y v e c t o r r i n t h r e e d i m e n -

s i o n a l s p a c e .

N o n - c o p l a n a r v e c t o r s a r e v e c t o r s w h i c h a r e n o t p a r a l -

l e l t o t h e s a m e p l a n e .

H e n c e w h e n t h e i r i n i t i a l p o i n t s c o -

i n c i d e t h e y d o n o t l i e i n t h e s a m e p l a n e .

L e t r b e a n y v e c t o r i n s p a c e h a v i n g i t s i n i t i a l p o i n t c o -

i n c i d e n t w i t h t h e i n i t i a l p o i n t s o f a , b a n d c a t O . T h r o u g h

t h e t e r m i n a l p o i n t o f r p a s s p l a n e s p a r a l l e l r e s p e c t i v e l y

t o t h e p l a n e s d e t e r m i n e d b y a a n d b , b a n d c , a n d a a n d c ;

a n d c o m p l e t e t h e p a r a l l e l e p i p e d P Q R S T U V b y e x t e n s i o n o f

t h e l i n e s o f a c t i o n o f a , b a n d c i f n e c e s s a r y .

F r o m t h e

a d j o i n i n g f i g u r e ,

O V

= x ( O A ) = x a

w h e r e x i s a s c a l a r

O P = y ( O B ) = y b

w h e r e y i s a s c a l a r

O T = z ( O C ) = z c

w h e r e z i s a s c a l a r .

B u t O R = O V + V Q + Q R = O V + O P + O T

o r

r

= x a + y b + z c .

F r o m t h e m a n n e r o f c o n s t r u c t i o n i t i s c l e a r t h a t x , y a n d z a r e u n i q u e f o r a g i v e n a ,

b , c a n d r .

Page 15: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 15/234

8

V E C T O R S a n d S C A L A R S

T h e v e c t o r s x a , y b a n d z c a r e c a l l e d c o m p o n e n t v e c t o r s o f r i n d i r e c t i o n s a , b a n d c r e s p e c t i v e l y . T h e

v e c t o r s a , b a n d c a r e c a l l e d b a s e v e c t o r s i n t h r e e d i m e n s i o n s .

A s a s p e c i a l c a s e , i f a , b a n d c a r e t h e u n i t v e c t o r s i , j a n d k , w h i c h a r e m u t u a l l y p e r p e n d i c u l a r , w e

s e e t h a t a n y v e c t o r r c a n b e e x p r e s s e d u n i q u e l y i n t e r m s o f i , j , k b y t h e e x p r e s s i o n r = x i + y j + z k .

A l s o , i f c = 0 t h e n r m u s t l i e i n t h e p l a n e o f a a n d b s o t h e r e s u l t o f P r o b l e m 1 0 i s o b t a i n e d .

1 2 . P r o v e t h a t i f a a n d b a r e n o n - c o l l i n e a r t h e n x a + y b = 0 i m p l i e s x = y = 0 .

S u p p o s e x / 0 . T h e n x a + y b = 0 i m p l i e s x a = - y b o r a = - ( y / x ) b ,

i . e . a a n d b m u s t b e p a r a l l e l t o

t o t h e s a m e l i n e ( c o l l i n e a r ) c o n t r a r y t o h y p o t h e s i s . T h u s x = 0 ; t h e n y b = 0 , f r o m w h i c h y = 0 .

1 3 . I f x l a + y l b = x 2 a + y 2 b ,

w h e r e a a n d b a r e n o n - c o l l i n e a r , t h e n x 1 = x 2 a n d y l = y 2

x 1 a + y l b = x 2 a + y 2 b c a n b e w r i t t e n

x 1 a + y 1 b - ( x 2 a + y 2 b ) = 0

o r

( x 1 - - x 2 ) a + ( y l - y 2 ) b = 0 .

H e n c e b y P r o b l e m 1 2 ,

x l - x 2 = 0 , y 1 - y 2 = 0 o r

x l = x 2 , y i = y 2

.

1 4 . P r o v e t h a t i f a , b a n d c a r e n o n - c o p l a n a r t h e n x a + y b + z c = 0 i m p l i e s x = y = z = 0 .

S u p p o s e

x / 0 .

T h e n x a + y b + z c = 0

i m p l i e s

x a = - y b - z c

o r a = - ( y / x ) b - ( z / x ) c .

B u t

- ( y / x ) b - ( z / x ) c i s a v e c t o r l y i n g i n t h e p l a n e o f b a n d c ( P r o b l e m 1 0 ) , i . e . a l i e s i n t h e

p l a n e o f b a n d c

w h i c h i s c l e a r l y a c o n t r a d i c t i o n t o t h e h y p o t h e s i s t h a t a , b a n d c a r e n o n - c o p l a n a r . H e n c e x = 0 . B y s i m -

i l a r r e a s o n i n g , c o n t r a d i c t i o n s a r e o b t a i n e d u p o n s u p p o s i n g y / 0 a n d z / 0 .

1 5 . I f x 1 a + y 1 b + z l c

= x 2 a + y 2 b + z 2 c , w h e r e a , b a n d c a r e n o n - c o p l a n a r , t h e n x 1 = x 2 , y 1 = y 2 ,

z 1 = z 2 .

T h e e q u a t i o n c a n b e w r i t t e n ( x 1 - x 2 ) a + ( y 1 - y 2 ) b + ( z l - z 2 ) c = 0 . T h e n b y P r o b l e m 1 4 , x l - x 2 = 0 ,

y 1 - y 2 = 0 , z 1 - z 2 = 0

o r x 1 = x 2 , y 1 = y 2 , z 1 = z 2 .

1 6 . P r o v e t h a t t h e d i a g o n a l s o f a p a r a l l e l o g r a m b i s e c t e a c h o t h e r .

L e t A B C D b e t h e g i v e n p a r a l l e l o g r a m w i t h d i a g o n a l s i n -

t e r s e c t i n g a t P .

S i n c e B D + a = b , B D = b - a . T h e n B P = x ( b - a ) .

S i n c e A C = a + b , A P = y ( a + b ) .

B u t

A B = A P + P B = A P - B P ,

i . e . a = y ( a + b ) - x ( b - a ) = ( x + y ) a + ( y - x ) b .

S i n c e a a n d b a r e n o n - c o l l i n e a r w e h a v e b y P r o b l e m 1 3 ,

x + y = 1

a n d y - x = 0 ,

i . e .

x = y = 2

a n d P i s t h e m i d -

p o i n t o f b o t h d i a g o n a l s .

1 7 . I f t h e m i d p o i n t s o f t h e c o n s e c u t i v e s i d e s o f a n y q u a d r i l a t e r a l a r e c o n n e c t e d b y s t r a i g h t l i n e s ,

p r o v e t h a t t h e r e s u l t i n g q u a d r i l a t e r a l i s a p a r a l l e l o g r a m .

L e t A B C D b e t h e g i v e n q u a d r i l a t e r a l a n d P , Q , R , S t h e m i d p o i n t s o f i t s s i d e s . R e f e r t o F i g . ( a ) b e l o w .

T h e n P Q = 2 ( a + b ) ,

Q R = 2 ( b + c ) ,

R S = 2 ( c + d ) ,

S P = 2 ( d + a ) .

B u t a + b + c + d = 0 .

T h e n

P Q = 2 ( a + b ) = - 2 ( c + d ) = S R

a n d

Q R = 2 ( b + c ) 2 ( d + a ) = P S

T h u s o p p o s i t e s i d e s a r e e q u a l a n d p a r a l l e l a n d P Q R S i s a p a r a l l e l o g r a m .

Page 16: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 16/234

V E C T O R S a n d S C A L A R S

g

1 8 . L e t P . , P 2

1

P 3 b e p o i n t s f i x e d r e l a t i v e t o a n o r i g i n 0 a n d l e t r 1 , r 2 , r 3 b e p o s i t i o n v e c t o r s f r o m

0 t o e a c h p o i n t . S h o w t h a t i f t h e v e c t o r e q u a t i o n a l r l + a 2 r 2 + a 3 r 3 = 0 h o l d s w i t h r e s p e c t t o

o r i g i n 0 t h e n i t w i l l h o l d w i t h r e s p e c t t o a n y o t h e r o r i g i n 0 ' i f a n d o n l y i f

a l + a 2 + a 3 = 0 .

L e t

r 3 b e t h e p o s i t i o n v e c t o r s o f P I , P 2 a n d P 3 w i t h r e s p e c t t o 0 ' a n d l e t v b e t h e p o s i t i o n

v e c t o r o f 0 ' w i t h r e s p e c t t o 0 . W e s e e k c o n d i t i o n s u n d e r w h i c h t h e e q u a t i o n a , r + a r ' + a r `

= 0

w i l l

h o l d i n t h e n e w r e f e r e n c e s y s t e m .

F r o m F i g . ( b ) b e l o w , i t i s c l e a r t h a t

r 1 = v + r i , r 2 = v + r 2 , r 3 = v + r 3

s o t h a t

a 1 r 1 + a 2 r 2 + a

3

r

3

= 0

b e c o m e s

a l r l + a 2 r 2 + a 3 r 3

= a , ( v + r ' ) + a 2 ( v + r 2 ) + a 3 ( v + r 3 )

_ ( a l + a 2 + a 3 ) v + a l r 1 + a 2 r 2 + a 3 r 3

=

0

T h e r e s u l t

a l r j + a 2 r 2 + a 3 r 3 = 0

w i l l h o l d i f a n d o n l y i f

( a l + a 2 + a 3 ) v = 0 ,

i . e .

a l + a 2 + a 3

=

0 .

T h e r e s u l t c a n b e g e n e r a l i z e d .

O '

F i g . ( a ) F i g . ( b )

1 9 . F i n d t h e e q u a t i o n o f a s t r a i g h t l i n e w h i c h p a s s e s t h r o u g h t w o g i v e n p o i n t s A a n d B h a v i n g p o s i -

t i o n v e c t o r s a a n d b w i t h r e s p e c t t o a n o r i g i n 0 .

L e t r b e t h e p o s i t i o n v e c t o r o f a n y p o i n t P o n t h e l i n e

t h r o u g h A a n d B .

F r o m t h e a d j o i n i n g f i g u r e ,

O A + A P = O P

o r

a + A P = r ,

i . e . A P = r - a

a n d O A + A B = O B o r

a + A B = b ,

i . e .

A B = b - a

S i n c e A P a n d A B a r e c o l l i n e a r ,

A P = t A B o r

r - a = t ( b - - a ) .

T h e n t h e r e q u i r e d e q u a t i o n i s

r = a + t ( b - a )

o r

r = ( 1 - t ) a + t b

I f t h e e q u a t i o n i s w r i t t e n

( 1 - t ) a + t b - r = 0 , t h e s u m

o f t h e c o e f f i c i e n t s o f a , b a n d r i s 1 - t + t - 1 = 0 . H e n c e b y

P r o b l e m 1 8 i t i s s e e n t h a t t h e p o i n t P i s a l w a y s o n t h e l i n e

j o i n i n g A a n d B a n d d o e s n o t d e p e n d o n t h e c h o i c e o f o r i g i n

0 , w h i c h i s o f c o u r s e a s i t s h o u l d b e .

A n o t h e r M e t h o d . S i n c e A P a n d P B a r e c o l l i n e a r , w e h a v e f o r s c a l a r s m a n d n :

S o l v i n g , r

m a + n b

m + n

m A P = n P B o r

m ( r - a ) = n ( b - r )

w h i c h i s c a l l e d t h e s y m m e t r i c f o r m .

Page 17: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 17/234

1 0

2 0 .

V E C T O R S a n d S C A L A R S

( a ) F i n d t h e p o s i t i o n v e c t o r s r 1 a n d r 2 f o r t h e

p o i n t s P ( 2 , 4 , 3 ) a n d Q ( 1 , - 5 , 2 ) o f a r e c t a n g u l a r

c o o r d i n a t e s y s t e m i n t e r m s o f t h e u n i t v e c t o r s

i , j , k .

( b ) D e t e r m i n e g r a p h i c a l l y a n d a n a l y t i -

c a l l y t h e r e s u l t a n t o f t h e s e p o s i t i o n v e c t o r s .

( a ) r 1 = O P = O C + C B + B P = 2 i + 4 j + 3 k

r 2 = O Q = O D + D E + E Q =

i - 5 j + 2 k

( b ) G r a p h i c a l l y , t h e r e s u l t a n t o f r 1 a n d r 2 i s o b t a i n e d

a s t h e d i a g o n a l O R o f P a r a l l e l o g r a m O P R Q . A n a -

l y t i c a l l y , t h e r e s u l t a n t o f r 1 a n d r 2 i s g i v e n b y

r 1 + r 2 =

( 2 i + 4 j + 3 k ) + ( i - 5 j + 2 k ) =

2 1 . P r o v e t h a t t h e m a g n i t u d e A o f t h e v e c t o r A =

A 1 i + A 2 j + A 3 k i s A =

A 1 + A 2 + A 3

.

B y t h e P y t h a g o r e a n t h e o r e m ,

_

( O P ) 2 =

( O Q ) 2 + ( Q P ) 2

w h e r e O P d e n o t e s t h e m a g n i t u d e o f v e c t o r O P , e t c .

S i m i l a r l y ,

( O Q ) 2 = ( O R ) 2 + ( R Q ) 2 .

T h e n

( 5 P ) 2 =

( O R ) 2 + ( R Q ) 2 + ( Q P ) 2 o r

A 2 = A i + A 2 + A 2 , i . e . A =

A l + A 2 + A .

2 2 . G i v e n

r 1 = 3 i - 2 j + k ,

r 2 = 2 i - 4 j - 3 k ,

r 3 = - i + 2 j + 2 k ,

( a ) r 3 ,

( b ) r 1 + r 2 + r 3 ,

( c ) 2 r 1 - 3 r 2 - - 5 r 3 .

( a )

I r 3 I =

I - i

+ 2 j + 2 k I

= V ' ( - 1 ) 2 + ( 2 ) 2 + ( 2 ) 2

=

3 .

f i n d t h e m a g n i t u d e s o f

( b ) r 1 + r 2 + r 3 =

( 3 i - 2 j + k ) + ( 2 i - 4 ; j - 3 k ) + ( - i + 2 j + 2 k )

= 4 i - 4 j + O k =

4 i - 4 j

T h e n

I r 1 + r 2 + r 3 I = 1 4 i

- 4 j + 0 k

( 4 ) 2 + ( - 4 ) 2 + ( 0 ) 2

= 3 2 = 4 / 2 .

( c )

2 r 1 - 3 r 2 - 5 r 3

=

2 ( 3 i - 2 j + k ) - - 3 ( 2 i - 4 j - 3 k ) - 5 ( - i + 2 j + 2 k )

= 6 i - 4 j + 2 k - 6 i + 1 2 j + 9 k + 5 i - 1 0 j - 1 0 k = 5 i - 2 j + k .

T h e n

I 2 r 1 - 3 r 2 - 5 r 3

I

= 1 5 i - 2 j + k I

= V ' ( 5 ) 2 + ( - 2 ) 2 + ( 1 ) 2 =

V 1 3 0 .

Y

2 3 . I f

r 1 = 2 i - j + k ,

r 2 = i + 3 j - 2 k ,

r 3 = - 2 1 + j - - 3 k a n d r 4 = 3 i + 2 j + 5 k , f i n d s c a l a r s a , b , c s u c h

t h a t r 4 = a r t + b r 2 + c r 3 .

W e r e q u i r e 3 i + 2 j + 5 k

= a ( 2 i - j + k ) + b ( i + 3 j - 2 k ) + c ( - 2 i + j - 3 k )

_ ( 2 a + b - 2 c ) i + ( - a + 3 b + c ) j + ( a - 2 b - 3 c ) k .

S i n c e

i , j , k a r e n o n - c o p l a n a r w e h a v e b y P r o b l e m 1 5 ,

2 a + b - 2 c = 3 ,

- a + 3 b + c = 2 , a - 2 b - 3 c = 5 .

S o l v i n g ,

a = - 2 , b = 1 ,

c = - 3 a n d

r 4 = - 2 r 1 + r 2 - 3 r 3 .

T h e v e c t o r r 4 i s s a i d t o b e l i n e a r l y d e p e n d e n t o n r 1 , r 2 , a n d r 3 ; i n o t h e r w o r d s r 1 , r 2 , r 3 a n d r 4 c o n s t i t u t e a

l i n e a r l y d e p e n d e n t s e t o f v e c t o r s . O n t h e o t h e r h a n d a n y t h r e e ( o r f e w e r ) o f t h e s e v e c t o r s a r e l i n e a r l y i n -

d e p e n d e n t .

I n g e n e r a l t h e v e c t o r s

A , B , C , . . .

a r e c a l l e d l i n e a r l y d e p e n d e n t i f w e c a n f i n d a s e t o f s c a l a r s ,

a , b , c , . . . ,

n o t a l l z e r o , s o t h a t a A + b B + c C + . . . = 0 . o t h e r w i s e t h e y a r e l i n e a r l y i n d e p e n d e n t .

Page 18: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 18/234

V E C T O R S a n d S C A L A R S

2 4 . F i n d a u n i t v e c t o r p a r a l l e l t o t h e r e s u l t a n t o f v e c t o r s r 1 = 2 i + 4 j - 5 k , r 2 = i + 2 j + 3 k

.

R e s u l t a n t R = r 1 + r 2 = ( 2 i + 4 j - 5 k ) + ( i + 2 j + 3 k ) = 3 i + 6 j - 2 k .

R =

P . I

=

1 3 i + 6 j - 2 k I

=

/ ( - 3 7 + ( 6 ) 2 + ( - 2 ) 2

= 7 .

T h e n a u n i t v e c t o r p a r a l l e l t o R i s

R =

3 i + 6 j - 2 k

=

3 i + 6 j - 2 k .

R

7 7 7 7

3 i

6 j

2

V 3 ) 2

6 2

2 2

C h e c k :

I i

+

i

-

7

7 7

1

=

( 3 + ( 6 ) + ( - i )

=

1 .

2 5 . D e t e r m i n e t h e v e c t o r h a v i n g i n i t i a l p o i n t P ( x 1 ,

y 1 , z 1 )

a n d t e r m i n a l p o i n t Q ( x 2 , y 2 , z 2 ) a n d f i n d i t s m a g n i t u d e .

T h e p o s i t i o n v e c t o r o f P i s

r 1 = x 1 i + y 1 j + z 1 k .

T h e p o s i t i o n v e c t o r o f Q i s

r 2 = x 2 i + y 9 j + z 2 k .

r 1 + P Q = r 2

o r

P Q = r 2 - r 1 = ( x 2 i + y 2 j + z 2 k ) - ( x l i + y l j + z l k )

( x 2 - x 1 ) i + ( y 2 - ) j + ( z 2 - z 1 ) k .

M a g n i t u d e o f P Q = P Q = ( x 2 - x 1 ) 2 + ( y 2

-

y 1 ) 2 + ( z 2 - z 1

N o t e t h a t t h i s i s t h e d i s t a n c e b e t w e e n p o i n t s P a n d Q .

1 1

2 6 . F o r c e s A , B a n d C a c t i n g o n a n o b j e c t a r e g i v e n i n t e r m s o f t h e i r c o m p o n e n t s b y t h e v e c t o r e q u a -

t i o n s

A = A 1 i + A 2 j + A 3 k ,

B = B l i + B 2 j + B 3 k ,

C = C l i + C 2 j + C 3 k .

F i n d t h e m a g n i t u d e o f t h e

r e s u l t a n t o f t h e s e f o r c e s .

.

R e s u l t a n t f o r c e

R = A + B + C = ( A 1 + B 1 + C 1 ) i + ( A 2 + B 2 + C 2 ) j + ( A 3 + B 3

+ C 3 ) k .

2 7 .

M a g n i t u d e o f r e s u l t a n t -

( A 1 + B 1 + C 1 ) 2 + ( A 2 + B 2 + C 2 ) 2 + ( A 3 + B 3 + C 3 ) 2 .

T h e r e s u l t i s e a s i l y e x t e n d e d t o m o r e t h a n t h r e e f o r c e s .

D e t e r m i n e t h e a n g l e s a , ( 3 a n d y w h i c h t h e v e c t o r

r = x i + y j + z k

m a k e s w i t h t h e p o s i t i v e d i r e c -

t i o n s o f t h e c o o r d i n a t e a x e s a n d s h o w t h a t

c o s t a + c o s t r 3 + c o s t y =

1 .

R e f e r r i n g t o t h e f i g u r e , t r i a n g l e O A P i s a r i g h t

t r i a n g l e w i t h r i g h t a n g l e a t A ; t h e n c o s a =

I r l

.

S i m -

i l a r l y f r o m r i g h t t r i a n g l e s O B P a n d O C P , c o s ( 3 =

Y

a n d c o s y = z .

A l s o ,

I r l

I r l

I r I = r = v x 2 + + y 2 + z 2

T h e n c o s a =

x

,

c o s p =

y

,

c o s y =

z

f r o m

w h i c h a , 0 , y c a n b e o b t a i n e d . F r o m t h e s e i t f o l l o w s

t h a t

c o s t a + c o s t ( 3 + c o s t y =

x 2 + y 2 + z 2

r 2

=

1 .

T h e n u m b e r s c o s a , c o s ( 3 , c o s y a r e c a l l e d t h e d i r e c t i o n

x

z

c o s i n e s o f t h e v e c t o r O P .

2 8 . D e t e r m i n e a s e t o f e q u a t i o n s f o r t h e s t r a i g h t l i n e p a s s i n g t h r o u g h t h e p o i n t s

P ( x 1 , y 1 , z 1 ) a n d

Page 19: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 19/234

1 2

V E C T O R S a n d S C A L A R S

L e t r 1 a n d r 2 b e t h e p o s i t i o n v e c t o r s o f P a n d Q r e s p e c -

t i v e l y , a n d r t h e p o s i t i o n v e c t o r o f a n y p o i n t R o n t h e l i n e

j o i n i n g P a n d Q .

r 1 + P R =

r

o r

P R =

r - r 1

r 1 + P Q =

r 2

o r

P Q =

r 2 - r 1

B u t

P R = t P Q w h e r e t

i s a s c a l a r .

T h e n r - r 1 =

t ( r 2 - r 1 )

i s t h e r e q u i r e d v e c t o r e q u a t i o n o f t h e s t r a i g h t l i n e

( c o m p a r e w i t h P r o b l e m 1 9 ) .

I n r e c t a n g u l a r c o o r d i n a t e s w e h a v e , s i n c e

r

= x i + y j + z k ,

( x i + y j + z k ) - ( x 1 i + y 1 ) + z 1 k )

=

t [ ( x 2 i + y 2 j + z 2 k ) - ( x 1 i + y 1 j + z 1 k ) ]

o r

( x - x 1 ) i + ( y - y 1 ) j + ( z - z 1 ) k

=

t [ ( x 2 - x 1 ) i + ( y 2 - y 1 ) j + ( z 2 - z 1 ) k ]

S i n c e i , j , k a r e n o n - c o p l a n a r v e c t o r s w e h a v e b y P r o b l e m 1 5 ,

x - x 1 =

t

( x 2 - x 1 ) ,

y - y 1 =

t ( y 2 - y 1 ) ,

z - z 1

=

t ( z 2 - z 1 )

a s t h e p a r a m e t r i c e q u a t i o n s o f t h e l i n e , t b e i n g t h e p a r a m e t e r . E l i m i n a t i n g t , t h e e q u a t i o n s b e c o m e

X - x

x 2 - x

Y - Y 1

z - z 1

Y 2 ` Y 1

z 2 - z 1

2 9 . G i v e n t h e s c a l a r f i e l d d e f i n e d b y

( x , y , z )

=

3 x 2 2 - x y 3 + 5 ,

f i n d

a t t h e p o i n t s

( a )

( 0 , 0 , 0 ) ,

( b ) ( 1 , - 2 , 2 )

( c ) ( - 1 , - 2 , - 3 ) .

( a ) 0 ( 0 , 0 , 0 )

=

3 ( 0 ) 2 ( 0 ) - ( 0 ) ( 0 ) 3 + 5

=

0 - 0 + 5

= 5

( b ) 0 0 , - 2 , 2 )

=

3 ( 1 ) 2 ( 2 ) - ( 1 ) ( - 2 ) 3 + 5

=

6 + 8 + 5

= 1 9

( c )

) ( - 1 , - 2 , - 3 ) =

3 ( - 1 ) 2 ( - 3 ) - ( - 1 ) ( - 2 ) 3 + 5

=

- 9 - 8 + 5 - 1 2

3 0 . G r a p h t h e v e c t o r f i e l d s d e f i n e d b y :

( a ) V ( x , y ) = x i + y j ,

( b ) V ( x , y ) _ - x i - y j ,

( c ) V ( x , y , z )

= x i + y j + A .

( a ) A t e a c h p o i n t ( x , y ) , e x c e p t ( 0 , 0 ) , o f t h e x y p l a n e t h e r e i s d e f i n e d a u n i q u e v e c t o r x i + y j o f m a g n i t u d e

h a v i n g d i r e c t i o n p a s s i n g t h r o u g h t h e o r i g i n a n d o u t w a r d f r o m i t . T o s i m p l i f y g r a p h i n g p r o c e -

d u r e s , n o t e t h a t a l l v e c t o r s a s s o c i a t e d w i t h p o i n t s o n t h e c i r c l e s x 2 + y 2 = a 2 a > 0 h a v e m a g n i t u d e

a . T h e f i e l d t h e r e f o r e a p p e a r s a s i n F i g u r e ( a ) w h e r e a n a p p r o p r i a t e s c a l e i s u s e d .

Y

F i g . ( a )

F i g . ( b )

Page 20: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 20/234

V E C T O R S a n d S C A L A R S

1 3

( b ) H e r e e a c h v e c t o r i s e q u a l t o b u t o p p o s i t e i n d i r e c t i o n t o t h e c o r r e s p o n d i n g o n e i n ( a ) . T h e f i e l d t h e r e -

f o r e a p p e a r s a s i n F i g . ( b ) .

I n F i g . ( a ) t h e f i e l d h a s t h e a p p e a r a n c e o f a f l u i d e m e r g i n g f r o m a p o i n t s o u r c e 0 a n d f l o w i n g i n t h e

d i r e c t i o n s i n d i c a t e d . F o r t h i s r e a s o n t h e f i e l d i s c a l l e d a s o u r c e f i e l d a n d 0 i s a s o u r c e .

I n F i g . ( b ) t h e f i e l d s e e m s t o b e f l o w i n g t o w a r d 0 , a n d t h e f i e l d i s t h e r e f o r e c a l l e d a s i n k f i e l d a n d 0

i s a s i n k .

I n t h r e e d i m e n s i o n s t h e c o r r e s p o n d i n g i n t e r p r e t a t i o n i s t h a t a f l u i d i s e m e r g i n g r a d i a l l y f r o m ( o r p r o -

c e e d i n g r a d i a l l y t o w a r d ) a l i n e s o u r c e ( o r l i n e s i n k ) .

T h e v e c t o r f i e l d i s c a l l e d t w o d i m e n s i o n a l s i n c e i t i s i n d e p e n d e n t o f z .

( c ) S i n c e t h e m a g n i t u d e o f e a c h v e c t o r i s

x 2 + y 2 + z 2 ,

a l l p o i n t s o n t h e s p h e r e x 2 + y 2 + z 2 = a 2 ,

a > 0

h a v e v e c t o r s o f m a g n i t u d e a a s s o c i a t e d w i t h t h e m . T h e f i e l d t h e r e f o r e t a k e s o n t h e a p p e a r a n c e o f t h a t

o f a f l u i d e m e r g i n g f r o m s o u r c e 0 a n d p r o c e e d i n g i n a l l d i r e c t i o n s i n s p a c e . T h i s i s a t h r e e d i m e n s i o n -

a l s o u r c e f i e l d .

S U P P L E M E N T A R Y P R O B L E M S

3 1 . W h i c h o f t h e f o l l o w i n g a r e s c a l a r s a n d w h i c h a r e v e c t o r s ? ( a ) K i n e t i c e n e r g y , ( b ) e l e c t r i c f i e l d i n t e n s i t y ,

( c ) e n t r o p y , ( d ) w o r k , ( e ) c e n t r i f u g a l f o r c e , ( f ) t e m p e r a t u r e , ( g ) g r a v i t a t i o n a l p o t e n t i a l , ( h ) c h a r g e , ( i ) s h e a r -

i n g s t r e s s , ( j ) f r e q u e n c y .

A n s . ( a ) s c a l a r , ( b ) v e c t o r , ( c ) s c a l a r , ( d ) s c a l a r , ( e ) v e c t o r , ( f ) s c a l a r , ( g ) s c a l a r , ( h ) s c a l a r , ( i ) v e c t o r

( j ) s c a l a r

3 2 . A n a i r p l a n e t r a v e l s 2 0 0 m i l e s d u e w e s t a n d t h e n 1 5 0 m i l e s 6 0 0 n o r t h o f w e s t . D e t e r m i n e t h e r e s u l t a n t d i s -

p l a c e m e n t ( a ) g r a p h i c a l l y , ( b ) a n a l y t i c a l l y .

A n s . m a g n i t u d e 3 0 4 . 1 m i ( 5 0 Y ' 3 - 7 ) , d i r e c t i o n 2 5 ° 1 7 ' n o r t h o f e a s t ( a r c s i n 3 / 7 4 )

3 3 . F i n d t h e r e s u l t a n t o f t h e f o l l o w i n g d i s p l a c e m e n t s :

A , 2 0 m i l e s 3 0 ° s o u t h o f e a s t ;

B , 5 0 m i l e s d u e w e s t ;

C , 4 0 m i l e s n o r t h e a s t ; D , 3 0 m i l e s 6 0 ° s o u t h o f w e s t .

A n s .

m a g n i t u d e 2 0 . 9 m i , d i r e c t i o n 2 1 ° 3 9 ' s o u t h o f w e s t

3 4 . S h o w g r a p h i c a l l y t h a t - ( A - B ) _ - A + B

.

3 5 . A n o b j e c t P i s a c t e d u p o n b y t h r e e c o p l a n a r f o r c e s a s s h o w n i n F i g . ( a ) b e l o w . D e t e r m i n e t h e f o r c e n e e d e d

t o p r e v e n t P f r o m m o v i n g .

A n s . 3 2 3 l b d i r e c t l y o p p o s i t e 1 5 0 l b f o r c e

3 6 . G i v e n v e c t o r s A , B , C a n d D ( F i g . ( b ) b e l o w ) . C o n s t r u c t ( a ) 3 A - 2 B - ( C - D )

( b )

2

C + I ( A - B + 2 D ) .

F i g . ( a )

F i g . ( b )

Page 21: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 21/234

1 4

V E C T O R S a n d S C A L A R S

3 7 .

I f A B C D E F a r e t h e v e r t i c e s o f a r e g u l a r h e x a g o n , f i n d t h e r e s u l t a n t o f t h e f o r c e s r e p r e s e n t e d b y t h e v e c -

t o r s A B , A C , A D , A E a n d A F .

A n s . 3 A D

3 8 .

I f A a n d B a r e g i v e n v e c t o r s s h o w t h a t ( a )

I A + B I

I A I + I B I , ( b ) I A - B I

I A I - I B I .

3 9 . S h o w t h a t I A + B + C I " S J A I + I B I + I C I .

4 0 . T w o t o w n s A a n d B a r e s i t u a t e d d i r e c t l y o p p o s i t e e a c h o t h e r o n t h e b a n k s o f a r i v e r w h o s e w i d t h i s 8 m i l e s

a n d w h i c h f l o w s a t a s p e e d o f 4 m i / h r . A m a n l o c a t e d a t A w i s h e s t o r e a c h t o w n C w h i c h i s 6 m i l e s u p -

s t r e a m f r o m a n d o n t h e s a m e s i d e o f t h e r i v e r a s t o w n B .

I f h i s b o a t c a n t r a v e l a t a m a x i m u m s p e e d o f 1 0

m i / h r a n d i f h e w i s h e s t o r e a c h C i n t h e s h o r t e s t p o s s i b l e t i m e w h a t c o u r s e m u s t h e f o l l o w a n d h o w l o n g

w i l l t h e t r i p t a k e )

A n s . A s t r a i g h t l i n e c o u r s e u p s t r e a m m a k i n g a n a n g l e o f 3 4 ° 2 8 ` w i t h t h e s h o r e l i n e .

1 h r 2 5 m i n .

4 1 . A m a n t r a v e l l i n g s o u t h w a r d a t 1 5 m i / h r o b s e r v e s t h a t t h e w i n d a p p e a r s t o b e c o m i n g f r o m t h e w e s t . O n i n -

c r e a s i n g h i s s p e e d t o 2 5 m i / h r i t a p p e a r s t o b e c o m i n g f r o m t h e s o u t h w e s t . F i n d t h e d i r e c t i o n a n d s p e e d o f

t h e w i n d .

A n s . T h e w i n d i s c o m i n g f r o m a d i r e c t i o n 5 6 ° 1 8 ' n o r t h o f w e s t a t 1 8 m i / h r .

4 2 . A 1 0 0 l b w e i g h t i s s u s p e n d e d f r o m t h e c e n t e r o f a r o p e

a s s h o w n i n t h e a d j o i n i n g f i g u r e .

D e t e r m i n e t h e t e n -

s i o n T i n t h e r o p e .

A n s . 1 0 0 l b

4 3 . S i m p l i f y 2 A + B + 3 C - { A - 2 B - 2 ( 2 A - 3 B - C ) } .

A n s . 5 A - 3 B + C

4 4 . I f a a n d b a r e n o n - c o l l i n e a r v e c t o r s a n d A = ( x + 4 y ) a +

( 2 x + y + 1 ) b

a n d

B = ( y - 2 x + 2 ) a + ( 2 x - 3 y - 1 ) b ,

f i n d x a n d y s u c h t h a t 3 A = 2 B .

A n s . x = 2 , y = - 1

1 0 0 1 b

4 5 . T h e b a s e v e c t o r s a 1 , a 2 , a 3 a r e g i v e n i n t e r m s o f t h e b a s e v e c t o r s b 1 , b 2 , b 3 b y t h e r e l a t i o n s

a 1

=

2 b 1 + 3 b 2 - b 3 ,

a 2 =

b 1 - 2 b 2 + 2 b 3 ,

a 3

= - 2 b 1 + b 2 - 2 b 3

I f F = 3 b 1 - b 2 + 2 b 3 ,

e x p r e s s F i n t e r m s o f a 1 , a 2 a n d a 3 .

A n s .

2 a 1 + 5 a 2 + 3 a 3

4 6 .

I f a , b , c a r e n o n - c o p l a n a r v e c t o r s d e t e r m i n e w h e t h e r t h e v e c t o r s r 1 = 2 a - 3 b + c , r 2 = 3 a - 5 b + 2 c ,

a n d

r 3 = 4 a - 5 b + c a r e l i n e a r l y i n d e p e n d e n t o r d e p e n d e n t .

A n s . L i n e a r l y d e p e n d e n t s i n c e r 3 = 5 r 1 - 2 r 2 .

4 7 .

I f A a n d B a r e g i v e n v e c t o r s r e p r e s e n t i n g t h e d i a g o n a l s o f a p a r a l l e l o g r a m , c o n s t r u c t t h e p a r a l l e l o g r a m .

4 8 . P r o v e t h a t t h e l i n e j o i n i n g t h e m i d p o i n t s o f t w o s i d e s o f a t r i a n g l e i s p a r a l l e l t o t h e t h i r d s i d e a n d h a s o n e

h a l f o f i t s m a g n i t u d e .

4 9 . ( a ) I f 0 i s a n y p o i n t w i t h i n t r i a n g l e A B C a n d P , Q , R a r e m i d p o i n t s o f t h e s i d e s A B , B C , C A r e s p e c t i v e l y ,

p r o v e t h a t O A + O B + O C = O P + O Q + O R .

( b ) D o e s t h e r e s u l t h o l d i f 0 i s a n y p o i n t o u t s i d e t h e t r i a n g l e ? P r o v e y o u r r e s u l t .

A n s . Y e s

5 0 . I n t h e a d j o i n i n g f i g u r e , A B C D i s a p a r a l l e l o g r a m w i t h

P a n d Q t h e m i d p o i n t s o f s i d e s B C a n d C D r e s p e c -

t i v e l y .

P r o v e t h a t A P a n d A Q t r i s e c t d i a g o n a l B D a t

t h e p o i n t s E a n d F .

5 1 . P r o v e t h a t t h e m e d i a n s o f a t r i a n g l e m e e t i n a c o m m o n

p o i n t w h i c h i s a p o i n t o f t r i s e c t i o n o f t h e m e d i a n s .

5 2 . P r o v e t h a t t h e a n g l e b i s e c t o r s o f a t r i a n g l e m e e t i n a

c o m m o n p o i n t .

5 3 . S h o w t h a t t h e r e e x i s t s a t r i a n g l e w i t h s i d e s w h i c h a r e

e q u a l a n d p a r a l l e l t o t h e m e d i a n s o f a n y g i v e n t r i a n g l e .

5 4 . L e t t h e p o s i t i o n v e c t o r s o f p o i n t s P a n d Q r e l a t i v e t o a n o r i g i n 0 b e g i v e n b y p a n d q r e s p e c t i v e l y . I f R i s

a p o i n t w h i c h d i v i d e s l i n e P Q i n t o s e g m e n t s w h i c h a r e i n t h e r a t i o m : n s h o w t h a t t h e p o s i t i o n v e c t o r o f R

Page 22: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 22/234

V E C T O R S a n d S C A L A R S

1 5

i s g i v e n b y

r =

' n P + n q

a n d t h a t t h i s i s i n d e p e n d e n t o f t h e o r i g i n .

+ n

5 5 . I f r 1 , r 2 , . . . , r n a r e t h e p o s i t i o n v e c t o r s o f m a s s e s m 1 , m 2 , . . . , m n r e s p e c t i v e l y r e l a t i v e t o a n o r i g i n 0 ,

s h o w t h a t t h e p o s i t i o n v e c t o r o f t h e c e n t r o i d i s g i v e n b y

r =

a n d t h a t t h i s i s i n d e p e n d e n t o f t h e o r i g i n .

m 1 r 1 + m 2 r 2 + . . . + m n r n

I n 1 + m 2 + . . . + I n n

5 6 . A q u a d r i l a t e r a l A B C D h a s m a s s e s o f

1 , 2 , 3 a n d 4 u n i t s l o c a t e d r e s p e c t i v e l y a t i t s v e r t i c e s A ( - 1 , - 2 , 2 ) ,

B ( 3 , 2 , - 1 ) ,

C ( 1 , - 2 , 4 ) , a n d D ( 3 , 1 , 2 ) . F i n d t h e c o o r d i n a t e s o f t h e c e n t r o i d .

A n s .

( 2 , 0 , 2 )

5 7 . S h o w t h a t t h e e q u a t i o n o f a p l a n e w h i c h p a s s e s t h r o u g h t h r e e g i v e n p o i n t s A , B , C n o t i n t h e s a m e s t r a i g h t

l i n e a n d h a v i n g p o s i t i o n v e c t o r s a , b , c r e l a t i v e t o a n o r i g i n 0 , c a n b e w r i t t e n

r

m a + n b + p c

=

m + n + p

w h e r e i n , n , p a r e s c a l a r s . V e r i f y t h a t t h e e q u a t i o n i s i n d e p e n d e n t o f t h e o r i g i n .

5 8 . T h e p o s i t i o n v e c t o r s o f p o i n t s P a n d Q a r e g i v e n b y r 1 = 2 i + 3 j - k ,

r 2 = 4 i - 3 j + 2 k . D e t e r m i n e P Q i n

t e r m s o f i , j , k a n d f i n d i t s m a g n i t u d e . A n s .

2 i - 6 j + 3 k , 7

5 9 .

I f A = 3 i - j - 4 k , B = - 2 i + 4 j - 3 k , C = i + 2 j - k ,

f i n d

( a ) 2 A - B + 3 C ,

( b )

f A + B + C I ,

( c ) 1 3 A - 2 B + 4 C 1 ,

( d ) a u n i t v e c t o r p a r a l l e l t o 3 A - 2 B + 4 C .

( a ) 1 1 i - 8 k

( b )

( c )

( d ) 3 A -

2 B + 4 C

A n s

.

6 0 . T h e f o l l o w i n g f o r c e s a c t o n a p a r t i c l e P :

F 1 = 2 i + 3 j - 5 k ,

F 2 = - 5 i + j + 3 k ,

F 3 =

i - 2 j + 4 k , F 4 = 4 i -

3 j - 2 k , m e a s u r e d i n p o u n d s . F i n d ( a ) t h e r e s u l t a n t o f t h e f o r c e s , ( b ) t h e m a g n i t u d e o f t h e r e s u l t a n t .

A n s .

( a ) 2 i - j

( b ) y r

6 1 . I n e a c h c a s e d e t e r m i n e w h e t h e r t h e v e c t o r s a r e l i n e a r l y i n d e p e n d e n t o r l i n e a r l y d e p e n d e n t :

( a ) A = 2 1 + j - 3 k , B = i - 4 k , C = 4 i + 3 j - k ,

( b ) A = i - 3 j + 2 k , B = 2 i - 4 j - k , C = 3 i + 2 j - k .

A n s . ( a ) l i n e a r l y d e p e n d e n t , ( b ) l i n e a r l y i n d e p e n d e n t

6 2 . P r o v e t h a t a n y f o u r v e c t o r s i n t h r e e d i m e n s i o n s m u s t b e l i n e a r l y d e p e n d e n t .

6 3 . S h o w t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t t h e v e c t o r s A = A 1 i + A

2 j + A 3 k , B = B 1 i + B 2 j + B 3 k ,

A l A 2 A 3

C = C

I

i + C 2 j + C 3 k b e l i n e a r l y i n d e p e n d e n t i s t h a t t h e d e t e r m i n a n t

B 1 B 2 B .

b e d i f f e r e n t f r o m z e r o .

C 1 C 2 C 3

6 4 .

( a ) P r o v e t h a t t h e v e c t o r s A = 3 i + j - 2 k , B = - i + 3 j + 4 k , C = 4 i - 2 j

- 6 k c a n f o r m t h e s i d e s o f a t r i a n g l e .

( b ) F i n d t h e l e n g t h s o f t h e m e d i a n s o f t h e t r i a n g l e .

A n s . ( b ) v i m ,

2 v 4 , 2 V - 1 - - 5 0

6 5 . G i v e n t h e s c a l a r f i e l d d e f i n e d b y c ( x , y , z ) = 4 y z 3 + 3 x y z - z 2 + 2 . F i n d ( a ) 0 ( 1 , - 1 , - 2 ) , ( b ) 4 ( 0 , - 3 , 1 ) .

A n s . ( a ) 3 6 ( b ) - 1 1

6 6 . G r a p h t h e v e c t o r f i e l d s d e f i n e d b y

( a ) V ( x , y ) = x i - y j ,

( b ) V ( x , y ) = y i - x j , ( c ) V ( x , y , z ) =

x i + y i + z k

x 2 + y 2 + z 2

Page 23: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 23/234

T H E D O T O R S C A L A R P R O D U C T o f t w o v e c t o r s A a n d B , d e n o t e d b y

A d o t B ) , i s d e -

f i n e d a s t h e p r o d u c t o f t h e m a g n i t u d e s o f A a n d B a n d t h e c o s i n e

o f t h e a n g l e 6 b e t w e e n t h e m .

I n s y m b o l s ,

A B

N o t e ' t h a t A . B i s a s c a l a r a n d n o t a v e c t o r .

T h e f o l l o w i n g l a w s a r e v a l i d :

1 . A B = B A

C o m m u t a t i v e L a w f o r D o t P r o d u c t s

2 . A ( B + C ) = A B + A C

D i s t r i b u t i v e L a w

3 . m ( A B ) = ( m A ) B = A - ( m B ) = ( A B ) m ,

w h e r e m i s a s c a l a r .

4 .

j . j = 1 ,

0

5 .

I f

A = A l i + A 2 j + A 3 k a n d B = B l i + B 2 j + B 3 k , t h e n

A 1 B 1 + A 2 B 2 + A 3 8 3

A 2 = A i + A 2 + A 3

B - B = 8 2 = B i + B 2 + B 3

6 .

I f A - B = 0 a n d A a n d B a r e n o t n u l l v e c t o r s , t h e n A a n d B a r e p e r p e n d i c u l a r .

T H E C R O S S O R V E C T O R P R O D U C T o f A a n d B i s a v e c t o r C = A x B ( r e a d A c r o s s B ) . T h e m a g -

n i t u d e o f A x B i s d e f i n e d a s t h e p r o d u c t o f t h e m a g n i t u d e s o f

A a n d B a n d t h e s i n e o f t h e a n g l e 6 b e t w e e n t h e m . T h e d i r e c t i o n o f t h e v e c t o r C = A x B i s p e r p e n -

d i c u l a r t o t h e p l a n e o f A a n d B a n d s u c h t h a t A , B a n d C f o r m a r i g h t - h a n d e d s y s t e m . I n s y m b o l s ,

A x B = A B s i n O u ,

0

r c

w h e r e u i s a u n i t v e c t o r i n d i c a t i n g t h e d i r e c t i o n o f A x B .

I f A = B , o r i f A i s p a r a l l e l t o B , t h e n

s i n O = 0 a n d w e d e f i n e A x B = 0 .

T h e f o l l o w i n g l a w s a r e v a l i d :

1 . A X B

2 . A x ( B + C ) = A x B + A x C

( C o m m u t a t i v e L a w f o r C r o s s P r o d u c t s F a i l s . )

D i s t r i b u t i v e L a w

3 . m ( A x B ) = ( m A ) x B = A x ( m B ) = ( A x B ) m ,

w h e r e m i s a s c a l a r .

4 . i x i = j x j = k x k = 0 ,

i x j = 1 L ) j x k = ( i 3 k x i =

5 .

I f A = A l i + A 2 j + A 3 k

a n d B = B l i + 8 2 j + B 3 k , t h e n

1 6

Page 24: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 24/234

T h e D O T a n d C R O S S P R O D U C T

1 7

A x B =

i

j

k

A l

A 2

A 3

B 1

B 2

B 3

6 . T h e m a g n i t u d e o f A x B i s t h e s a m e a s t h e a r e a o f a p a r a l l e l o g r a m w i t h s i d e s A a n d B .

7 .

I f A x B = 0 , a n d A a n d B a r e n o t n u l l v e c t o r s , t h e n A a n d B a r e p a r a l l e l .

T R I P L E P R O D U C T S . D o t a n d c r o s s m u l t i p l i c a t i o n o f t h r e e v e c t o r s A , B a n d C m a y p r o d u c e m e a n -

i n g f u l p r o d u c t s o f t h e f o r m ( A B ) C , A - ( B x C ) a n d A x ( B x C ) . T h e f o l l o w -

i n g l a w s a r e v a l i d :

1 .

2 . A - ( B x C ) = B . ( C x A ) = C ( A x B ) = v o l u m e o f a p a r a l l e l e p i p e d h a v i n g A , B a n d C a s

e d g e s ,

o r t h e n e g a t i v e o f t h i s v o l u m e , a c c o r d i n g a s A , B a n d C d o o r d o n o t f o r m a r i g h t - h a n d e d s y s -

t e m .

I f A = A 1 i + A 2 j + A s k , B = B 1 i + B 2 j + B 3 k a n d C = C 1 i + C 2 j + C 3 k , t h e n

A . ( B x C )

=

3 . A x ( B x C ) / ( A x B ) x C

4 . A x ( B x C ) =

( A . B ) C

( A x B ) x C =

A l A 2

A s

B 1

B 2

B 3

C 1 C 2

C 3

( A s s o c i a t i v e L a w f o r C r o s s P r o d u c t s F a i l s . )

T h e p r o d u c t A ( B x C ) i s s o m e t i m e s c a l l e d t h e s c a l a r t r i p l e p r o d u c t o r b o x p r o d u c t a n d m a y b e

d e n o t e d b y [ A B C ] .

T h e p r o d u c t A x ( B x C ) i s c a l l e d t h e v e c t o r t r i p l e p r o d u c t .

I n A ( B x C ) p a r e n t h e s e s a r e s o m e t i m e s o m i t t e d a n d w e w r i t e A B x C ( s e e P r o b l e m 4 1 ) . H o w -

e v e r , p a r e n t h e s e s m u s t b e u s e d i n A x ( B x C ) ( s e e P r o b l e m s 2 9 a n d 4 7 ) .

R E C I P R O C A L S E T S O F V E C T O R S . T h e s e t s o f v e c t o r s a , b , c a n d a ' , b ' , c ' a r e c a l l e d r e c i p r o c a l

s e t s o r s y s t e m s o f v e c t o r s i f

1

a b = a ' c = b ' a = b ' c = c ' a = c ' b = 0

T h e s e t s a , b , c a n d a ' , b ' , c ' a r e r e c i p r o c a l s e t s o f v e c t o r s i f a n d o n l y i f

a '

b ,

_

_ c x a

a . b x c

a . b x c

b x c

c '

a x b

a b x c

w h e r e a b x c 4 0 .

S e e P r o b l e m s 5 3 a n d 5 4 .

Page 25: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 25/234

1 8

T h e D O T a n d C R O S S P R O D U C T

S O L V E D P R O B L E M S

T H E D O T O R S C A L A R P R O D U C T .

1 . P r o v e A B = B A .

A B = A B c o s 8 = B A c o s 6 = B A

T h e n t h e c o m m u t a t i v e l a w f o r d o t p r o d u c t s i s v a l i d .

2 . P r o v e t h a t t h e p r o j e c t i o n o f A o n B i s e q u a l t o A b , w h e r e

b i s a u n i t v e c t o r i n t h e d i r e c t i o n o f B .

T h r o u g h t h e i n i t i a l a n d t e r m i n a l p o i n t s o f A p a s s p l a n e s p e r - E

p e n d i c u l a r t o B a t G a n d H r e s p e c t i v e l y a s i n t h e a d j a c e n t f i g u r e ;

t h e n

P r o j e c t i o n o f A o n B = G H = E F = A c o s B = A b

3 . P r o v e A ( B + C ) = A B + A - C .

L e t a b e a u n i t v e c t o r i n t h e d i r e c t i o n o f A ; t h e n

P r o j e c t i o n o f ( B + C ) o n A = p r o j . o f B o n A + p r o j . o f C o n A

( B + C ) a

=

M u l t i p i v i n g b y A ,

( B + C ) . A a =

a n d

T h e n b y t h e c o m m u t a t i v e l a w f o r d o t p r o d u c t s ,

a n d t h e d i s t r i b u t i v e l a w i s v a l i d .

4 . P r o v e t h a t

G

F

E

H B

B y P r o b l e m 3 ,

( A + B ) - ( C + D ) = A - ( C + D ) + B - ( C + D )

= A C + A D + B C + B D

T h e o r d i n a r y l a w s o f a l g e b r a a r e v a l i d f o r d o t p r o d u c t s .

I

5 . E v a l u a t e e a c h o f t h e f o l l o w i n g .

( a )

I i i

I i I c o s 0 0

( 1 ) ( 1 ) ( 1 )

=

1

( b )

I i i

I k J c o s 9 0 °

_ ( 1 ) ( 1 ) ( 0 )

= 0

( c )

I k I I i i c o s 9 0 ° _ ( 1 ) ( 1 ) ( 0 ) = 0

( d )

j - ( 2 i - 3 j + k ) =

0 - 3 + 0 = - 3

( e ) ( 2 i - j )

( 3 i + k ) = 2 i

( 3 i + k ) - j

( 3 i + k )

= 6 1

i + 2 i k - 3 j

i - j k = 6 + 0 - 0 - 0

=

6

6 . I f A = A 1 i + A 2 j + A 3 k

a n d

B = B 1 i + B 2 j + B 3 k , p r o v e t h a t A B = A 1 B 1 + A 2 B 2 + A 3 B 3

A B =

( A 1 i + A 2 i + A 3 k ) . ( B 1 i + B 2 j + B 3 k )

=

A 1 B 1 i i + A 1 B 2 i j + A 1 B 3 i k + A 2 B 1 j i + A 2 B 2

A 2 B 3 j k + A 3 B 1 k i + A 3 B 2 k j + A 3 B 3 k k

Page 26: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 26/234

T h e D O T a n d C R O S S P R O D U C T

=

A 1 B 1 + A 2 B 2 + A 3 B 3

s i n c e

i i

= j j = k k = 1

a n d a l l o t h e r d o t p r o d u c t s a r e z e r o .

7 .

I f A = A 1 i + A 2 j + A 3 k , s h o w t h a t A = A =

A l + A 2

( A ) ( A ) c o s 0 ° = A 2 .

T h e n A = V I A A .

A l s o , A A = ( A 1 i + A 2 j + A 3 k ) ( A 1 i + A 2 j + A 3 k )

_ ( A 1 ) ( A 1 ) + ( A 2 ) ( A 2 ) + ( A 3 ) ( A o )

= A 2 + A 2 + A s

b y P r o b l e m 6 , t a k i n g B = A .

+ A 2

T h e n A = / A A =

A 2 + A 2

3

i s t h e m a g n i t u d e o f A .

S o m e t i m e s A A . A i s w r i t t e n A 2 .

8 . F i n d t h e a n g l e b e t w e e n A =

2 i + 2 j - k

a n d

B =

6 i - 3 j + 2 k .

A - B

= A B

c o s 8 ,

A =

( 2 ) 2 + ( 2 ) 2 + ( - 1 ) 2 = 3

B =

( 6 ) 2 + ( - 3 ) 2 + ( 2 ) 2 = 7

A - B = ( 2 ) ( 6 ) + ( 2 ) ( - 3 ) + ( - 1 ) ( 2 ) = 1 2 - 6 - 2 = 4

T h e n c o s 8

=

A B

( 3 ) ( 7 )

4

0 . 1 9 0 5

a n d

8 = 7 9 0 a p p r o x i m a t e l y .

2 1

9 . I f A B = 0 a n d i f A a n d B a r e n o t z e r o , s h o w t h a t A i s p e r p e n d i c u l a r t o B .

I f A B

c o s 6 = 0 , t h e n

c o s 6 = 0

o r 8 = 9 0 ° .

C o n v e r s e l y , i f 6 = 9 0 ° ,

0 .

1 0 . D e t e r m i n e t h e v a l u e o f a s o t h a t A = 2 i + a j + k a n d B = 4 i - 2 j - 2 k a r e p e r p e n d i c u l a r .

F r o m P r o b l e m 9 , A a n d B a r e p e r p e n d i c u l a r i f A B = 0 .

T h e n A B = ( 2 ) ( 4 ) + ( a ) ( - 2 ) + ( 1 ) ( - 2 ) = 8 - 2 a - 2 = 0

f o r

a = 3 .

1 1 . S h o w t h a t t h e v e c t o r s A = 3 i - 2 j + k , B = i - 3 j + 5 k , C = 2 i + j - 4 k f o r m a r i g h t t r i a n g l e .

W e f i r s t h a v e t o s h o w t h a t t h e v e c t o r s f o r m a t r i a n g l e .

( a )

I

( b )

1 9

F r o m t h e f i g u r e s i t i s s e e n t h a t t h e v e c t o r s w i l l f o r m a t r i a n g l e i f

( a )

o n e o f t h e v e c t o r s , s a y ( 3 ) , i s t h e r e s u l t a n t o r s u m o f ( 1 ) a n d ( 2 ) ,

( b ) t h e s u m o r r e s u l t a n t o f t h e v e c t o r s ( 1 ) + ( 2 ) + ( 3 ) i s z e r o ,

a c c o r d i n g a s ( a ) t w o v e c t o r s h a v e a c o m m o n t e r m i n a l p o i n t o r ( b ) n o n e o f t h e v e c t o r s h a v e a c o m m o n t e r m i n a l

p o i n t . B y t r i a l w e f i n d A = B + C s o t h a t t h e v e c t o r s d o f o r m a t r i a n g l e .

S i n c e A - B = ( 3 ) ( 1 ) + ( - 2 ) ( - 3 ) + ( 1 ) ( 5 ) = 1 4 , A C = ( 3 ) ( 2 ) + ( - 2 ) ( 1 ) + ( 1 ) ( - 4 ) = 0 ,

a n d

B C = ( 1 ) ( 2 ) + ( - 3 ) ( 1 ) + ( 5 ) ( - 4 )

2 1 ,

i t f o l l o w s t h a t A a n d C a r e p e r p e n d i c u l a r a n d t h e t r i a n g l e i s a

r i g h t t r i a n g l e .

Page 27: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 27/234

2 0

T h e D O T a n d C R O S S P R O D U C T

1 2 . F i n d t h e a n g l e s w h i c h t h e v e c t o r A = 3 i - 6 j + 2 k m a k e s w i t h t h e c o o r d i n a t e a x e s .

L e t a , P . y b e t h e a n g l e s w h i c h A m a k e s w i t h t h e p o s i t i v e x , y , z a x e s r e s p e c t i v e l y .

A i

= ( A ) ( 1 ) c o s a = ( 3 ) 2 + ( - 6 ) 2 + ( 2 ) 2 c o s a = 7 c o s a

3

T h e n

c o s a = 3 / 7 = 0 . 4 2 8 6 ,

a n d

a = 6 4 . 6 ° a p p r o x i m a t e l y .

S i m i l a r l y , c o s 0 = - 6 / 7 , R = 1 4 9 °

a n d

c o s y = 2 / 7 , y = 7 3 . 4 ° .

T h e c o s i n e s o f a , ( 3 , a n d y a r e c a l l e d t h e d i r e c t i o n c o s i n e s o f A . ( S e e P r o b . 2 7 , C h a p . 1 ) .

1 3 . F i n d t h e p r o j e c t i o n o f t h e v e c t o r A = i - 2 j + k o n t h e v e c t o r B = 4 i - 4 j + 7 k .

4 4

.

A u n i t v e c t o r i n t h e d i r e c t i o n B i s b =

B

B =

4 i - 4 j + 7 k

=

4

1 - 9 j +

? k

9

( 4 ) 2 + ( - 4 ) 2 + ( 7 ) 2

P r o j e c t i o n o f A o n t h e v e c t o r B = A . b = ( i - 2 j + k )

( 4

i -

9

j + 9 k )

( 1 ) ( 9 ) + ( - 2 ) ( -

9 ) + ( 1 ) ( 9 ) =

1 9

1 4 . P r o v e t h e l a w o f c o s i n e s f o r p l a n e t r i a n g l e s .

F r o m F i g . ( a ) b e l o w ,

B + C = A

o r

C = A - B .

T h e n

( A - B ) ( A - B ) =

a n d

C 2 = A 2 + B 2 - 2 A B c o s 8 .

F i g . ( a )

F i g . ( b )

1 5 . P r o v e t h a t t h e d i a g o n a l s o f a r h o m b u s a r e p e r p e n d i c u l a r . R e f e r t o F i g . ( b ) a b o v e .

O Q = O P + P Q = A + B

O R + R P = O P

o r

B + R P = A

a n d R P = A - B

T h e n O Q R P = ( A + B ) ( A - B ) = A 2 - B 2 = 0 ,

s i n c e A = B .

H e n c e O Q i s p e r p e n d i c u l a r t o R P .

1 6 . D e t e r m i n e a u n i t v e c t o r p e r p e n d i c u l a r t o t h e p l a n e o f A = 2 i - 6 j - 3 k a n d B = 4 i + 3 j - k

.

L e t v e c t o r C = c 1 i + c 2 j + c 3 k b e p e r p e n d i c u l a r t o t h e p l a n e o f A a n d B . T h e n C i s p e r p e n d i c u l a r t o A

a n d a l s o t o B . H e n c e ,

C A = 2 c 1 - 6 c 2 - 3 c 3 = 0

o r ( 1 ) 2 c 1 - 6 c 2 = 3 c 3

C B = 4 c 1 + 3 c 2 - c 3 = 0

o r

( 2 ) 4 c 1 + 3 c 2 = c 3

Page 28: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 28/234

T h e D O T a n d C R O S S P R O D U C T

S o l v i n g ( 1 ) a n d ( 2 ) s i m u l t a n e o u s l y :

c l = 2 c s ,

c 2 = - 3 G 3 ,

C = c 3 ( 2 i -

3

i + k ) .

c 3 ( 1 i - i j + k )

T h e n a u n i t v e c t o r i n t h e d i r e c t i o n o f C i s

C

= 2 3

= ± ( 7 i -

7 + ? k ) .

C

/ C 3 2 2 ) 2 + ( - 3 ) 2 + ( 1 ) 2 1

2 1

1 7 . F i n d t h e w o r k d o n e i n m o v i n g a n o b j e c t a l o n g a v e c t o r

r = 3 i + 2 j - 5 k

i f t h e a p p l i e d f o r c e i s

F = 2 i - j - k .

R e f e r t o F i g - ( a ) b e l o w .

W o r k d o n e

=

( m a g n i t u d e o f f o r c e i n d i r e c t i o n o f m o t i o n ) ( d i s t a n c e m o v e d )

=

( F c o s 6 ) ( r )

=

F r

=

6 - 2 + 5 =

9 .

z

r

F i g . ( a )

F i g . ( b )

1 8 . F i n d a n e q u a t i o n f o r t h e p l a n e p e r p e n d i c u l a r t o t h e v e c t o r A = 2 i + 3 j + 6 k a n d p a s s i n g t h r o u g h t h e

t e r m i n a l p o i n t o f t h e v e c t o r B = i + 5 j + 3 k ( s e e F i g . ( b ) a b o v e ) .

L e t r b e t h e p o s i t i o n v e c t o r o f p o i n t P , a n d Q t h e t e r m i n a l p o i n t o f B .

S i n c e P Q = B - r i s p e r p e n d i c u l a r t o A , ( B - r ) A = 0

o r r A = B A i s t h e r e q u i r e d e q u a t i o n o f t h e

p l a n e i n v e c t o r f o r m . I n r e c t a n g u l a r f o r m t h i s b e c o m e s

o r

( x i + y j + z k ) ( 2 i + 3 j + 6 k )

=

( i + 5 j + 3 k ) ( 2 i + 3 j + 6 k )

2 x + 3 y + 6 z

=

( 1 ) ( 2 ) + ( 5 ) ( 3 ) + ( 3 ) ( 6 )

=

3 5

1 9 . I n P r o b l e m 1 8 f i n d t h e d i s t a n c e f r o m t h e o r i g i n t o t h e p l a n e .

T h e d i s t a n c e f r o m t h e o r i g i n t o t h e p l a n e i s t h e p r o j e c t i o n o f B o n A .

A u n i t v e c t o r i n d i r e c t i o n A i s

a

= A

2 i + 3 j + 6 k 2 i

+ 3 .

+ 6 k

A

( 2 ) 2 + ( 3 ) 2 + ( 6 ) 2

7

7

7

T h e n , p r o j e c t i o n o f B o n A = B a = ( i + 5 j + 3 k ) ( ? i +

- a

j +

6

k ) = 1 ( 2 ) + 5 ( 3 ) + 3 ( s ) = 5 .

7 7 7 7

7

7

2 0 . I f A i s a n y v e c t o r , p r o v e t h a t A = ( A . i ) i + ( A - j ) j + ( A - k ) k .

S i n c e A = A 1 i + A 2 j + 4 3 k , A A . i = A 1 i i + A 2 j i +

A

A

A

j

+ A s k = ( A . i ) i + ( A j ) j + ( A k ) k .

Page 29: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 29/234

2 2

T h e D O T a n d C R O S S P R O D U C T

T H E C R O S S O R V E C T O R P R O D U C T .

2 1 . P r o v e A x B = - B x A .

F i g . ( a )

F i g . ( b )

A x B = C h a s m a g n i t u d e A B s i n 8 a n d d i r e c t i o n s u c h t h a t

A , B a n d C f o r m a r i g h t - h a n d e d s y s t e m

( F i g . ( a ) a b o v e ) .

B X A = D h a s m a g n i t u d e B A s i n 8 a n d d i r e c t i o n s u c h t h a t B , A a n d D f o r m a r i g h t - h a n d e d s y s t e m

( F i g . ( b ) a b o v e ) .

T h e n D h a s t h e s a m e m a g n i t u d e a s C b u t i s o p p o s i t e i n d i r e c t i o n , i . e . C = - D o r

A x B = - B X A .

T h e c o m m u t a t i v e l a w f o r c r o s s p r o d u c t s i s n o t v a l i d .

2 2 . I f A x B = 0 a n d i f A a n d B a r e n o t z e r o , s h o w t h a t A i s p a r a l l e l t o B .

I f A x B = A B s i n e u = 0 , t h e n s i n 8 = 0 a n d e = 0 ° o r 1 8 0 ° .

2 3 . S h o w t h a t

I A x B 1 2

+

I A - B l 2

=

I A 1 2 1 B I 2 .

I A x B 1 2 + I A - B I

2

=

I A B s i n 8 u 1 2 + I A B

c o s 8 1 2

A 2 B 2 s i n g 8 + A 2 B 2 c o s 2 8

A 2 B 2

_

J A I ' I B 1 2

2 4 . E v a l u a t e e a c h o f t h e f o l l o w i n g .

( a ) i x j = k

( f ) j x j = 0

( b ) j x k = i

( g ) i x k = - k x i = - j

( c ) k x i = j

( h ) ( 2 j ) x ( 3 k ) = 6 j x k =

6 1

( d ) k x j = - j x k = - i

( i ) ( 3 i ) x ( - 2 k ) _ - 6 i x k = 6 j

( e )

i x i = 0

( j )

2 j x i - 3 k = - 2 k - 3 k = - 5 k

2 5 . P r o v e t h a t A x ( B + C ) = A x B + A x C f o r t h e

c a s e w h e r e A i s p e r p e n d i c u l a r t o B a n d a l s o t o

C .

S i n c e A i s p e r p e n d i c u l a r t o B , A x B i s a v e c t o r

p e r p e n d i c u l a r t o t h e p l a n e o f A a n d B a n d h a v i n g m a g -

n i t u d e A B s i n 9 0 ° = A B o r m a g n i t u d e o f A B . T h i s

i s e q u i v a l e n t t o m u l t i p l y i n g v e c t o r B b y A a n d r o t a t i n g

t h e

r e s u l t a n t v e c t o r t h r o u g h

9 0 °

t o t h e p o s i t i o n

s h o w n i n t h e a d j o i n i n g d i a g r a m .

S i m i l a r l y , A x C i s t h e v e c t o r o b t a i n e d b y m u l t i -

p l y i n g C b y A a n d r o t a t i n g t h e r e s u l t a n t v e c t o r t h r o u g h

9 0 ° t o t h e p o s i t i o n s h o w n .

I n l i k e m a n n e r , A x ( B + C ) i s t h e v e c t o r o b t a i n e d

Page 30: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 30/234

T h e D O T a n d C R O S S P R O D U C T

2 3

b y m u l t i p l y i n g B + C b y A a n d r o t a t i n g t h e r e s u l t a n t v e c t o r t h r o u g h 9 0 ° t o t h e p o s i t i o n s h o w n .

S i n c e A x ( B + C )

i s t h e d i a g o n a l o f t h e p a r a l l e l o g r a m w i t h A x B a n d A x C a s s i d e s , w e h a v e

A x ( B + C ) = A x B + A x C .

2 6 . P r o v e t h a t A x ( B + C ) = A x B + A x C i n t h e g e n -

e r a l c a s e w h e r e A , B a n d C a r e n o n - c o p l a n a r .

R e s o l v e B i n t o t w o c o m p o n e n t v e c t o r s , o n e p e r p e n -

d i c u l a r t o A a n d t h e o t h e r p a r a l l e l t o A , a n d d e n o t e t h e m

b y B 1 a n d B r e s p e c t i v e l y . T h e n B = B l + B .

I f h i s t h e a n g l e b e t w e e n A a n d B , t h e n B 1 = B s i n e .

T h u s t h e m a g n i t u d e o f A x B 1 i s A B s i n B , t h e s a m e a s

t h e m a g n i t u d e o f A X B . A l s o , t h e d i r e c t i o n o f A x B 1 i s

t h e s a m e a s t h e d i r e c t i o n o f A x B . H e n c e A X B 1 = A x B .

S i m i l a r l y i f C i s r e s o l v e d i n t o t w o c o m p o n e n t v e c -

t o r s C , i a n d C 1 , p a r a l l e l a n d p e r p e n d i c u l a r r e s p e c t i v e l y

t o A , t h e n A x C , = A x C .

A l s o , s i n c e

B + C = B . + B + C 1 + C = ( B l + C 1 ) + ( B , , +

i t f o l l o w s t h a t

A x ( B 1 + C 1 ) = A x ( B + C ) .

N o w B 1 a n d C 1 a r e v e c t o r s p e r p e n d i c u l a r t o A a n d s o b y P r o b l e m 2 5 ,

A x ( B 1 + C 1 ) = A X B 1 + A X C 1

T h e n

A x ( B + C )

= A x B + A x C

a n d t h e d i s t r i b u t i v e l a w h o l d s . M u l t i p l y i n g b y - 1 , u s i n g P r o b . 2 1 , t h i s b e c o m e s ( B + C ) x A = B X A + C x A .

N o t e t h a t t h e o r d e r o f f a c t o r s i n c r o s s p r o d u c t s i s i m p o r t a n t . T h e u s u a l l a w s o f a l g e b r a a p p l y o n l y i f p r o p -

e r o r d e r i s m a i n t a i n e d .

2 7 . I f

A = A l i + A 2 j + A 3 k

a n d B = B 1 i + B 2 j + B 3 k ,

p r o v e t h a t

A x B =

i j

k

A ,

A 2

A s

B 1

B 2

B 3

A x B =

( A l i + A 2 j + A 3 k ) x ( B 1 i + B 2 j + B 3 k )

=

A l i x ( B i t + B 2 j + B 3 k ) + A 2 j x ( B 1 i + B 2 j + B 3 k ) + A s k x ( B i t + B 2 j + B 3 k )

=

A 1 B 1 i x i + A 1 B 2 i x j + A 1 B 3 i x k + A 2 B 1 j x i + A 2 B 2 j x j + A 2 B 3 j x k + A 3 B 1 k x i + A 3 B 2 k x j + A 3 B 3 k x k

_ - ( A 2 B 3 - A 3 B 2 ) i + ( A 3 B 1 - A 1 B 3 ) j + ( A 1 B 2 - A 2 B 1 ) k

=

i i

k

A l

A 2 A s

B 1

B 2 B 3

2 8 . I f A = 2 i - 3 j - k a n d B = i + 4 j - 2 k ,

f i n d ( a ) A x B ,

( b ) B x A , ( c ) ( A + B ) x ( A - B ) .

( a ) A x B =

( 2 i - 3 j - k ) x ( i + 4 j - 2 k ) =

i

j

k

2

- 3

- 1

1

4

- 2

r i

4

- 2 1 _

j

1 2

- 2 I + k l l

- 4 I

= 1 0 i + 3 j + 1 1 k

1

A n o t h e r M e t h o d .

( 2 i - 3 j - k ) x ( i + 4 j - 2 k ) = 2 i x ( i + 4 j - 2 k ) - 3 j x ( i + 4 j - 2 k ) -

k x ( i + 4 j - 2 k )

= 2 i x i + 8 i x j - 4 i x k - 3 j x i - 1 2 j x j + 6 j x k - k x i - 4 k x j + 2 k x k

= 0 + 8 k + 4 i + 3 k - 0 + 6 i - j + 4 1 + 0

= 1 0 i + 3 j + 1 1 k

Page 31: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 31/234

2 4

T h e D O T a n d C R O S S P R O D U C T

i j

k

( b ) B x A = ( i + 4 j - 2 k ) x ( 2 1 - 3 j - - k ) =

1

4

- 2

2 - 3

- I 1

4

- 2

1

- 2

- 1

-

- 1 1 + k 1 2

3

= - 1 0 i - 3 j - I l k .

3

C o m p a r i n g w i t h ( a ) , A x B = - B x A . N o t e t h a t t h i s i s e q u i v a l e n t t o t h e t h e o r e m : I f t w o r o w s o f

a d e t e r m i n a n t a r e i n t e r c h a n g e d , t h e d e t e r m i n a n t c h a n g e s s i g n .

( c ) A + B = ( 2 i - 3 j - k ) + ( i + 4 j - 2 k ) = 3 i + j - 3 k

A - B = ( 2 i - 3 j - k ) - ( i + 4 j - 2 k ) = i - 7 j + k

T h e n

( A + B ) x ( A - B ) = ( 3 1 + j - 3 k ) x ( i - 7 j + k )

_

1

- 7

- 3

1

( 3

j l

i j

k

3

1 - 3

1 - 7 1

`

1

I

+ k 1 1

- 7 1

= - 2 0 i - 6 j - 2 2 k .

A n o t h e r M e t h o d .

( A + B ) x ( A - B ) = A x ( A - B ) + B x ( A - B )

= A x A - - - A x B + B x A - - B x B = O - A x B - A x B - 0 = - 2 A X B

_ - 2 ( 1 0 i + 3 j + I l k ) _ - 2 0 i - 6 j - 2 2 k ,

u s i n g ( a ) .

2 9 . I f

A = 3 i - j + 2 k , B = 2 i + j - k , a n d C = i - 2 j + 2 k ,

f i n d

( a ) ( A x B ) x C , ( b ) A x ( B x C ) .

( a ) A x B =

i

i k

3 - 1 2

2

1

- 1

= - i + 7 j + 5 k .

T h e n ( A x B ) x C = ( - i + 7 j + 5 k ) x ( i - 2 j + 2 k )

=

( b ) B x C =

i i

k

2

1 - 1

1

- 2

2

= O i - 5 j - 5 k

= - 5 j - 5 k .

T h e n A x ( B x C ) _ ( 3 1 - i + 2 k ) x ( - 5 j - 5 k ) _

i

j k

- 1

7

5

1

- 2

2

i i k

3

- 1 2

- 5

- 5

= 2 4 1 + 7 j - 5 k .

= 1 5 i + 1 5 j - 1 5 k .

T h u s ( A x B ) x C i A x ( B x C ) , s h o w i n g t h e n e e d f o r p a r e n t h e s e s i n A x B x C t o a v o i d a m b i g u i t y .

3 0 . P r o v e t h a t t h e a r e a o f a p a r a l l e l o g r a m w i t h s i d e s A

a n d B i s j A x B I .

A r e a o f p a r a l l e l o g r a m = h I B

_

J A S s i n 6 J B {

= J A x B .

N o t e t h a t t h e a r e a o f t h e t r i a n g l e w i t h s i d e s A a n d

B = 2 1 A x B I .

3 1 . F i n d t h e a r e a o f t h e t r i a n g l e h a v i n g v e r t i c e s a t P ( 1 , 3 , 2 ) , Q ( 2 , - 1 , 1 ) , R ( - 1 , 2 , 3 ) .

P Q = ( 2 - 1 ) i + ( - 1 - 3 ) j + ( 1 - 2 ) k =

i - 4 j - k

P R = ( - 1 - 1 ) i + ( 2 - 3 ) j + ( 3 - 2 ) k = - 2 i - j + k

Page 32: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 32/234

T h e D O T a n d C R O S S P R O D U C T

F r o m P r o b l e m 3 0 ,

a r e a o f t r i a n g l e =

2 1 1 P Q x P R I

=

1 2 1 ( i - 4 j - k ) x ( - 2 i - j + k )

i

j

k

= 2 1 - 4

- 1

= 2 I - 5 i + j - 9 k l

=

z

( - 5 ) 2 + ( 1 ) 2 + ( - 9 ) 2

=

2 1 0 7 .

- 2

- 1

1

3 2 . D e t e r m i n e a u n i t v e c t o r p e r p e n d i c u l a r t o t h e p l a n e o f A = 2 i - 6 j - 3 k a n d B = 4 i + 3 j - k

.

A x B i s a v e c t o r p e r p e n d i c u l a r t o t h e p l a n e o f A a n d B .

i j k

A x B =

2

- 6

- 3

=

1 5 i - I O j + 3 0 k

4 3

- 1

A u n i t v e c t o r p a r a l l e l t o A X B i s

A X B

I A x B

1 5 i - 1 0 j + 3 0 k

( 1 5 ) 2 + ( - 1 0 ) 2 +

( 3 0 ) 2

3 2

=

7 i - 7 j + 7 k

A n o t h e r u n i t v e c t o r , o p p o s i t e i n d i r e c t i o n , i s ( - 3 i + 2 j - 6 k ) / 7 .

C o m p a r e w i t h P r o b l e m 1 6 .

3 3 . P r o v e t h e l a w o f s i n e s f o r p l a n e t r i a n g l e s .

L e t a , b a n d c r e p r e s e n t t h e s i d e s o f t r i a n g l e A B C

a s s h o w n i n t h e a d j o i n i n g f i g u r e ; t h e n a + b + c = 0 .

M u l -

t i p l y i n g b y a x , b x a n d c x i n s u c c e s s i o n , w e f i n d

a x b = b x c = c x a

i . e .

a b s i n C =

b e s i n A

= c a s i n B

s i n A

s i n B

s i n C

n r

= -

_

a b

c

3 4 . C o n s i d e r a t e t r a h e d r o n w i t h f a c e s

F l , F 2 , F 3 , F 4 .

L e t V 1 , V 2 , V 3 , V 4 b e v e c t o r s w h o s e m a g n i t u d e s a r e

r e s p e c t i v e l y e q u a l t o t h e a r e a s o f F l , F 2 , F 3 , F 4 a n d

w h o s e d i r e c t i o n s a r e p e r p e n d i c u l a r t o t h e s e f a c e s

i n t h e o u t w a r d d i r e c t i o n . S h o w t h a t V 1 + V 2 + V 3 + V 4 = 0 .

B y P r o b l e m 3 0 , t h e a r e a o f a t r i a n g u l a r f a c e d e t e r -

m i n e d b y R a n d S i s

2 I R x S I .

T h e v e c t o r s a s s o c i a t e d w i t h e a c h o f t h e f a c e s o f

t h e t e t r a h e d r o n a r e

V 1 = 2 A x B ,

V 2 = 2 B x C ,

V 3 = 2 C x A ,

V 4 = 2 ( C - A ) x ( B - A )

T h e n V 1 + V 2 + V 3 + V 4 =

2

[ A x B + B x C + C x A + ( C - A ) x ( B - A ) ]

=

2 [ A x B + B x C + C x A + C x B - C x A - A x B + A x A ]

0 .

2 5

T h i s r e s u l t c a n b e g e n e r a l i z e d t o c l o s e d p o l y h e d r a a n d i n t h e l i m i t i n g c a s e t o a n y c l o s e d s u r f a c e .

B e c a u s e o f t h e a p p l i c a t i o n p r e s e n t e d h e r e i t i s s o m e t i m e s c o n v e n i e n t t o a s s i g n a d i r e c t i o n t o a r e a a n d

w e s p e a k o f t h e v e c t o r a r e a .

3 5 . F i n d a n e x p r e s s i o n f o r t h e m o m e n t o f a f o r c e F a b o u t a p o i n t P .

T h e m o m e n t M o f F a b o u t P i s i n m a g n i t u d e e q u a l t o F t i m e s t h e p e r p e n d i c u l a r d i s t a n c e f r o m P t o t h e

Page 33: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 33/234

2 6

T h e D O T a n d C R O S S P R O D U C T

l i n e o f a c t i o n o f F . T h e n i f r i s t h e v e c t o r f r o m P t o t h e i n i -

t i a l p o i n t Q o f F ,

M = F ( r s i n 8 ) = r F s i n 8 =

( r x F I

I f w e t h i n k o f a r i g h t - t h r e a d e d s c r e w a t P p e r p e n d i c u l a r

t o t h e p l a n e o f r a n d F , t h e n w h e n t h e f o r c e F a c t s t h e s c r e w

w i l l m o v e i n t h e d i r e c t i o n o f r x F . B e c a u s e o f t h i s i t i s c o n -

v e n i e n t t o d e f i n e t h e m o m e n t a s t h e v e c t o r M = r x F .

3 6 . A r i g i d b o d y r o t a t e s a b o u t a n a x i s t h r o u g h p o i n t 0 w i t h

a n g u l a r s p e e d w . P r o v e t h a t t h e l i n e a r v e l o c i t y v o f a

p o i n t P o f t h e b o d y w i t h p o s i t i o n v e c t o r r i s g i v e n b y

v = , w x r , w h e r e w i s t h e v e c t o r w i t h m a g n i t u d e w w h o s e

d i r e c t i o n i s t h a t i n w h i c h a r i g h t - h a n d e d s c r e w w o u l d

a d v a n c e u n d e r t h e g i v e n r o t a t i o n .

S i n c e P t r a v e l s i n a c i r c l e o f r a d i u s r s i n 0 , t h e m a g n i -

t u d e o f t h e l i n e a r v e l o c i t y v i s w ( r s i n 0 ) _ j c v x r I .

A l s o , v

m u s t b e p e r p e n d i c u l a r t o b o t h w a n d r a n d i s s u c h t h a t r , 4 ) a n d

v f o r m a r i g h t - h a n d e d s y s t e m .

T h e n v a g r e e s b o t h i n m a g n i t u d e a n d d i r e c t i o n w i t h w x r ;

h e n c e v = 6 ) x r .

T h e v e c t o r C a i s c a l l e d t h e a n g u l a r v e l o c i t y .

T R I P L E P R O D U C T S .

3 7 . S h o w t h a t A ( B x C ) i s i n a b s o l u t e v a l u e e q u a l

t o t h e v o l u m e o f a p a r a l l e l e p i p e d w i t h s i d e s

A , B a n d C .

L e t n b e a u n i t n o r m a l t o p a r a l l e l o g r a m 1 ,

h a v i n g t h e d i r e c t i o n o f B x C , a n d l e t h b e t h e

h e i g h t o f t h e t e r m i n a l p o i n t o f A a b o v e t h e p a r -

a l l e l o g r a m 1 .

V o l u m e o f p a r a l l e l e p i p e d =

( h e i g h t h ) ( a r e a o f p a r a l l e l o g r a m 1 )

_

A { J B x C j n } =

I f A , B a n d C d o n o t f o r m a r i g h t - h a n d e d s y s t e m , A . n < 0 a n d t h e v o l u m e =

I A A . ( B x C )

3 8 . I f A = A 1 i + A 2 j + A s k , B = B 1 i + B 2 j + B 3 k ,

C = C 1 i + C 2 j + C 3 k

s h o w t h a t

A - ( B x C )

=

A

i

i

k

B 1 B 2 B 3

C 1

C 2 C 3

A l

A 2

B 1

B 2

C l

C 2

A s

B 3

C 3

= ( A 1 i + A 2 j + A 3 k ) ' l ( B 2 C 3 - B 3 C 2 ) i + ( B 3 C 1 - B 1 C 3 ) j + ( B 1 C 2 - B 2 C 1 ) k

A l A 2 A s

= A 1 ( B 2 C 3 - B 3 C 2 ) + A 2 ( B 3 C 1 - B 1 C 3 ) + A 3 ( B 1 C 2 - B 2 C 1 )

=

B 1

B 2 B 3

C 1

C 2

C 3

Page 34: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 34/234

T h e D O T a n d C R O S S P R O D U C T

2 7

3 9 . E v a l u a t e

( 2 i - 3 j )

[ ( i + j - k ) x ( 3 i - k ) ]

.

B y P r o b l e m 3 8 , t h e r e s u l t i s

2 - 3

0

1

1 - 1

3

0 - 1

= 4 .

A n o t h e r M e t h o d . T h e r e s u l t i s e q u a l t o

( 2 i - 3 j ) . [ i x ( 3 1 - k ) + j x ( 3 i - k ) - k x ( 3 i - k ) ]

=

( 2 i - 3 j ) - [ 3 i x i - i x k + 3 j x i - j x k - 3 k x i + k x k ]

=

( 2 i -

j - 3 k - i - 3 j + 0 )

= ( 2 i - 3 j ) ( - i - 2 j - 3 k ) =

( 2 ) ( - 1 ) + ( - 3 ) ( - 2 ) + ( 0 ) ( - 3 ) =

4 .

4 0 . P r o v e t h a t A ( B x C ) = B ( C x A )

= C ( A x B ) .

B y P r o b l e m 3 8 ,

A ( B x C )

=

A l A 2 A 3

B 1

B 2 B 3

C 1 C 2

C 3

B y a t h e o r e m o f d e t e r m i n a n t s w h i c h s t a t e s t h a t i n t e r c h a n g e o f t w o r o w s o f a d e t e r m i n a n t c h a n g e s i t s

s i g n , w e h a v e

A l A 2 A 3

B 1

B 2 B 3

B 1 B 2 B 3

B 1 B 2 B 3

A l A 2 A s

C 1

C 2 C 3

=

C l

C 2

C 3

C 1

C 2

C 3

A l A 2 A 3

A l A 2 A 3 C 1 C 2 C 3

C l

C 2 C 3

B 1

B 2 B 3

B 1

B 2 B 3

A l A 2 A 3

=

C 1

C 2

C 3

A l A 2 A 3

B 1

B 2

B 3

4 1 .

S h o w t h a t

A - ( B x C ) = ( A x B ) C

F r o m P r o b l e m 4 0 ,

A ( B x C ) = C . ( A x B ) =

( A x B ) C

O c c a s i o n a l l y A ( B x C ) i s w r i t t e n w i t h o u t p a r e n t h e s e s a s A B x C .

I n s u c h c a s e t h e r e c a n n o t b e

a n y a m b i g u i t y s i n c e t h e o n l y p o s s i b l e i n t e r p r e t a t i o n s a r e A ( B x C ) a n d ( A B ) x C . T h e l a t t e r h o w e v e r

h a s n o m e a n i n g s i n c e t h e c r o s s p r o d u c t o f a s c a l a r w i t h a v e c t o r i s u n d e f i n e d .

T h e r e s u l t A B x C = A x B C i s s o m e t i m e s s u m m a r i z e d i n t h e s t a t e m e n t t h a t t h e d o t a n d c r o s s c a n

b e i n t e r c h a n g e d w i t h o u t a f f e c t i n g t h e r e s u l t .

4 2 . P r o v e t h a t

A ( A x C ) = 0 .

F r o m P r o b l e m 4 1 ,

A . ( A x C ) =

( A x A ) . C =

0 .

4 3 . P r o v e t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n f o r t h e v e c t o r s A , B a n d C t o b e c o p l a n a r i s t h a t

A B x C = 0 .

N o t e t h a t A A . B x C c a n h a v e n o m e a n i n g o t h e r t h a n A ( B x C ) .

I f A , B a n d C a r e c o p l a n a r t h e v o l u m e o f t h e p a r a l l e l e p i p e d f o r m e d b y t h e m i s z e r o . T h e n b y P r o b l e m

3 7 ,

A B x C = 0

t h e v o l u m e o f t h e p a r a l l e l e p i p e d f o r m e d b y v e c t o r s A , B a n d C i s z e r o ,

a n d s o t h e v e c t o r s m u s t l i e i n a p l a n e .

4 4 . L e t

r 1 = x 1 i + y 1 j + z 1 k ,

r 2 = x 2 i + y 2 i + z 2 k

a n d

r 3 = x 3 i + y 3 j + z 3 k

b e t h e p o s i t i o n v e c t o r s o f

Page 35: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 35/234

2 8

T h e D O T a n d C R O S S P R O D U C T

p o i n t s P i ( x 1 , y i , z 1 ) ,

P 2 ( x 2 , y 2 , z 2 ) a n d P 3 ( x 3 , y 3 , z 3 ) .

F i n d a n e q u a t i o n f o r t h e p l a n e p a s s i n g t h r o u g h P 1 ,

P 2 a n d P 3

.

W e a s s u m e t h a t P i , P 2 a n d P 3 d o n o t l i e i n t h e s a m e

s t r a i g h t l i n e ; h e n c e t h e y d e t e r m i n e a p l a n e .

L e t r = x i + y j + z k d e n o t e t h e p o s i t i o n v e c t o r o f a n y

p o i n t P ( x , y , z )

i n t h e p l a n e . C o n s i d e r v e c t o r s P I P 2 =

r 2 - r 1 , P i P 3 = r 3 - r 1 a n d P 1 P = r - r i w h i c h a l l l i e i n

t h e p l a n e .

B y P r o b l e m 4 3 ,

P I P

P i P 2 X P 1 P 3 = 0

o r

( r - r i ) . ( r 2 - r i ) x ( r 3 - r 1 )

=

0

I n t e r m s o f r e c t a n g u l a r c o o r d i n a t e s t h i s b e c o m e s

[ ( x - x i ) i + ( y - y 1 ) i + ( z - z 1 ) k ]

[ ( x 2 _ x 1 ) i + ( y 2 - Y 1 ) i + ( z 2 - z 1 ) k ] x [ ( x 3 - x 1 ) i + ( y 3 - Y 1 ) j + ( z 3 - z i ) k ] = 0

o r , u s i n g P r o b l e m 3 8 ,

- x 1

X 2 - X I

Y - Y 1

Y 2 - Y i

x 3 - x 1 Y 3 - y 1

= 0 .

4 5 . F i n d a n e q u a t i o n f o r t h e p l a n e d e t e r m i n e d b y t h e p o i n t s P 1 ( 2 , - 1 , 1 ) ,

P 2 ( 3 , 2 , - 1 ) a n d P 3 ( , - 1 , 3 , 2 ) .

T h e p o s i t i o n v e c t o r s o f P 1 , P 2 , P 3 a n d a n y p o i n t P ( x , y , z ) a r e r e s p e c t i v e l y r 1 = 2 1 - j + k ,

r 2 = 3 i + 2 j - k ,

r 3 = - i + 3 j + 2 k a n d r = x i + y j + z k .

T h e n P P 1 = r - r 1 ,

P 2 P 1 = r 2 - r 1 ,

P 3 P 1 = r 3 - r 1

a l l l i e i n t h e r e q u i r e d p l a n e , s o t h a t

( r - r 1 )

( r 2 - r 1 ) x ( r 3 - r 1 )

=

0

i . e .

[ ( x - 2 ) i + ( y + 1 ) j + ( z - 1 ) k ]

[ i + 3 j - 2 k ] x [ - 3 i + 4 j + k ]

=

0

[ ( x - 2 ) i + ( y + 1 ) j + ( z - l ) k ]

[ 1 l i + 5 j + 1 3 k ]

=

0

1 1 ( x - 2 ) + 5 ( y + 1 ) + 1 3 ( z - - 1 ) = 0

o r

1 1 x + 5 y + 1 3 z =

3 0 .

4 6 . I f t h e p o i n t s P , Q a n d R , n o t a l l l y i n g o n t h e s a m e s t r a i g h t l i n e , h a v e p o s i t i o n v e c t o r s a , b a n d c

r e l a t i v e t o a g i v e n o r i g i n , s h o w t h a t a x b + b x c + c x a i s a v e c t o r p e r p e n d i c u l a r t o t h e p l a n e

o f P , Q a n d R .

L e t r b e t h e p o s i t i o n v e c t o r o f a n y p o i n t i n t h e p l a n e o f P . Q a * 1 R . T h e n t h e v e c t o r s r - a , b -

a a n d

c - a a r e c o p l a n a r , s o t h a t b y P r o b l e m 4 3

( r - a )

( b - a ) x ( C - a )

= 0

o r

( r - a )

( a x b + b x c + c x a ) =

0 .

T h u s a x b + b x c + c x a i s p e r p e n d i c u l a r t o r - a a n d i s t h e r e f o r e p e r p e n d i c u l a r t o t h e p l a n e o f P , Q

a n d R .

4 7 . P r o v e : ( a )

A x ( B x C ) = B ( A C ) - C ( A B ) ,

( b )

( A x B ) x C = B ( A C ) - A ( B C ) .

( a ) L e t A = A i i + A 2 j + A s k ,

B = B 1 i + B 2 j + B 3 k , C = C i i + C 2 j + C 3 k .

i

j

k

T h e n

A x ( B x C ) _ ( A l l + A 2 j + A s k ) x

B 1 B 2 B 3

C 1 C 2 C 3

= ( A 1 i + A 2 j + A 3 k ) x ( [ B 2 C 3 - B 3 C 2 ] i + [ B S C 1 - B I C 3 ] i + [ B 1 C 2 - B 2 C 1 ] k )

Page 36: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 36/234

T h e D O T a n d C R O S S P R O D U C T

2 9

i j

k

A l A 2

A s

B 2 C 3 - B 3 C 2

B 3 C 1 - B 1 C 3

B 1 C 2 - B 2 C 1

_

( A 2 B 1 C 2 - A 2 B 2 C 1 - A 3 B 2 C 1 + A 3 B 1 C 3 ) i + ( A 3 B 2 C 3 - A 3 B 3 C 2 - A 1 B 1 C 2 + A 1 B 2 C 1 ) j

+ ( A 1 B 3 C 1 - A 1 B 1 C 3 - A 2 B 2 C 3 + A 2 B 3 C 2 ) k

A l s o

B ( A C ) - C ( A B )

( B 1 i + B 2 j + B 3 k ) ( A 1 C 1 + A 2 C 2 + A 3 C 3 ) - ( C 1 i + C 2 j + C 3 k ) ( A 1 B 1 + A 2 B 2 + A 4 B 3 )

( A 2 B 1 C 2 + A 3 B 1 C 3 - A 2 C 1 B 2 - A 3 C 1 B 3 ) i

+ ( B 2 A j C j + B 2 A 3 C 3 - C 2 A j . B j - C 2 A s B 3 ) j

+ ( B 3 A 1 C 1 + B 3 A 2 C 2 - C 3 A 1 B 1 - C 3 A 2 B 2 ) k

a n d t h e r e s u l t f o l l o w s .

( b ) ( A x B ) x C = - C x ( A x B ) = - { A ( C B ) - B ( C A ) } = B ( A C ) - A ( B C )

u p o n r e p l a c i n g A , B a n d

C i n ( a ) b y C , A a n d B r e s p e c t i v e l y .

N o t e t h a t

A x ( B x C ) / ( A x B ) x C ,

i . e . t h e a s s o c i a t i v e l a w f o r v e c t o r c r o s s p r o d u c t s i s n o t

v a l i d f o r a l l v e c t o r s A , B , C .

4 8 . P r o v e : ( A x B ) ( C X D ) =

F r o m P r o b l e m 4 1 ,

X . ( C X D ) _ ( X X C ) D .

L e t X = A X B ;

t h e n

( A x B ) ( C x D ) _ { ( A x B ) x C } D = { B ( A C ) - A ( B C ) }

D

_

( A C ) ( B D ) - ( A D ) ( B C ) ,

u s i n g P r o b l e m 4 7 ( b ) .

4 9 . P r o v e : A x ( B x C ) + B x ( C x A ) + C x ( A x B ) =

0 .

B y P r o b l e m 4 7 ( a ) ,

A d d i n g , t h e r e s u l t f o l l o w s .

A x ( B x C ) =

B

x ( C x A )

= C ( B A ) - A ( B C )

C x ( A x B ) = A ( C B ) - B ( C A )

5 0 . P r o v e : ( A x B ) x ( C x D ) =

B ( A C x D ) - A ( B C x D ) = C ( A B x D ) - D ( A B x C ) .

B y P r o b l e m 4 7 ( a ) ,

X x ( C x D ) = C ( X D ) - D ( X C ) .

L e t X = A x B ;

t h e n

( A x B ) x ( C x D ) = C ( A x B D ) - D ( A x B C )

= C ( A B X D ) - D ( A B X C )

B y P r o b l e m 4 7 ( b ) ,

( A x B ) x Y = B ( A Y ) - A ( B Y ) . L e t Y = C x D ; t h e n

( A x B ) x ( C x D ) = B ( A C x D ) - A ( B C x D )

5 1 . L e t P Q R b e a s p h e r i c a l t r i a n g l e w h o s e s i d e s p , q , r a r e a r c s o f g r e a t c i r c l e s . P r o v e t h a t

s i n P

s i n p

s i n Q

s i n q

s i n R

s i n r

S u p p o s e t h a t t h e s p h e r e ( s e e f i g u r e b e l o w ) h a s u n i t r a d i u s , a n d l e t u n i t v e c t o r s A , B a n d C b e d r a w n

f r o m t h e c e n t e r 0 o f t h e s p h e r e t o P , Q a n d R r e s p e c t i v e l y . F r o m P r o b l e m 5 0 ,

( 1 )

( A x B ) x ( A x C )

=

( A B x C ) A

Page 37: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 37/234

3 0

T h e D O T a n d C R O S S P R O D U C T

A u n i t v e c t o r p e r p e n d i c u l a r t o A x B a n d A x C i s A , s o

t h a t ( 1 ) b e c o m e s

( 2 ) s i n r s i n q s i n P A

=

( A . B x C ) A

o r

( 3 )

s i n r

s i n q s i n P

= A B x C

B y c y c l i c p e r m u t a t i o n o f p , q , r , P , Q , R a n d A , B , C w e

o b t a i n

( 4 )

s i n p s i n r

s i n Q

= B C x A

( 5 )

s i n q s i n p s i n R = C A x B

T h e n s i n c e t h e r i g h t h a n d s i d e s o f ( 3 ) , ( 4 ) a n d ( 5 ) a r e

e q u a l ( P r o b l e m 4 0 )

s i n r s i n q s i n P =

s i n p s i n r s i n Q = s i n q s i n p s i n R

f r o m w h i c h w e f i n d

s i n P

s i n Q

s i n R

s i n p

s i n q

s i n r

T h i s i s c a l l e d t h e l a w o f s i n e s f o r s p h e r i c a l t r i a n g l e s .

5 2 . P r o v e :

( A x B ) ( B x C ) x ( C x A )

( A B x C ) 2 .

B y P r o b l e m 4 7 ( a ) ,

X x ( C x A ) = C ( X A ) - A ( X . C ) .

L e t X = B x C ; t h e n

( B x C ) x ( C x A )

=

C ( B x C A ) - A ( B x C C )

= C ( A B x C ) - A ( B C x C ) = C ( A B x C )

T h u s

( A x B ) ( B x C ) x ( C x A ) =

( A x B ) C ( A B x C )

( A x B C ) ( A B x C ) _ ( A B x C ) 2

5 3 . G i v e n t h e v e c t o r s

a ' =

b x c

b ' =

c x a

a n d c ' =

a x b

, s h o w t h a t i f a b x c X 0 ,

a b x c '

a - b x c

a b x c

( a ) a ' a = b ' b = c ' c = 1 ,

( b ) a ' b = a ' c = 0 , b ' - a = b ' c = 0 ,

c ' a = c ' b = 0 ,

( c ) i f a b x c = V

t h e n a b ' x c ' = 1 / V ,

( d ) a ' , b ' , a n d c ' a r e n o n - c o p l a n a r i f a , b a n d c a r e n o n - c o p l a n a r .

( a ) a a = a a = a

b x c

=

a b x c =

1

a b x c

a b x c

_

b ' b = b b ' = b

c x a _ b c x a

=

a . b x c

a b x c

a b x c

a b x c

C

= c c = c -

a x b

=

c a x b

=

a b x c

_

1

a b x c

a b x c

a b x c

( b ) a b = b a = b

b x c

b b x c

b x b c

_ 0

a b x c

a b x c a b x c

S i m i l a r l y t h e o t h e r r e s u l t s f o l l o w . T h e r e s u l t s c a n a l s o b e s e e n b y n o t i n g , f o r e x a m p l e , t h a t a h a s

t h e d i r e c t i o n o f b x c a n d s o m u s t b e p e r p e n d i c u l a r t o b o t h b a n d c , f r o m w h i c h a b = 0 a n d a c = 0 .

F r o m ( a ) a n d ( b ) w e s e e t h a t t h e s e t s o f v e c t o r s a , b , c a n d a ' , b ' , c ' a r e r e c i p r o c a l v e c t o r s . S e e

a l s o S u p p l e m e n t a r y P r o b l e m s 1 0 4 a n d 1 0 6 .

Page 38: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 38/234

T h e D O T a n d C R O S S P R O D U C T

( C )

T h e n

a

_

b x c

c x a

c , _ a x b

V V

V

( a b x

V 3

V

V

u s i n g P r o b l e m 5 2 .

3 1

( d ) B y P r o b l e m 4 3 , i f

a , b a n d c a r e n o n - c o p l a n a r a b x c # 0 .

T h e n f r o m p a r t ( c ) i t f o l l o w s t h a t

a

b ' x c X 0

, s o t h a t a ' , b ' a n d c a r e a l s o n o n - c o p l a n a r .

5 4 . S h o w t h a t a n y v e c t o r r c a n b e e x p r e s s e d i n t e r m s o f t h e r e c i p r o c a l v e c t o r s o f P r o b l e m 5 3

r

=

( r - a ' ) a + ( r b ' ) b + ( r - d ) e .

F r o m P r o b l e m 5 0 ,

B ( A C x D ) - A ( B C x D )

=

C ( A B x D ) - D ( A B x C )

T h e n

D

D )

D ) +

D )

=

-

A . B x C

A . B x C

A

= a , B = b , C = c a n d D = r . T h e n

r

r b x c a

+ r c x a b +

r a x b c

a b x c

a b x c a b x c

x

r

( a b b x c ) a

+

r

( a c b x c ) b +

r

( a a b b c ) c

=

( r a ) a + ( r b ) b + ( r c ) c

S U P P L E M E N T A R Y P R O B L E M S

5 5 . E v a l u a t e :

( a ) k ( i + j ) ,

( b )

( i - 2 k )

( j + 3 k ) , ( c ) ( 2 i - j + 3 k ) ( 3 i + 2 j - k ) .

A n s .

( a ) 0

( b ) - 6

( c ) 1

5 6 .

I f A = i + 3 j - 2 k a n d B = 4 i - 2 j + 4 k , f i n d :

( a ) A B , ( b ) A ,

( c ) B ,

( d ) 1 3 A + 2 B ) ,

( e ) ( 2 A + B ) . ( A - 2 B ) .

A n s .

( a ) - 1 0

( b ) 1 4 ( c ) 6

( d )

1 5 0

( e ) - 1 4

a s

5 7 . F i n d t h e a n g l e b e t w e e n : ( a ) A = 3 i + 2 j - 6 k a n d B = 4 i - 3 j + k , ( b ) C = 4 i - 2 j + 4 k a n d D = 3 i - 6 j - 2 k .

A n s . ( a ) 9 0 °

( b ) a r c c o s 8 / 2 1 = 6 7 ° 3 6 '

5 8 . F o r w h a t v a l u e s o f a a r e A = a i - 2 j + k a n d B = 2 a i + a j - 4 k p e r p e n d i c u l a r 9

A n s . a = 2 , - 1

5 9 . F i n d t h e a c u t e a n g l e s w h i c h t h e l i n e j o i n i n g t h e p o i n t s ( 1 , - 3 , 2 ) a n d ( 3 , - 5 , 1 ) m a k e s w i t h t h e c o o r d i n a t e

a x e s .

A n s .

a r e c o s 2 / 3 , a r e c o s 2 / 3 , a r c c o s 1 / 3 o r 4 8 ° 1 2 ' , 4 8 ° 1 2 ' , 7 0 0 3 2 '

6 0 . F i n d t h e d i r e c t i o n c o s i n e s o f t h e l i n e j o i n i n g t h e p o i n t s ( 3 , 2 , - 4 ) a n d ( 1 , - 1 , 2 ) .

A n s . 2 / 7 , 3 / 7 , - 6 / 7 o r - 2 / 7 , - 3 / 7 , 6 / 7

6 1 . T w o s i d e s o f a t r i a n g l e a r e f o r m e d b y t h e v e c t o r s A = 3 i + 6 j - 2 k a n d B = 4 1 - j + 3 k .

D e t e r m i n e t h e a n g l e s

o f t h e t r i a n g l e .

A n s .

a r c c o s 7 / 0 7 - 5 , a r c c o s 2 6 / 7 5 , 9 0 °

o r

3 6 ° 4 ' , 5 3 ° 5 6 ' , 9 0 °

6 2 . T h e d i a g o n a l s o f a p a r a l l e l o g r a m a r e g i v e n b y A = 3 i - 4 j - k a n d B = 2 i + 3 j - 6 k . S h o w t h a t t h e p a r a l l e l o -

g r a m i s a r h o m b u s a n d d e t e r m i n e t h e l e n g t h o f i t s s i d e s a n d i t s a n g l e s .

A n s .

5 v " 3 - / 2 , a r c c o s 2 3 / 7 5 ,

1 8 0 ° - a r e c o s 2 3 / 7 5

o r

4 . 3 3 , 7 2 ° 8 ' ,

1 0 7 ° 5 2 '

Page 39: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 39/234

3 2

T h e D O T a n d C R O S S P R O D U C T

6 3 . F i n d t h e p r o j e c t i o n o f t h e v e c t o r

2 i - 3 j + 6 k o n t h e v e c t o r

i + 2 j + 2 k .

A n s . 8 / 3

6 4 . F i n d t h e p r o j e c t i o n o f t h e v e c t o r 4 1 - 3 J + k o n t h e l i n e p a s s i n g t h r o u g h t h e p o i n t s ( 2 , 3 , - 1 ) a n d ( - 2 , - 4 , 3 ) .

A n s .

1

6 5 . I f A = 4 i - j + 3 k a n d B = - 2 i + j - 2 k , f i n d a u n i t v e c t o r p e r p e n d i c u l a r t o b o t h A

a n d B .

A n s . ± ( i - 2 j - 2 k ) / 3

6 6 . F i n d t h e a c u t e a n g l e f o r m e d b y t w o d i a g o n a l s o f a c u b e .

A n s .

a r c c o s 1 / 3 o r

7 0 ° 3 2 `

6 7 . F i n d a u n i t v e c t o r p a r a l l e l t o t h e x y p l a n e a n d p e r p e n d i c u l a r t o t h e v e c t o r 4 i - 3 j + k .

A n s . ± ( 3 i + 4 j ) / 5

6 8 . S h o w t h a t A = ( 2 i - 2 j + k ) / 3 , B = ( i + 2 j + 2 k ) / 3 a n d C = ( 2 i + j - 2 k ) / 3 a r e m u t u a l l y o r t h o g o n a l u n i t

v e c t o r s .

6 9 . F i n d t h e w o r k d o n e i n m o v i n g a n o b j e c t a l o n g a s t r a i g h t l i n e f r o m ( 3 , 2 , - 1 ) t o ( 2 , - 1 , 4 ) i n a f o r c e f i e l d g i v e n

b y F = 4 1 - 3 j + 2 k .

A n s . 1 5

7 0 . L e t F b e a c o n s t a n t v e c t o r f o r c e f i e l d . S h o w t h a t t h e w o r k d o n e i n m o v i n g a n o b j e c t a r o u n d a n y c l o s e d p o l -

y g o n i n t h i s f o r c e f i e l d i s z e r o .

7 1 . P r o v e t h a t a n a n g l e i n s c r i b e d i n a s e m i - c i r c l e i s a r i g h t a n g l e .

7 2 . L e t A B C D b e a p a r a l l e l o g r a m . P r o v e t h a t A B 2 + B C 2 + C D 2 + D A 2 = A C 2 +

i f

7 3 .

I f A B C D i s a n y q u a d r i l a t e r a l a n d P a n d Q a r e t h e m i d p o i n t s o f i t s d i a g o n a l s , p r o v e t h a t

A B 2 + B C 2 + C D - 2 + D A 2 = A C 2 + Y D - 2 + 4 P Q 2

T h i s i s a g e n e r a l i z a t i o n o f t h e p r e c e d i n g p r o b l e m .

7 4 .

( a ) F i n d a n e q u a t i o n o f a p l a n e p e r p e n d i c u l a r t o a g i v e n v e c t o r A a n d d i s t a n t p f r o m t h e o r i g i n .

( b ) E x p r e s s t h e e q u a t i o n o f ( a ) i n r e c t a n g u l a r c o o r d i n a t e s .

A n s . ( a ) r n = p , w h e r e n = A / A ; ( b ) A 1 x + A 2 y + A 3 z = A p

7 5 . L e t r 1 a n d r 2 b e u n i t v e c t o r s i n t h e x y p l a n e m a k i n g a n g l e s a a n d R w i t h t h e p o s i t i v e x - a x i s .

( a ) P r o v e t h a t r 1 = c o s a i

+ s i n a j ,

r 2 = c o s ( 3 i

+ s i n I 3 j .

( b ) B y c o n s i d e r i n g r 1 . r 2 p r o v e t h e t r i g o n o m e t r i c f o r m u l a s

c o s ( a - ( 3 ) = c o s a c o s a + s i n a s i n ( 3 ,

c o s ( ( % + S ) =

c o s a c o s ( 3 - s i n a s i n R

7 6 . L e t a b e t h e p o s i t i o n v e c t o r o f a g i v e n p o i n t ( x 1 , y 1 , z 1 ) , a n d r t h e p o s i t i o n v e c t o r o f a n y p o i n t ( x , y , z ) .

D e -

s c r i b e t h e l o c u s o f r i f ( a )

I r - a I

= 3 , ( b ) ( r - a ) . a = 0 ,

( c ) ( r - a ) . r = 0 .

A n s . ( a ) S p h e r e , c e n t e r a t ( x 1 , y 1 , z 1 ) a n d r a d i u s 3 .

( b ) P l a n e p e r p e n d i c u l a r t o a a n d p a s s i n g t h r o u g h i t s t e r m i n a l p o i n t .

( c ) S p h e r e w i t h c e n t e r a t ( x 1 / 2 , y 1 / 2 , z 1 / 2 ) a n d r a d i u s i

x i + y 1 + z 1 , o r a s p h e r e w i t h a a s d i a m e t e r .

7 7 . G i v e n t h a t A = 3 i + j + 2 k a n d B = i - 2 j - 4 k a r e t h e p o s i t i o n v e c t o r s o f p o i n t s P a n d Q r e s p e c t i v e l y .

( a ) F i n d a n e q u a t i o n f o r t h e p l a n e p a s s i n g t h r o u g h Q a n d p e r p e n d i c u l a r t o l i n e P Q .

( b ) W h a t i s t h e d i s t a n c e f r o m t h e p o i n t ( - 1 , 1 , 1 ) t o t h e p l a n e ?

A n s .

( a )

0

o r

2 x + 3 y + 6 z = - 2 8 ;

( b ) 5

7 8 . E v a l u a t e e a c h o f t h e f o l l o w i n g :

( a ) 2 j x ( 3 i - 4 k ) , ( b ) ( i + 2 j ) x k , ( c ) ( 2 i - 4 k ) x ( i + 2 j ) , ( d ) ( 4 i + j - 2 k ) x ( 3 i + k ) , ( e ) ( 2 i + j - k ) x ( 3 i - 2 j + 4 k ) .

A n s . ( a ) - 8 i - 6 k ,

( b ) 2 i - j ,

( c ) 8 i - 4 j + 4 k ,

( d ) i - l O j - 3 k ,

( e ) 2 i - l l j - 7 k

7 9 . I f A = 3 i - j - 2 k a n d B = 2 i + 3 j + k , f i n d :

( a ) I A x B I ,

( b ) ( A + 2 B ) x ( 2 A - B ) ,

( c )

I ( A + B ) x ( A - B )

.

A n s . ( a ) ,

( b ) - 2 5 i + 3 5 j - 5 5 k ,

( c ) 2

1 9 5

8 0 .

I f A = i - 2 j - 3 k , B = 2 1 + j - k a n d C = i + 3 j - 2 k , f i n d :

( a )

I ( A x B ) x C I ,

( c ) A ( B x C ) ,

( e ) ( A x B ) x ( B x C )

( b ) I A x ( B x C ) I ,

( d )

( f )

A n s .

( a ) 5

2 6 ,

( b ) 3

1 6 , ( c ) - 2 0 ,

( d ) - 2 0 ,

( e ) - 4 0 1 - 2 0 j + 2 0 k , ( ( f ) 3 5 i - 3 5 j + 3 5 k

8 1 . S h o w t h a t i f A 0 a n d b o t h o f t h e c o n d i t i o n s ( a )

a n d ( b ) A x B = A x C h o l d s i m u l t a n e o u s l y

t h e n B = C , b u t i f o n l y o n e o f t h e s e c o n d i t i o n s h o l d s t h e n B # C n e c e s s a r i l y .

8 2 . F i n d t h e a r e a o f a p a r a l l e l o g r a m h a v i n g d i a g o n a l s A = 3 i + J - 2 k a n d B = i - 3 j + 4 k .

A n s .

5 0 3 -

Page 40: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 40/234

T h e D O T a n d C R O S S P R O D U C T

3 3

8 3 . F i n d t h e a r e a o f a t r i a n g l e w i t h v e r t i c e s a t ( 3 , - 1 , 2 ) , ( 1 , - 1 , - 3 ) a n d ( 4 , - 3 , 1 ) .

A n s . 2

6 1

8 4 .

I f A = 2 t + j - 3 k a n d B = i - 2 j + k , f i n d a v e c t o r o f m a g n i t u d e 5 p e r p e n d i c u l a r t o

b o t h A a n d B .

A n s . ±

5 3

( i + j + k )

8 5 . U s e P r o b l e m 7 5 t o d e r i v e t h e f o r m u l a s

s i n ( a - ( 3 ) = s i n a c o s ( 3 - c o s a s i n Q ,

s i n ( a + ( 3 )

= s i n a c o s S + c o s a s i n R

8 6 . A f o r c e g i v e n b y F = 3 i + 2 j - 4 k i s a p p l i e d a t t h e p o i n t ( 1 , - 1 , 2 ) . F i n d t h e m o m e n t o f F

a b o u t t h e p o i n t

( 2 , - 1 , 3 ) .

A n s .

2 1 - 7 j - 2 k

8 7 . T h e a n g u l a r v e l o c i t y o f a r o t a t i n g r i g i d b o d y a b o u t a n a x i s o f r o t a t i o n i s g i v e n b y w = 4 i + j - 2 k . F i n d t h e

l i n e a r v e l o c i t y o f a p o i n t P o n t h e b o d y w h o s e p o s i t i o n v e c t o r r e l a t i v e t o a p o i n t o n t h e a x i s o f r o t a t i o n i s

2 i - 3 j + k .

A n s . - 5 i - 8 i - - 1 4 k

8 8 . S i m p l i f y ( A + B ) ( B + C ) x ( C + A ) .

A n s . 2 A B x C

8 9 . P r o v e t h a t

( A

B x C ) ( a b x c ) _

A a A b A c

B a B b B c

C - a C b C c

9 0 . F i n d t h e v o l u m e o f t h e p a r a l l e l e p i p e d w h o s e e d g e s a r e r e p r e s e n t e d b y

A = 2 t - 3 j + 4 k , B = i + 2 j - k '

C = 3 i - j + 2 k .

A n s . 7

9 1 .

I f A . B x C = 0 , s h o w t h a t e i t h e r ( a ) A , B a n d C a r e c o p l a n a r b u t n o t w o o f t h e m a r e c o l l i n e a r , o r ( b )

t w o

o f t h e v e c t o r s A , B a n d C a r e c o l l i n e a r , o r ( c ) a l l o f t h e v e c t o r s A , B a n d C a r e c o l l i n e a r .

9 2 . F i n d t h e c o n s t a n t a s u c h t h a t t h e v e c t o r s 2 i - j + k , i + 2 j - 3 k a n d 3 i + a j + 5 k a r e c o p l a n a r .

A n s . a =

9 3 .

I f A = x 1 a + y i b + z i c , B = x 2 a + y 2 b + z 2 c a n d C = x 3 a + y 3 b + z 3 c ,

p r o v e t h a t

A B x C

x i

Y 1

Z i

X 2

Y 2

Z 2

X 3

Y 3

Z 3

( a b x c )

- 4

9 4 . P r o v e t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t A x ( B x C ) = ( A x B ) x C i s ( A x C ) x B = 0 .

D i s -

c u s s t h e c a s e s w h e r e A - B = 0 o r B C = 0 .

9 5 . L e t p o i n t s P . Q a n d R h a v e p o s i t i o n v e c t o r s r 1 = 3 i - 2 j - k , r 2 = i + 3 j + 4 k a n d r 3 = 2 1 + j - 2 k r e l a t i v e t o

a n o r i g i n 0 . F i n d t h e d i s t a n c e f r o m P t o t h e p l a n e O Q R .

A n s .

3

9 6 . F i n d t h e s h o r t e s t d i s t a n c e f r o m ( 6 , - 4 , 4 ) t o t h e l i n e j o i n i n g ( 2 , 1 , 2 ) a n d ( 3 , - 1 , 4 ) .

A n s .

3

9 7 . G i v e n p o i n t s P ( 2 , 1 , 3 ) , Q ( 1 , 2 , 1 ) , R ( - 1 , - 2 , - 2 ) a n d S ( 1 , - 4 , 0 ) , f i n d t h e s h o r t e s t d i s t a n c e b e t w e e n l i n e s P Q a n d

R S .

A n s . 3 v 2

9 8 . P r o v e t h a t t h e p e r p e n d i c u l a r s f r o m t h e v e r t i c e s o f a t r i a n g l e t o t h e o p p o s i t e s i d e s ( e x t e n d e d i f n e c e s s a r y )

m e e t i n a p o i n t ( t h e o r t h o c e n t e r o f t h e t r i a n g l e ) .

9 9 . P r o v e t h a t t h e p e r p e n d i c u l a r b i s e c t o r s o f t h e s i d e s o f a t r i a n g l e m e e t i n a p o i n t ( t h e c i r c u m c e n t e r o f t h e t r i -

a n g l e ) .

1 0 0 . P r o v e t h a t ( A x B ) ( C x D ) + ( B x C ) ( A x D ) + ( C x A ) ( B x D ) = 0 .

1 0 1 . L e t P Q R b e a s p h e r i c a l t r i a n g l e w h o s e s i d e s p , q , r a r e a r c s o f g r e a t c i r c l e s . P r o v e t h e l a w o f c o s i n e s f o r

s p h e r i c a l t r i a n g l e s ,

c o s p = c o s q c o s r + s i n q s i n r c o s P

w i t h a n a l o g o u s f o r m u l a s f o r c o s q a n d c o s r o b t a i n e d b y c y c l i c p e r m u t a t i o n o f t h e l e t t e r s .

[ H i n t : I n t e r p r e t b o t h s i d e s o f t h e i d e n t i t y ( A x B ) ( A x C ) = ( B C ) ( A A ) - ( A C ) ( B A ) . ]

Page 41: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 41/234

3 4

T h e D O T a n d C R O S S P R O D U C T

1 0 2 . F i n d a s e t o f v e c t o r s r e c i p r o c a l t o t h e s e t 2 1 + 3 j - k , i - j - 2 k , - i + 2 j + 2 k .

A n s . 2 i + l k

- 8 i + j - ? k , - ? i + j - 5 k

3 3 3 3 3 3

b x c

b

,

c x a

,

a x b

1 0 3 . I f

a ' =

a . b x c '

a b x c

a n d

c =

a b x c '

p r o v e t h a t

b ' x c '

c ' x

a

a x b '

a ' b x c '

b

a b ' x c '

c

a b ' x c '

1 0 4 . I f a , b , c a n d a ' , b ' , c ' a r e s u c h t h a t

a ' a =

b ' b = c ' c

a ' b = a ' c = b ' a = b ' c = c ' a = c ' b = 0

p r o v e t h a t i t n e c e s s a r i l y f o l l o w s t h a t

a

=

b x c

b , =

c x a

C l =

a x b

a b x c

a b x c a b x c

1 0 5 . P r o v e t h a t t h e o n l y r i g h t - h a n d e d s e l f - r e c i p r o c a l s e t s o f v e c t o r s a r e t h e u n i t v e c t o r s i , j , k .

1 0 6 . P r o v e t h a t t h e r e i s o n e a n d o n l y o n e s e t o f v e c t o r s r e c i p r o c a l t o a g i v e n s e t o f n o n - c o p l a n a r v e c t o r s a , b , c .

Page 42: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 42/234

O R D I N A R Y D E R I V A T I V E S O F V E C T O R S . L e t R ( u )

b e a v e c t o r d e p e n d i n g o n a s i n g l e s c a l a r v a r i a b l e u .

T h e n

L R

_

R ( u + A u ) - R ( u )

A u

A u

w h e r e A u d e n o t e s a n i n c r e m e n t i n u ( s e e a d j o i n i n g

f i g u r e ) .

T h e o r d i n a r y d e r i v a t i v e o f t h e v e c t o r R ( u ) w i t h r e s p e c t t o t h e s c a l a r u i s g i v e n b y

d R

=

l i m

A R

=

l i m

R ( u + A u ) - R ( u )

d u

A u - ' o A u

A u - . o

A u

i f t h e l i m i t e x i s t s .

S i n c e d R i s i t s e l f a v e c t o r d e p e n d i n g o n u , w e c a n c o n s i d e r i t s d e r i v a t i v e w i t h r e s p e c t t o u . I f

t h i s d e r i v a t i v e e x i s t s i t i s d e n o t e d b y

a R .

I n l i k e m a n n e r h i g h e r o r d e r d e r i v a t i v e s a r e d e s c r i b e d .

S P A C E C U R V E S . I f i n p a r t i c u l a r R ( u ) i s t h e p o s i t i o n v e c t o r r ( u ) j o i n i n g t h e o r i g i n 0 o f a c o o r d i n a t e

s y s t e m a n d a n y p o i n t ( x , y , z ) , t h e n

r ( u )

=

x ( u ) i + y ( u ) j + z ( u ) k

a n d s p e c i f i c a t i o n o f t h e v e c t o

u n c t i o n r ( u d e f i n e s x , y a n d z a s f u n c t i o n s o f

A s u c h a n g e s , t h e t e r m i n a l p o i n t o f r d e s c r i b e s

a s p a c e c u r v e h a v i n g p a r a m e t r i c e q u a t i o n s

x = x ( u ) ,

y = y ( u ) ,

z = z ( u )

T h e n

Q u

=

r ( u + A u u )

A u

- r ( u )

i s a v e c t o r i n

O r

t h e d i -

r e c t i o n o f A r ( s e e a d j a c e n t f i g u r e ) .

I f

l i m

= d r

A U - 0 A u

d u

e x i s t s , t h e l i m i t w i l l b e a v e c t o r i n t h e d i r e c t i o n o f

t h e t a n g e n t t o t h e s p a c e c u r v e a t ( x , y , z ) a n d i s g i v -

e n b y

d r

_

d x

d y d z

d u d u l +

i

u

+ d u k

I f u i s t h e t i m e t ,

d

r e p r e s e n t s t h e v e l o c i t y v w i t h

w h i c h t h e t e r m i n a l p o i n t o f r d e s c r i b e s t h e c u r v e . S i m i l a r l y ,

d

a l o n g t h e c u r v e .

x

d 2 r

d t 2

3 5

r e p r e s e n t s i t s a c c e l e r a t i o n a

Page 43: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 43/234

3 6

V E C T O R D I F F E R E N T I A T I O N

C O N T I N U I T Y A N D D I F F E R E N T I A B I L I T Y . A s c a l a r f u n c t i o n

c ( u ) i s c a l l e d c o n t i n u o u s a t u i f

l i m o 4 ) ( u + A u ) _ 0 ( u ) .

E q u i v a l e n t l y , ¢ 6 ( u ) i s c o n t i n u -

A U -

o u s a t u i f f o r e a c h p o s i t i v e n u m b e r a w e c a n f i n d s o m e p o s i t i v e n u m b e r 6 s u c h t h a t

1 g b ( u + A u )

- 0 ( u )

l < E

w h e n e v e r

j A u j

< 8 .

A v e c t o r f u n c t i o n R ( u ) = R 1 ( u ) i + R 2 ( u ) j + R 3 ( u ) k i s c a l l e d c o n t i n u o u s a t u i f t h e t h r e e s c a l a r

m R ( u + A u ) = R ( u ) . E q u i v a l e n t l y , R ( u )

u n c t i o n s R 1 ( u ) , R 2 ( u ) a n d R 3 ( u ) a r e c o n t i n u o u s a t u o r i f

A l u

o

i s c o n t i n u o u s a t u i f f o r e a c h p o s i t i v e n u m b e r e w e c a n f i n d s o m e p o s i t i v e n u m b e r 8 s u c h t h a t

I R ( u + A u )

- R ( u )

I

<

E

w h e n e v e r

I A u f

<

8 .

A s c a l a r o r v e c t o r f u n c t i o n o f u i s c a l l e d d i f f e r e n t i a b l e o f o r d e r n i f i t s n t h d e r i v a t i v e e x i s t s . A

f u n c t i o n w h i c h i s d i f f e r e n t i a b l e i s n e c e s s a r i l y c o n t i n u o u s b u t t h e c o n v e r s e i s n o t t r u e . U n l e s s o t h e r -

w i s e s t a t e d w e a s s u m e t h a t a l l f u n c t i o n s c o n s i d e r e d a r e d i f f e r e n t i a b l e t o a n y o r d e r n e e d e d i n a p a r -

t i c u l a r d i s c u s s i o n .

D I F F E R E N T I A T I O N F O R M U L A S . I f A , B a n d C a r e d i f f e r e n t i a b l e v e c t o r f u n c t i o n s o f a s c a l a r u , a n d

0 i s a d i f f e r e n t i a b l e s c a l a r f u n c t i o n o f u , t h e n

2 .

d u ( A + B )

d u

( A

B )

=

d A +

d u

A d B + d u B

3 .

u ( A x B )

= A x

d B

+

d A x B

4 .

u ( O A )

_

d A

+

L o A

d u

d u

d u ( A - B x C ) _

d u

+

d A B x C

6 . d

u

{ A x ( B x C ) }

=

A X ( x C ) + d u x ( B x C )

T h e o r d e r i n t h e s e p r o d u c t s m a y b e i m p o r t a n t .

P A R T I A L D E R I V A T I V E S O F V E C T O R S . I f A i s a v e c t o r d e p e n d i n g o n m o r e t h a n o n e s c a l a r v a r i a b l e ,

s a y x , y , z

f o r e x a m p l e , t h e n w e w r i t e A = A ( x , y , z ) . T h e

p a r t i a l d e r i v a t i v e o f A w i t h r e s p e c t t o x i s d e f i n e d a s

'

=

l m

A ( x + A x ,

y , z ) - A ( x , y , z )

x

A X - 0

A x

i f t h i s l i m i t e x i s t s . S i m i l a r l y ,

a A

A ( x , y + A y , z ) - A ( x , y , z )

y

y m o A y

a A

l i r a

A ( x , y , z + A z ) - A ( x , y , z )

a z

_

A z

Page 44: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 44/234

V E C T O R D I F F E R E N T I A T I O N 3 7

a r e t h e p a r t i a l d e r i v a t i v e s o f A w i t h r e s p e c t t o y a n d z r e s p e c t i v e l y i f t h e s e l i m i t s e x i s t .

T h e r e m a r k s o n c o n t i n u i t y a n d d i f f e r e n t i a b i l i t y f o r f u n c t i o n s o f o n e v a r i a b l e c a n b e e x t e n d e d t o

f u n c t i o n s o f t w o o r m o r e v a r i a b l e s .

F o r e x a m p l e , c ( x , y )

i s c a l l e d c o n t i n u o u s a t

( x , y ) i f

J i m 0 ( x + A x , y + A y ) = q 5 ( x , y ) ,

o r i f f o r e a c h p o s i t i v e n u m b e r e w e c a n f i n d s o m e p o s i t i v e n u m b e r

A Y - 0

8 s u c h t h a t

0 ( x + A x , y + A y ) - g b ( x , y ) 1 < E w h e n e v e r

j A x j

< 8 a n d

I A y I

< 8 .

S i m i l a r d e f i -

n i t i o n s h o l d f o r v e c t o r f u n c t i o n s .

F o r f u n c t i o n s o f t w o o r m o r e v a r i a b l e s w e u s e t h e t e r m d i f f e r e n t i a b l e t o m e a n t h a t t h e f u n c t i o n

h a s c o n t i n u o u s f i r s t p a r t i a l d e r i v a t i v e s . ( T h e t e r m i s u s e d b y o t h e r s i n a s l i g h t l y w e a k e r s e n s e . )

H i g h e r d e r i v a t i v e s c a n b e d e f i n e d a s i n t h e c a l c u l u s . T h u s , f o r e x a m p l e ,

a 2 A

_

a

A

2 A a A

a x e

a x ( a x ) ,

a y e

a y - 6 y )

a 2 A

a a A

a 2 A

a ( a A

a x a y = a x ( a y

a y a x

=

a y a x

a 2 A

a a A

a z 2 a z ( a z )

a 3 A

a

a 2 A

a x a z 2

-

a x a z 2

I f A h a s c o n t i n u o u s p a r t i a l d e r i v a t i v e s o f t h e s e c o n d o r d e r a t l e a s t , t h e n a 2 A ' - a 2 `

a x a y

a y a x

, i . e . t h e

o r d e r o f d i f f e r e n t i a t i o n d o e s n o t m a t t e r .

R u l e s f o r p a r t i a l d i f f e r e n t i a t i o n o f v e c t o r s a r e s i m i l a r t o t h o s e u s e d i n e l e m e n t a r y c a l c u l u s f o r

s c a l a r f u n c t i o n s . T h u s i f A a n d B a r e f u n c t i o n s o f x , y , z t h e n , f o r e x a m p l e ,

1 . a x

( A B ) = A -

a $

+ 2 A . B

a x ( A x B ) = A x

a B

+

a A x

B

=

{ a x ( A . B ) }

=

a

{ A . a B

+ a A . B }

y

y

A

a 2 B

+

a A 3 B

+

a A a B

+

a 2 A

. B

a y a x

a y

a x

a x a y a y a x

'

e t c .

D I F F E R E N T I A L S O F V E C T O R S f o l l o w r u l e s s i m i l a r t o t h o s e o f e l e m e n t a r y c a l c u l u s .

1 .

I f A = A l ' + A 2 j + A 3 k , t h e n d A = d A 1 i + d A 2 j + d A 3 k

2 . d ( A B ) = A d B + d A B

3 . d ( A x B ) = A x d B + d A x B

A

A

d x +

a A

d y + a

d z ,

e t c .

.

I f A = A ( x , y , z ) , t h e n

d A = a

F o r e x a m p l e ,

D I F F E R E N T I A L G E O M E T R Y i n v o l v e s a s t u d y o f s p a c e c u r v e s a n d s u r f a c e s .

I f C i s a s p a c e c u r v e

d e f i n e d b y t h e f u n c t i o n r ( u ) , t h e n w e h a v e s e e n t h a t d u i s a v e c t o r i n

t h e d i r e c t i o n o f t h e t a n g e n t t o C . I f t h e s c a l a r u i s t a k e n a s t h e a r c l e n g t h s m e a s u r e d f r o m s o m e f i x e d

p o i n t o n C , t h e n - d - r -

i s a u n i t t a n g e n t v e c t o r t o C a n d i s d e n o t e d b y T ( s e e d i a g r a m b e l o w ) .

T h e

Page 45: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 45/234

3 8

V E C T O R D I F F E R E N T I A T I O N

r a t e a t w h i c h T c h a n g e s w i t h r e s p e c t t o s i s a m e a -

s u r e o f t h e c u r v a t u r e o f C a n d i s g i v e n b y d T .

T h e

d T

a s

d i r e c t i o n o f

d s

a t a n y g i v e n p o i n t o n C i s n o r m a l t o

t h e c u r v e a t t h a t p o i n t ( s e e P r o b l e m 9 ) . I f N i s a

u n i t v e c t o r i n t h i s n o r m a l d i r e c t i o n , i t i s c a l l e d t h e

p r i n c i p a l n o r m a l t o t h e c u r v e . T h e n d s = K N , w h e r e

K i s c a l l e d t h e c u r v a t u r e o f C a t t h e s p e c i f i e d p o i n t .

T h e q u a n t i t y p = 1 / K i s c a l l e d t h e r a d i u s o f c u r v a -

t u r e .

A u n i t v e c t o r B p e r p e n d i c u l a r t o t h e p l a n e o f T a n d N a n d s u c h t h a t B = T x N , i s c a l l e d t h e b i -

n o r m a l t o t h e c u r v e .

I t f o l l o w s t h a t d i r e c t i o n s T , N , B f o r m a l o c a l i z e d r i g h t - h a n d e d r e c t a n g u l a r c o -

o r d i n a t e s y s t e m a t a n y s p e c i f i e d p o i n t o f C . T h i s c o o r d i n a t e s y s t e m i s c a l l e d t h e t r i h e d r a l o r t r i a d

a t t h e p o i n t . A s s c h a n g e s , t h e c o o r d i n a t e s y s t e m m o v e s a n d i s k n o w n a s t h e m o v i n g t r i h e d r a l .

A s e t o f r e l a t i o n s i n v o l v i n g d e r i v a t i v e s o f t h e f u n d a m e n t a l v e c t o r s T , N a n d B i s k n o w n c o l l e c -

t i v e l y a s t h e F r e n e t - S e r r e t f o r m u l a s g i v e n b y

d T

= K N , d N = T B - K T ,

d B

= - T N

w h e r e r i s a s c a l a r c a l l e d t h e t o r s i o n . T h e q u a n t i t y c r = 1 / T i s c a l l e d t h e r a d i u s o f t o r s i o n .

T h e o s c u l a t i n g p l a n e t o a c u r v e a t a p o i n t P i s t h e p l a n e c o n t a i n i n g t h e t a n g e n t a n d p r i n c i p a l

n o r m a l a t P . T h e n o r m a l p l a n e i s t h e p l a n e t h r o u g h P p e r p e n d i c u l a r t o t h e t a n g e n t . T h e r e c t i f y i n g

p l a n e i s t h e p l a n e t h r o u g h P w h i c h i s p e r p e n d i c u l a r t o t h e p r i n c i p a l n o r m a l .

M E C H A N I C S o f t e n i n c l u d e s a s t u d y o f t h e m o t i o n o f p a r t i c l e s a l o n g c u r v e s , t h i s s t u d y b e i n g k n o w n

a s k i n e m a t i c s . I n t h i s c o n n e c t i o n s o m e o f t h e r e s u l t s o f d i f f e r e n t i a l g e o m e t r y c a n b e o f

v a l u e .

A s t u d y o f f o r c e s o n m o v i n g o b j e c t s i s c o n s i d e r e d i n d y n a m i c s .

F u n d a m e n t a l t o t h i s s t u d y i s

N e w t o n ' s f a m o u s l a w w h i c h s t a t e s t h a t i f F i s t h e n e t f o r c e a c t i n g o n a n o b j e c t o f m a s s

m m o v i n g

w i t h v e l o c i t y v , t h e n

F =

d t ( m v )

w h e r e m y i s t h e m o m e n t u m o f t h e o b j e c t . I f m i s c o n s t a n t t h i s b e c o m e s F =

m

d v

= m a , w h e r e a i s

a t

t h e a c c e l e r a t i o n o f t h e o b j e c t .

Page 46: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 46/234

V E C T O R D I F F E R E N T I A T I O N

3 9

S O L V E D P R O B L E M S

1 . I f R ( u ) = x ( u ) i + y ( u ) j + z ( u ) k , w h e r e x , y a n d z a r e d i f f e r e n t i a b l e f u n c t i o n s o f a s c a l a r u ,

p r o v e

t h a t

d u R

d u 1 + d j

+ d u

k .

R ( u + A u ) - - - R ( u )

R

=

l i

m

d u

A U - 0

A u

[ x ( u + A u ) i + Y ( u + A u ) i + z ( u + A u ) k ] -

[ x ( u ) i

+

Y ( u ) j + z ( u ) k ]

= J i m

A u - 0

A U

x ( u + A u ) - x ( u )

i

y ( u + A u ) - y ( u )

z ( u + A u ) - z ( u )

k

l i m

A u - 0

+

A u

D u

+

D u

d x

d y

,

d z

d u i +

d d u

+ d u k

2 2

A R

d R

d R

d R

2 . G i v e n R = s i n t i + c o s t j + t k ,

f i n d ( a )

d t

,

( b ) d t 2

,

( c )

I

d t

I

, ( d )

I

d t 2

d R d

d

d

( a )

d t

d t

( s i n t ) i +

d t

( c o s t ) j +

d t

( t ) k = c o s t i - s i n t j + k

d 2 R

d d R

d

d

d

( b )

d t 2 d t ( d t ) = d t

( c o S t ) i -

d t

( s i n t ) j +

d t

( 1 ) k = - s i n t i - c o s t j

( c )

I

d R

I

=

( c o S t ) 2 + ( - s i n t ) 2 + ( 1 ) 2

=

2

( d )

I

d t R I

( - s i n t ) 2 + ( - c o s t ) ' =

1

3 . A p a r t i c l e m o v e s a l o n g a c u r v e w h o s e p a r a m e t r i c e q u a t i o n s a r e x = e - t , y = 2 c o s 3 t , z = 2 s i n 3 t ,

w h e r e t i s t h e t i m e .

( a ) D e t e r m i n e i t s v e l o c i t y a n d a c c e l e r a t i o n a t a n y t i m e .

( b ) F i n d t h e m a g n i t u d e s o f t h e v e l o c i t y a n d a c c e l e r a t i o n a t t = 0 .

( a ) T h e p o s i t i o n v e c t o r r o f t h e p a r t i c l e i s r = x i + y j + z k = e - t i + 2 c o s 3 t j + 2 s i n 3 t k .

T h e n t h e v e l o c i t y i s

v =

d r

= - e - t i - 6 s i n 3 t j + 6 c o s 3 t k

2

a n d t h e a c c e l e r a t i o n i s a = d r

= e ' " t i - 1 8 c o s 3 t j - 1 8 s i n 3 t k

d t 2

2

( b ) A t t = 0 ,

d t

= - i + 6 k

a n d

d t 2 =

i - 1 8 j .

T h e n

m a g n i t u d e o f v e l o c i t y a t t = 0 i s

( - 1 ) 2 + ( 6 ) 2 = 3 7

m a g n i t u d e o f a c c e l e r a t i o n a t t = 0 i s

( 1 ) 2 + ( - 1 8 ) 2 = 4 2 5 .

4 . A p a r t i c l e m o v e s a l o n g t h e c u r v e x = 2 t 2 , y = t 2 - 4 t , z = 3 t - 5 , w h e r e t i s t h e t i m e .

F i n d t h e

c o m p o n e n t s o f i t s v e l o c i t y a n d a c c e l e r a t i o n a t t i m e t = 1 i n t h e d i r e c t i o n i - 3 j + 2 k .

Page 47: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 47/234

4 0

V E C T O R D I F F E R E N T I A T I O N

V e l o c i t y

=

d t

d t

[ 2 t 2 i + ( t 2 - 4 t ) j + ( 3 t - 5 ) k ]

= 4 t i + ( 2 t - 4 ) j

+ 3 k

=

4 i - 2 j + 3 k

a t t = 1 .

U n i t v e c t o r i n d i r e c t i o n i - 3 j + 2 k i s

i - 3 j + 2 k

i - 3 i + 2 k

( 1 ) 2 + ( - 3 ) 2 + ( 2 ) 2

T h e n t h e c o m p o n e n t o f t h e v e l o c i t y i n t h e g i v e n d i r e c t i o n i s

( 4 1 - 2 j + 3 k )

( i - 3 j + 2 k )

( 4 ) ( 1 ) + ( - 2 ) ( - 3 ) + ( 3 ) ( 2 )

1 6

8

1 4

V 4 7

A c c e l e r a t i o n

=

d t 2

=

d t ( d t ) d t

[ 4 t i + ( 2 t - 4 ) j + 3 k ] = 4 t + 2 j + O k .

T h e n t h e c o m p o n e n t o f t h e a c c e l e r a t i o n i n t h e g i v e n d i r e c t i o n i s

( 4 1 + 2 j + O k ) ( i - 3 j + 2 k )

( 4 ) ( 1 ) + ( 2 ) ( - 3 ) + ( 0 ) ( 2 )

- 2

- , 1

v / 1 4

V " I 4 Y / 1 4 7

5 . A c u r v e C i s d e f i n e d b y p a r a m e t r i c e q u a t i o n s x = x ( s ) , y = y ( s ) , z = z ( s ) ,

w h e r e s i s t h e a r e

l e n g t h o f C m e a s u r e d f r o m a f i x e d p o i n t o n C .

I f r i s t h e p o s i t i o n v e c t o r o f a n y p o i n t o n C , s h o w

t h a t d r / d s i s a u n i t v e c t o r t a n g e n t t o C .

T h e v e c t o r

d r

=

d

( x i + y j + z k ) =

d x

i

+ - j +

d z

k

d s

d s

d s

d s d s

z = z ( s ) .

T o s h o w t h a t i t h a s u n i t m a g n i t u d e w e n o t e t h a t

f d s l

=

i s t a n g e n t t o t h e c u r v e x = x ( s ) , y = y ( s ) ,

/ ( d x ) 2

+ ( d z ) 2 = / ( d x ) + ( d y ) 2 + ( d z ) 2

d s

d s

d s

/

( d s ) 2

s i n c e

( d s ) 2 = ( d x ) 2 + ( d y ) 2 + ( d z ) 2 f r o m t h e c a l c u l u s .

1

6 . ( a ) F i n d t h e u n i t t a n g e n t v e c t o r t o a n y p o i n t o n t h e c u r v e x = t 2 + 1 , y = 4 t - 3 , z =

2 1 2 - 6 t .

( b ) D e t e r m i n e t h e u n i t t a n g e n t a t t h e p o i n t w h e r e t = 2

.

( a ) A t a n g e n t v e c t o r t o t h e c u r v e a t a n y p o i n t i s

d t

d t

[ ( t 2 + 1 ) i + ( 4 t - 3 ) j + ( 2 t 2 - 6 t ) k ]

=

2 t i + 4 j + ( 4 t - 6 ) k

T h e m a g n i t u d e o f t h e v e c t o r i s

I d

( 2 t ) 2 + ( 4 ) 2 + ( 4 t - - 6 ) 2 .

2 t i + Q + ( 4 t - 6 ) k

T h e n t h e r e q u i r e d u n i t t a n g e n t v e c t o r i s

T =

( 2 t ) 2 + ( 4 ) 2 + ( 4 t - 6 ) 2

d r

d s

, f ,

=

d r / d t

_

d r

N o t e t h a t s i n c e

d t

d t

'

d s / d t

d s

( b ) A t t = 2 ,

t h e u n i t t a n g e n t v e c t o r i s T =

4 i + 4 j + 2 k

=

2

t +

2 2 j

+

1

1 k .

( 4 ) 2 + ( 4 ) 2 + ( 2 ) 2

3 3

3

7 . I f A a n d B a r e d i f f e r e n t i a b l e f u n c t i o n s o f a s c a l a r u , p r o v e :

( a )

d u ( A B ) = A d B + d u B ,

( b ) d u ( A x B ) = A x d B + d A - x B

Page 48: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 48/234

V E C T O R D I F F E R E N T I A T I O N

4 1

( a ) l i m

A u - 0

( A

+ A B ) -

A

A B

+

A A

- B +

A . d B +

A u A u A u

A

A B + A A B + A A A B

A u

A n o t h e r M e t h o d . L e t A = A 1 i + A 2 J + A s k , B = B 1 i + B 2 j + B 3 k .

T h e n

d u ( A B )

=

u ( A 1 B 1 + A 2 B 2 + A 3 B 3 )

( b ) d u ( A x B )

_

( A 1 d B 1 + A 2 d B 2 + A 3 d B 3 ) + ( d A 1 B 1 + d A 2 B 2 + d A 3 B 3 )

=

A . d B + d A , B

d u d u d u

d u

d u d u

d u d u

l i m

( A + A A ) x ( B + A n ) - A x B

A X A B + A A X B + A A x A B

A u

l i m

=

l i m

A x

A B

+

D A

x B +

L A - x A B = A x

d B + d A

x B

A u A u

A u

d u

d u

A n o t h e r M e t h o d .

j

A 2

B 2

d u ( A x B )

=

d u

i

A l

B 1

k

A s

B 3

U s i n g a t h e o r e m o n d i f f e r e n t i a t i o n o f a d e t e r m i n a n t , t h i s b e c o m e s

i

j

k

i

j k

4

A

4 4

d B

d A

A l

A 2

A s

d u

d

3

2

u

d u

=

A x

d u

+ d u x B

d B 1

d B 2

d B 3

B 1

B 2

B 3

d u

d u

d u

8 . I f A = 5 t 2 i + t j - t 3 k a n d B = s i n t i - c o s t j

,

f i n d ( a ) d t ( A - B ) , ( b )

d t

( A x B ) ,

( c )

a

( A A ) .

( a )

A . d B + d A B

=

( 5 t 2 i + t j - t A k )

( c o s t i + s i n t j )

=

5 t 2 c o s t + t s i n t + 1 0 t s i n t - c o s t

A n o t h e r M e t h o d .

A . B = 5 t 2 S i n t - t c o s t .

T h e n

d t

( A . B )

+

( l o t i + j - 3 t 2 k )

( s i n s i - c o s t j )

=

( 5 t 2 - 1 ) c o s t + l i t s i n t

= d t ( 5 t 2 s i n t - t c o s t )

=

5 t 2 c o s t + l O t s i n t + t s i n t - c o s t

=

( 5 t 2 - 1 ) c o s t

+ l i t S i n t

i

j

k i j "

k

( b ) d

t

( A x B ) =

A x

d

B +

d A

X B

=

5 t 2

t

- t 3

+

l o t 1

- 3 t 2

c o s t

s i n t

0

s i n t

- c o s t

0

Page 49: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 49/234

4 2

V E C T O R D I F F E R E N T I A T I O N

[ t 3 s i n t i - t 3 c o s t j + ( 5 t 2 s i n t - t c o s t ) k ]

+ [ - 3 t 2 c o s t i - 3 t 2 s i n t j + ( - l o t c o s t - s i n t ) k ]

( t 3 s i n t - 3 t 2 c o s t ) i - ( t 3 c o s t + 3 t 2 s i n t ) j + ( 5 t 2 s i n t - s i n t - 1 1

t c o s t ) k

A n o t h e r M e t h o d .

i j

k

A x B =

5 t 2

t - t 3

s i n t - c o s t

0

- t 3 c o s t i - 0 s i n t j + ( - 5 t 2 c o s t - t s i n t ) k

T h e n d t ( A x B )

_

( t 3 s i n t - 3 t 2 c o s t ) i - ( t 3 c o s t + 3 t 2 s i n t ) j + ( 5 t 2 s i n t

- l I t c o s t - s i n t ) k

( c ) 9 - ( A . A )

= A ,

+ d A A

2 A .

d t

d t

d t

=

2 ( 5 t 2 i + t j - t 3 k )

( l o t i + j - 3 t 2 k ) = 1 0 0 t 3 + 2 t + 6 t 5

A n o t h e r M e t h o d .

A A

=

( 5 t 2 ) 2 + ( t ) 2 + ( - t 3 ) 2

=

2 5 t 4 + t 2 + t B

T h e n

d t ( 2 5 t 4 + t 2 + t 8 )

=

l o o t ' + 2 t + 6 t 5 .

9 . I f A h a s c o n s t a n t m a g n i t u d e s h o w t h a t A a n d d A / d t a r e p e r p e n d i c u l a r p r o v i d e d

S i n c e A h a s c o n s t a n t m a g n i t u d e , A A = c o n s t a n t .

T h e n

d t ( A . A )

= A

d A +

d A

=

0 .

T h u s

A

M A

= 0 a n d A i s p e r p e n d i c u l a r t o d A p r o v i d e d

f f d A

I

I

# o '

t

d t

d t

1 0 . P r o v e u ( A B x C )

= A B x d u + A d B x C +

L A B x C

, w h e r e A , B , C a r e d i f f e r e n t i a b l e

f u n c t i o n s o f a s c a l a r u .

B y P r o b l e m s 7 ( a ) a n d 7 ( b ) ,

d u A ( B x C )

d u ' B x C

d B x C ]

+ d u B x C

d u B x C

1 1 . E v a l u a t e

d t ( V d V x d )

B y P r o b l e m 1 0 , d ( V . d V x

d 2 V )

= .

d V

x

d 3 V

+ V .

d 2 V

x

d 2 V

+

d V d V

x

d 2 V

d t d t

d t 2

d t

d t 3

d t 2

d t 2

d t

d t

d t 2

3 V

3

d

d t 3

+ 0 + 0

=

V . d V x d t -

1 2 . A p a r t i c l e m o v e s s o t h a t i t s p o s i t i o n v e c t o r i s g i v e n b y r = c o s W t i + s i n w t j

w h e r e c v i s a c o n -

s t a n t . S h o w t h a t ( a ) t h e v e l o c i t y v o f t h e p a r t i c l e i s p e r p e n d i c u l a r t o r , ( b ) t h e a c c e l e r a t i o n

a i s

d i r e c t e d t o w a r d t h e o r i g i n a n d h a s m a g n i t u d e p r o p o r t i o n a l t o t h e d i s t a n c e f r o m t h e

o r i g i n , ( c ) r x v =

a c o n s t a n t v e c t o r .

Page 50: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 50/234

V E C T O R D I F F E R E N T I A T I O N

( a ) v

d r

d t =

- w s i n w t i + w c o s c o t j

T h e n [ c o s w t i + s i n c o t j ]

[ - c o s i n w t i + w c o s w t j ]

( c o s w t ) ( - w s i n w t ) + ( s i n w t ) ( w c o s w t ) = 0

a n d r a n d v a r e p e r p e n d i c u l a r .

4 3

2

( b ) W d t

=

- C O 2 c o s w t i - C O 2 s i n w t j

= _ w 2 [ c o s w t i + s i n w t j ]

=

- w 2 r

T h e n t h e a c c e l e r a t i o n i s o p p o s i t e t o t h e d i r e c t i o n o f r ,

i . e . i t i s d i r e c t e d t o w a r d t h e o r i g i n . I t s

m a g n i t u d e i s p r o p o r t i o n a l t o

I r I w h i c h i s t h e d i s t a n c e f r o m t h e o r i g i n .

+ w

c o s w t j ]

c ) r x v =

[ c o s w t i + s i n w t j ] x [ - w s i n w t i

i

j

k

c o s w t

s i n w t

0

- w s i n w t

w c o s w t

0

= c o ( c o s 2 w t + s i n e w t ) k = w k ,

a c o n s t a n t v e c t o r .

P h y s i c a l l y , t h e m o t i o n i s t h a t o f a p a r t i c l e m o v i n g o n t h e c i r c u m f e r e n c e o f a c i r c l e w i t h c o n s t a n t

a n g u l a r s p e e d w . T h e a c c e l e r a t i o n , d i r e c t e d t o w a r d t h e c e n t e r o f t h e c i r c l e , i s t h e c e n t r i p e t a l a c c e l -

e r a t i o n .

2

1 3 . P r o v e :

A x

d B _

d A x B

-

d ( A x d B _

d A x B ) .

d t 2

d t 2

d t

d t

d t

d

L B

-

d A

=

d d B

-

d d A

d t

( A x

d t d t x B ) d t ( A x d t )

d t ( d t x

B )

A x

d 2 B

+ d A x d B _ [ d A x d B +

d 2 A x B ]

d t 2

d t

d t d t

d t

d t 2

1 4 . S h o w t h a t

A A . A

t

A

d t

L e t A = A 1 i + A 2 j + A 3 k .

T h e n A =

A l + A 2 + A 3

d A

_

1 ( A 1

+ A 2 +

A 3 ) ` 1 / 2 ( 2 A 1 d A 1

+

2 A 2 d A 2

+

2 A 3 d ' 4 s )

d t

2

d t

d t

d t

d A 1

d A 2 d A 3 d A

A l

d t

+ A 2 d t

+ A 3 d t

A -

d t

( A l + A 2 + A 3 ) 1 / ' 2

A n o t h e r M e t h o d .

A

S i n c e

A . A = A 2 ,

d t ( A . A ) =

d t

( A 2 ) .

i . e .

A d t = A

d A

.

d

=

A

d A d A d A

d

2

d A

d r

( A

A )

d t

+

d t ' A

=

2 A d t

a n d d t ( A ) = 2 A d t

T h e n 2 A

d A =

2 A

d A

o r

A .

d A

= A

d A

d t d t d t d t

A x 6 4 -

d 2 A x B

d t 2

d t 2

N o t e t h a t i f A i s a c o n s t a n t v e c t o r A .

M

= 0 a s i n P r o b l e m 9 .

Page 51: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 51/234

4 4

V E C T O R D I F F E R E N T I A T I O N

1 5 . I f A = ( 2 x 2 y - x 4 ) i + ( e - " Y - y s i n x ) j + ( x 2 c o s y ) k , f i n d :

a A a A a 2 A ' 6 2 A - a a 2 A

' 3 2 A

' 3 x ' a y

'

a '

a y ,

x a y a y a x

a A

=

a x ( 2 x 2 y - x 4 ) i +

a ( e x y

- y s i n x ) j

+

a x

( x 2 c o s y ) k

_

( 4 x y - 4 x 3 ) i + ( y e x y - y c o s x ) j + 2 x c o s y k

( e x y - y s i n x ) j +

a

( x 2 c o s y ) k

2 x 2 y - x 4 ) i

+ a

A

- a y

y

a y

2 x 2 i

+ ( x e x y - s i n x ) j - x 2 s i n y k

2

a A

=

a x

( 4 x y - 4 x 3 ) i + a x ( y e x y - y c o s x ) j +

, a

( 2 x c o s y ) k

a x e

a 2 A

a y 2

a 2 A

a x a y

( 4 y - 1 2 x 2 ) i + ( y 2 e x y + y s i n x ) j + 2 c o s y k

a

( 2 x 2 ) i +

( x e x y - s i n x ) j -

a

( x 2 s i n y ) k

a y

a y

a y

0 + x 2 e x y j - x 2 c o s y k = x 2 e x y j - x 2 c o s y k

a x ( a A )

a x

( 2 x 2 )

i + a x

( x e x y - s i n x ) j - a x ( x 2 s i n y ) k

y

=

4 x i + ( x y e x y + e x y - c o s x ) j - 2 x s i n y k

a 2 A

a a A

a a

3

a y a x

a y a x

a y

a y

4 x i

+ ( x y e x y + e x y - c o s x ) j - 2 x s i n y k

2

2

N o t e t h a t

a x = a - A ,

i . e . t h e o r d e r o f d i f f e r e n t i a t i o n i s i m m a t e r i a l . T h i s i s t r u e i n g e n e r a l i f A

- a y

- a y

h a s c o n t i n u o u s p a r t i a l d e r i v a t i v e s o f t h e s e c o n d o r d e r a t l e a s t .

1 6 . I f c ( x , y , z ) = x y 2 z a n d A = x z i - x y 2 j + y z 2 k , f i n d

a

( 4 ) A ) a t t h e p o i n t ( 2 , - 1 , 1 ) .

a x a z

g b A

=

( x y 2 z ) ( x z i - x y 2 j + y z 2 k )

=

x 2 y 2 z 2 i - x 2 y 4 z j + x y 3 z 3 k

( O A )

=

a ( x 2 y 2 z 2

i - . x 2 y 4 z j + x y 3 z 3 k )

=

2 x 2 y 2 z i - x 2 y 4 j

+ 3 x y 3 z 2 k

z

a 2

2 z i - ) , e , 4 j + 3

  j + 3 x

3 z 2 k )

= 4 x

3 z 2 k

z i - x 2

( 2 x 2

y

y

y

y

x a z

a x

3

a

a

a z

( O A )

= ( 4 x y 2 z i - 2 x y 4 j + 3 y 3 z 2 k )

=

4 y 2 z i - 2 y 4 j

x

I f x = 2 , y = - 1 , z = 1 t h i s b e c o m e s 4 ( - 1 ) 2 ( 1 ) i - 2 ( - 1 ) 4 j

= 4 i - 2 j .

a

) i

+ - ( y e x y - y c o s x ) j

+

  ( 4 x

- 4 x

( 2 x c o s y ) k

1 7 . L e t F d e p e n d o n x , y , z , t

w h e r e x , y a n d z d e p e n d o n t .

P r o v e t h a t

d F

a F a F d x

a F d

' 3 F d z

_

Page 52: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 52/234

V E C T O R D I F F E R E N T I A T I O N

u n d e r s u i t a b l e a s s u m p t i o n s o f d i f f e r e n t i a b i l i t y .

S u p p o s e t h a t

F = F 1 ( x , y , z , t ) i

+ F 2 ( x , y , z , t ) j + F 3 ( x , y , z , t ) k .

d F

=

d F 1 i

+ d F 2 j + d F 3 k

[ a t d t +

a z d x + a F l d y

y

+

{ f a d t

+

a z 3 d x

+

a F 1

- 6 a F 2

' a a F 3

( 1

a t

a t a t

+

j +

k ) d t

+

(

1

+ - J +

k ) a y

+

(

I

+

T h e n

+ a z d z ] i

+

t 2 d t + a x e d x + a F d y +

a z 2

d z ]

a F 3

d y +

a F 3

d z ] k

y

+

( a F 1

i +

- a a F 2

j

+ ' 3 a F 9

k ) d x

a x

a x

a x

- 3 F ,

.

' 3 F 2

,

- 3 a F s - 6 F ,

- 6 a F 2

+

a F 3

k ) d z

j

a z

y

a y

a y

a Z

a z

a F d t

+ a F d x + a F d y +

3 d z

y

a F

a F d x

a F d y

a F d z

F

+

+

.

=

n d s o

d t

a t

a x d t a y d t

- a Z d t

D I F F E R E N T I A L G E O M E T R Y .

1 8 . P r o v e t h e F r e n e t - S e r r e t f o r m u l a s ( a )

T = K N , ( b )

d B

=

T N ,

c d N

= T B - K T .

4 5

( a ) S i n c e T . T = 1 , i t f o l l o w s f r o m P r o b l e m 9 t h a t T . f - 4

= 0 ,

i . e . d s i s p e r p e n d i c u l a r t o T .

I f N i s a u n i t v e c t o r i n t h e d i r e c t i o n d T , t h e n d s = K N . W e c a l l N t h e p r i n c i p a l n o r m a l , K t h e

c u r v a t u r e a n d p = 1 / K t h e r a d i u s o f c u r v a t u r e .

( b ) L e t B = T x N , s o t h a t

d B

=

T x d N +

d T x N = T x d N + K N x N =

T x d N

T h e n T . d B = T . T x

d N

= 0 , s o t h a t T i s p e r p e n d i c u l a r t o d B

B u t f r o m B B = 1

i t f o l l o w s t h a t B d s B = 0 ( P r o b l e m 9 ) , s o t h a t d B i s p e r p e n d i c u l a r t o B a n d

i s t h u s i n t h e p l a n e o f T a n d N .

S i n c e d B i s i n t h e p l a n e o f T a n d N a n d i s p e r p e n d i c u l a r t o T , i t m u s t b e p a r a l l e l t o N ; t h e n d B =

- - T N .

W e c a l l B t h e b i n o r m a l , ' r t h e t o r s i o n , a n d o - = 1 / T t h e r a d i u s o f t o r s i o n .

( c ) S i n c e T , N , B f o r m a r i g h t - h a n d e d s y s t e m , s o d o N , B a n d T , i . e . N = B x T .

T h e n

d N

=

B x d T + d B X T

= B X K N - - T N X T = - K T + T B = T B - - K T .

1 9 . S k e t c h t h e s p a c e c u r v e x = 3 c o s t , y = 3 s i n t ,

z = 4 t a n d f i n d

( a ) t h e u n i t t a n g e n t T , ( b ) t h e p r i n c i p a l n o r m a l N , c u r v a t u r e K

a n d r a d i u s o f c u r v a t u r e p , ( c ) t h e b i n o r m a l B , t o r s i o n r a n d

r a d i u s o f t o r s i o n c r

.

T h e s p a c e c u r v e i s a c i r c u l a r h e l i x ( s e e a d j a c e n t f i g u r e ) . S i n c e

t = z / 4 , t h e c u r v e h a s e q u a t i o n s x = 3 c o s ( z / 4 ) , y = 3 s i n ( z / 4 ) a n d

t h e r e f o r e l i e s o n t h e c y l i n d e r x 2 + y 2 = 9 .

( a ) T h e p o s i t i o n v e c t o r f o r a n y p o i n t o n t h e c u r v e i s

Y

Page 53: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 53/234

4 6

- 3 s i n t i

+ 3 c o s t j + 4 k

r

=

3 c o s t i

+ 3 s i n t j

+ 4 t k

T h e n

( b ) T -

V E C T O R D I F F E R E N T I A T I O N

d r d r

=

( . _ 3 s i n t ) 2 +

( 3 c o s t ) 2 + 4 2

=

5

a t ' d t

I s

I

d r

I

t

I t

=

d r

_

I t

T h u s

T

_ d r

_ d r / d t

d s

d s / d t

-

5

s i n t i

+ 5 c o s t j

+

5

k .

d

t

( - 5 s i n t i +

5

c o s t j

+ 5 k )

I T

d T / d t

3

C o s t i

- -

3 s i n

t j

I s

-

d s / d t

2 5

2 5

c o s t

-

5

s i n t j

S i n c e T = / < N ,

I a T I

=

1 ) < 1 I N I

= K

a s K ? 0 .

T h e n

K =

I T I

2 5 c o s t ) 2

+ ( - 2 5 s i n t ) 2

=

2 5

a n d

p =

1

= 3 5

F r o m d T = K N , w e o b t a i n N =

K

I T

= - c o s t i - s i n t j

i j

k

( c ) B

= T x N

=

5 s i n t

5

3

4

c o s t

5

- C o s t

- s i n t

0

c o s t i

+

5

s i n t j ,

d B

-

4

5 s i n t i -

5

c o s t j +

5

k

d B

_

d B / d t

_ 4

c o s t i

+ 4 s i n s

I s

d s / d t

2 5

2 5

- T N =

- T ( - c o s t i - s i n t j )

_

2 5

c o s t i

+

2 5 s i n t j

o r

T = 2 5

a n d

o - = T =

2 5

2 0 . P r o v e t h a t t h e r a d i u s o f c u r v a t u r e o f t h e c u r v e w i t h p a r a m e t r i c e q u a t i o n s x = x ( s ) , y = y ( s ) , z = z ( s )

i s g i v e n b y p

=

[ ( d 2 2 ) 2 + ( d 2 2 Y

) 2 +

( d 2 2 ) 2 1 - 1 / 2

d s

d s

d s

T h e p o s i t i o n v e c t o r o f a n y p o i n t o n t h e c u r v e i s r = x ( s ) i + y ( s ) j + z ( s ) k .

T h e n

T =

d r

=

d x

i + d y j +

d z k a n d

I T

= d 2 x

i +

d 2 y

+

d 2 z

k

I s

I s

I s I s

I s

d s 2 d s 2

d s 2

B u t

I T

= K N s o t h a t K =

I

I T

s

2

3

2 1 . S h o w t h a t

Y s - a s 2 x a s 3

7 -

P

2

2 2

2

) 2

d s 2

+

( d s 2

) 2

+ ( d s 2

a n d t h e r e s u l t f o l l o w s s i n c e p = K

r

N

d s -

T '

d s 2 =

I T

= K N ,

d s 3 - K

d s v +

d s

N = K ( T B - K T ) +

d s

N = K T B - K 2 T +

I s

2

3

d r

d r x d r

= T K N x ( K T B - K 2 T +

d K N )

d s ' s 2 d s 3

d s

=

K 3 N x T + K d s N x N ) = T . ( K 2 T T + K 3 B ) = K 2 T

T

P 2

Page 54: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 54/234

V E C T O R D I F F E R E N T I A T I O N

T h e r e s u l t c a n b e w r i t t e n

T =

[ ( x , t ) 2 + ( y r , ) 2 + ( z , r ) 2 1 - . 1

Y

z

x

I I

y

i t

z

r r

/ ,

I f f f i l l

I x

y

z

w h e r e p r i m e s d e n o t e d e r i v a t i v e s w i t h r e s p e c t t o s , b y u s i n g t h e r e s u l t o f P r o b l e m 2 0 .

2 2 . G i v e n t h e s p a c e c u r v e x = t , y = t 2 ,

z = 3 t 3 ,

f i n d ( a ) t h e c u r v a t u r e K , ( b ) t h e t o r s i o n r .

( a )

T h e p o s i t i o n v e c t o r i s

r =

t j + t 2 j +

3

t 3 k

T h e n

a n d

d o =

i

+ 2 t j

+ 2 t 2 k

d s _

d r

=

d r d _ r

2

2

2 2

2

d t

d t I

d t - d t

( 1 )

+ ( 2 t )

+ ( 2 t

) =

1 + 2 t

T =

d r

=

d r / d t =

i

+ 2 t j + 2 t 2 k

d s

d s / d t

1 + 2 t 2

4 7

d T

( 1 t 2 t 2 ) ( 2 j + 4 t k ) - ( i + 2 t j + 2 t 2 k ) ( 4 t )

- 4 t i + ( 2 - 4 t 2 ) j + 4 t k

d t

( 1 + 2 t 2 ) 2

( 1 + 2 t 2 ) 2

T h e n

d T

=

d T / d t

4 t i

+ ( 2 - 4 t 2 ) j + 4 t k

d s

d s / d t ( 1 + 2 t 2 ) 3

S i n c e d T

= K N K =

I d T I =

( - . 4 t ) 2 + ( 2 - 4 t 2 ) 2 + ( 4 t ) 2

=

2

a s

a s ( 1 + 2 t 2 ) 3

2 2

( 1 + 2 t )

( b )

)

(

=

1 d T = - 2 t i + ( 1 - - - 2 t 2 ) j + 2 t k

N

o m

_

K d s 1

+ 2 t 2

i j

k

1

2 t 2 t 2

2 t 2 i - 2 t j + k

T h e n B = T x N =

1 + 2 t 2

1 + 2 t 2 1 +

2 t 2

1 + 2 t 2

- 2 t

i - 2 t 2

2

t

1 1 + 2 t 2 1 + 2 t 2

N o w

d B

=

4 t i + ( 4 t 2 - 2 ) j - 4 t k

d t

( 1 + 2 t 2 ) 2

a n d

d B

d s

A l s o , - ' T N =

- - r [

- 2 t i

+ ( 1 - 2 t 2 ) j

+ 2 t k

1 + 2 t 2

N o t e t h a t K = T f o r t h i s c u r v e .

1 + 2 t 2

d B / d t

4 t i

+ ( 4 t 2 - 2 ) j - 4 t k

d s / d t

( 1 + 2 1 2 ) 3

S i n c e

d

= - T N ,

w e f i n d

'

2

r =

( 1 + 2 t 2

2 3 . F i n d e q u a t i o n s i n v e c t o r a n d r e c t a n g u l a r f o r m f o r t h e ( a ) t a n g e n t , ( b ) p r i n c i p a l n o r m a l , a n d ( c )

b i n o r m a l t o t h e c u r v e o f P r o b l e m 2 2 a t t h e p o i n t w h e r e t = 1 .

L e t T o , N o a n d B 0 d e n o t e t h e t a n g e n t , p r i n c i p a l n o r m a l a n d b i n o r m a l v e c t o r s a t t h e r e q u i r e d p o i n t .

T h e n f r o m P r o b l e m 2 2 ,

i

+ 2 j + 2 k

- 2 i - j + 2 k

2 i - 2 i + k

T o =

3

,

N o =

3 ,

B o = 3

Page 55: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 55/234

4 8

V E C T O R D I F F E R E N T I A T I O N

I f A d e n o t e s a g i v e n v e c t o r w h i l e r o a n d r d e n o t e r e s p e c t i v e l y t h e p o s i t i o n v e c t o r s o f t h e i n i t i a l p o i n t

a n d a n a r b i t r a r y p o i n t o f A , t h e n r - r 0 i s p a r a l l e l t o A a n d s o t h e e q u a t i o n o f A i s ( r - r 0 ) x A = 0 .

E q u a t i o n o f t a n g e n t i s

( r - r o ) x T o = 0

T h e n :

E q u a t i o n o f p r i n c i p a l n o r m a l i s

( r - - r o ) x N o = 0

E q u a t i o n o f b i n o r m a l i s

( r - r o ) x B o = 0

I n r e c t a n g u l a r f o r m , w i t h r = x i

+ y j + z k ,

r o = i

+ j + 3 k

t h e s e b e c o m e r e s p e c t i v e l y

x - 1

y - 1

z - 2 / 3 x - 1

_

y - 1

z - 2 / 3

x - 1

- y - 1

z - 2 / 3

1

2 2

- 2

- 1

2

2 - 2

1

T h e s e e q u a t i o n s c a n a l s o b e w r i t t e n i n p a r a m e t r i c f o r m ( s e e P r o b l e m 2 8 , C h a p t e r 1 ) .

2 4 . F i n d e q u a t i o n s i n v e c t o r a n d r e c t a n g u l a r f o r m f o r t h e ( a ) o s c u l a t i n g p l a n e , ( b ) n o r m a l p l a n e , a n d

( c ) r e c t i f y i n g p l a n e t o t h e c u r v e o f P r o b l e m s 2 2 a n d 2 3 a t t h e p o i n t w h e r e t = 1 .

( a ) T h e o s c u l a t i n g p l a n e i s t h e p l a n e w h i c h c o n t a i n s t h e t a n g e n t a n d p r i n c i p a l n o r m a l .

I f r i s t h e p o s i t i o n

v e c t o r o f a n y p o i n t i n t h i s p l a n e a n d r o i s t h e p o s i t i o n v e c t o r o f t h e p o i n t t = 1 , t h e n r - r o i s p e r p e n d i c -

u l a r t o B o , t h e b i n o r m a l a t t h e p o i n t t = 1 , i . e . ( r - r o ) B o = 0 .

( b ) T h e n o r m a l p l a n e i s t h e p l a n e w h i c h i s p e r p e n d i c u l a r t o t h e t a n g e n t v e c t o r a t t h e g i v e n p o i n t . T h e n

t h e r e q u i r e d e q u a t i o n i s ( r - r o ) T o = 0 .

( c ) T h e r e c t i f y i n g p l a n e i s t h e p l a n e w h i c h i s p e r p e n d i c u -

l a r t o t h e p r i n c i p a l n o r m a l a t t h e g i v e n p o i n t .

T h e

r e q u i r e d e q u a t i o n i s ( r - r o ) N o = 0 .

I n r e c t a n g u l a r f o r m t h e e q u a t i o n s o f ( a ) , ( b ) a n d ( c )

b e c o m e r e s p e c t i v e l y ,

2 ( x - 1 ) - - 2 ( y - 1 ) + 1 ( z - 2 / 3 ) =

0 ,

1 ( x - 1 ) + 2 ( y - 1 ) + 2 ( z - - 2 / 3 ) = 0 ,

- 2 ( x - 1 ) - 1 ( y - 1 ) + 2 ( z - 2 / 3 ) =

0 .

T h e a d j o i n i n g f i g u r e s h o w s t h e o s c u l a t i n g , n o r m a l

a n d r e c t i f y i n g p l a n e s t o a c u r v e C a t t h e p o i n t P .

2 5 . ( a ) S h o w t h a t t h e e q u a t i o n r = r ( u , v ) r e p r e s e n t s a s u r f a c e .

r e p r e s e n t s a v e c t o r n o r m a l t o t h e s u r f a c e .b ) S h o w t h a t a u

x T V

( c ) D e t e r m i n e a u n i t n o r m a l t o t h e f o l l o w i n g s u r f a c e , w h e r e a > 0 :

r

= a c o s u s i n v i + a s i n u s i n v j + a c o s v k

( a )

I f w e c o n s i d e r u t o h a v e a f i x e d v a l u e ,

s a y u o ,

t h e n r = r ( u o , v )

r e p r e s e n t s a

c u r v e w h i c h c a n b e d e n o t e d b y u = u o .

S i m i l a r l y

u = u 1

d e f i n e s a n o t h e r c u r v e

r = r ( u 1 , v ) . A s u v a r i e s , t h e r e f o r e , r =

r ( u , v ) r e p r e s e n t s a c u r v e w h i c h m o v e s i n

s p a c e a n d g e n e r a t e s a s u r f a c e S .

T h e n

r = r ( u , v ) r e p r e s e n t s t h e s u r f a c e S t h u s

g e n e r a t e d , a s s h o w n i n t h e a d j o i n i n g f i g -

u r e .

T h e c u r v e s u = u o , u = u

1 ,

. . .

r e p r e s e n t d e f i n i t e c u r v e s o n t h e s u r f a c e . S i m i l a r l y v = v o , v = v 1 ,

r e p r e s e n t c u r v e s o n t h e s u r f a c e .

B y a s s i g n i n g d e f i n i t e v a l u e s t o u a n d v , w e o b t a i n a p o i n t o n t h e s u r f a c e . T h u s c u r v e s u = u o a n d

v = v o , f o r e x a m p l e , i n t e r s e c t a n d d e f i n e t h e p o i n t ( u o , v o ) o n t h e s u r f a c e . W e s p e a k o f t h e p a i r o f n u m -

Page 56: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 56/234

V E C T O R D I F F E R E N T I A T I O N

4 9

b e r s ( u , v ) a s d e f i n i n g t h e c u r v i l i n e a r c o o r d i n a t e s o n t h e s u r f a c e . I f a l l t h e c u r v e s u = c o n s t a n t a n d

v = c o n s t a n t a r e p e r p e n d i c u l a r a t e a c h p o i n t o f i n t e r s e c t i o n , w e c a l l t h e c u r v i l i n e a r c o o r d i n a t e s y s t e m

o r t h o g o n a l . F o r f u r t h e r d i s c u s s i o n o f c u r v i l i n e a r c o o r d i n a t e s s e e C h a p t e r 7 .

( b ) C o n s i d e r p o i n t P h a v i n g c o o r d i n a t e s ( u o , v o )

o n a s u r f a c e S , a s s h o w n i n t h e a d j a c e n t d i a -

g r a m . T h e v e c t o r a r / a u a t P i s o b t a i n e d b y

d i f f e r e n t i a t i n g r w i t h r e s p e c t t o u , k e e p i n g

v = c o n s t a n t = v o . F r o m t h e t h e o r y o f s p a c e

c u r v e s , i t f o l l o w s t h a t a r / a u a t P r e p r e -

s e n t s a v e c t o r t a n g e n t t o t h e c u r v e v = v o a t

P , a s s h o w n i n t h e a d j o i n i n g f i g u r e . S i m i l a r -

l y , a r / a v a t P r e p r e s e n t s a v e c t o r t a n g e n t

t o t h e c u r v e u = c o n s t a n t = u o . S i n c e a r / a u

a n d a r / a v r e p r e s e n t v e c t o r s a t P t a n g e n t

t o c u r v e s w h i c h l i e o n t h e s u r f a c e S a t P , i t

f o l l o w s t h a t t h e s e v e c t o r s a r e t a n g e n t t o t h e

s u r f a c e a t P . H e n c e i t f o l l o w s t h a t

a r

a r

a u

x

a v

i s a v e c t o r n o r m a l t o S a t P .

( c )

a r

= - a s i n u s i n v i

+ a c o s u s i n v j

a u

a r

= a c o s u c o s v i

+ a s i n u c o s v j - a s i n v k

a v

T h e n

a r

x

a r _

a u

a v

i

j

k

- a s i n u s i n v a c o s u s i n v

0

a c o s u c o s v

a s i n u C o s v

- a s i n v

- a

2

C o s u s i n e v i - a 2 s i n u s i n 2 v j - a 2 s i n v c o s v k

r e p r e s e n t s a v e c t o r n o r m a l t o t h e s u r f a c e a t a n y p o i n t ( u , v ) .

A u n i t n o r m a l i s o b t a i n e d b y d i v i d i n g

a u x a v

b y i t s m a g n i t u d e ,

a u x a v I

, g i v e n

b y

a 4 C o s 2 u S i n 4 v + a 4 s i n 2

u s i n 4 v

+ a 4

s i n 2 v

C O S 2

v

=

V a 4 ( c o s 2 u + s i n 2 u ) s i n 4 v

+ a 4 s i n 2 v C O S 2 v

a 4 s i n 2 v ( s i n 2 v + c o s t v )

a 2 s i n v

i f

s i n v > 0

- a 2 s i n v

i f

s i n v < 0

T h e n t h e r e a r e t w o u n i t n o r m a l s g i v e n b y

± ( c o s u s i n v i + s i n u s i n v j

+ c o s v k )

n

I t s h o u l d b e n o t e d t h a t t h e g i v e n s u r f a c e i s d e f i n e d b y x = a c o s u s i n v , y = a s i n u s i n v , z = a

c o s v

f r o m w h i c h i t i s s e e n t h a t x 2 + y 2 + z 2 = 2 , w h i c h i s a s p h e r e o f r a d i u s a . S i n c e r = a n ,

i t f o l l o w s t h a t

n =

c o s u s i n v i

+ s i n u s i n v j

+ c o s v k

i s t h e o u t w a r d d r a w n u n i t n o r m a l t o t h e s p h e r e a t t h e p o i n t ( u , v ) .

2 6 . F i n d a n e q u a t i o n f o r t h e t a n g e n t p l a n e t o t h e s u r f a c e z = x 2 + y 2

a t t h e p o i n t ( 1 , - 1 , 2 ) .

L e t x = u , y = v , z = u 2 + V

2

b e p a r a m e t r i c e q u a t i o n s o f t h e s u r f a c e . T h e p o s i t i o n v e c t o r t o a n y p o i n t

o n t h e s u r f a c e i s

r

= u i

+ v i + ( u 2 + v 2 ) k

Page 57: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 57/234

5 0

V E C T O R D I F F E R E N T I A T I O N

T h e n a u = i + 2 u k =

i + 2 k ,

a v =

i + 2 v k = j - 2 k a t t h e p o i n t ( 1 , - 1 , 2 ) , w h e r e u = 1 a n d v = - 1 .

B y P r o b l e m 2 5 , a n o r m a l n t o t h e s u r f a c e a t t h i s p o i n t i s

' a r - 6 r

n

a u

x

a v

=

( i + 2 k ) x ( j

2 k )

2 i + 2 i + k

T h e p o s i t i o n v e c t o r t o p o i n t ( 1 , - 1 , 2 ) i s R o = i - j + 2 k .

T h e p o s i t i o n v e c t o r t o a n y p o i n t o n t h e p l a n e i s

R = x i + y j + z k

T h e n f r o m t h e a d j o i n i n g f i g u r e , R - R o i s p e r p e n d i c u l a r t o

n a n d t h e r e q u i r e d e q u a t i o n o f t h e p l a n e i s ( R - R o ) n = 0

o r [ ( x i + y j + z k ) - ( i - j + 2 k ) ]

[ - 2 i + 2 j + k ]

=

0

i . e . - - - 2 ( x - 1 ) + 2 ( y + l ) + ( z - 2 ) = 0

o r

2 x - 2 y - z = 2 .

M E C H A N I C S

Y

2 7 . S h o w t h a t t h e a c c e l e r a t i o n a o f a p a r t i c l e w h i c h t r a v e l s a l o n g a s p a c e c u r v e w i t h v e l o c i t y v i s

g i v e n b y

a

=

d V

T +

v 2 N

w h e r e T i s t h e u n i t t a n g e n t v e c t o r t o t h e s p a c e c u r v e , N i s i t s u n i t p r i n c i p a l n o r m a l , a n d p i s t h e

r a d i u s o f c u r v a t u r e .

V e l o c i t y v = m a g n i t u d e o f v m u l t i p l i e d b y u n i t t a n g e n t v e c t o r T

o r v

= v T

D i f f e r e n t i a t i n g ,

B u t b y P r o b l e m 1 8 ( a ) ,

T h e n

v ( ) _

d o

T +

P 2 N

T h i s s h o w s t h a t t h e c o m p o n e n t o f t h e a c c e l e r a t i o n i s d v / d t i n a d i r e c t i o n t a n g e n t t o t h e p a t h a n d v 2 / p i n

a d i r e c t i o n o f t h e p r i n c i p a l n o r m a l t o t h e p a t h . T h e l a t t e r a c c e l e r a t i o n i s o f t e n c a l l e d t h e c e n t r i p e t a l a c c e l -

e r a t i o n . F o r a s p e c i a l c a s e o f t h i s p r o b l e m s e e P r o b l e m 1 2 .

2 8 . I f r i s t h e p o s i t i o n v e c t o r o f a p a r t i c l e o f m a s s m r e l a t i v e t o p o i n t 0 a n d F i s t h e e x t e r n a l f o r c e

o n t h e p a r t i c l e , t h e n r x F = M i s t h e t o r q u e o r m o m e n t o f F a b o u t 0 . S h o w t h a t M = d H / d t , w h e r e

H = r x m y a n d v i s t h e v e l o c i t y o f t h e p a r t i c l e .

M

= r x F

r x d t ( m v )

b y N e w t o n ' s l a w .

B u t

d t ( r x m v )

= r x d t ( m v ) +

d r

x m y

a

=

d v

d ( v T )

=

d v

T + v

d T

d t

d t d t

d t

d T

d T d s

d s =

K v N

=

v N

K N

d t = d s

d t

=

d t

p

r x

d t

( m v )

+ v x m y

=

r x d t ( m v )

+ 0

i . e .

M =

d t ( r x m v )

=

d f l

N o t e t h a t t h e r e s u l t h o l d s w h e t h e r i n i s c o n s t a n t o r n o t . H i s c a l l e d t h e a n g u l a r m o m e n t u m . T h e r e s u l t

Page 58: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 58/234

V E C T O R D I F F E R E N T I A T I O N

5 1

s t a t e s t h a t t h e t o r q u e i s e q u a l t o t h e t i m e r a t e o f c h a n g e o f a n g u l a r m o m e n t u m .

T h i s r e s u l t i s e a s i l y e x t e n d e d t o a s y s t e m o f n p a r t i c l e s h a v i n g r e s p e c t i v e m a s s e s m 1 , m 2 , . . . . M n

n

a n d p o s i t i o n v e c t o r s r 1 , r 2 , . . .

, r n w i t h e x t e r n a l f o r c e s F 1 , F 2 , . . .

, F n . F o r t h i s c a s e , H = I m k r k x v k

n d H k = 1

a s b e f o r e .

s t h e t o t a l a n g u l a r m o m e n t u m , M = k l r k x F k i s t h e t o t a l t o r q u e , a n d t h e r e s u l t i s M =

a t

2 9 . A n o b s e r v e r s t a t i o n e d a t a p o i n t w h i c h i s f i x e d r e l -

a t i v e t o a n x y z c o o r d i n a t e s y s t e m w i t h o r i g i n 0 , a s

s h o w n i n t h e a d j o i n i n g d i a g r a m , o b s e r v e s a v e c t o r

A = A 1 i + A 2 j + A 3 k a n d c a l c u l a t e s i t s t i m e d e -

r i v a t i v e t o b e

L A 1

i + d t 2 j + d t 3 k .

L a t e r , h e

t

f i n d s o u t t h a t h e a n d h i s c o o r d i n a t e s y s t e m a r e a c -

t u a l l y r o t a t i n g w i t h r e s p e c t t o a n X Y Z c o o r d i n a t e

s y s t e m t a k e n a s f i x e d i n s p a c e a n d h a v i n g o r i g i n

a l s o a t 0 . H e a s k s , ` W h a t w o u l d b e t h e t i m e d e -

r i v a t i v e o f A f o r a n o b s e r v e r w h o i s f i x e d r e l a t i v e

t o t h e X Y Z c o o r d i n a t e s y s t e m ? '

A

l i n

d e n o t e r e s p e c t i v e l y t h e t i m e d e r i v a t i v e s o f A w i t h r e s p e c t t o t h e f i x e d

a ) I f

d A I f

a n d d

a n d m o v i n g s y s t e m s , s h o w t h a t t h e r e e x i s t s a v e c t o r q u a n t i t y c o s u c h t h a t

d A

d A

+

r v x A

d t

( b ) L e t D f a n d D R b e s y m b o l i c t i m e d e r i v a t i v e o p e r a t o r s i n t h e f i x e d a n d m o v i n g s y s t e m s r e -

s p e c t i v e l y . D e m o n s t r a t e t h e o p e r a t o r e q u i v a l e n c e

D f =

D R + C o x

( a ) T o t h e f i x e d o b s e r v e r t h e u n i t v e c t o r s i , j , k a c t u a l l y c h a n g e w i t h t i m e . H e n c e s u c h a n o b s e r v e r w o u l d

c o m p u t e t h e t i m e d e r i v a t i v e o f A a s

d A d A 1

( 1 )

1

+

=

d A 2

j

+

d A 3

d i

k

+

A l

+

d j

A 2 +

d k

A s

i . e .

a t

a t

d

d t

d t

d t d t

( 2 )

d t A I

-

-

A I

+

A l

d i

+ A d + A d k

d t

f

d t d t

2

d t

d t

S i n c e i i s a u n i t v e c t o r , d i / d t i s p e r p e n d i c u l a r t o i ( s e e P r o b l e m 9 ) a n d m u s t t h e r e f o r e l i e i n t h e

p l a n e o f j a n d k . T h e n

( 3 )

d i

-

j + a

k

S i m i l a r l y , ( 4 )

d t

d j

1 2

a

k + a i

( 5 )

d t

d k

s 4

i

+ a

j

d t

6

5

F r o m i . j = 0 , d i f f e r e n t i a t i o n y i e l d s

i I .

d i

+

d i

. i = 0 .

B u t i .

d

= a 4 f r o m ( 4 ) ,

a n d

d t d t

d t

f r o m ( 3 ) ; t h e n

a 4 = - - a 1 .

d i

d t

j = a 1

S i m i l a r l y f r o m i k = 0 ,

i . d t + d t k = 0 a n d a 5 = - a 2 ;

f r o m j k = 0 ,

j

d k + d i

k = 0

a n d

a s = - a 3

T h e n d t

= a 1 j + a 2 k ,

d J :

= a 3 k - a 1 i ,

d k

= - a 2 i -

a s j

a n d

d d

a t

Page 59: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 59/234

5 2

V E C T O R D I F F E R E N T I A T I O N

A l d t

+ A 2 d t

+

A i d -

_ ( - a 1 A 2 - a 2 A 3 ) i + ( a 1 A 1 - a 3 A 3 ) j + ( a 2 A 1 + a s A 2 ) k

w h i c h c a n b e w r i t t e n a s

a s

i j

k

- a 2

a 1

I A l

A 2

A s {

T h e n i f w e c h o o s e a s = c v 1 , - a 2 = c v 2 , a 1 = c o s t h e d e t e r m i n a n t b e c o m e s

i j

k

6 0 1 .

C D - 2

6 0 3

= w x A

A l

A 2 A s

w h e r e w = w 1 i + c v 2 j + c v 2 k . T h e q u a n t i t y c o i s t h e a n g u l a r v e l o c i t y v e c t o r o f t h e m o v i n g s y s t e m

w i t h r e s p e c t t o t h e f i x e d s y s t e m .

( b ) B y d e f i n i t i o n

E l f A

d A ( (

= d e r i v a t i v e i n f i x e d s y s t e m

d t I f

D A = A I

= d e r i v a t i v e i n m o v i n g s y s t e m .

i n

d t

I x

F r o m ( a ) ,

D f A = D m A + w x A =

( D . , + c v x ) A

a n d s h o w s t h e e q u i v a l e n c e o f t h e o p e r a t o r s D

f =

D i n + c o x .

3 0 . D e t e r m i n e t h e ( a ) v e l o c i t y a n d ( b ) a c c e l e r a t i o n o f a m o v i n g p a r t i c l e a s s e e n b y t h e t w o o b s e r v -

e r s i n P r o b l e m 2 9 .

( a )

L e t v e c t o r A i n P r o b l e m 2 9 b e t h e p o s i t i o n v e c t o r r o f t h e p a r t i c l e . U s i n g t h e o p e r a t o r n o t a t i o n o f

P r o b l e m 2 9 ( b ) , w e h a v e

( 1 )

D

f

r

=

( D n + w x ) r

=

D . r + w x r

B u t

D

f

r =

v p l f

D n r

=

v p , n

v e l o c i t y o f p a r t i c l e r e l a t i v e t o f i x e d s y s t e m

v e l o c i t y o f p a r t i c l e r e l a t i v e t o m o v i n g s y s t e m

w x r =

v a f f =

v e l o c i t y o f m o v i n g s y s t e m r e l a t i v e t o f i x e d s y s t e m .

T h e n ( 1 ) c a n b e w r i t t e n a s

( 2 )

v p i f =

V p l s + w x r

o r i n t h e s u g g e s t i v e n o t a t i o n

( 3 )

v

v

+

I f

p l n m i f

N o t e t h a t t h e r o l e s o f f i x e d a n d m o v i n g o b s e r v e r s c a n , o f c o u r s e , b e i n t e r c h a n g e d . T h u s t h e f i x e d

o b s e r v e r c a n t h i n k o f h i m s e l f a s r e a l l y m o v i n g w i t h r e s p e c t t o t h e o t h e r . F o r t h i s c a s e w e m u s t i n t e r -

c h a n g e s u b s c r i p t s m a n d f a n d a l s o c h a n g e w t o - w s i n c e t h e r e l a t i v e r o t a t i o n i s r e v e r s e d . I f t h i s i s

d o n e , ( 2 ) b e c o m e s

v

v - w x r

o r

v

V + w x r

0 1 0 1 f

P i f

2

I n

s o t h a t t h e r e s u l t i s v a l i d f o r e a c h o b s e r v e r .

Page 60: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 60/234

V E C T O R D I F F E R E N T I A T I O N

5 3

( b )

T h e a c c e l e r a t i o n o f t h e p a r t i c l e a s d e t e r m i n e d b y t h e f i x e d o b s e r v e r a t 0 i s D f r = D f ( D f r ) . T a k e D f

o f b o t h s i d e s o f ( 1 ) , u s i n g t h e o p e r a t o r e q u i v a l e n c e e s t a b l i s h e d i n P r o b l e m 2 9 ( b ) .

T h e n

D f r

D . 2 r

=

D 2 r + D m ( w x r ) + w x D , n r + w x ( w x r )

D t ( D m r + c o x r )

( D I M + w x ) ( D m r + w x r )

D x ( D m r + c v x r ) + c o x ( D , n r + w x r )

a c c e l e r a t i o n o f p a r t i c l e r e l a t i v e t o f i x e d s y s t e m

a c c e l e r a t i o n o f p a r t i c l e r e l a t i v e t o m o v i n g s y s t e m .

2 w x D . r + ( D , n w ) x r + w x ( w x r )

a c c e l e r a t i o n o f m o v i n g s y s t e m r e l a t i v e t o f i x e d s y s t e m

S U P P L E M E N T A R Y P R O B L E M S

3 1 .

I f R = e - t i + I n ( t 2 + 1 ) j - t a n t k ,

f i n d ( a )

d R

, ( b )

d 2 R

,

( c )

I d R

( d )

I d 2 R I

a t t = o .

d t

d t d t

d t 2

A n s .

( a ) - i - k ,

( b ) i + 2 j ,

( c ) V ,

( d ) v 5

3 2 . F i n d t h e v e l o c i t y a n d a c c e l e r a t i o n o f a p a r t i c l e w h i c h m o v e s a l o n g t h e c u r v e x = 2 s i n 3 t

, y = 2 c o s 3 t ,

z = 8 t a t a n y t i m e t > 0 .

F i n d t h e m a g n i t u d e o f t h e v e l o c i t y a n d a c c e l e r a t i o n .

A n s . v = 6 c o s 3 t i - 6 s i n 3 t j + 8 k , a = - 1 8 s i n 3 t i - 1 8 c o s 3 t j , I v 1 0 , I a l = 1 8

3 3 . F i n d a u n i t t a n g e n t v e c t o r t o a n y p o i n t o n t h e c u r v e x = a c o s c v t , y = a s i n w t

,

z = b t w h e r e a , b , c o a r e

- a c v s i n c o t i

+ a w c o s C v t j

+ b k

c o n s t a n t s .

A n s .

Y a 2 c o + b 2

3 4 .

I f A = t 2 i - t j + ( 2 t + 1 ) k a n d B = ( 2 t - 3 ) i +

t k , f i n d

( a )

( A - B ) ,

( b ) d ( A x B ) , ( c )

A + B I ,

( d )

( A x d B )

a t t = 1 .

A n s . ( a ) - 6 , ( b ) 7 j + 3 k , ( c ) 1 ,

d d d

o r

D f ( D f r )

D

f r

D 2 r

+ 2 w x D . r + ( D , n w ) x r + w x ( w x r )

L e t

a p l f =

a p i , n =

T h e n a , n l f =

a n d w e c a n w r i t e

a p t f =

a , , , + a 1 2 I f

.

F o r m a n y c a s e s o f i m p o r t a n c e w i s a c o n s t a n t v e c t o r , i . e . t h e r o t a t i o n p r o c e e d s w i t h c o n s t a n t a n -

g u l a r v e l o c i t y . T h e n

D , n w = 0 a n d

a , n l f =

2 6 ) x D . r + c v x ( w x r )

=

2 w x v . + w x ( w x r )

T h e q u a n t i t y 2 w x v , n i s c a l l e d t h e C o r i o l i s a c c e l e r a t i o n a n d w x ( w x r ) i s c a l l e d t h e c e n t r i p e t a l a c c e l -

e r a t i o n .

N e w t o n ' s l a w s a r e s t r i c t l y v a l i d o n l y i n i n e r t i a l s y s t e m s , i . e . s y s t e m s w h i c h a r e e i t h e r f i x e d o r

w h i c h m o v e w i t h c o n s t a n t v e l o c i t y r e l a t i v e t o a f i x e d s y s t e m . T h e e a r t h i s n o t e x a c t l y a n i n e r t i a l s y s -

t e m a n d t h i s a c c o u n t s f o r t h e p r e s e n c e o f t h e s o c a l l e d ` f i c t i t i o u s ' e x t r a f o r c e s ( C o r i o l i s , e t c . ) w h i c h

m u s t b e c o n s i d e r e d .

I f t h e m a s s o f a p a r t i c l e i s a c o n s t a n t M , t h e n N e w t o n ' s s e c o n d l a w b e c o m e s

( 4 )

M D , 2 n r

=

F - 2 M ( w x D , n r ) - M [ w x ( w x r ) ]

w h e r e D m d e n o t e s d / d t a s c o m p u t e d b y a n o b s e r v e r o n t h e e a r t h , a n d F i s t h e r e s u l t a n t o f a l l r e a l

f o r c e s a s m e a s u r e d b y t h i s o b s e r v e r . T h e l a s t t w o t e r m s o n t h e r i g h t o f ( 4 ) a r e n e g l i g i b l e i n m o s t

c a s e s a n d a r e n o t u s e d i n p r a c t i c e .

T h e t h e o r y o f r e l a t i v i t y d u e t o E i n s t e i n h a s m o d i f i e d q u i t e r a d i c a l l y t h e c o n c e p t s o f a b s o l u t e m o -

t i o n w h i c h a r e i m p l i e d b y N e w t o n i a n c o n c e p t s a n d h a s l e d t o r e v i s i o n o f N e w t o n ' s l a w s .

a t a t t

t

( d ) i + 6 j + 2 k

Page 61: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 61/234

5 4

V E C T O R D I F F E R E N T I A T I O N

+ 3 j - k ,

A n s . 7 i + 6 j - 6 k

2 2

3 6 . F i n d d s ( A . d B - d A B ) i f A a n d B a r e d i f f e r e n t i a b l e f u n c t i o n s o f s .

A n s . A . d s B

-

d s A - B

2

3 7 .

I f A ( t ) = 3 t 2 i - ( t + 4 ) j + ( t 2 - 2 t ) k a n d B ( t ) = s i n t i + 3 e t j - 3

c o s t k , f i n d d t 2 ( A x B ) a t t = 0 .

A n s . - 3 0 i + 1 4 j + 2 0 k

.

8 .

I f d t A = 6 t i - 2 4 t 2 j + 4 s i n t k , f i n d A g i v e n t h a t A = 2 i + j a n d d A = -

i - 3 k a t t = 0

A n s . A = ( t 3 - t + 2 ) i + ( 1 - 2 t 4 ) j + ( t - 4 s i n t ) k

3 9 . S h o w t h a t r = e - t ( C 1 c o s 2 t + C 2 s i n 2 t ) ,

w h e r e C 1 a n d C . a r e c o n s t a n t v e c t o r s , i s a s o l u t i o n o f t h e d i f -

2

f e r e n t i a l e q u a t i o n d t 2 + 2 d a + 5 r = 0 .

2

4 0 . S h o w t h a t t h e g e n e r a l s o l u t i o n o f t h e d i f f e r e n t i a l e q u a t i o n d

+ 2 a d + c v 2 r = 0 , w h e r e a a n d c o a r e c o n -

s t a n t s , i s

( a ) r = e - a t ( C

1

a

a 2 - ` ` ' 2 t

+ C

2

e -

a 2 - r ` ' 2 t )

i f

a 2

- c o t > 0

( b )

r =

e - a . t ( C 1 s i n w 2

- a 2 t

+ C 2 C o s 1 / w 2 - a 2 t )

i f a 2 - w 2 < 0 .

( c ) r = e - a t ( C 1 + C 2 t ) i f a 2 - w 2 = 0 ,

w h e r e C 1 a n d C 2 a r e a r b i t r a r y c o n s t a n t v e c t o r s .

2

d 2

4 1 . S o l v e ( a ) 2 - 4 - - 5 r = 0 ,

( b ) 2

2 + 4 r = 0 .

d t r d t

d t r + 2 d a

+ r = 0 ,

( c ) d t r

A n s .

( a ) r = C i e 5 t + C 2 e - t ,

( b ) r = e - t ( C i + C 2 t ) ,

( c )

r = C 1 c o s 2 t + C 2 s i n 2 t

4 2 . S o l v e d Y = X ,

d X = - Y .

A n s . X = C i c o s t

+ C 2 s i n t , Y = C 1 s i n t - C 2 c o s t

2

a A a A a 2 A

' a a 2 A

a 2 A

a 2 A

4 3 .

I f A = c o s x y i + ( 3 x y - 2 x ) j - ( 3 x + 2 y ) k ,

f i n d

a x ' a y '

a x e '

V P

a x a y ' a y a x

A n s . a ` 9 '

_ - - y s i n x y i + ( 3 y - 4 x ) j - 3 k ,

- _ - x s i n x y i + 3 x j - 2 k ,

x 2

2

2

2

a A

= - y 2 c o s x y i - 4 j ,

a

y

A

= - x 2 c o s x y I , 2 a y

a y

a x

= - ( x y c o s x y

+ s i n x y ) i + 3 j

2

4 4 . I f A = x 2 y z i - 2 x z 3 j + x z 2 k a n d B = 2 z i + y j - x 2 k ,

f i n d

a y

x

( A x B ) a t ( 1 , 0 , - 2 ) .

A n s . - 4 i - 8 j

4 5 .

i f C 1 a n d C 2 a r e c o n s t a n t v e c t o r s a n d X i s a c o n s t a n t s c a l a r , s h o w t h a t H =

s i n b y + C 2 c o s X y )

2

2

s a t i s f i e s t h e p a r t i a l d i f f e r e n t i a l e q u a t i o n

a x B + a y

= 0 .

i c ) ( t - - r / c )

4 6 . P r o v e t h a t A = p 0

e

r

,

w h e r e p o i s a c o n s t a n t v e c t o r , w a n d c a r e c o n s t a n t s c a l a r s a n d i = V 1 ,

2

2

A

s a t i s f i e s t h e e q u a t i o n a A +

2

a A = c 2 a t 2

.

T h i s r e s u l t i s o f i m p o r t a n c e i n e l e c t r o m a g n e t i c t h e o r y .

D I F F E R E N T I A L G E O M E T R Y

4 7 . F i n d ( a ) t h e u n i t t a n g e n t T , ( b ) t h e c u r v a t u r e K , ( c ) t h e p r i n c i p a l n o r m a l N , ( d ) t h e b i n o r m a l B , a n d ( e ) t h e

t o r s i o n T f o r t h e s p a c e c u r v e x = t - t 3 / 3 , y = t 2 , z = t + t / 3 .

( 1 - t 2 ) i

+ 2 t j

+ ( 1 + t 2 ) k

2 t

1 - t 2

A n s . ( a ) T =

( c ) N

i +

j

V ( 1 + t 2 )

1 + t 2

1 + t 2

1

( b ) K =

1 ( t 2 - 1 ) i - 2 t J + ( t 2 + 1 ) k

( d ) B

V ' 2 - ( 1 + 1 2 )

( e ) T =

( 1 + t 2 ) 2

Page 62: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 62/234

V E C T O R D I F F E R E N T I A T I O N

4 8 . A s p a c e c u r v e i s d e f i n e d i n t e r m s o f t h e a r c l e n g t h p a r a m e t e r s b y t h e e q u a t i o n s

x = a r c t a n s , y = 2 V i l n ( s 2 + 1 ) , z = s - a r c t a n s

F i n d ( a ) T ,

( b ) N , ( c ) B , ( d ) K , ( e ) T , ( f ) p , ( g ) c r .

A n s .

a

T

i + y " 2 s j + s 2 k

( d ) K

Y " 2 -

S 2

)

+ 1

s 2 +

( b ) N = - V s i + ( 1 - s 2 ) j + / s k

( e )

r - _

y '

( g )

s 2 + 1

s 2 + 1

s 2 +

( c ) B = s

2

i - _ s j + k

( f ) p =

s 2 + 1

s 2 + 1

V r 2

4 9 . F i n d K a n d T f o r t h e s p a c e c u r v e x = t , y = t , z = t 3

c a l l e d t h e t w i s t e d c u b i c .

A n s . K

2 " 9

+ 9 t

+ 1

T

( 9 t 4 + 4 t 2 + 1 ) 3 / 2

3

9 t 4 + 9 t 2 + 1

5 5

5 0 . S h o w t h a t f o r a p l a n e c u r v e t h e t o r s i o n T = O .

5 1 . S h o w t h a t t h e r a d i u s o f c u r v a t u r e o f a p l a n e c u r v e w i t h e q u a t i o n s y = f ( x ) ,

z = 0 ,

i . e . a c u r v e i n t h e x y

p l a n e i s g i v e n b y p =

1 + ( y r ) 2 ] 3 l 2

I Y 1 1

5 2 . F i n d t h e c u r v a t u r e a n d r a d i u s o f c u r v a t u r e o f t h e c u r v e w i t h p o s i t i o n v e c t o r r = a c o s u i + b s i n u j , w h e r e

a a n d b a r e p o s i t i v e c o n s t a n t s . I n t e r p r e t t h e c a s e w h e r e a = b .

A n s . K =

a b

=

1

i f a = b , t h e g i v e n c u r v e w h i c h i s a n e l l i p s e , b e c o m e s a c i r -

( a

2

s i n

2

u + b 2 c o s 2 u ) 3 / 2

P

c l e o f r a d i u s a a n d i t s r a d i u s o f c u r v a t u r e p = a .

5 3 . S h o w t h a t t h e F r e n e t - S e r r e t f o r m u l a s c a n b e w r i t t e n i n t h e f o r m

d T = C x T , d N = w x N , d B = r v x B a n d

d e t e r m i n e a ) .

A n s .

= T T + K B

5 4 . P r o v e t h a t t h e c u r v a t u r e o f t h e s p a c e c u r v e r = r ( t )

i s g i v e n n u m e r i c a l l y b y K =

r x r 3 i

,

w h e r e d o t s d e -

n o t e d i f f e r e n t i a t i o n w i t h r e s p e c t t o t . I r

5 5 .

r . r x r

( a ) P r o v e t h a t

r =

f o r t h e s p a c e c u r v e r = r ( t ) .

I i x r , l 2

d r d 2 r

d 3 r

d

( b ) I f t h e p a r a m e t e r t i s t h e a r c l e n g t h s s h o w t h a t T =

s ' W s - 2 x

( d 2 r i d s )

2

2

5 6 .

I f Q = r x r , s h o w t h a t K

Q 3

, T =

Q + 2 '

r 1

Q

5 7 . F i n d K a n d T f o r t h e s p a c e c u r v e x = 8 - s i n 8 , y = 1 - c o s 8 , z = 4 s i n ( 6 / 2 ) .

1

( 3 + c o s 8 ) c o s 8 / 2 + 2 s i n 8 s i n 8 / 2

A n s . K =

8

6 - 2 c o s 8 ,

=

1 2 c o s 8 - 4

2

5 8 . F i n d t h e t o r s i o n o f t h e c u r v e x =

t t + 1

t

t

1

,

z = t + 2 .

E x p l a i n y o u r a n s w e r .

A n s . T = U . T h e c u r v e l i e s o n t h e p l a n e x - 3 y + 3 z = 5 .

5 9 . S h o w t h a t t h e e q u a t i o n s o f t h e t a n g e n t l i n e , p r i n c i p a l n o r m a l a n d b i n o r m a l t o t h e s p a c e c u r v e r = r ( t ) a t t h e

p o i n t t = t o c a n b e w r i t t e n r e s p e c t i v e l y r = r o + t T o ,

r = r o + t N o , r = r o + t B o , w h e r e t i s a p a r a m e t e r .

6 0 . F i n d e q u a t i o n s f o r t h e ( a ) t a n g e n t , ( b ) p r i n c i p a l n o r m a l a n d ( c ) b i n o r m a l t o t h e c u r v e x = 3 c o s t , y = 3 s i n t ,

z = 4 t

a t t h e p o i n t w h e r e t = R .

A n s . ( a ) T a n g e n t : r = - 3 i + 4 7 t k + t ( - 5 j + 5 k )

o r

x = - 3 , y

5 t ,

z = 4 7 L +

5

t .

Page 63: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 63/234

5 6

V E C T O R D I F F E R E N T I A T I O N

( b ) N o r m a l :

r = - 3 i + 4 1 t j + I i o r

x = - 3 + t , y = 4 T t , z = 0 .

( c ) B i n o r m a l : r = - 3 i + 4 7 L j + t ( 4 j +

5

k )

o r

x = - 3 , y = 4 1 t +

5

t , z =

5

t .

6 1 . F i n d e q u a t i o n s f o r t h e ( a ) o s c u l a t i n g p l a n e , ( b ) n o r m a l p l a n e a n d ( c ) r e c t i f y i n g p l a n e t o t h e c u r v e x = 3 t - t 3

Y = 3 t 2 ,

z = 3 t + t 3

a t t h e p o i n t w h e r e t = 1 .

A n s . ( a ) y - z + 1 = 0 ,

( b ) y + z - - 7 = 0 ,

( c ) x = 2

6 2 . ( a ) S h o w t h a t t h e d i f f e r e n t i a l o f a r c l e n g t h o n t h e s u r f a c e r = r ( u , v ) i s g i v e n b y

d s 2 = E d u e + 2 F d u d v + G d v 2

w h e r e E

a r a r

_

a r 2

a r

, ' 3 r

a r

=

a r 2

C u C u

( a u )

F

C u T V '

G

' 6 V

a v ( a v )

( b ) P r o v e t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t t h e u , v c u r v i l i n e a r c o o r d i n a t e s y s t e m b e o r t h o g o n a l

i s F = O .

6 3 . F i n d a n e q u a t i o n f o r t h e t a n g e n t p l a n e t o t h e s u r f a c e z = x y a t t h e p o i n t ( 2 , 3 , 6 ) .

A n s .

3 x + 2 y - z = 6

6 4 . F i n d e q u a t i o n s f o r t h e t a n g e n t p l a n e a n d n o r m a l l i n e t o t h e s u r f a c e 4 z = x 2 - y 2 a t t h e p o i n t ( 3 , 1 , 2 ) .

A n s . 3 x - y - 2 z = 4 ; x = 3 t + 3 , y = 1 - t , z = 2 - 2 t

a r

x

a r

6 5 . P r o v e t h a t a u n i t n o r m a l t o t h e s u r f a c e r = r ( u , v ) i s n

a

,

w h e r e E , F , a n d G a r e d e f i n e d a s

i n P r o b l e m 6 2 .

G

M E C H A N I C S

6 6 . A p a r t i c l e m o v e s a l o n g t h e c u r v e r = ( t 3 - 4 t ) i + ( t 2 + 4 t ) J + ( 8 t 2 - 3 t 3 ) k ,

w h e r e t i s t h e t i m e . F i n d t h e

m a g n i t u d e s o f t h e t a n g e n t i a l a n d n o r m a l c o m p o n e n t s o f i t s a c c e l e r a t i o n w h e n t = 2 .

A n s . T a n g e n t i a l , 1 6 ;

n o r m a l , 2 V ' 7 3

6 7 .

I f a p a r t i c l e h a s v e l o c i t y v a n d a c c e l e r a t i o n a a l o n g a s p a c e c u r v e , p r o v e t h a t t h e r a d i u s o f c u r v a t u r e o f i t s

p a t h i s g i v e n n u m e r i c a l l y b y p =

v 3

I v x a I

6 8 . A n o b j e c t i s a t t r a c t e d t o a f i x e d p o i n t 0 w i t h a f o r c e F = f ( r ) r , c a l l e d a c e n t r a l f o r c e , w h e r e r

i s t h e p o s i -

t i o n v e c t o r o f t h e o b j e c t r e l a t i v e t o 0 . S h o w t h a t r x v = h w h e r e h i s a c o n s t a n t v e c t o r . P r o v e t h a t t h e

a n g u l a r m o m e n t u m i s c o n s t a n t .

6 9 . P r o v e t h a t t h e a c c e l e r a t i o n v e c t o r o f a p a r t i c l e m o v i n g a l o n g a s p a c e c u r v e a l w a y s l i e s i n t h e o s c u l a t i n g

p l a n e .

7 0 .

( a ) F i n d t h e a c c e l e r a t i o n o f a p a r t i c l e m o v i n g i n t h e x y p l a n e i n t e r m s o f p o l a r c o o r d i n a t e s ( p , c b )

.

( b ) W h a t a r e t h e c o m p o n e n t s o f t h e a c c e l e r a t i o n p a r a l l e l a n d p e r p e n d i c u l a r t o p ?

A n s . ( a ) r = [ ( P - p % 2 ) c o s

- ( p +

s i n q S ] i

+

s i n 0 + ( p c +

c o s

j

( b )

p * + 2 p

Page 64: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 64/234

T H E V E C T O R D I F F E R E N T I A L O P E R A T O R D E L , w r i t t e n V , i s d e f i n e d b y

z i + j +

a z k

=

i x

+ ' a

+ k a z

r

r

T h i s v e c t o r o p e r a t o r p o s s e s s e s p r o p e r t i e s a n a l o g o u s t o t h o s e o f o r d i n a r y v e c t o r s .

I t i s u s e f u l i n d e -

f i n i n g t h r e e q u a n t i t i e s w h i c h a r i s e i n p r a c t i c a l a p p l i c a t i o n s a n d a r e k n o w n a s t h e g r a d i e n t , t h e d i v e r -

g e n c e a n d t h e c u r l . T h e o p e r a t o r V i s a l s o k n o w n a s n a b l a .

T H E G R A D I E N T . L e t 4 ) ( x , y , z ) b e d e f i n e d a n d d i f f e r e n t i a b l e a t e a c h p o i n t ( x , y , z ) i n a c e r t a i n r e -

g i o n o f s p a c e ( i . e . 0 d e f i n e s a d i f f e r e n t i a b l e s c a l a r f i e l d ) . T h e n t h e g r a d i e n t o f 4 ) ,

w r i t t e n V 4 ) o r g r a d 0 , i s d e f i n e d b y

( a x l +

y

j

+ a k ) = a i +

j +

k

a

r

N o t e t h a t V 4 ) d e f i n e s a v e c t o r f i e l d .

T h e c o m p o n e n t o f V 4 ) i n t h e d i r e c t i o n o f a

n i t v e c t o r a s g i v e n b y V c . a a n d i s c a l l e d t h e d i -

r e c t i o n a l d e r i v a t i v e o f 4 ) i n t h e d i r e c t i o n a .

P h y s i c a l l y , t h i s i s t h e r a t e o f c h a n g e o f 0 a t ( x , y , z ) i n

u e c t i o n a .

T H E D I V E R G E N C E . L e t V ( x , y , z ) = V 1 i + 2 j + V k b e d e f i n e d a n d d i f f e r e n t i a b l e a t e a c h p o i n t

( x , y , z ) i n a c e r t a i n r e g i o n o f s p a c e ( i . e . V d e f i n e s a d i f f e r e n t i a b l e v e c t o r f i e l d ) .

T h e n t h e d i v e r g e n c e o f V , w r i t t e n V . V o r d i v V , i s d e f i n e d b y

( a x i

+

a y j

+

a

a

a V 3

a x

a y + a z

N o t e t h e a n a l o g y w i t h A - B = A l B 1 + A 2 B 2 + A 3 B 3

.

A l s o n o t e t h a t V V

V - V .

T H E C U R L . I f V ( z , y , z ) i s a d i f f e r e n t i a b l e v e c t o r f i e l d t h e n t h e c u r l o r r o t a t i o n o f V , w r i t t e n V x V ,

c u r l V o r r o t V , i s d e f i n e d b y

V x V =

( 3 - i + a y j + a z k ) x ( V l i + V 2 j + V 3 k )

5 7

Page 65: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 65/234

5 8

G R A D I E N T , D I V E R G E N C E a n d C U R L

i

V 1

V 3

j

+

k

v 3

a v 2

v 1

a y 3 +

  2

a V 1

k

( a Y - a z

) i

+

( a z - a x ) 3

( a x - a y )

m u s t p r e c e d e

o t e t h a t i n t h e e x p a n s i o n o f t h e d e t e r m i n a n t t h e o p e r a t o r s

a x , a y ,

_ 6 Z

V 1 , V 2 1 V 3

.

F O R M U L A S I N V O L V I N G V . I f A a n d B a r e d i f f e r e n t i a b l e v e c t o r f u n c t i o n s , a n d 0 a n d J i a r e d i f f e r e n -

t i a b l e s c a l a r f u n c t i o n s o f p o s i t i o n ( x , y , z ) , t h e n

1 . V ( 0 +

)

= V b + V k

o r

g r a d ( 0 +

)

= g r a d 0 + g r a d q

2 . V ( A + B ) = V A + V B

o r

d i v ( A + B ) = d i v A + d i v B

3 . V x ( A + B ) = V x A + V x B

o r

c u r l ( A + B ) = c u r l A + c u r l B

4 .

5 . V x ( O A ) _ ( V q ) x A + c ( V x A )

6 .

7 . V x ( A x B ) _ ( B - V ) A -

A ( V - B )

8 . V ( A B ) _ ( B V ) A + ( A V ) B + B x ( V x A ) + A x ( V x B )

9 . V . ( V O ) =

V 2 q 5

+

a - -

+

o x

a y

a z

Y

a 2 a 2

a x e + a y e + a z 2

i s c a l l e d t h e L a p l a c i a n o p e r a t o r .

1 0 . V x ( V 4 ) = 0

.

T h e c u r l o f t h e g r a d i e n t o f 0 i s z e r o .

1 1 .

V ( V x A ) = 0 .

T h e d i v e r g e n c e o f t h e c u r l o f A i s z e r o .

1 2 .

V x ( V x A ) = V ( V A ) - V 2 A

I n F o r m u l a s 9 - 1 2 , i t i s s u p p o s e d t h a t 0 a n d A h a v e c o n t i n u o u s s e c o n d p a r t i a l d e r i v a t i v e s .

I N V A R I A N C E . C o n s i d e r t w o r e c t a n g u l a r c o o r d i n a t e s y s t e m s o r f r a m e s o f r e f e r e n c e x y z a n d x ' y ' z ' ( s e e

f i g u r e b e l o w ) h a v i n g t h e s a m e o r i g i n 0 b u t w i t h a x e s r o t a t e d w i t h r e s p e c t t o e a c h

o t h e r .

A p o i n t P i n s p a c e h a s c o o r d i n a t e s ( x , y , z ) o r

( x ; y ; z ' ) r e l a t i v e t o t h e s e c o o r d i n a t e s y s t e m s . T h e

e q u a t i o n s o f t r a n s f o r m a t i o n b e t w e e n c o o r d i n a t e s

o r t h e c o o r d i n a t e t r a n s f o r m a t i o n s a r e g i v e n b y

1 1 1 x + 1 1 2 Y + l 1 3 z

1 2 1 x + 1 2 2 Y + 1 2 3 z

1 3 1 x + 1 3 2 Y + 1 3 3 z

w h e r e l j k , j , k = 1 , 2 , 3 , r e p r e s e n t d i r e c t i o n c o s i n e s

o f t h e x ' , y ' a n d z ' a x e s w i t h r e s p e c t t o t h e x , y , a n d

x

z

Page 66: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 66/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

5 9

z a x e s ( s e e P r o b l e m 3 8 ) .

I n c a s e t h e o r i g i n s o f t h e t w o c o o r d i n a t e s y s t e m s a r e n o t c o i n c i d e n t t h e

e q u a t i o n s o f t r a n s f o r m a t i o n b e c o m e

( 2 )

=

1 1 1 x ± 1 1 2 Y ± 1 1 3 2 + a 1

1 2 1 x + 1 2 2 Y + 1 2 3 z + a 2

1 3 1 x + 1 3 2 Y + 1 3 3 z

+ a 3

w h e r e o r i g i n 0 o f t h e x y z c o o r d i n a t e s y s t e m i s l o c a t e d a t ( a " , a ' , a 3 ) r e l a t i v e t o t h e x ' y ' z ' c o o r d i n a t e

s y s t e m .

T h e t r a n s f o r m a t i o n e q u a t i o n s ( 1 ) d e f i n e a p u r e r o t a t i o n , w h i l e e q u a t i o n s ( 2 ) d e f i n e a r o t a t i o n p l u s

t r a n s l a t i o n . A n y r i g i d b o d y m o t i o n h a s t h e e f f e c t o f a t r a n s l a t i o n f o l l o w e d b y a r o t a t i o n . T h e t r a n s -

f o r m a t i o n ( 1 ) i s a l s o c a l l e d a n o r t h o g o n a l t r a n s f o r m a t i o n . A g e n e r a l l i n e a r t r a n s f o r m a t i o n i s c a l l e d

a n a f f i n e t r a n s f o r m a t i o n .

P h y s i c a l l y a s c a l a r p o i n t f u n c t i o n o r s c a l a r f i e l d O ( x , y , z ) e v a l u a t e d a t a p a r t i c u l a r p o i n t s h o u l d

b e i n d e p e n d e n t o f t h e c o o r d i n a t e s o f t h e p o i n t . T h u s t h e t e m p e r a t u r e a t a p o i n t i s n o t d e p e n d e n t o n

w h e t h e r c o o r d i n a t e s ( x , y , z ) o r ( x ; y ; z ' ) a r e u s e d . T h e n i f O ( x , y , z ) i s t h e t e m p e r a t u r e a t p o i n t P w i t h

c o o r d i n a t e s ( x , y , z ) w h i l e 0 ' ( x , y , z ' ) i s t h e t e m p e r a t u r e a t t h e s a m e p o i n t P w i t h c o o r d i n a t e s ( x ; y ; z ' ) ,

w e m u s t h a v e 0 ( x , y , z ) = c ' ( x , y , z ' ) .

I f 0 ( x , y , z ) = = Y ' ( x ' , y ' z ' ) , w h e r e x , y , z a n d x , y ' z ' a r e r e l a t e d

b y t h e t r a n s f o r m a t i o n e q u a t i o n s ( 1 ) o r ( 2 ) , w e c a l l ( P ( x , y , z ) a n i n v a r i a n t w i t h r e s p e c t t o t h e t r a n s f o r -

m a t i o n . F o r e x a m p l e , x 2 + y 2 + z 2 i s i n v a r i a n t u n d e r t h e t r a n s f o r m a t i o n o f r o t a t i o n ( 1 ) , s i n c e x 2 + y 2 + z 2 =

1 2

x

+

y 1 2

+

Z 1 2 .

S i m i l a r l y , a v e c t o r p o i n t f u n c t i o n o r v e c t o r f i e l d A ( x , y , z ) i s c a l l e d a n i n v a r i a n t i f

A ( x , y , z ) _

A ' ( x , y , z ' ) .

T h i s w i l l b e t r u e i f

A 1 ( x , y , z ) i + A 2 ( x , y , z ) j + A 3 ( x , y , z ) k

A ' ( x , y ; z ' ) i ' + A 2 ( x y ' , z ) j ' + A 3 ( x , y , z ) k '

I n C h a p . 7 a n d 8 , m o r e g e n e r a l t r a n s f o r m a t i o n s a r e c o n s i d e r e d a n d t h e a b o v e c o n c e p t s a r e e x t e n d e d .

I t c a n b e s h o w n ( s e e P r o b l e m 4 1 ) t h a t t h e g r a d i e n t o f a n i n v a r i a n t s c a l a r f i e l d i s a n i n v a r i a n t

v e c t o r f i e l d w i t h r e s p e c t t o t h e t r a n s f o r m a t i o n s ( 1 ) o r ( 2 ) .

S i m i l a r l y , t h e d i v e r g e n c e a n d c u r l o f a n i n -

v a r i a n t v e c t o r f i e l d a r e i n v a r i a n t u n d e r t h i s t r a n s f o r m a t i o n .

S O L V E D P R O B L E M S

T H E G R A D I E N T

1 . I f 0 ( x , y , z ) = 3 x 2 y - y

3

z

2

,

f i n d V o ( o r g r a d q 5 ) a t t h e p o i n t ( 1 , - 2 , - 1 ) .

V

a x

i + a y i + a z k ) ( 3 x 2 Y - y 3 z 2 )

( 3 x 2 Y

- y 3 z 2 )

+

k a z ( 3 x 2 y - y 3 z 2 )

  3 X

Y

+ i

- a y

=

6 x y i

+

( 3 x 2 - 3 y 2 z 2 ) j - 2 y 3 z k

6 ( 1 ) ( - 2 ) i

+ { 3 ( 1 ) 2 -

3 ( - 2 ) 2 ( - 1 ) 2 } j

- 1 2 i - 9 j - 1 6 k

-

2 ( - 2 ) 3 ( - 1 ) k

Page 67: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 67/234

6 0

G R A D I E N T , D I V E R G E N C E a n d C U R L

2 . P r o v e ( a ) V ( F + G ) = V F + V G , ( b ) V ( F G ) = F V G + G V F w h e r e F a n d G

l a r f u n c t i o n s o f x , y a n d z .

( a ) V ( F + G )

( b ) V ( F G )

= ( a i

k ) ( F + G )

+a

]

a z

x

Y

i

a x

( F + G )

+

j a ( F + G )

+

k a z ( F + G )

Y

i s +

i 3 x

+

=

i a F

+ j a F

+

a x

a y

j a F +

j a G

+

k a F +

k a G

a y

a y

a z a z

k a z + i a c

+ a

+ k a z

Y

a r e s c a -

( i a x + j a y + k a z ) F +

( i a + ; a y + k a ) G

= V F + V G

( a x i + a y j

+ a z k ) ( F G )

a x

( F G ) i

+ a ( F G ) ;

+

a z ( F G )

k

Y

( F a G + G a F ) i

+ ( F a G

+ G - ) j

+

( F a c + G a F ) k

a x

a x

a y

a y

a z

a z

F (

a G

i + a G

j +

a G

k )

+

G ( a F

i +

6 F

j +

a F

k )

=

F V G

a x

a y a z

a x a y a z

+ G V F

3 . F i n d V q 5 i f ( a ) = I n , r { , ( b ) 4 = r .

( a ) r = x i + y j + z k . T h e n

I r I

= x 2 + y 2 + z 2 a n d c = I n

` r f = 2 l n ( x 2 + y 2 + z 2 ) .

V c p

=

2 V l n ( x 2 + y 2 + z 2 )

=

2 { i a l n ( x 2 + y 2 + z 2 ) + j a l n ( x 2 , + y 2 + z 2 ) + k a z I n ( x 2 + y 2 + z 2 ) }

x

y

2 x

2 y

2 z

x i + y j + z k

r

2 { i x 2 + y 2 + z 2

+ j x 2 + y 2 + z 2

+

k x 2 + y 2 + Z 2 }

=

x 2 + y 2 + z 2

- r 2

( b ) V = V ( T )

_

V (

2

1 2 2 )

=

V { ( x 2 + y 2 + z 2 ) - 1 / }

x + y + z

i a ( x 2 + y 2 + z 2 ) - 1 / 2 +

j a ( x 2 + y 2 + z 2 ) -

1 / 2 + k a z ( x 2 + y 2 + z 2 ) - 1 / 2

Y

1 2 2

2 - 3 / 2

2

2

2 - 3 / 2

I

2 2

2 - 3 / 2

i { - Z ( x + y + z )

2 x }

+

j { - 2 ( x + y + z )

2 y }

+ k { _ 2 ( x + y + z )

2 z }

- x i - - y j - z k

_

r

( x 2 + y 2 + z 2 ) 3 / 2 -

r 3

4 . S h o w t h a t V r n = n r n - 2 r .

V r n =

V ( x 2 + Y 2 + z 2 )

V ( x 2 + y 2 + z 2 ) n / 2

=

i

{ ( x 2 + y 2 + z 2 ) n / 2 }

+ j

{ ( x 2 + y 2 + z 2 ) n / 2 } +

k

1 { ( x 2 + y 2 + z 2 ) n / 2 }

a x

a y

a z

Page 68: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 68/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

{ 2 ( x 2 + y 2 + z 2 ) n / 2 - 1 2 x }

+ j { 2 ( x 2 + y 2 + z 2 ) n / 2 - 1 2 y } +

k

n ( x 2 + y 2 + z 2 ) n / 2 - 1 ( x i

+ y j + z k )

n ( r

2 ) n / 2

- i r =

n r n - 2 r

{ 2 ( x 2 + y 2 + z 2 ) n / 2 - 1

2 z }

N o t e t h a t i f r = r r 1 w h e r e r 1 i s a u n i t v e c t o r i n t h e d i r e c t i o n r , t h e n V r n = n r n - 1 r i .

5 . 1 S h o w t h a t V

i s a v e c t o r p e r p e n d i c u l a r t o t h e s u r f a c e O ( x , y , z ) = c w h e r e c i s a c o n s t a n t .

6 1

L e t

r = x i + y j + z k b e t h e p o s i t i o n v e c t o r t o a n y p o i n t P ( x , y , z ) o n t h e s u r f a c e . T h e n d

r = d x i +

d y j + d z k l i e s i n t h e t a n g e n t p l a n e t o t h e s u r f a c e a t P .

B u t d =

d x +

L O d y

+

a 4 d z

= 0

o r

( a - O i

+

a 0 i +

d y j + d z k ) = 0

a x

a y

a z

a x

a y

a z

i . e . 0 g b

d r = 0

s o t h a t V

i s p e r p e n d i c u l a r t o d r a n d t h e r e f o r e t o t h e s u r f a c e .

6 . F i n d a u n i t n o r m a l t o t h e s u r f a c e x 2 y + 2 x z = 4 a t t h e p o i n t ( 2 , - 2 , 3 ) .

V ( x 2 y + 2 x z ) = ( 2 x y + 2 z ) i

+ x 2 j + 2 x k = - 2 i + 4 j + 4 k

a t t h e p o i n t ( 2 , - 2 , 3 ) .

T h e n a u n i t n o r m a l t o t h e s u r f a c e =

- 2 1 + 4 j + 4 k 1 2 . 2

- - - t + - + - k

V ' ( - 2 ) 2 + ( 4 ) 2 + ( 4 ) 2 3 3 3

A n o t h e r u n i t n o r m a l i s 3 i -

2 j

- s k h a v i n g d i r e c t i o n o p p o s i t e t o t h a t a b o v e .

7 . F i n d a n e q u a t i o n f o r t h e t a n g e n t p l a n e t o t h e s u r f a c e 2 x z 2 - 3 x y - 4 x = 7 a t t h e p o i n t ( 1 , - 1 , 2 ) .

V ( 2 x z 2 - 3 x y - 4 x ) _ ( 2 z 2 - - 3 y - 4 ) i - 3 x j + 4 x z k

T h e n a n o r m a l t o t h e s u r f a c e a t t h e p o i n t ( 1 , - 1 , 2 ) i s

7 i - 3 j + 8 k .

T h e e q u a t i o n o f a p l a n e p a s s i n g t h r o u g h a p o i n t w h o s e p o s i t i o n v e c t o r i s r o a n d w h i c h i s p e r p e n d i c u l a r

t o t h e n o r m a l N i s ( r - r o ) N = 0 . ( S e e C h a p . 2 , P r o b . 1 8 . )

T h e n t h e r e q u i r e d e q u a t i o n i s

[ ( x i + y j + z k )

- ( i - i + 2 k ) ] ( 7 i - - 3 j + 8 k ) = 0

o r

7 ( x - 1 ) - 3 ( y + 1 ) + 8 ( z - 2 )

=

0 .

8 . L e t q S ( x , y , z ) a n d c ( x + A x , y + A y , z + A z ) b e t h e t e m p e r a t u r e s a t t w o n e i g h b o r i n g p o i n t s P ( x , y , z )

a n d Q ( x + A x , y + A y , z + A z ) o f a c e r t a i n r e g i o n .

( a ) I n t e r p r e t p h y s i c a l l y t h e q u a n t i t y

O =

O ( x + A x , y + A y ,

z

A z ) - 9 5 ( x , y , z )

d i s t a n c e b e t w e e n p o i n t s P a n d Q .

A s

A s

( b ) E v a l u a t e A l s m o 0 _

d o

a n d i n t e r p r e t p h y s i c a l l y .

S -

( c ) S h o w t h a t

d s

L O

= V q -

d s

w h e r e A s i s t h e

( a ) S i n c e A

i s t h e c h a n g e i n t e m p e r a t u r e b e t w e e n p o i n t s P a n d Q a n d A s i s t h e d i s t a n c e b e t w e e n t h e s e

p o i n t s ,

Q O r e p r e s e n t s t h e a v e r a g e r a t e o f c h a n g e i n t e m p e r a t u r e p e r u n i t d i s t a n c e i n t h e d i r e c t i o n f r o m

P t o Q .

Page 69: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 69/234

6 2

G R A D I E N T , D I V E R G E N C E a n d C U R L

( b ) F r o m t h e c a l c u l u s ,

A x +

o A y + a o A z + i n f i n i t e s i m a l s o f o r d e r h i g h e r t h a n L a x , A y a n d A z

T h e n

o r

x y z

a

d s m o A s

-

& 4

o a x A s

a y A s

+ a z A s

d o

a o d x

a 0 d y

a o d z

d s a x d s +

a y d s

+ a z d s

d

d s

r e p r e s e n t s t h e r a t e o f c h a n g e o f t e m p e r a t u r e w i t h r e s p e c t t o d i s t a n c e a t p o i n t P i n a d i r e c t i o n

t o w a r d Q . T h i s i s a l s o c a l l e d t h e d i r e c t i o n a l d e r i v a t i v e o f .

d o

a q d x

o d y

a o d z a q

. - 4

,

d x d y d z

( c ) d s

a x d s +

a a y

d s + a z d s ( a x 1 + a y J + a z

L o

k )

( d s i + d s ' + d s k )

d s

N o t e t h a t s i n c e d i s a u n i t v e c t o r , V c

d s

i s t h e c o m p o n e n t o f V 4 i n t h e d i r e c t i o n o f t h i s u n i t

v e c t o r .

9 . S h o w t h a t t h e g r e a t e s t r a t e o f c h a n g e o f 0 , i . e . t h e m a x i m u m d i r e c t i o n a l d e r i v a t i v e , t a k e s p l a c e

i n t h e d i r e c t i o n o f , a n d h a s t h e m a g n i t u d e o f , t h e v e c t o r V o .

B y P r o b l e m 8 ( c ) , d o = V c b

d s

i s t h e p r o j e c t i o n o f V V i n t h e d i r e c t i o n d s .

T h i s p r o j e c t i o n w i l l b e

a m a x i m u m w h e n V V a n d

h a v e t h e s a m e d i r e c t i o n . T h e n t h e m a x i m u m v a l u e o f d o t a k e s p l a c e i n t h e

d i r e c t i o n o f V o a n d i t s m a g n i t u d e i s

I V o I

.

1 0 . F i n d t h e d i r e c t i o n a l d e r i v a t i v e o f 0 = x 2 y z + 4 x z 2 a t ( 1 , - 2 , - - 1 ) i n t h e d i r e c t i o n 2 i

- j - 2 k .

0 =

V ( x 2 y z + 4 x z 2 )

_

( 2 x y z + 4 z 2 7 i + x 2 z j + ( x 2 y + 8 x z ) k

=

8 i - j - 1 0 k

a t

( 1 , - 2 , - 1 ) .

T h e u n i t v e c t o r i n t h e d i r e c t i o n o f 2 1 - j - 2 k i s

a 2 i - j - 2 k

=

( 2 ) 2 + ( - 1 ) 2 + ( - 2 ) 2

2 ,

- 3 J - 3 k

T h e n t h e r e q u i r e d d i r e c t i o n a l d e r i v a t i v e i s

V O - a = ( 8 i - j -

S i n c e t h i s i s p o s i t i v e , 0 i s i n c r e a s i n g i n t h i s d i r e c t i o n .

1 6 + 1 + 0 _ 3 7

3 3

3 3

1 1 . ( a ) I n w h a t d i r e c t i o n f r o m t h e p o i n t ( 2 , 1 , - 1 ) i s t h e d i r e c t i o n a l d e r i v a t i v e o f

= x y z 3 a m a x i m u m ?

( b ) W h a t i s t h e m a g n i t u d e o f t h i s m a x i m u m ?

V O = V ( x y z 3 )

=

2 x y z 3 i + x z 3 j

+ 3 x x y z 2 k

= - 4 1 - 4 j + 1 2 k

a t

( 2 , 1 , - 1 ) .

T h e n b y P r o b l e m 9 ,

Page 70: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 70/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

6 3

( a ) t h e d i r e c t i o n a l d e r i v a t i v e i s a m a x i m u m i n t h e d i r e c t i o n V c b = - 4 i - 4 j + 1 2 k ,

( b ) t h e m a g n i t u d e o f t h i s m a x i m u m i s

I V O

( - 4 ) 2 + ( - 4 ) 2 + ( 1 2 ) 2

=

7 1 6 = 4 v " 1 1 .

1 2 . F i n d t h e a n g l e b e t w e e n t h e s u r f a c e s x 2 + y 2 + z 2 = 9 a n d z = x 2 + y 2 - 3 a t t h e p o i n t ( 2 , - 1 , 2 ) .

T h e a n g l e b e t w e e n t h e s u r f a c e s a t t h e p o i n t i s t h e a n g l e b e t w e e n t h e n o r m a l s t o t h e s u r f a c e s a t t h e

p o i n t .

A n o r m a l t o x 2 + y 2 + z 2 = 9

a t ( 2 , - 1 , 2 ) i s

V O 1 =

V ( x 2 + y 2 + z 2 )

=

2 x i

+ 2 y i + 2 z k

=

4 i - 2 j + 4 k

A n o r m a l t o z = x 2 + y 2 - 3 o r x 2 + y 2 - z = 3 a t ( 2 , - 1 , 2 ) i s

V q 5 2

= V ( x 2 + y 2 - z )

=

2 x i + 2 y j - k

= 4 i - 2 j - k

( V V 1 ) ( V q 5 2 ) =

I V ¢ I 1 I

I V 0 2 1 c o s 0 , w h e r e 8 i s t h e r e q u i r e d a n g l e . T h e n

I 4 i - 2 i + 4 k I I 4 i - 2 i - k I c o s 8

1 6 + 4 - 4 =

( 4 ) 2 + ( - 2 ) 2 + ( 4 ) 2

( 4 ) 2 + ( - 2 ) 2 + ( - 1 ) 2 c o s 8

a n d

c o s B =

1 6

= 8 6 3 = 0 . 5 8 1 9 ; t h u s t h e a c u t e a n g l e i s 8 = a r c c o s 0 . 5 8 1 9 = 5 4 ° 2 5 ' .

6 2 1

1 3 . L e t R b e t h e d i s t a n c e f r o m a f i x e d p o i n t A ( a , b , c ) t o a n y p o i n t P ( x , y , z ) . S h o w t h a t V R i s a u n i t

v e c t o r i n t h e d i r e c t i o n A P = R .

I f r A a n d r p a r e t h e p o s i t i o n v e c t o r s a i + b j + c k a n d x i + y j + z k

o f A a n d P r e s p e c t i v e l y , t h e n

R = r p - r A = ( x - a ) i + ( y - b ) j + ( z - c ) k ,

s o t h a t R =

( x - a ) 2 + ( y - b ) 2 + ( z - c ) 2

.

T h e n

V R

= V ( ( x - a ) 2 + ( y - b ) 2 + ( z - c ) 2 )

_

( x - a ) i + ( y - b ) j + ( z - c ) k

=

R

( x - a ) 2 + ( y - - b ) 2 + ( z - c ) 2

R

i s a u n i t v e c t o r i n t h e d i r e c t i o n R .

1 4 . L e t P b e a n y p o i n t o n a n e l l i p s e w h o s e f o c i a r e a t p o i n t s A a n d B , a s s h o w n i n t h e f i g u r e b e l o w .

P r o v e t h a t l i n e s A P a n d B P m a k e e q u a l a n g l e s w i t h t h e t a n g e n t t o t h e e l l i p s e a t P .

L e t R 1 = A P a n d R 2 = B P d e n o t e v e c t o r s d r a w n r e -

s p e c t i v e l y f r o m f o c i A a n d B t o p o i n t P o n t h e e l l i p s e , a n d

l e t T b e a u n i t t a n g e n t t o t h e e l l i p s e a t P .

S i n c e a n e l l i p s e i s t h e l o c u s o f a l l p o i n t s P t h e s u m

o f w h o s e d i s t a n c e s f r o m t w o f i x e d p o i n t s A a n d B i s a

c o n s t a n t p , i t i s s e e n t h a t t h e e q u a t i o n o f t h e e l l i p s e i s

R 1 + R 2 = p .

B y P r o b l e m 5 , V ( R 1 + R 2 ) i s a n o r m a l t o t h e e l l i p s e ;

h e n c e

[ V ( R 1 + R 2 ) ] T = 0 o r ( V R 2 ) T = - ( V R 1 ) . T

.

S i n c e V R 1 a n d V R 2 a r e u n i t v e c t o r s i n d i r e c t i o n R - 1

a n d R 2 r e s p e c t i v e l y ( P r o b l e m 1 3 ) , t h e c o s i n e o f t h e a n g l e

b e t w e e n V R 2 a n d T i s e q u a l t o t h e c o s i n e o f t h e a n g l e b e -

t w e e n V R 1 a n d - T ; h e n c e t h e a n g l e s t h e m s e l v e s a r e e q u a l .

T h e p r o b l e m h a s a p h y s i c a l i n t e r p r e t a t i o n .

L i g h t r a y s ( o r s o u n d w a v e s ) o r i g i n a t i n g a t f o c u s A , f o r

e x a m p l e , w i l l b e r e f l e c t e d f r o m t h e e l l i p s e t o f o c u s B .

Page 71: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 71/234

6 4

G R A D I E N T , D I V E R G E N C E a n d C U R L

T H E D I V E R G E N C E

1 5 . I f A = x 2 z i - 2 y 3 z 2 j + x y 2 z k ,

f i n d V A ( o r d i v A ) a t t h e p o i n t ( 1 , - 1 , 1 ) .

( a x i

+

a y j

+

- z 1 a

k ) ( x 2 z i - 2 y 3 z 2 ] + x y 2 z k )

a x

( x 2 z ) + a ( - 2 y 3 z 2 )

+

a z

( x y 2 z )

Y

2 x z - 6 y 2 z 2 + x y 2

=

2 ( 1 ) ( 1 ) - 6 ( - 1 ) 2 ( 1 ) 2 + ( 1 ) ( - - 1 ) 2

=

a 2 ( ?

a 2 0

a 2

1 6 . G i v e n = 2 x 3 y 2 z 4 .

( a ) F i n d V V q ( o r d i v g r a d 4 ) ) .

22

( b ) S h o w t h a t V 2 0 , w h e r e V 2

a 2

= a x 2 +

a

2

+

a a z 2

d e n o t e s t h e L a p l a c i a n o p e r a t o r

Y

( a ) V c =

i

a

( 2 x 3 y 2 z 4 )

+

j

a

( 2 z 3 y 2 z 4 ) + k

a

( 2 x 3 y 2 z 4 )

O x a y

O z

6 x 2 y 2 z 4 i

+

4 x 3 y z 4 j

+

8 x 3 y 2 z 3 k

T h e n

( a l

+ - a - j +

a k )

' ( 6 x 2

2

z

4

i + 4 x 3

4 .

+ 8 2

3 2

z

3

, a x

- a y

a z y y z 1 y k )

a x

( 6 x 2 y 2 z 4 )

+

( 4 x 3 y z 4 )

+

- a

( 8 x 2 y 2 z 3 )

Y

1 2 x y 2 z 4

+

4 x 3 2 4

+

2 4 2 y 2 z 2

( b )

( a x i + a j + a

z k ) .

( L O

+ a j +

- k )

Y

Y

Y Y

2 2 2

= (

a x 2 +

a y 2

+

a z 2 )

V 2 q

1 7 . P r o v e t h a t

V 2 ( T ) = 0 .

V 2 ( 1 )

- 3

a t ( 1 , - 1 , 1 ) .

0

a x 2

a y 2

a z 2

- 9

+ a 2

+ a 2

1

a x 2 a y 2

a z 2 ) ( x 2 + y 2 + Z 2 )

=

a ( x 2 + y 2 + z 2 ) ^ 1 / 2

=

- x ( x 2 + y 2 + z 2 ) - 3 / 2

a x [ - x ( x 2 + y 2 + z 2 ) - 3 / 2 ]

3 x 2 ( x 2 + y 2 + Z 2 ) 5 / 2 - ( x 2 + y 2 + 2 2 ) ` 3 / 2

=

2 x 2 _ y 2

-

z 2

( x 2 + y 2 + z 2 ) 5 / 2

S i m i l a r l y ,

Page 72: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 72/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

1 2 y 2 - z 2 - x 22

/

a y 2 ( V x 2 + y 2 + z 2 )

T h e n b y a d d i t i o n ,

( x 2 + y 2 + z 2 ) 5 / 2

a n d

a - 2

1

2 z 2 - x 2 - y 2

a z 2 (

x 2 + y 2 + z 2 )

( x 2 + y 2 + z 2 ) 5 / 2

2 2 2

+ a

1

( a

V

+

a z 2 ) (

)

= 0 .

V X 2

T h e e q u a t i o n

0 2 0

= 0 i s c a l l e d L a p l a c e ' s e q u a t i o n . I t f o l l o w s t h a t 0 = 1 1 r i s a s o l u t i o n o f t h i s

e q u a t i o n .

1 8 . P r o v e :

( a ) V ( A + B ) = V A + V B

( b ) V ( O A ) = ( V O ) - A + 0 ( V ' A )

( a ) L e t A = A l i + A 2 j + A s k , B = B l i + B 2 j + B 3 k .

T h e n V . ( A + B ) =

( a a - i

+

j +

a k )

[ ( A 1 + B 1 ) i + ( A 2 + B 2 ) j + ( A 3 + B 3 ) k ]

x

Y

=

x

( A 1 + B 1 ) + a

Y

a

( A 2 + B 2 ) + a z

( A 3 + B 3 )

a A 1

+

a A 2

+

a A 3

+

- 6 B ,

a B 2

a B 3

= a x a y a z

a x + a y + a z

= ( a i

j + A

k )

  + A

) . ( A

+ a

3

zx

Y

+ ( a x i + a ] + a z k ) .

( B 1 1 + B 2 j + B 3 k )

Y

( b )

= V . A + V . B

V .

V . ( O A 1 i + O A 2 j + c A 3 k )

a x ( ( P A 1 )

+ a y a z

( O A 3 )

= a A 1 + 0 : + a 0 A 2 +

O x

O x

a

A l +

a O

A 2

+ a A 3

+

Y

a A 3

a z

_

( a i + a j

+

a o k )

( A 1 i + A 2 j + A 3 k ) + 0 ( a x 1

+ a j + a

z

k ) . ( A 1 1

y

_ ( V ) . A +

( V - A )

1 9 . P r o v e V ( 3 ) = 0

.

r

L e t

= r - 3 a n d A = r i n t h e r e s u l t o f P r o b l e m 1 8 ( b ) .

T h e n V ( r - 3 r )

= ( V r - 3 ) . r + ( r

s ) V .

r

= - 3 r - 5 r r + 3 r - S = 0 ,

u s i n g P r o b l e m 4 .

+ A 2 j + A s k )

Page 73: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 73/234

6 6

G R A D I E N T , D I V E R G E N C E a n d C U R L

2 0 . P r o v e

V - ( U V V - V V U ) = U V 2 V - V V 2 U .

F r o m P r o b l e m 1 8 ( b ) , w i t h < t = U a n d A = V V ,

V .

( U V V )

_

( V U ) .

( V V ) +

U

V

( V

( V V )

U

V

V

V

V

( V V )

( V U )

+ V

V 2 U

= U V 2 V -

V V 2 U

2 1 . A f l u i d m o v e s s o t h a t i t s v e l o c i t y a t a n y p o i n t i s v ( x , y , z ) .

S h o w t h a t t h e l o s s o f f l u i d p e r u n i t

v o l u m e p e r u n i t t i m e i n a s m a l l p a r a l l e l e p i p e d h a v i n g c e n t e r a t P ( x , y , z ) a n d e d g e s p a r a l l e l t o t h e

c o o r d i n a t e a x e s a n d h a v i n g m a g n i t u d e A x , A y , A z r e s p e c t i v e l y , i s g i v e n a p p r o x i m a t e l y b y d i v v =

V - V

.

z

R e f e r r i n g t o t h e f i g u r e a b o v e ,

x c o m p o n e n t o f v e l o c i t y v a t P

=

V 1

x c o m p o n e n t o f v a t c e n t e r o f f a c e A F E D

=

v i - i a x 1 A x

a p p r o x .

x c o m p o n e n t o f v a t c e n t e r o f f a c e G H C B

=

v i +

2

a z Q x

a p p r o x .

T h e n ( 1 ) v o l u m e o f f l u i d c r o s s i n g A F E D p e r u n i t t i m e

( 2 ) v o l u m e o f f l u i d c r o s s i n g G H C B p e r u n i t t i m e

L o s s i n v o l u m e p e r u n i t t i m e i n x d i r e c t i o n

( v 1

- 2 a x

A x ) A y A z

( v 1 +

I

a v i

A x ) A y A z

.

2

x

( 2 ) - ( 1 ) = a x

A x A y A z .

a v

S i m i l a r l y ,

l o s s i n v o l u m e p e r u n i t t i m e i n y d i r e c t i o n

=

2 A x A y A z

y

l o s s i n v o l u m e p e r u n i t t i m e i n z d i r e c t i o n

a v 3

A x 0 y A z .

a z

T h e n , t o t a l l o s s i n v o l u m e p e r u n i t v o l u m e p e r u n i t t i m e

a v 1

+ a v 2

+ a v 3

( a x

a y a z )

O x D y A z

=

d i v v

=

v

A x A y A z

Page 74: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 74/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

6 7

T h i s i s t r u e e x a c t l y o n l y i n t h e l i m i t a s t h e p a r a l l e l e p i p e d s h r i n k s t o P , i . e . a s L x , L \ y a n d A z a p p r o a c h

z e r o .

I f t h e r e i s n o l o s s o f f l u i d a n y w h e r e , t h e n V v = 0 . T h i s i s c a l l e d t h e c o n t i n u i t y e q u a t i o n f o r a n i n -

c o m p r e s s i b l e f l u i d . S i n c e f l u i d i s n e i t h e r c r e a t e d n o r d e s t r o y e d a t a n y p o i n t , i t i s s a i d t o n a v e n o s o u r c e s

o r s i n k s . A v e c t o r s u c h a s v w h o s e d i v e r g e n c e i s z e r o i s s o m e t i m e s c a l l e d s o l e n o i d a l .

2 2 . D e t e r m i n e t h e c o n s t a n t a s o t h a t t h e v e c t o r V = ( x + 3 y ) i + ( y - 2 z ) j + ( x + a z ) k i s s o l e n o i d a l .

A v e c t o r V i s s o l e n o i d a l i f i t s d i v e r g e n c e i s z e r o ( P r o b l e m 2 1 ) .

' V . V

=

a

( x + 3 Y ) + a ( y - 2 z ) +

a z

( x + a z )

=

1

+

1

+ a

Y

T h e n

w h e n a = - 2 .

T H E C U R L

2 3 . I f A = x z ' i - 2 x 2 y z i + 2 y z 4 k ,

f i n d V x A ( o r c u r l A ) a t t h e p o i n t ( 1 , - 1 , 1 ) .

v x A = ( a i + a j + a k ) x ( x z ' i - 2 x 2 y z ] + 2 y z 4 k )

a x

a y

a z

i j k

a

a a

a x

a y a z

x z 3

- 2 x 2 y z

2 y z 4

=

[

a y

( 2 y z 4 )

a z

( - 2 x 2 y z ) ] i

+

[ a ( x z 3 ) - a ( 2 y Z 4 ) ] j

+ [ a X ( - 2 x 2 y z ) - a Y ( x z 3 ) ] k

=

( 2 z 4 + 2 x 2 y ) i + 3 x z 2 j - 4 x y z k

= 3 j

+ 4 k a t ( 1 , - 1 , 1 ) .

2 4 . I f A = x 2 y i - 2 x z j

+ 2 y z k , f i n d c u r l c u r l A .

c u r l c u r l A

= V x ( V x A )

= v x

i

j

a a

a

a x a y a Z

x 2 y - 2 x z

2 y z

= V x [ ( 2 x + 2 z ) i - ( x 2 + 2 z ) k ]

i j

k

a a a

a x

a y

a z

2 x + 2 z

0 - x 2 - 2 z

= ( 2 x + 2 ) j

2 5 . P r o v e :

( a ) V x ( A + B ) = V x A + V x B

( b ) V x ( V O ) x A + 0 ( v x A ) .

Page 75: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 75/234

6 8

G R A D I E N T , D I V E R G E N C E a n d C U R L

( a ) L e t A = A 1 i + A 2 j + A 3 k , B = B 1 i + B 2 j + B 3 k .

T h e n :

V x ( A + B )

_

(

a i

+

a j

+

a k ) x

[ ( A 1 + B 1 ) i + ( A 2 + B 2 ) j + ( A 3 + B 3 ) k ]

i

j

k

a

a

a

a x

a y

a z

A l + B 1 A 2 + B 2

A 3 + B 3

[ ] ( A 3 + B 3 )

a z

( A 2 + B 2 ) ] i

+ [ a ( A 1 + B 1 )

- 2 x

( A 3 + B 3 ) ]

Y

+

[ a

( A 2 + B 2 ) -

( A 1 + B 1 ) ] k

Y

[ a A 3

-

a A 2 ] i

+

[ - 3 A 1

-

a A 3 ] j

+

[ a A 2

a A 1 ] k

a y

a z

a z

a x

a x

a y

+

- 3 B s

-

a B 2 ] i

+

[ a B 1

-

a B 3 ] j

+

[ a B 2 -

a B 1 ] k

a y a z

a z

a x

a x a y

= V X A + V X B

( b ) V x ( O A )

= V x ( c A 1 i + c A 2 j + O A 3 k )

i j

k

a a

a

a x

a y

a z

O A 1

O A 2

O A S

[ a

( A 2 ) - a z (

i +

[ a z ( M 1 ) -

a x

j

Y

+

[ a x ( 0 4 2 ) - a ( O A 1 ) ] k

Y

a y

+

A S - -

a s

2

-

A 2 ] i

Y

Y

+ [ 0 a A 1 +

A l

3 - a O A 3 1 j +

[ O a A 2

+ a q b A 2

-

O A 1

-

L O A 1 ]

k

a z a z

a x

a x

a x

a x a y

a y

a A 2 ) i + ( a A 1

_ _

a A 3 ) j

+ (

a A 2

A 1 ) k ]

a y

a z

a z

a x

a x

a y

+

[ ( O A S -

a ( P A 2 ) i

+

( a O A 1

-

O A 3 ) j + (

O A 2 -

a E A 1 ) k ]

a y a z a z a x

a x

a y

O ( V x A )

+

a z

A l

A 2

A s

= 0 ( V x A ) + ( V V ) x A .

Page 76: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 76/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

2 6 . E v a l u a t e V . ( A x r )

i f V x A = 0 .

L e t A = A 1 i + A 2 j + A 3 k , r = x i + y j + z k .

T h e n

A x r =

i j

k

A 1

A 2

A 3

x y

z

( z A 2 - y A 3 ) i

+

( x A 3 - z A 1 ) j

+

( 7 A 1 - x A 2 ) k

a n d V ( A x r )

=

a

( z A 2 - y A 3 )

+

a

( x A 3 - z A 1 )

+

( y A 1 - x A 2 )

O x

a y

a z

a A 2

a A 3 a A 3

a A 1

a A 1

O x

a x

z

- - y

+

X

a z

x ( d A 3

_

a A 2 )

+

y ( a A 1

-

a A 3 )

+

z ( a A 2

_

a A 1

a y

a z

a z

a x a x

a y

a A 3 a A 2

+

( a A 1 a A 3

+ (

a A 2

-

a A 1

) k

x i + y j + z k ] ' [ ( a

' 3 Z

a z

a x

a x

a

]

y y

r ( V x A )

=

r

c u r l A .

I f V x A = 0 t h i s r e d u c e s t o z e r o .

2 7 . P r o v e : ( a ) V x ( V O ) = 0

( c u r l g r a d 0 = 0 ) ,

( b ) V . ( V x A ) = 0

( d i v c u r l A = 0 ) .

( a ) V x ( V q )

= V x

( L O

i + a ( P i + a k )

y

i j

k

a a

a

a x

a y

a z

a q 5

a 0

a x a y

a z

[ a

a d ) -

z a

y

y

- a o

- 3 0

[ a x ( a

) -

( a ) ] k

y y

x

_ ( a 2 -

2

) i +

( a 2

-

a 2 0

) ]

+

a 2

-

a 2 -

) k

= 0

a y a z

a z a y a z a x a x a z

a x a y

a y a x

6 9

p r o v i d e d w e a s s u m e t h a t q b h a s c o n t i n u o u s s e c o n d p a r t i a l d e r i v a t i v e s s o t h a t t h e o r d e r o f d i f f e r e n t i a t i o n i s

i m m a t e r i a l .

( b ) V ( V x A ) = V

i

j

a

a

a x

a y

A l A 2

A

2 ) i

a y

a z

a a A 3

a A 2

) +a x ( a y - a z

a

a z

A 3

+

( a A 1

_

a A 3

) j

a z a x

a a A 1

a A

a y ( a z - a x

+ ( a A 2 _

a A 1 ) k ]

a x

a y

a

- a A 2

A l )

- 6 Z

(

a x

a y

Page 77: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 77/234

7 0

G R A D I E N T , D I V E R G E N C E a n d C U R L

a 2 A

3

a 2 A 2

a 2 A

1

a 2 A 3 a 2 A 2

a 2 A 1

=

0

a x a y a x a z

a y a z

a y a x a Z a x

a Z a y

a s s u m i n g t h a t A h a s c o n t i n u o u s s e c o n d p a r t i a l d e r i v a t i v e s .

N o t e t h e s i m i l a r i t y b e t w e e n t h e a b o v e r e s u l t s a n d t h e r e s u l t s ( C x C m ) = ( C x C ) m = 0 . w h e r e m i s a

s c a l a r a n d C ( C x A ) _ ( C x C ) A = 0 .

2 8 . F i n d c u r l ( r f ( r ) ) w h e r e f ( r ) i s d i f f e r e n t i a b l e .

c u r l

( r f ( r ) )

= V x ( r f ( r ) )

=

V x

( x f ( r ) i + y f ( r ) j

B u t

o f = a f ) c a a z

T h e n t h e r e s u l t

+ z f ( r ) k )

i

j

k

a a

a

a x

a y a z

x f ( r )

y f ( r )

z f ( r )

( z a y

y a z ) i

+ ( x a z -

Z a f ) j

2 9 . P r o v e V x ( V x A ) = - Q

A +

i j

V x ( V x A )

= V x

a

a z

=

o f a

(

x 2 + y 2 + z 2 ) =

f ' ( r ) x

=

f ' x

a r a x

x 2 + y 2 + z 2

r

' z

' z ' x

( z f r y - y f r ) i

+

( x

f f

- z

f T

) j +

A l A 2

A s

S i m i l a r l y ,

o f

=

L Y

a n d

o f

= ' z

a y r

a z

r

' x '

( y f T

-

x f Y ) k

=

0 .

a A 3 _ a A 2

) I

+

(

a A 1

a A 3

) '

+

(

a A 2

-

a A l

) k ]

x

(

a z a Z

-

- a x - a x

y

a y

i j

a

a x

a A 3

_

a A 2

a y a z

+

( y a f - x a a - f ) k

y

k

a

a z

a A 2 a A 1

a z

a x a x

a y

a (

a A 2 _

a A l )

_ a ( a A ,

_

a A 3 ) ]

i

a y a x

a y

a z

a z a x

+

a

a A 3

a A 2 )

_

a z a y

a z

+

a (

a A 1

a A 3

a x

a z

a x

a x ( a x e

_ a a A l ) ] j

y

2 ) ] k

-

( a a 3

a

y y

a

Page 78: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 78/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

a - 2 A 1 a 2 A 1

a A 2

a 2 A 2 .

a A 3

a y 2

3

1

+ ( a y a x + a z a x ) i + ( a z a y + a x a y A +

- 5 z 2 ) 1 + ( -

' M

- M

) j

+

( -

a x 2

A

a 2 A a 2 A

2 A

a 2 A

a 2 A 3

} k

y e

c 2 A '

+ a 2

A '

A 2 ) k

a x a z

a y a z

7 1

2

2

2

2

2

2

2

2

a A 1

a A 1 - 3 ) . - a a A , 2

_

- a a A , 2

a A 3

3 A 3

-

a A 3

( -

a x 2

a y e

_

a z 2 + (

- 3 X 2

a y 2

a z 2

+

a x 2

-

a y 2

a z 2 )

k

2

+

( 9 A 2 + a A 2

+

a A 3

) i +

( a A 1 + a A 2

+

a A 3

) j

+ ( S A 1 +

a A 2 + a A s ) k

a x

a y a x

a z a x

a x a y

a y

a z a y a x a z a y a z a z 2

2

+

2

+

2

- ( ' 3 X 2

' 6 Y 2

a z 2 )

( A 1 i + A 2 j + A s k )

+ i

a - 3 A , + a A 2 + a A 3 ) +

j

a ( a A 1

+

a A 2

+

a A 3 )

+ k

a ( a A 1

+

a A 2

+

a A 3 )

a x ( a x a y

a z a y a x

a y

a z

a z a x

a y

a z

- v A + v (

a A 1

+ a A 2

+ a A 3 )

a x

a y

a z

_ - v A

+

I f d e s i r e d , t h e l a b o r o f w r i t i n g c a n b e s h o r t e n e d i n t h i s a s w e l l a s o t h e r d e r i v a t i o n s b y w r i t i n g o n l y t h e i

c o m p o n e n t s s i n c e t h e o t h e r s c a n b e o b t a i n e d b y s y m m e t r y .

T h e r e s u l t c a n a l s o b e e s t a b l i s h e d f o r m a l l y a s f o l l o w s . F r o m P r o b l e m 4 7 ( a ) , C h a p t e r 2 ,

( 1 )

P l a c i n g A = B = V a n d C = F ,

A x ( B x C )

= ( A - B ) C

V x ( V x F )

= V ( V - F ) - ( V - V ) F = V ( V . F ) -

V 2 F

N o t e t h a t t h e f o r m u l a ( 1 ) m u s t b e w r i t t e n s o t h a t t h e o p e r a t o r s A a n d B p r e c e d e t h e o p e r a n d C , o t h e r w i s e

t h e f o r m a l i s m f a i l s t o a p p l y .

3 0 . I f v = c o x r , p r o v e w = 2 c u r l v w h e r e w i s a c o n s t a n t v e c t o r .

i

j

c u r l y

= V x v

= V x ( c v x r )

= V x

N 1 6 0 2

W 3

x

y

z

= V x [ ( a 2 z - & s Y ) i + ( W 3 x - W 1 z ) j + ( w 1 Y - c v 2 x ) k ]

i

j

k

a a

a

I

=

2 ( c u 1 i + W O + c v 3 k )

=

2 c a

a x a y a z

w 2 z - c v 3 y W a x - W 1 Z

W 1 y - W 2 x

Page 79: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 79/234

7 2

G R A D I E N T , D I V E R G E N C E a n d C U R L

T h e n = 2 V x v = 2 c u r l v .

T h i s p r o b l e m i n d i c a t e s t h a t t h e c u r l o f a v e c t o r f i e l d h a s s o m e t h i n g t o d o w i t h r o t a t i o n a l p r o p e r t i e s o f

t h e f i e l d . T h i s i s c o n f i r m e d i n C h a p t e r 6 . I f t h e f i e l d F i s t h a t d u e t o a m o v i n g f l u i d , f o r e x a m p l e , t h e n a

p a d d l e w h e e l p l a c e d a t v a r i o u s p o i n t s i n t h e f i e l d w o u l d t e n d t o r o t a t e i n r e g i o n s w h e r e c u r l F # 0 , w h i l e i f

c u r l F = 0 i n t h e r e g i o n t h e r e w o u l d b e n o r o t a t i o n a n d t h e f i e l d F i s t h e n c a l l e d i r r o t a t i o n a l . A f i e l d w h i c h

i s n o t i r r o t a t i o n a l i s s o m e t i m e s c a l l e d a v o r t e x f i e l d .

2

3 1 . I f V E = 0 , V H = 0 , V X E

a H , V x H =

a t E

, s h o w t h a t E a n d H s a t i s f y

V 2 u = a i l

2

a H )

=

V x

a

x E

= V x v x H

_

a

a a E

(

( - -

(

)

-

( E )

- t

B y P r o b l e m 2 9 , V x ( V x E )

= -

V 2 E + V ( V - E )

_ - V E .

T h e n V E

S i m i l a r l y , V x ( V x H ) = V x

2

a E )

= a t ( v x E ) = a t ( -

a A )

_ -

H

B u t V x ( V X H )

=

- V 2 H +

V 2 H .

a 2

H

V 2h e n

H =

T h e g i v e n e q u a t i o n s a r e r e l a t e d t o M a x w e l l ' s e q u a t i o n s o f e l e c t r o m a g n e t i c t h e o r y .

T h e e q u a t i o n

2 2

2

2

i s c a l l e d t h e w a v e e q u a t i o n .

y 2

a x e + a + a z 2

a t e

M I S C E L L A N E O U S P R O B L E M S .

3 2 . ( a ) A v e c t o r V i s c a l l e d i r r o t a t i o n a l i f c u r l V = 0 ( s e e P r o b l e m 3 0 ) . F i n d c o n s t a n t s a , b , c s o t h a t

V

= ( x + 2 y + a z ) i

+ ( b x - 3 y - z ) j

+ ( 4 x + c y + 2 z ) k

i s i r r o t a t i o n a l .

( b ) S h o w t h a t V c a n b e e x p r e s s e d a s t h e g r a d i e n t o f a s c a l a r f u n c t i o n .

i j

( a ) c u r l V

= V x V

=

k

a a

a

a x

a y

a z

_

( c + l ) i + ( a - 4 ) j + ( b - 2 ) k

I x + 2 y + a z b x - 3 y - z

4 x + c y + 2 z '

T h i s e q u a l s z e r o w h e n a = 4 , b = 2 , c = - 1 a n d

V =

( x + 2 y + 4 z ) i + ( 2 x - 3 y - z ) j + ( 4 x - y + 2 z ) k

( b ) A s s u m e

V = V c = - i +

4 i

+ a O k

y

T h e n ( 1 )

a - = x + 2 y + 4 z ,

( 2 )

, a

= 2 x - 3 y - - z ,

( 3 ) a = 4 x - y + 2 z .

y

I n t e g r a t i n g ( 1 ) p a r t i a l l y w i t h r e s p e c t t o x , k e e p i n g y a n d z c o n s t a n t ,

2

( 4 )

c a

= 2 + 2 x y + 4 x z + f ( y , z )

w h e r e f ( y , z ) i s a n a r b i t r a r y f u n c t i o n o f y a n d z .

S i m i l a r l y f r o m ( 2 ) a n d ( 3 ) ,

Page 80: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 80/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

( 5 )

( 6 )

0

2

2 x y -

3 y

- y z + g ( x , z )

=

4 x z - y z

+ z 2

+ h ( x , y ) .

C o m p a r i s o n o f ( 4 ) , ( 5 ) a n d ( 6 ) s h o w s t h a t t h e r e w i l l b e a c o m m o n v a l u e o f 0 i f w e c h o o s e

2

f ( Y , z ) _ -

3 y

+ z 2

2

s o t h a t

x 2

g ( x , z ) = 2 + z 2 ,

x 2

3 y 2

h ( x , y ) =

2 2

x 2

-

a

2

+ Z 2 + 2 x y + 4 x z - y z

7 3

N o t e t h a t w e c a n a l s o a d d a n y c o n s t a n t t o 0 . I n g e n e r a l i f V x V = 0 , t h e n w e c a n f i n d 4 s o t h a t

V = V 0 .

A v e c t o r f i e l d V w h i c h c a n b e d e r i v e d f r o m a s c a l a r f i e l d 0 s o t h a t V = V O i s c a l l e d a c o n s e r v a t i v e v e c t o r

f i e l d a n d 0 i s c a l l e d t h e s c a l a r p o t e n t i a l . N o t e t h a t c o n v e r s e l y i f V = V q 5 , t h e n V x V = 0 ( s e e P r o b . 2 7 a ) .

3 3 . S h o w t h a t i f O ( x , y , z ) i s a n y s o l u t i o n o f L a p l a c e ' s e q u a t i o n , t h e n V q b i s a v e c t o r w h i c h i s b o t h

s o l e n o i d a l a n d i r r o t a t i o n a l .

B y h y p o t h e s i s , 0 s a t i s f i e s L a p l a c e ' s e q u a t i o n

V 2 0

= 0 , i . e . V ( V 4 ) ) = 0 . T h e n V V i s s o l e n o i d a l ( s e e

P r o b l e m s 2 1 a n d 2 2 ) .

F r o m P r o b l e m 2 7 a , V x ( V V ) = 0 s o t h a t V V i s a l s o i r r o t a t i o n a l .

3 4 . G i v e a p o s s i b l e d e f i n i t i o n o f g r a d B .

A s s u m e B

a i i +

  B 2 i j

+

a B 3

i k

+ a a l j i + a 2 j j + a a 3 j k

Y

Y

y

+

a B 1

k i +

a B 2

k J +

a B 3

k k

a z

a Z

a z

T h e q u a n t i t i e s i i , i j , e t c . , a r e c a l l e d u n i t d y a d s . ( N o t e t h a t i j , f o r e x a m p l e , i s n o t t h e s a m e a s j i . )

A q u a n t i t y o f t h e f o r m

a u i i + a 1 2 i j + a I s i k + a 2 2 j i + a 2 2 j j + a 2 3 j k + a 8 1 k i + a 3 2 k j + a 3 3 k k

i s c a l l e d a d y a d i c a n d t h e c o e f f i c i e n t s a l l , a 1 2 ,

. . .

a r e i t s c o m p o n e n t s . A n a r r a y o f t h e s e n i n e c o m p o -

n e n t s i n t h e f o r m

a l l a 1 2

a 1 3

a 2 1

a 2 2 a 2 3

a 3 1

C 3 2

a 3 3

= B 1 i + B 2 J + B 3 k . F o r m a l l y , w e c a n d e f i n e g r a d B a s

V B =

( a x

i +

j +

a z k ) ( B 1 i + B 2 j + B 3 k )

Y

i s c a l l e d a 3 b y 3 m a t r i x . A d y a d i c i s a g e n e r a l i z a t i o n o f a v e c t o r .

S t i l l f u r t h e r g e n e r a l i z a t i o n l e a d s t o

t r i a d i c s w h i c h a r e q u a n t i t i e s c o n s i s t i n g o f 2 7 t e r m s o f t h e f o r m a 1 1 1 i i i + a 2 1 1 j i i + . . . .

A s t u d y o f h o w

t h e c o m p o n e n t s o f a d y a d i c o r t r i a d i c t r a n s f o r m f r o m o n e s y s t e m o f c o o r d i n a t e s t o a n o t h e r l e a d s t o t h e s u b -

j e c t o f t e n s o r a n a l y s i s w h i c h i s t a k e n u p i n C h a p t e r 8 .

Page 81: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 81/234

7 4

G R A D I E N T , D I V E R G E N C E a n d C U R L

3 5 . L e t a v e c t o r A b e d e f i n e d b y A = A l i + A 2 j + A 3 k a n d a d y a d i c f i b y

0 =

a 1 1 i i + a 1 2 1 j + a 1 3 i k + a 2 1 j i + a 2 2 j j + a 2 3 j k + a 3 l k i + a 3 2 k j + a 3 3 k k

G i v e a p o s s i b l e d e f i n i t i o n o f A - 0 .

F o r m a l l y , a s s u m i n g t h e d i s t r i b u t i v e l a w t o h o l d ,

( A l i + A 2 j + A 3 k ) 4 > = A 1 i 4 i + A 2 j 4 i + A 3 k 4 b

A s a n e x a m p l e , c o n s i d e r i - 4 ' . T h i s p r o d u c t i s f o r m e d b y t a k i n g t h e d o t p r o d u c t o f i w i t h e a c h t e r m o f

4 ) a n d a d d i n g r e s u l t s . T y p i c a l e x a m p l e s a r e i

a l a i i , i

a 1 2 i j ,

i

a 2 1 j i ,

i

a 3 2 k j , e t c .

I f w e g i v e m e a n -

i n g t o t h e s e a s f o l l o w s

i

a s s i i

i a l 2 i j

i a 2 , j i

i

r i n k j

=

a l l ( i

1 ) 1

=

a 1 2 ( i

i ) j

= a 2 1 0 - h i

a 3 2 ( i k ) j

=

a l l i

s i n c e i

i

= 1

=

a i l j

s i n c e

i , 1 = 1

=

p

s i n c e

i j

= 0

= 0

s i n c e i k = 0

a n d g i v e a n a l o g o u s i n t e r p r e t a t i o n t o t h e t e r m s o f j

4 ) a n d k 4 0 , t h e n

A 4 )

=

A , ( a l l i + a 1 2 j + a 1 3 k ) + A 2 ( a 2 1 i + a 2 2 j + a 2 3 k ) + A 3 ( a 3 1 i + a 3 2 j +

a 3 3 k )

_ ( A l a s , + A 2 a 2 , + A 3 a 3 1 ) i + ( A 1 a 1 2 + A 2 a 2 2 + A 3 a 3 2 ) j + ( A l a i , + A 2 a 2 3 + A s a s s ) k

w h i c h i s a v e c t o r .

3 6 . ( a ) I n t e r p r e t t h e s y m b o l A - V . ( b ) G i v e a p o s s i b l e m e a n i n g t o ( A V ) B .

( c ) I s i t p o s s i b l e t o

w r i t e t h i s a s A V B w i t h o u t a m b i g u i t y ?

( a ) L e t A = A l i + A 2 j + A s k .

T h e n , f o r m a l l y ,

A - V =

( A s i + A 2 j + A 3 k ) ( a i

+ a

i

+ a z k )

a

a

A l

a

a x

+

A 2 a y

+

A s

a z

i s a n o p e r a t o r . F o r e x a m p l e ,

( A V )

( A 1 a x + A 2

a

+ A s

a ) =

A l

+ A 2

a

+

A s

a

y

N o t e t h a t t h i s i s t h e s a m e a s A V c .

( b ) F o r m a l l y , u s i n g ( a ) w i t h 0 r e p l a c e d b y B = B 1 i + B 2 j + B 3 k ,

( A 0 ) B

( A ,

a x

+

A 2 - a y

+

A 3 a z ) B

= A l

a B x + A 2 a B

+ A 3

a B

_

a B 1 a B 1 a B 1 a B 2 a B 2 a B 2 a B 3

a B 3

a

( A l

a x

+ A 2

a y

+ A 3

a z )

i

+

( A , - : a x

+ ( A l

a x

+ A 2

a y

+ A 3

- a z )

k

( c ) U s e t h e i n t e r p r e t a t i o n o f V B a s g i v e n i n P r o b l e m 3 4 . T h e n , a c c o r d i n g t o t h e s y m b o l i s m e s t a b l i s h e d

i n P r o b l e m 3 5 ,

A V B =

( A 1 i + A 2 j + A s k ) V B = A 1 i V B + A 2 j V B + A s k V B

a B 1 ,

- a a B . 2 a B 3

a B 1

a B 2

- 6 B 3

a B l

.

a B 2

B s

A , ( a x l + a x j +

a x

k ) + A 2 ( a y i + a y j + a y k ) + A s ( a z l + a z j + a z k )

Page 82: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 82/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

7 5

w h i c h g i v e s t h e s a m e r e s u l t a s t h a t g i v e n i n p a r t ( b ) .

I t f o l l o w s t h a t ( A V ) B = A V B w i t h o u t a m b i -

g u i t y p r o v i d e d t h e c o n c e p t o f d y a d i c s i s i n t r o d u c e d w i t h p r o p e r t i e s a s i n d i c a t e d .

3 7 . I f A = 2 y z i - x 2 y j + x z 2 k , B = x 2 i + y z i - x y k a n d 0 = 2 x 2 y z 3 ,

( a ) ( b )

A x V 0 .

[ ( 2 y z i - x 2 y j + x z 2 k )

( i

i

+

i

+

k

- a y

) ] q 5

a z

( 2 y z

-

x 2 y +

a x

- a y

2 y z a ( 2 x 2 y z 3 )

-

x

x z 2 a z )

( 2 x 2 y z 3 )

x 2 y a ( 2 x y z 3 )

+

x z 2

a z

( 2 x 2 y z 3 )

Y

( 2 y z ) ( 4 x y z 3 ) -

( x 2 y ) ( 2 x 2 2 3 )

+

( x z 2 ) ( 6 x y z 2 )

8 x y 2 z 4 -

2 7 j 4 y z 3

+

6 x 3 y Z 4

( b )

( 2 y z i - x 2 y j + x z 2 k ) ( a ( p i

+

a 0 j

+

0 k )

8 x y 2 z 4 - 2 x 4 y z 3

+

6 x 3 y z 4

O x

a y

a z

( 2 y z i - x 2 y j + x z 2 k )

( 4 x y z 3 i + 2 x 2 z 3 j + f i x y z 2 k )

C o m p a r i s o n w i t h ( a ) i l l u s t r a t e s t h e r e s u l t ( A V ) 0 = A V 0 .

( c ) ( B - V ) A

=

[ ( x 2 i + y z j - x y k )

( a i

=

( X 2 - 1

a - ) A

  Y z

-

x Y

a x

a

,

Y

+ a

j +

a z k ) ] A

Y

x 2 a A

+

z

a A

_ x

a A

a x

Y a y

Y

a z

x 2 ( - 2 x y j + z 2 k )

+

y z ( 2 z i - x 2 j ) - x y ( 2 y i + 2 x z k )

( 2 y z 2 - 2 x y 2 ) i - ( 2 x 3 y + x 2 Y z ) j

+

( x 2 2 2 - 2 x 2 y z ) k

F o r c o m p a r i s o n o f t h i s w i t h B - V A ,

s e e P r o b l e m 3 6 ( c ) .

( d ) ( A x V )

[ ( 2 y z i - x 2 y j + x z 2 k )

x ( a x l + a j +

a k ) 1

Y

i

i

k

2 y z

- x 2 y

x z 2

0

+

j ( x Z 2 a x

- 2 y z

a Z )

+

f i n d

k ( 2 y z

+

X 2 Y a x ) ] 0

Y

( x z 2

- - 2 y z : a

) j

+

( 2 y z a + x 2 y ) k

Y

a

- ( x y

a z

+

x z 2

a

) i

+

Y

a

a a

a x a y

a z

[ i ( - x 2 y -

x z 2 -

)

Y

a d )

a d )

= - (

6 X 4 Y 2

z

2

+ 2 x 3 z 5 ) i +

( 4 x 2 y z 5

- 1 2 x 2 y 2 z 3 ) j

+

( 4 x 2 y z 4 + 4 x 3 y 2 z 3 ) k

Page 83: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 83/234

7 6

G R A D I E N T , D I V E R G E N C E a n d C U R L

( e ) A x V O _

( 2 y z i - x 2 Y j + x z 2 k ) x

( a i

+

a j

+

_ a 4 ) a

k )

Y

i

j

k

2 y z

- x 2 y x z 2

a x

a y

a z

a a

a a

0

I N V A R I A N C E

2 2

2

_ ( - x Y

a z -

x z . a y ) i

+

( x z a x - 2 y z a z ) j

+

( 2 y z a y + x y

a x

) k

- ( 6 x y 2 z 2 + 2 x 3 z 5 ) i

+

( 4 x 2 y z 5 - 1 2 x 2 y 2 z 3 ) j

+

( 4 x 2 y z 4 + 4 x 3 y 2 z 3 ) k

C o m p a r i s o n w i t h ( d ) i l l u s t r a t e s t h e r e s u l t ( A x V ) = A x V q .

3 8 . T w o r e c t a n g u l a r x y z a n d x ' y ' z ' c o o r d i n a t e s y s t e m s h a v i n g t h e s a m e o r i g i n a r e r o t a t e d w i t h r e -

s p e c t t o e a c h o t h e r .

D e r i v e t h e t r a n s f o r m a t i o n e q u a t i o n s b e t w e e n t h e c o o r d i n a t e s o f a p o i n t i n

t h e t w o s y s t e m s .

L e t r a n d r ' b e t h e p o s i t i o n v e c t o r s o f a n y p o i n t P i n t h e t w o s y s t e m s ( s e e f i g u r e o n p a g e 5 8 ) . T h e n

s i n c e

r = r f ,

( 1 )

x + y ' j ' + z ' k '

=

x i + y j

N o w f o r a n y v e c t o r A w e h a v e ( P r o b l e m 2 0 , C h a p t e r 2 ) ,

A =

i '

+

j ' +

( A - k ' ) k '

T h e n l e t t i n g A = i , j , k i n s u c c e s s i o n ,

( 2 )

i

=

1 1 1 1 '

+

1 2 1 j f

+

1 3 1 k '

i

=

( j - k ' ) k '

=

1 1 2 1 '

+

1 2 2 i t

+

1 3 2 k '

k

=

( k . i ' ) i '

+

( k j ' ) j '

+

( k k ' ) k '

=

1 1 3 i '

+

1 2 3 j '

+

1 3 3 k '

S u b s t i t u t i n g e q u a t i o n s ( 2 ) i n ( 1 ) a n d e q u a t i n g c o e f f i c i e n t s o f i ' , j ' , k ' w e f i n d

( 3 )

x ' = 1 1 1 x + 1 1 2 Y

+ 1 1 3 z ,

t h e r e q u i r e d t r a n s f o r m a t i o n e q u a t i o n s .

3 9 . P r o v e i ' =

1 1 1 i + 1 1 2 j + 1 1 3 k

j f

=

1 2 1 i + 1 2 2 j + 1 2 3 k

k ' =

1 3 1 1 + 1 3 2 j + 1 3 3 k

y ' = 1 2 1 x + 1 2 2

Y + 1 2 3 z ,

z ' = 1 3 1 X + 1 3 2 Y + 1 3 3 Z

F o r a n y v e c t o r A w e h a v e

A = ( A i ) i

+ ( A . j ) j

+ ( A k ) k .

T h e n l e t t i n g A = i ' , j ' , k ' i n s u c c e s s i o n ,

1 '

_ ( i ' i ) i

+

( i ' j ) j

+

( i ' k ) k

=

j r

=

k ' _

( k ' i ) i + ( k ' j ) i

+

( k ' k ) k

=

1 1 1 i + 1 1 2 i + 1 1 3 k

1 2 1 i

+ 1 2 2 j

+ 1 2 3 k

1 3 1 1

+ 1 3 2 i

+ 1 3 3 k

Page 84: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 84/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

7 7

3

4 0 . P r o v e t h a t

1 1 , E l p n = 1

i f m = n , a n d 0 i f m t - n , w h e r e m a n d n c a n a s s u m e a n y o f t h e v a l u e s

1 , 2 , 3 .

F r o m e q u a t i o n s ( 2 ) o f P r o b l e m 3 8 ,

( l i l t ' + 1 2 1 j ' + 1 3 1 k ' ) ' ( l i l t ' + 1 2 1 j ' + 1 3 1 k ' )

2 2

2

1 1 + 1 2 1 + 1 3 1

0 =

1 1 1 1 1 2 + 1 2 1 1 2 2 + 1 3 1 1 3 2

0 =

1 1 1 1 1 3 + 1 2 1 1 2 3 + 1 3 1 1 3 3

T h e s e e s t a b l i s h t h e r e q u i r e d r e s u l t w h e r e m = 1 . B y c o n s i d e r i n g j i , j j , j - k , k - i , k j a n d k - k t h e r e s u l t c a n

b e p r o v e d f o r m = 2 a n d m = 3 .

l i f m = n

3

B y w r i t i n g

t h e r e s u l t c a n b e w r i t t e n E l

l

= S

i n n

0 i f m $ n

P = 1

P n

y e n

T h e s y m b o l 6 n i s c a l l e d K r o n e c k e r ' s s y m b o l .

4 1 . I f 0 ( x , y , z ) i s a s c a l a r i n v a r i a n t w i t h r e s p e c t t o a r o t a t i o n o f a x e s , p r o v e t h a t g r a d q 5 i s a v e c t o r

i n v a r i a n t u n d e r t h i s t r a n s f o r m a t i o n .

B y h y p o t h e s i s O ( x , y , z ) =

J ( x ' , y ' , z ' )

.

T o e s t a b l i s h t h e d e s i r e d r e s u l t w e m u s t p r o v e t h a t

a i

+

' D O

j

+ O k

i ,

+

. , + a

'

,

a x

a y

a z T

a x ,

a y ' '

a z '

k

U s i n g t h e c h a i n r u l e a n d t h e t r a n s f o r m a t i o n e q u a t i o n s ( 3 ) o f P r o b l e m 3 8 , w e h a v e

a v a x '

a c ' a y '

a 4 ' a z '

_

a 4 ' a ( '

a x a x ' a x

+

a y , a x

+

- a " a x

a x '

1 1 1 +

a y ' 1 2 1

+

a z

l 3 1

a x

a y

a x ' a y

a 4

a 0 ' a x

a z

a x ' a z

a o ' a y ' a W a z '

a

Y

a 0 `

+

a y , a y + a z ' a y

-

a x ' 1 1 2

+

a y '

1 2 2

+

a z '

1 3 2

a y '

a 0 ' a z '

+ a y a z + a z ' z a x '

1 1 3

+

a y , 1 2 3

+

a z '

1 3 3

M u l t i p l y i n g t h e s e e q u a t i o n s b y i , j , k r e s p e c t i v e l y , a d d i n g a n d u s i n g P r o b l e m 3 9 , t h e r e q u i r e d r e s u l t f o l -

l o w s .

Page 85: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 85/234

7 8

G R A D I E N T , D I V E R G E N C E a n d C U R L

S U P P L E M E N T A R Y P R O B L E M S

4 2 .

I f

= 2 x z 4 - x 2 y ,

f i n d V q a n d

I V ( f

a t t h e p o i n t ( 2 , - 2 , - 1 ) .

A n s .

1 0 i - 4 j - 1 6 k , 2 V 9 3

4 3 .

I f A = 2 x 2 i - 3 y z j + x z 2 k a n d q 5 = 2 z - x 3 y , f i n d A o g 5 a n d A x V c a t

t h e p o i n t ( 1 , - 1 , 1 ) .

A n s .

5 , 7 i - j - I l k

4 4 .

I f F = x 2 z + e

y / x

a n d G = 2 z 2 y - x y 2 , f i n d ( a ) V ( F + G ) a n d ( b ) V ( F G ) a t t h e p o i n t ( 1 , 0 , - 2 ) .

A n s .

( a ) - 4 i + 9 j + k , ( b ) - 8 j

4 5 . F i n d V I r

I 3 .

A n s .

3 r r

4 6 . P r o v e V f ( r ) =

f ( r ) r

r

4 7 . E v a l u a t e V ( 3 r 2 -

6

) .

A n s .

( 6 -

2 r - 3 / 2

-

2 r - 7 / 3 )

r

v c

4 8 .

I f V U = 2 r 4 r , f i n d U .

A n s . r e / 3 + c o n s t a n t

4 9 . F i n d 0 ( r ) s u c h t h a t V p = s a n d g ( 1 ) = 0 .

A n s . 0 ( r ) = 3 ( 1 -

r

r

2

2 2

5 0 . F i n d V q w h e r e q = ( x 2 + y 2 + Z 2 ) e

- , I X

+ y + z

A n s .

( 2 - r ) a - r r

5 1 .

I f V V = 2 x y z 3 i + x 2 z 3 j + 3 x 2 y z 2 k ,

f i n d O ( x , y , z ) i f

4 .

A n s .

= x 2 y z 3 + 2 0

5 2 .

I f V o _ ( y 2 _ 2 x y z 3 ) i + ( 3 + 2 x y _ x 2 z ° ) j + ( 6 z 3 - 3 x 2 y z 2 ) A , f i n d

A n s . 0 = x y 2 - x 2 y z 3 + 3 y + ( 3 / 2 ) z 4 + c o n s t a n t

5 3 . I f U i s a d i f f e r e n t i a b l e f u n c t i o n o f x , y , z ,

p r o v e W . d r = d U .

5 4 . I f F i s a d i f f e r e n t i a b l e f u n c t i o n o f x , y , z , t w h e r e x , y , z a r e d i f f e r e n t i a b l e f u n c t i o n s o f t , p r o v e t h a t

d F

_

a F

d r

+ O F

d t a t

d t

5 5 . I f A i s a c o n s t a n t v e c t o r , p r o v e V ( r A ) = A .

5 6 .

I f A ( x , y , z ) = A l i + A 2 j + A 3 k , s h o w t h a t d A =

5 7 . P r o v e v ( F ) =

G V F -

2

F V G

i f G 4 0 .

G G

5 8 . F i n d a u n i t v e c t o r w h i c h i s p e r p e n d i c u l a r t o t h e s u r f a c e o f t h e p a r a b o l o i d o f r e v o l u t i o n z = x 2 + y

2

a t t h e

p o i n t ( 1 , 2 , 5 ) .

A n s .

2 i + 4 ] - k

± 2 1

5 9 . F i n d t h e u n i t o u t w a r d d r a w n n o r m a l t o t h e s u r f a c e ( x - 1 ) 2 + y 2 + ( z + 2 )

2

= 9 a t t h e p o i n t ( 3 , 1 , - 4 ) .

A n s .

( 2 i + i - 2 k ) / 3

6 0 . F i n d a n e q u a t i o n f o r t h e t a n g e n t p l a n e t o t h e s u r f a c e x z 2 + x 2 y = z - 1 a t t h e p o i n t ( 1 , - 3 , 2 ) .

A n s .

2 x - y - 3 z + I = 0

6 1 . F i n d e q u a t i o n s f o r t h e t a n g e n t p l a n e a n d n o r m a l l i n e t o t h e s u r f a c e z = x 2 + y 2 a t t h e p o i n t ( 2 , - 1 , 5 ) .

A n s . 4 x - 2 y - z = 5 , x 4 2 = y

2 1 - z r 1 5

o r x = 4 t + 2 , y = - 2 t - 1 , z = - t + 5

6 2 . F i n d t h e d i r e c t i o n a l d e r i v a t i v e o f = 4 x z 3 - 3 x 2 y 2 z a t ( 2 , - 1 , 2 ) i n t h e d i r e c t i o n 2 i - 3 j + 6 k .

A n s . 3 7 6 / 7

6 3 . F i n d t h e d i r e c t i o n a l d e r i v a t i v e o f P = 4 e

2 x ^ y + Z

a t t h e p o i n t ( 1 , 1 , - 1 ) i n a d i r e c t i o n t o w a r d t h e p o i n t

( - 3 , 5 , 6 ) .

A n s . - 2 0 / 9

Page 86: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 86/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

7 9

6 4 .

I n w h a t d i r e c t i o n f r o m t h e p o i n t ( 1 , 3 , 2 ) i s t h e d i r e c t i o n a l d e r i v a t i v e o f ( P = 2 x z - y 2 a m a x i m u m ' s W h a t i s

t h e m a g n i t u d e o f t h i s m a x i m u m ?

A n s .

I n t h e d i r e c t i o n o f t h e v e c t o r 4 i - 6 j + 2 k , 2 v " 1 4

6 5 . F i n d t h e v a l u e s o f t h e c o n s t a n t s a , b , c s o t h a t t h e d i r e c t i o n a l d e r i v a t i v e o f 0 = a x y 2 + b y z + c z 2 x 3 a t

( 1 , 2 , - 1 ) h a s a m a x i m u m o f m a g n i t u d e 6 4 i n a d i r e c t i o n p a r a l l e l t o t h e z a x i s .

A n s . a = 6 ,

b = 2 4 , c = - 8

6 6 . F i n d t h e a c u t e a n g l e b e t w e e n t h e s u r f a c e s x y 2 z = 3 x + z 2 a n d 3 x 2 . - y 2 + 2 z = 1

a t t h e p o i n t ( 1 , - 2 , 1 ) .

A n s . a r c c o s

1

= a r c c o s 1 4

= 7 9 ° 5 5 1

6 7 . F i n d t h e c o n s t a n t s a a n d b s o t h a t t h e s u r f a c e a x 2 - b y z = ( a + 2 ) x w i l l b e o r t h o g o n a l t o t h e s u r f a c e

4 x 2 y + z 3 = 4 a t t h e p o i n t ( 1 , - 1 , 2 ) .

A n s . a = 5 / 2 , b = 1

6 8 .

( a ) L e t u a n d v b e d i f f e r e n t i a b l e f u n c t i o n s o f x , y a n d z . S h o w t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n

t h a t u a n d v a r e f u n c t i o n a l l y r e l a t e d b y t h e e q u a t i o n F ( u , v ) = 0 i s t h a t V u x V v = 0 .

( b ) D e t e r m i n e w h e t h e r u = a r e t a n x + a r e t a n y a n d v = 1 z y a r e f u n c t i o n a l l y r e l a t e d .

A n s . ( b ) Y e s ( v = t a n u )

6 9 .

( a ) S h o w t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t u ( x , y , z ) , v ( x , y , z ) a n d w ( x , y , z ) b e f u n c t i o n a l l y r e -

l a t e d t h r o u g h t h e e q u a t i o n F ( u , v , w ) = 0 i s V u - V v X V w = 0 .

( b ) E x p r e s s V u - V v x V w i n d e t e r m i n a n t f o r m . T h i s d e t e r m i n a n t i s c a l l e d t h e J a c o b i a n o f u , v , w w i t h r e -

s p e c t t o x , y , z a n d i s w r i t t e n

u , v , w

o r J (

u , v , w

) .

a ( x , y , z )

x , y , z

( c ) D e t e r m i n e w h e t h e r u = x + y + z , v = x 2 + y 2 + z 2 a n d w = x y + y z + z x a r e f u n c t i o n a l l y r e l a t e d .

a u

a u a u

a x

a y

a z

A n s .

( b )

a v a v a v

a x

a y

a z

( c ) Y e s ( u 2 - v - 2 w = 0 )

a w a w

a w

a x a y

a z

7 0 .

I f A = 3 x y z 2 i + 2 x y 3 j - - x y z k a n d d ) = 3 x 2 - y z ,

f i n d

( a ) V A ,

( b ) A V O , ( c ) V - ( 0 A ) , ( d )

a t t h e p o i n t A n s .

( a ) 4 , ( b ) - 1 5 , ( c ) 1 , ( d ) 6

7 1 . E v a l u a t e d i v ( 2 x 2 z i - x y 2 z j + 3 y z 2 k ) .

A n s . 4 x z - - 2 x y z + b y z

7 2 .

I f = 3 x 2 z - y 2 z 3 + 4 x 3 y + 2 x - 3 y - 5 , f i n d

V 2 c b .

A n s .

6 z + 2 4 x y - 2 z 3 - - 6 y 2 z

2

7 3 . E v a l u a t e V ( l n r ) . A n s .

1 / r 2

7 4 . P r o v e

V 2 r n = n ( n + 1 ) r n - 2 w h e r e n i s a c o n s t a n t .

7 5 .

I f F = ( 3 x 2 y

4

3

y - z ) i + ( x z + y ) j - 2 2 z ' k ,

f i n d V ( V F ) a t t h e p o i n t ( 2 , - 1 , 0 ) .

A n s . - 6 i + 2 4 j - 3 2 k

7 6 .

I f w i s a c o n s t a n t v e c t o r a n d v = r v x r ,

p r o v e t h a t d i v v = 0 .

7 7 . P r o v e

V 2 ( 0 & )

= 0

V 2 q + 2 V O - V q + 0 V 2 0 .

7 8 .

I f U = 3 x 2 y , V = x z 2 - 2 y e v a l u a t e g r a d [ ( g r a d U ) ( g r a d V ) ] .

A n s . ( 6 y z 2 - - 1 2 x ) i + 6 x z 2 j + 1 2 x y z k

7 9 . E v a l u a t e V ( r 3 r ) .

A n s . 6 r 3

8 0 . E v a l u a t e V [ r V ( 1 / r 3 ) ] .

A n s .

3 r - 4

8 1 . E v a l u a t e

V 2 [ V _

( r / r 2 ) ] .

A n s .

2 r

- 4

8 2 .

I f A = r / r , ,

f i n d g r a d d i v A .

A n s . - 2 r _ 3 r

8 3 . ( a ) P r o v e V 2 f ( r ) =

d r f +

2

d f .

( b ) F i n d f ( r ) s u c h t h a t V 2 f ( r ) = 0 .

A n s . f ( r ) = A + B / r w h e r e A a n d B a r e a r b i t r a r y c o n s t a n t s .

Page 87: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 87/234

8 0

G R A D I E N T , D I V E R G E N C E a n d C U R L

4

z 2 i + 4 x 3 2 2 j - 3 x 2 y 2 k i s s o l e n o i d a l .

4 . P r o v e t h a t t h e v e c t o r A = 3 y

8 5 . S h o w t h a t A = ( 2 x 2 + 8 x y 2 z ) i + ( 3 x 3 y - 3 x y ) j - ( 4 y 2 z 2 + 2 x 3 2 ) k i s n o t s o l e n o i d a l b u t B = x y z 2 A i s

s o l e n o i d a l .

8 6 . F i n d t h e m o s t g e n e r a l d i f f e r e n t i a b l e f u n c t i o n f ( r ) s o t h a t f ( r ) r i s s o l e n o i d a l .

A n s . f ( r ) = C / r 3 w h e r e C i s a n a r b i t r a r y c o n s t a n t .

8 7 . S h o w t h a t t h e v e c t o r f i e l d V =

- x

1 - y j i s a 1 ' s i n k f i e l d " . P l o t a n d g i v e a p h y s i c a l i n t e r p r e t a t i o n .

x 2 + y 2

8 8 .

I f U a n d V a r e d i f f e r e n t i a b l e s c a l a r f i e l d s , p r o v e t h a t V U x V V i s s o l e n o i d a l .

8 9 .

I f A = 2 x z 2 i - y z j + 3 x z 3 k a n d c b = x 2 y z ,

f i n d

( a ) V x A , ( b ) c u r l ( O A ) ,

( c ) V x ( V x A ) , ( d ) V [ A - c u r l A ] , ( e ) c u r l g r a d

a t t h e p o i n t ( 1 , 1 , 1 ) .

A n s .

( a ) i + j ,

( b ) 5 i - 3 j - 4 k , ( c ) 5 i + 3 k ,

( d ) - 2 1 + j + 8 k ,

( e ) 0

9 0 .

I f F = x 2 y z , G = x y - 3 z 2 , f i n d

( a ) V

( b ) V - [ ( V F ) x ( V G ) ] ,

( c ) V x [ ( V F ) x ( V G ) ] .

A n s .

( a ) ( 2 y 2 z + 3 x 2 z - 1 2 x y z ) i + ( 4 x y z - 6 x 2 z ) j + ( 2 x y 2 + x 3 - 6 x 2 y ) k

( b ) 0

( c ) ( x 2 z - 2 4 x y z ) i - ( 1 2 x 2 2 + 2 x y z ) j + ( 2 x y 2 + 1 2 y z 2 + x 3 ) k

9 1 . E v a l u a t e V x ( r / r 2 ) .

A n s . 0

9 2 . F o r w h a t v a l u e o f t h e c o n s t a n t a w i l l t h e v e c t o r A = ( a x y - - - z 3 ) i

+ ( a - 2 ) x

2

j

+ ( 1 - a ) x z 2 k h a v e i t s

c u r l i d e n t i c a l l y e q u a l t o z e r o 9

A n s . a = 4

9 3 . P r o v e c u r l ( 0 g r a d j . ) = 0 .

9 4 . G r a p h t h e v e c t o r f i e l d s A = x i + y j

a n d B = y i - x j . C o m p u t e t h e d i v e r g e n c e a n d c u r l o f e a c h v e c t o r

f i e l d a n d e x p l a i n t h e p h y s i c a l s i g n i f i c a n c e o f t h e r e s u l t s o b t a i n e d .

9 5 .

I f A = x 2 z i + y z 3 j - 3 x y k ,

B ' = y 2 i - y z j + 2 x k a n d

= 2 x 2 + y z , f i n d

( a ) A - ( V ( P ) ,

( b ) ( A - V ) g b , ( c ) ( A . V ) B ,

( d )

( e )

A n s .

( a ) 4 x 3 z + y z 4 - 3 x y 2 ,

( b ) 4 x 3 z + y z 4 - 3 x y 2 ( s a m e a s ( a ) ) ,

( c ) 2 y 2 z 3 i + ( 3 x y 2 - y z 4 ) j + 2 x 2 z k ,

( d ) t h e o p e r a t o r ( x 2 y 2 z i - x 2 y z 2 j + 2 x 3 z k )

+ ( y 3 z 3 1 - y 2 z 4 j + 2 x y z 3 k )

a x

- a y

+ ( - 3 x y 3 i + 3 x y 2 z j - 6 x 2 y k ) a

( e ) ( 2 x y 2 z + y 2 z 3 ) i - ( 2 x y z 2 + y z 4 ) j + ( 4 x 2 2 + 2 x z 3 ) k

9 6 .

I f A = y z 2 i - 3 x z 2 j + 2 x y z k ,

B = 3 x i + 4 z j - x y k a n d O = x y z ,

f i n d

( a ) A x ( V f ) ,

( b ) ( A x V ) ( P ,

( c ) ( V x A ) x B ,

( d ) B . V x A .

A n s .

( a ) - 5 x 2 y z 2 i

+ x y 2 z 2 j

+ 4 x y z 3 k

( b ) - 5 x 2 y z 2 i

+ x y 2 z 2 j

+ 4 x y z 3 k ( s a m e a s ( a ) )

( c ) 1 6 x 3 i

+ ( 8 x 2 y z - 1 2 x z 2 ) j + 3 2 x z 2 k

( d ) 2 4 x 2 2 + 4 x y z 2

9 7 . F i n d A x ( V x B ) a n d ( A x V ) , ' c B a t t h e p o i n t ( 1 , - 1 , 2 ) , i f A = x z 2 i + 2 y j - 3 x z k a n d B = 3 x z i

+ 2 y z j - z 2 k .

A n s . A x ( V x B ) = 1 8 i -

1 2 j + 1 6 k , ( A x V ) x B = 4 j + 7 6 k

9 8 . P r o v e ( v - V ) v = 2 V v 2 - v x ( V x v ) .

9 9 . P r o v e V ( A x B ) = B - ( V x A ) - A - ( O x B ) .

1 0 0 . P r o v e V x ( A x B ) = B ( V . A ) -

A ( V - B ) .

1 0 1 . P r o v e V ( A B ) =

B x ( V x A ) + A x ( V x B ) .

1 0 2 . S h o w t h a t A = ( 6 x y + z 3 ) i + ( 3 x 2 - Z ) j + ( 3 x 2 2 - y ) k i s i r r o t a t i o n a l . F i n d c p s u c h t h a t A

= 0 .

A n s . c P = 3 x 2 y + x z 3 - y z + c o n s t a n t

Page 88: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 88/234

G R A D I E N T , D I V E R G E N C E a n d C U R L

8 1

1 0 3 . S h o w t h a t E = r / r 2 i s i r r o t a t i o n a l . F i n d 0 s u c h t h a t E

a n d s u c h t h a t 0 ( a ) = 0 w h e r e a > 0 .

A n s . g b = I n ( a 1 r )

1 0 4 . I f A a n d B a r e i r r o t a t i o n a l , p r o v e t h a t A I B i s s o l e n o i d a l .

1 0 5 .

I f f ( r ) i s a i f f e r e n t i a b l e , p r o v e t h a t f ( r ) r i s i r r o t a t i o n a l .

1 0 6 .

I s t h e r e a d i f f e r e n t i a b l e v e c t o r f u n c t i o n V s u c h t h a t ( a ) c u r l V = r ,

( b ) c u r l V = 2 i + j + 3 k ? I f s o , f i n d V .

A n s . ( a t N o , ( b ) V = 3 x j + ( 2 y - - x ) k + V O , w h e r e 0 i s a n a r b i t r a r y t w i c e d i f f e r e n t i a b l e f u n c t i o n .

1 0 7 . S h o w t h a t s o l u t i o n s t o M a x w e l l ' s e q u a t i o n s

V x H =

c

a E

V x E =

a H ,

V - H = 0 ,

V . E = 4 7 T p

w h e r e p i s a f u n c t i o n o f x , y , z a n d c i s t h e v e l o c i t y o f l i g h t , a s s u m e d c o n s t a n t , a r e g i v e n b y

E = - V V -

c

a ` A ,

H = V x A

w h e r e A a n d 0 , c a l l e d t h e v e c t o r a n d s c a l a r p o t e n t i a l s r e s p e c t i v e l y , s a t i s f y t h e e q u a t i o n s

, 2

1

2 2

2

1 ) V - A +

C

a

= 0 ,

( 2 ) V

c 2

a t _

( 3 ) V 2 A = c 2 a t

1 0 8 . ( a ) G i v e n t h e d y a d i c 4 = i i + j j + k k , e v a l u a t e

r ( 1 r ) a n d ( r - J ' ) r .

( b ) I s t h e r e a n y a m b i g u i t y i n

w r i t i n g r . 4 r ?

( c ) W h a t d o e s r 1

r = 1 r e p r e s e n t g e o m e t r i c a l l y ?

A n s . ( a ) r

( c l

r ) _ ( r . I ) r = x 2 + y 2 + z 2 ,

( b ) N o , ( c ) S p h e r e o f r a d i u s o n e w i t h c e n t e r a t t h e o r i g i n .

1 0 9 .

( a ) I f A = x z i - y 2 j + y z 2 k a n d B = 2 z 2 i - x y j + y 3 k , g i v e a

p o s s i b l e s i g n i f i c a n c e t o ( A x V ) B a t

t h e p o i n t

( b ) I s i t p o s s i b l e t o w r i t e t h e r e s u l t a s A I ( V B ) b y u s e o f d y a d i c s ?

A n s . ( a ) - - 4 1 i - i j + 3 i k - j j - 4 j i + 3 k k

( b ) Y e s , i f t h e o p e r a t i o n s a r e s u i t a b l y p e r f o r m e d .

1 1 0 . P r o v e t h a t c a ( x , y , z ) = x 2 + y 2 + z 2

i s a s c a l a r i n v a r i a n t u n d e r a r o t a t i o n o f a x e s .

1 1 1 .

I f A ( x , y , z ) i s a n i n v a r i a n t d i f f e r e n t i a b l e v e c t o r f i e l d w i t h r e s p e c t t o a r o t a t i o n o f a x e s , p r o v e t h a t ( a ) d i v A

a n d ( b ) c u r l A a r e i n v a r i a n t s c a l a r a n d v e c t o r f i e l d s r e s p e c t i v e l y u n d e r t h e t r a n s f o r m a t i o n .

1 1 2 . S o l v e e q u a t i o n s ( 3 ) o f S o l v e d P r o b l e m 3 8 f o r x , y , z i n t e r m s o f x ' , y ' , z ' .

A n s . x = 1 1 1 x ' + 1 2 1 Y ' + 1 3 1 Z ' ,

Y = 1 1 2 x ' + 1 2 2 Y I + 1 3 2 Z ' ,

Z = 1 1 3 x ' + 1 2 3 Y ' + 1 : 3 3 Z '

1 1 3 .

I f A a n d B a r e i n v a r i a n t u n d e r r o t a t i o n s h o w t h a t A B a n d A I B a r e a l s o i n v a r i a n t .

1 1 4 . S h o w t h a t u n d e r a r o t a t i o n

. a x

i

+ J a y + k a

z

1 1

a x ' +

j / a y I + k '

a z '

Q '

1 1 5 . S h o w t h a t t h e L a p l a c i a n o p e r a t o r i s i n v a r i a n t u n d e r a r o t a t i o n .

Page 89: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 89/234

O R D I N A R Y I N T E G R A L S O F V E C T O R S . L e t R ( u ) = R 1 ( u ) i + R 2 ( u ) j + R 3 ( u ) k b e a v e c t o r d e p e n d i n g

o n a s i n g l e s c a l a r v a r i a b l e u , w h e r e R 1 ( u ) , R 2 ( u ) , R 3 ( u ) a r e

s u p p o s e d c o n t i n u o u s i n a s p e c i f i e d i n t e r v a l . T h e n

f R ( u ) d u

=

i R 1 ( u ) d u +

i f

R 2 ( u ) d u + k

R s ( u ) d u

i s c a l l e d a n i n d e f i n i t e i n t e g r a l o f R ( u ) .

I f t h e r e e x i s t s a v e c t o r S ( u ) s u c h t h a t R ( u ) = d u ( S ( u ) ) , t h e n

f R ( u )

d u

=

f , / ( s ( u ) ) d u = S ( u ) + c

w h e r e c i s a n a r b i t r a r y c o n s t a n t v e c t o r i n d e p e n d e n t o f u . T h e d e f i n i t e i n t e g r a l b e t w e e n l i m i t s u = a

a n d u = b c a n i n s u c h c a s e b e w r i t t e n

f b

a

R ( u ) d u

=

f a

d

d u ( S ( u ) )

d u

S ( u ) + c I = S ( b ) - S ( a )

a

T h i s i n t e g r a l c a n a l s o b e d e f i n e d a s a l i m i t o f a s u m i n a m a n n e r a n a l o g o u s t o t h a t o f e l e m e n t a r y i n -

t e g r a l c a l c u l u s .

L I N E I N T E G R A L S . L e t r ( u ) = x ( u ) i + y ( u ) j + z ( u ) k ,

w h e r e r ( u ) i s t h e p o s i t i o n v e c t o r o f ( x , y , z ) ,

d e f i n e a c u r v e C j o i n i n g p o i n t s P 1 a n d P 2 , w h e r e u = u l a n d u = u 2 r e s p e c t i v e l y .

W e a s s u m e t h a t C i s c o m p o s e d o f a f i n i t e n u m b e r o f c u r v e s f o r e a c h o f w h i c h r ( u ) h a s a c o n t i n -

u o u s d e r i v a t i v e . L e t A ( x , y , z ) = A 1 i + A 2 j + A 3 k b e a v e c t o r f u n c t i o n o f p o s i t i o n d e f i n e d a n d c o n -

t i n u o u s a l o n g C . T h e n t h e i n t e g r a l o f t h e t a n g e n t i a l c o m p o n e n t o f A a l o n g C f r o m P 1 t o P 2

, w r i t t e n a s

P 2

P

A l d x + A 2 d y + A 3 d z

i s a n e x a m p l e o f a l i n e i n t e g r a l . I f A i s t h e f o r c e F o n a p a r t i c l e m o v i n g a l o n g C , t h i s l i n e i n t e g r a l

r e p r e s e n t s t h e w o r k d o n e b y t h e f o r c e .

I f C i s a c l o s e d c u r v e ( w h i c h w e s h a l l s u p p o s e i s a s i m p l e

c l o s e d c u r v e , i . e . a c u r v e w h i c h d o e s n o t i n t e r s e c t i t s e l f a n y w h e r e ) t h e i n t e g r a l a r o u n d C i s o f t e n

d e n o t e d b y

5

A l d x + A 2 d y + A 3 d z

I n a e r o d y n a m i c s a n d f l u i d m e c h a n i c s t h i s i n t e g r a l i s c a l l e d t h e c i r c u l a t i o n o f A a b o u t C , w h e r e A

r e p r e s e n t s t h e v e l o c i t y o f a f l u i d .

I n g e n e r a l , a n y i n t e g r a l w h i c h i s t o b e e v a l u a t e d a l o n g a c u r v e i s c a l l e d a l i n e i n t e g r a l . S u c h

i n t e g r a l s c a n b e d e f i n e d i n t e r m s o f l i m i t s o f s u m s a s a r e t h e i n t e g r a l s o f e l e m e n t a r y c a l c u l u s .

F o r m e t h o d s o f e v a l u a t i o n o f l i n e i n t e g r a l s , s e e t h e S o l v e d P r o b l e m s .

T h e f o l l o w i n g t h e o r e m i s i m p o r t a n t .

°

8 2

Page 90: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 90/234

V E C T O R I N T E G R A T I O N

8 3

T H E O R E M . I f A = V o e v e r y w h e r e i n a r e g i o n R o f s p a c e , d e f i n e d b y a 1 5 x

< a 2 , b 1 < y < b , 2 ,

C l

z C 2 ,

w h e r e c ( x , y , z )

i s s i n g l e - v a l u e d a n d h a s c o n t i n u o u s d e r i v a t i v e s i n R ,

t h e n

P 2

1 .

A - d r i s i n d e p e n d e n t o f t h e p a t h C i n R j o i n i n g P 1 a n d P 2 .

P 1

2 .

A - d r = 0 a r o u n d a n y c l o s e d c u r v e C i n R .

C

I n s u c h c a s e A i s c a l l e d a c o n s e r v a t i v e v e c t o r f i e l d a n d c b i s i t s s c a l a r p o t e n t i a l .

A v e c t o r f i e l d A i s c o n s e r v a t i v e i f a n d o n l y i f V x A = O , o r e q u i v a l e n t l y A = V c . I n s u c h c a s e

A . d r = A l d x + A 2 d y + A 3 d z = d o , a n e x a c t d i f f e r e n t i a l . S e e P r o b l e m s 1 0 - 1 4 .

S U R F A C E I N T E G R A L S . L e t S b e a t w o - s i d e d s u r f a c e , s u c h a s s h o w n i n t h e f i g u r e b e l o w . L e t o n e

s i d e o f S b e c o n s i d e r e d a r b i t r a r i l y a s t h e p o s i t i v e s i d e ( i f S i s a c l o s e d

s u r f a c e t h i s i s t a k e n a s t h e o u t e r s i d e ) .

A u n i t n o r m a l n t o a n y p o i n t o f t h e p o s i t i v e s i d e o f S i s

c a l l e d a p o s i t i v e o r o u t w a r d d r a w n u n i t n o r m a l .

A s s o c i a t e w i t h t h e d i f f e r e n t i a l o f s u r f a c e

a r e a d S a v e c t o r d S w h o s e m a g n i t u d e i s d S a n d

w h o s e d i r e c t i o n i s t h a t o f n . T h e n d S = n d S .

T h e i n t e g r a l

f f A . d S =

f f A . n d S

S S

i s a n e x a m p l e o f a s u r f a c e i n t e g r a l c a l l e d t h e

f l u x o f A o v e r S . O t h e r s u r f a c e i n t e g r a l s a r e

0 d S ,

f f c t

n d S ,

f J A

x d S

S S

w h e r e o i s a s c a l a r f u n c t i o n . S u c h i n t e g r a l s c a n

b e d e f i n e d i n t e r m s o f l i m i t s o f s u m s a s i n e l e -

m e n t a r y c a l c u l u s ( s e e P r o b l e m 1 7 ) .

z

T h e n o t a t i o n 9 j .

i s s o m e t i m e s u s e d t o i n d i c a t e i n t e g r a t i o n o v e r t h e c l o s e d s u r f a c e S . W h e r e

S

n o c o n f u s i o n c a n a r i s e t h e n o t a t i o n

m a y a l s o b e u s e d .

S

T o e v a l u a t e s u r f a c e i n t e g r a l s , i t i s c o n v e n i e n t t o e x p r e s s t h e m a s d o u b l e i n t e g r a l s t a k e n o v e r

t h e p r o j e c t e d a r e a o f t h e s u r f a c e S o n o n e o f t h e c o o r d i n a t e p l a n e s . T h i s i s p o s s i b l e i f a n y l i n e p e r -

p e n d i c u l a r t o t h e c o o r d i n a t e p l a n e c h o s e n m e e t s t h e s u r f a c e i n n o m o r e t h a n o n e p o i n t . H o w e v e r , t h i s

d o e s n o t p o s e a n y r e a l p r o b l e m s i n c e w e c a n g e n e r a l l y s u b d i v i d e S i n t o s u r f a c e s w h i c h d o s a t i s f y

t h i s r e s t r i c t i o n .

V O L U M E I N T E G R A L S . C o n s i d e r a c l o s e d s u r f a c e i n s p a c e e n c l o s i n g a v o l u m e V . T h e n

f f 5 . a v

a n d

5 f f d V

V

V

a r e e x a m p l e s o f v o l u m e i n t e g r a l s o r s p a c e i n t e g r a l s a s t h e y a r e s o m e t i m e s c a l l e d . F o r e v a l u a t i o n o f

s u c h i n t e g r a l s , s e e t h e S o l v e d P r o b l e m s .

Page 91: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 91/234

8 4

V E C T O R I N T E G R A T I O N

S O L V E D P R O B L E M S

2

1 . I f R ( u ) = ( u - u 2 ) i + 2 u 3 j - 3 k ,

f i n d ( a )

R ( u ) d u a n d ( b )

R ( u ) d u .

1

( a )

f R ( u ) d u

=

f

[ ( u - u 2 ) i + 2 u 3 j - 3 0 d u

i

f

( u - u 2 ) d u + j

, J

+

2 u 3 d u + k

J -

3 d u

J

2

3

i ( 2 - 3 + c 1 ) + j ( 3 + c 2 )

+

k ( - - 3 u + c 3 )

2

3

4

{ 2

3

) i

+ Z j

- 3 u k

+

c j i

+

c 2 j

+

c 3 k

2

3

4

( 2

3 ) i

+

2 j - 3 u k

+

c

w h e r e c i s t h e c o n s t a n t v e c t o r c l i + c 2 j + c 3 k .

2

( b ) F r o m ( a ) ,

f I

R ( u ) d u

A n o t h e r M e t h o d .

=

u 2

-

u 3

( 2

g ) i +

_ - 6 ' + 2 j

4

2

2 j

- 3 u k

+ c f 1

c i - 3 ( 2 ) k + c i - [ ( 2 -

4 - ) i + 2 j - 3 ( 1 ) k + c ]

- 3 k

2

2

2

2

. f

R ( u ) d u

=

i

f

1

( u - u 2 ) d u

+ i

f

1

2 u 3 d u +

k f I - 3 d u

2

3 2

4

2

2

i ( 3 - - 3 ) 1 1 + j ( 3 ) 1 1

+ k ( - 3 u ) I 1

=

- s 1 + 2 j

2 . T h e a c c e l e r a t i o n o f a p a r t i c l e a t a n y t i m e

t ? 0 i s g i v e n b y

a =

d t

=

1 2 c o s 2 t i - 8 s i n 2 t j

+ 1 6 t k

I f t h e v e l o c i t y v a n d d i s p l a c e m e n t r a r e z e r o a t t = 0 , f i n d v a n d r a t a n y t i m e .

I n t e g r a t i n g , v =

i

f

1 2 c o s 2 t d t

+

j f

-

8 s i n 2 t d t

+ k f

1 6 t d t

=

6 s i n 2 t i

+

4 c o s 2 t j

+

8 t 2 k + c 1

P u t t i n g v = 0 w h e n t = 0 , w e f i n d

0 = 0 i + 4 i + O k + c 1 a n d c 1 = - 4 j .

T h e n v =

6 s i n 2 t i

+ ( 4 c o s 2 t - 4 ) j

+ 8 t 2 k

s o t h a t

d a

=

6 s i n 2 t i +

( 4 c o s 2 t - 4 ) j

+

8 t 2 k .

I n t e g r a t i n g , r

=

i

f

6 s i n 2 t d t

+

J f ( 4 c o s 2 t - 4 ) d t +

k

f

8 t 2 d t

= - 3 c o s 2 t i +

( 2 s i n 2 t - 4 t ) j

+ 3 ? k +

c 2

P u t t i n g r = 0 w h e n t = 0 ,

0 = - 3 i + 0 j + 0 k + c 2 a n d c 2 = 3 i .

3 k

Page 92: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 92/234

V E C T O R I N T E G R A T I O N

8 5

T h e n

r = ( 3 - - 3 c o s 2 t ) i + ( 2 s i n 2 t - 4 t ) j + 8 t 3 k .

3

2

3 . E v a l u a t e

J A

x d t A d t

2

d t ( A x

d A )

= A X

d t 2 A + a A

a A

I n t e g r a t i n g ,

f

( A x

) d t

= A x

+ c

.

d t

d t

d t

4 . T h e e q u a t i o n o f m o t i o n o f a p a r t i c l e P o f m a s s m i s g i v e n b y

=

f ( r ) r 1

d 2

w h e r e r i s t h e p o s i t i o n v e c t o r o f P m e a s u r e d f r o m a n o r i g i n 0 , r 1 i s a u n i t v e c t o r i n t h e d i r e c t i o n r ,

a n d f ( r ) i s a f u n c t i o n o f t h e d i s t a n c e o f P f r o m 0 .

( a ) S h o w t h a t r x

= c w h e r e c i s a c o n s t a n t v e c t o r .

( b ) I n t e r p r e t p h y s i c a l l y t h e c a s e s f ( r ) < 0 a n d f ( r ) > 0 .

( c ) I n t e r p r e t t h e r e s u l t i n ( a ) g e o m e t r i c a l l y .

( d ) D e s c r i b e h o w t h e r e s u l t s o b t a i n e d r e l a t e t o t h e m o t i o n o f t h e p l a n e t s i n o u r s o l a r s y s t e m .

2

( a )

M u l t i p l y b o t h s i d e s o f i n d t 2 = f ( r ) r 1 b y r x .

T h e n

f i b I L x d

=

f ( r ) r x r 1

=

0

s i n c e r a n d r 1 a r e c o l l i n e a r a n d s o r x r 1 = 0 . T h u s

2

r x

a t e = 0

a n d

d t ( r x d t )

= 0

I n t e g r a t i n g ,

r x d = c , w h e r e c i s a c o n s t a n t v e c t o r . ( C o m p a r e w i t h P r o b l e m 3 ) .

2

( b )

I f f ( r ) < 0 t h e a c c e l e r a t i o n d t 2 h a s d i r e c t i o n o p p o s i t e t o r 1 ; h e n c e t h e f o r c e i s d i r e c t e d t o w a r d 0 a n d

t h e p a r t i c l e i s a l w a y s a t t r a c t e d t o w a r d 0 .

I f f ( r ) > 0 t h e f o r c e i s d i r e c t e d a w a y f r o m 0 a n d t h e p a r t i c l e i s u n d e r t h e i n f l u e n c e o f a r e p u l s i v e

f o r c e a t 0 .

A f o r c e d i r e c t e d t o w a r d o r a w a y f r o m a f i x e d p o i n t 0 a n d h a v i n g m a g n i t u d e d e p e n d i n g o n l y o n t h e

d i s t a n c e r f r o m 0 i s c a l l e d a c e n t r a l f o r c e .

( c )

I n t i m e A t t h e p a r t i c l e m o v e s f r o m M t o N ( s e e a d -

j o i n i n g f i g u r e ) . T h e a r e a s w e p t o u t b y t h e p o s i t i o n

v e c t o r i n t h i s t i m e i s a p p r o x i m a t e l y h a l f t h e a r e a o f

a p a r a l l e l o g r a m w i t h s i d e s r a n d A r , o r

2

r x A r .

T h e n t h e a p p r o x i m a t e a r e a s w e p t o u t b y t h e r a d i u s

v e c t o r p e r u n i t t i m e i s

I r x r ; h e n c e t h e i n s t a n -

t a n e o u s t i m e r a t e o f c h a n g e i n a r e a i s

l i m

2 r x

A r

=

A t 0 0

w h e r e v i s t h e i n s t a n t a n e o u s v e l o c i t y o f t h e p a r t i -

z

Page 93: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 93/234

8 6

V E C T O R I N T E G R A T I O N

c l e . T h e q u a n t i t y H =

Z r

x t = 2 r x v i s c a l l e d t h e a r e a l v e l o c i t y . F r o m p a r t ( a ) ,

A r e a l V e l o c i t y

=

f l

=

z r x

d t r

t

= c o n s t a n t

S i n c e r - H = 0 ,

t h e m o t i o n t a k e s p l a c e i n a p l a n e , w h i c h w e t a k e a s t h e x y p l a n e i n t h e f i g u r e a b o v e .

( d ) A p l a n e t ( s u c h a s t h e e a r t h ) i s a t t r a c t e d t o w a r d t h e s u n a c c o r d i n g t o N e w t o n ' s u n i v e r s a l l a w o f g r a v i t a -

t i o n , w h i c h s t a t e s t h a t a n y t w o o b j e c t s o f m a s s m a n d M r e s p e c t i v e l y a r e a t t r a c t e d t o w a r d e a c h o t h e r

w i t h a f o r c e o f m a g n i t u d e F =

G M 2

,

w h e r e r i s t h e d i s t a n c e b e t w e e n o b j e c t s a n d G i s a u n i v e r s a l

c o n s t a n t . L e t m a n d M b e t h e m a s s e s o f t h e p l a n e t a n d s u n r e s p e c t i v e l y a n d c h o o s e a s e t o f c o o r d i -

n a t e a x e s w i t h t h e o r i g i n 0 a t t h e s u n . T h e n t h e e q u a t i o n o f m o t i o n o f t h e p l a n e t i s

d 2 r

m d t 2

G M m

- r 2

r 1 o r

d 2 r

_ G M

d t 2

- r 2 r 1

a s s u m i n g t h e i n f l u e n c e o f t h e o t h e r p l a n e t s t o b e n e g l i g i b l e .

A c c o r d i n g t o p a r t ( c ) , a p l a n e t m o v e s a r o u n d t h e s u n s o t h a t i t s p o s i t i o n v e c t o r s w e e p s o u t e q u a l

a r e a s i n e q u a l t i m e s . T h i s r e s u l t a n d t h a t o f P r o b l e m 5 a r e t w o o f K e p l e r ' s f a m o u s t h r e e l a w s w h i c h h e

d e d u c e d e m p i r i c a l l y f r o m v o l u m e s o f d a t a c o m p i l e d b y t h e a s t r o n o m e r T y c h o B r a h e . T h e s e l a w s e n a -

b l e d N e w t o n t o f o r m u l a t e h i s u n i v e r s a l l a w o f g r a v i t a t i o n . F o r K e p l e r ' s t h i r d l a w s e e P r o b l e m 3 6 .

5 . S h o w t h a t t h e p a t h o f a p l a n e t a r o u n d t h e s u n i s a n e l l i p s e w i t h t h e s u n a t o n e f o c u s .

( 1 )

( 2 )

F r o m P r o b l e m s 4 ( c ) a n d 4 ( d ) ,

d v

G M

d t

=

- r 2 A l

r x v

=

2 H

= h

N o w r = r r 1 , d

r W t + d t r 1

s o t h a t

( 3 )

h r x v

r r 1 x ( r

d r l

+

d r

r l ) _

d t

d t

r 2 r 1 x

d t

F r o m ( 1 ) , d t x h

= G M r 1 x h

=

- - G M r 1 x ( r 1 x

d t l )

- G M [ ( r 1 .

d r 1 )

r 1 - -

{ r 1 r l ) d r l

= G M

d r 1

d t

d t

d t

u s i n g e q u a t i o n ( 3 ) a n d t h e f a c t t h a t r l . d a

= 0 ( P r o b l e m 9 , C h a p t e r 3 ) .

B u t s i n c e h i s a c o n s t a n t v e c t o r ,

d v

x h =

d

( v x h )

s o t h a t

d t d t

d t ( v

x

h )

=

G M d t

I n t e g r a t i n g ,

v x h =

G M r 1 + p

f r o m w h i c h

r . ( v x h )

= G M r r 1 + r p

= G M r + r r 1 . P

= G M r + r p c o s 8

w h e r e p i s a n a r b i t r a r y c o n s t a n t v e c t o r w i t h m a g n i t u d e p , a n d a i s t h e a n g l e b e t w e e n p a n d r 1 .

S i n c e r . ( v x h ) _ ( r x v ) . h = h h = h 2 ,

w e h a v e

h 2 = G M r + r p c o s B a n d

h 2

h 2 / G M

r

G M + p c o s B

1 + ( p / G M ) c o s 6

Page 94: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 94/234

V E C T O R I N T E G R A T I O N

F r o m a n a l y t i c g e o m e t r y , t h e p o l a r e q u a t i o n o f a c o n i c

s e c t i o n w i t h f o c u s a t t h e o r i g i n a n d e c c e n t r i c i t y E i s

r =

a w h e r e a i s a c o n s t a n t . C o m p a r i n g t h i s

1 + E C o s 9

w i t h t h e e q u a t i o n d e r i v e d , i t i s s e e n t h a t t h e r e q u i r e d

o r b i t i s a c o n i c s e c t i o n w i t h e c c e n t r i c i t y

E = p / G M .

T h e o r b i t i s a n e l l i p s e , p a r a b o l a o r h y p e r b o l a a c c o r d -

i n g a s E i s l e s s t h a n , e q u a l t o o r g r e a t e r t h a n o n e .

S i n c e o r b i t s o f p l a n e t s a r e c l o s e d c u r v e s i t f o l l o w s

t h a t t h e y m u s t b e e l l i p s e s .

E 1 1 '

-

a

a p s e r

i + E c 0 s 8

L I N E I N T E G R A L S

8 7

6 . I f A = ( 3 x 2 + 6 y ) i - 1 4 y z j + 2 0 x z 2 k , e v a l u a t e J A d r

f r o m ( 0 , 0 , 0 ) t o ( 1 , 1 , 1 ) a l o n g t h e f o l l o w -

i n g p a t h s C :

C

( a ) x = t , y = t 2 , z = t 3 .

( b ) t h e s t r a i g h t l i n e s f r o m ( 0 , 0 , 0 ) t o ( 1 , 0 , 0 ) , t h e n t o ( 1 , 1 , 0 ) , a n d t h e n t o ( 1 , 1 , 1 ) .

( c ) t h e s t r a i g h t l i n e j o i n i n g ( 0 , 0 , 0 ) a n d ( 1 , 1 , 1 ) .

f c

f c ,

[ ( 3 x 2 + 6 y ) i - 1 4 y z j + 2 0 x z 2 k ] ( d x i + d y j + d z k )

J ' ( 3 x 2 + 6 y ) d x

- 1 4 y z d y + 2 0 x z 2 d z

( a )

I f x = t , y = t 2 , Z = t 3 , p o i n t s ( 0 , 0 , 0 ) a n d ( 1 , 1 , 1 ) c o r r e s p o n d t o t = 0 a n d t = 1 r e s p e c t i v e l y . T h e n

1

f

A - d r

=

f

( 3 t 2 + 6 t 2 ) d t - 1 4 ( t 2 ) ( t 3 ) d ( t 2 )

t = 0

I '

t = o

9 t 2 d t - 2 8 t e d t + 6 0 t 9 d t

f ( 9 t _ 2 8 t 6 + 6 0 t 9 )

d t

t = o

+ 2 0 ( t ) ( t 3 ) 2 d ( t 3 )

1

3 t 2 - 4 t 7 + 6 t 1 0 1

= 5

0

A n o t h e r M e t h o d .

A l o n g C , A = 9 t 2 i - 1 4 t 5 j + 2 0 t 7 k a n d

r = x i + y j + z k = t i + t 2 j + t 3 k a n d d r = ( i + 2 t j + 3 t 2 k ) d t .

T h e n

J

A d r

C

I '

t = o

1

( 9 t 2 i - 1 4 t 5 j + 2 0 t 7 k ) . ( i + 2 t j + 3 t 2 k ) d t

( 9 t 2 - 2 8 t 6 + 6 0 t 9 ) d t

=

5

( b )

A l o n g t h e s t r a i g h t l i n e f r o m ( 0 , 0 , 0 ) t o ( 1 , 0 , 0 ) y = 0 , z = 0 , d y = 0 , d z = 0 w h i l e x v a r i e s f r o m 0 t o

1 . T h e n

t h e i n t e g r a l o v e r t h i s p a r t o f t h e p a t h i s

I '

1

3 x 2 + 6 ( 0 ) ) d x - 1 4 ( 0 ) ( 0 ) ( 0 ) + 2 0 x ( 0 ) 2 ( 0 ) =

f 3 x 2

d x

1

x

l

=

1

0

A l o n g t h e s t r a i g h t l i n e f r o m ( 1 , 0 , 0 ) t o ( 1 , 1 , 0 ) x = 1 , z = 0 , d x = 0 , d z = 0 w h i l e y v a r i e s f r o m 0

t o 1 .

T h e n t h e i n t e g r a l o v e r t h i s p a r t o f t h e p a t h i s

S I

( 3 ( 1 ) 2 + 6 y ) 0 - 1 4 y ( 0 ) d y + 2 0 ( 1 ) ( 0 ) 2 0

= 0

Page 95: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 95/234

8 8

V E C T O R I N T E G R A T I O N

A l o n g t h e s t r a i g h t l i n e f r o m ( 1 , 1 , 0 ) t o ( 1 , 1 , 1 ) x = 1 , y = 1 , d x = 0 , d y = 0 w h i l e z v a r i e s f r o m 0

t o 1 .

T h e n t h e i n t e g r a l o v e r t h i s p a r t o f t h e p a t h i s

f 1

z = 0

3 ( 1 ) 2 + 6 ( 1 ) ) 0 - 1 4 ( 1 ) z ( 0 ) + 2 0 ( 1 ) z 2 d z

= f 1 2 0 z 2 d z

=

2 0 3 z 3

z , = o

A d d i n g ,

J

A - d r

=

1

+ 0

C

+ 2 0

=

2 3

3

3

( c ) T h e s t r a i g h t l i n e j o i n i n g ( 0 , 0 , 0 ) a n d ( 1 , 1 , 1 ) i s g i v e n i n p a r a m e t r i c f o r m b y x = t , y = t , z = t .

T h e n

f

1

J A - d r

( 3 t 2 + 6 t ) d t - 1 4 ( t ) ( t ) d t + 2 0 ( t ) ( t ) 2 d t

C

t = 0

( `

t = 0

( 3 t 2 + 6 t - 1 4 t 2 + 2 0 t 3 ) d t

- f

1

( 6 t - 1 1 t 2 + 2 0 t 3 ) d t

t = 0

I '

7 . F i n d t h e t o t a l w o r k d o n e i n m o v i n g a p a r t i c l e i n a f o r c e f i e l d g i v e n b y F = 3 x y i - 5 z j + l O x k

a l o n g t h e c u r v e x = 1 2 + 1 , y = 2 t 2 , z = t 3 f r o m t = l t o t = 2 .

T o t a l w o r k

J F - d r

( 3 x y i - 5 z j +

+ d y j + d z k )

C

C

3 x y d x - 5 z d y + 1 0 x d z

2

3 ( t 2 + 1 ) ( 2 t 2 ) d ( t 2 + 1 ) - 5 ( t 3 ) d ( 2 t 2 )

+

1 0 ( t 2 + 1 ) d ( t 3 )

t = 1

2

( 1 2 t 5 + 1 0 t 4 + 1 2 t 2 + 3 0 t 2 ) d t = 3 0 3

8 . I f F = 3 x y i - y 2 j ,

e v a l u a t e

F - d r w h e r e C i s t h e c u r v e i n t h e x y p l a n e , y = 2 x 2 , f r o m ( 0 , 0 )

t o ( 1 , 2 ) . i c

S i n c e t h e i n t e g r a t i o n i s p e r f o r m e d i n t h e x y p l a n e ( z = 0 ) , w e c a n t a k e r = x i + y j .

T h e n

=

f ( 3 x y i _ y 2 j ) . ( d x i + d y j )

J F . d r

x y d x - y 2 d y

  f e 3

F i r s t M e t h o d .

L e t x = t i n y = 2 x 2 . T h e n t h e p a r a m e t r i c e q u a t i o n s o f C a r e x = t , y = 2 t 2 .

P o i n t s ( 0 , 0 ) a n d

( 1 , 2 ) c o r r e s p o n d t o t = 0 a n d t = 1 r e s p e c t i v e l y . T h e n

f

F - d r

=

r 1

C

3 ( t ) ( 2 t 2 ) d t - ( 2 t 2 ) 2 d ( 2 t 2 )

t o

t = 0

( 6 t 3 - 1 6 1 5 ) d t

1 3

3

7

6

S e c o n d M e t h o d . S u b s t i t u t e y = 2 x 2 d i r e c t l y , w h e r e x g o e s f r o m 0 t o 1 .

T h e n

f

1

f F - d r

3 x ( 2 x 2 ) d x - ( 2 x 2 ) 2 d ( 2 x 2 )

C

x = o

( 6 x 3 - 1 6 x 5 ) d x

=

x = 0

N o t e t h a t i f t h e c u r v e w e r e t r a v e r s e d i n t h e o p p o s i t e s e n s e , i . e . f r o m ( 1 , 2 ) t o ( 0 , 0 ) , t h e v a l u e o f t h e i n t e g r a l

Page 96: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 96/234

V E C T O R I N T E G R A T I O N

8 9

9 . F i n d t h e w o r k d o n e i n m o v i n g a p a r t i c l e o n c e a r o u n d a c i r c l e C i n t h e x y p l a n e , i f t h e c i r c l e h a s

c e n t e r a t t h e o r i g i n a n d r a d i u s 3 a n d i f t h e f o r c e f i e l d i s g i v e n b y

F =

( 2 x - - y + z ) i

+ ( x + y - z 2 ) j

+ ( 3 x - 2 y + 4 z ) k

I n t h e p l a n e z = 0 , F = ( 2 x - y ) i + ( x + y ) j + ( 3 x - 2 y ) k a n d d r = d x i + d y j s o t h a t

t h e w o r k d o n e i s

[ ( 2 x - y ) i + ( x + y ) j + ( 3 x - 2 y ) k - [ d x i + d y j ]

C

J

f c

( 2 x - y ) d x + ( x + y ) d y

C h o o s e t h e p a r a m e t r i c e q u a t i o n s o f t h e c i r c l e a s x = 3 c o s t , y = 3 s i n t

w h e r e t v a r i e s f r o m 0 t o 2 n ( s e e a d j o i n i n g f i g u r e ) .

T h e n t h e l i n e i n t e g r a l

e q u a l s

2 7 1

[ 2 ( 3 c o s t ) - 3 s i n t ] [ - 3 s i n t ] d t + [ 3 c o s t + 3 s i n t ] [ 3 c o s . t ] d t

t = 0

I

( 9 - 9 s i n t c o s t ) d t

= 9 t -

2

s i n 2 t

2 7 T

1 2 7 T

0

=

1 8 7 L

I n t r a v e r s i n g C w e h a v e c h o s e n t h e c o u n t e r c l o c k w i s e d i r e c t i o n i n d i c a t e d

i n t h e a d j o i n i n g f i g u r e .

W e c a l l t h i s t h e p o s i t i v e d i r e c t i o n , o r s a y t h a t C

h a s b e e n t r a v e r s e d i n t h e p o s i t i v e s e n s e . I f C w e r e t r a v e r s e d i n t h e c l o c k -

w i s e ( n e g a t i v e ) d i r e c t i o n t h e v a l u e o f t h e i n t e g r a l w o u l d b e - 1 8 I T .

r = x i + y j

3 c o s t i + 3 s i n t j

1 0 . ( a ) I f F = V

,

w h e r e

i s s i n g l e - v a l u e d a n d h a s c o n t i n u o u s p a r t i a l d e r i v a t i v e s , s h o w t h a t t h e

w o r k d o n e i n m o v i n g a p a r t i c l e f r o m o n e p o i n t P 1 = ( x 1 , y 1 , z 1 ) i n t h i s f i e l d t o a n o t h e r p o i n t

P 2 = ( x 2 , y 2 , z 2 ) i s - i n d e p e n d e n t o f t h e p a t h j o i n i n g t h e t w o p o i n t s .

( b ) C o n v e r s e l y , i f

F . d r i s i n d e p e n d e n t o f t h e p a t h C j o i n i n g a n y t w o p o i n t s , s h o w t h a t t h e r e

C

e x i s t s a f u n c t i o n 0 s u c h t h a t F = V

.

P .

f P 1 2

( a ) W o r k d o n e

=

F - d r

=

V q b d r

I P 2

1

P

s

=

P 2

(

a i + j +

a o k )

( d x i + d y j + d z k )

f

Y z

i

P 2

d x +

a 0

d y +

a d z

P 1

Y

z

( P 2

, / ,

J

d Y =

O ( P 2 ) - O ( P i )

_ ( N x 2 , Y 2 , Z 2 ) - 0 ( x 1 , Y 1 , Z 1 )

P 1

T h e n t h e i n t e g r a l d e p e n d s o n l y o n p o i n t s P 1 a n d P 2 a n d n o t o n t h e p a t h j o i n i n g t h e m . T h i s i s t r u e

o f c o u r s e o n l y i f q 5 ( x , y , z ) i s s i n g l e - v a l u e d a t a l l p o i n t s P 1 a n d P 2 .

. d r i s i n d e p e n d e n t o f t h e p a t h C j o i n i n g a n y t w o

b ) L e t F = F 1 i + F 2 j + F 3 k . B y h y p o t h e s i s , f c F

p o i n t s , w h i c h w e t a k e a s ( x 1 , y 1 , z 1 ) a n d ( x , y , z ) r e s p e c t i v e l y . T h e n

( x , y , Z ) =

f ( x , y , Z )

c p ( x , y , z )

=

J

F 1 d x + F 2 d y + F 3 d z

f x 1 , Y 1 ,

z 1 )

z 1 )

i s i n d e p e n d e n t o f t h e p a t h j o i n i n g ( x 1 , y 1 i z 1 ) a n d ( x , y , z ) .

T h u s

Page 97: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 97/234

9 0

V E C T O R I N T E G R A T I O N

C / ( x + A x , y , z ) - c ( x , y , z )

f

( x + A x , y , z )

f ( x , y , z )

F . d r

- J

F

d r

x 1 , y i , z 1 )

( x 1 , Y 1 , z 1 )

( x 1 , y 1 , Z 1 ) ( x + I x , y , z )

r

, Y , z )

J ( x i , y j , z i )

( x + . x , Y . z )

- ' ( x + A x , y , z )

F 1 d x + F 2 d y + F 3 d z

( x , y , z ) ( x , y , z )

S i n c e t h e l a s t i n t e g r a l m u s t b e i n d e p e n d e n t o f t h e p a t h j o i n i n g ( x , y , z ) a n d ( x + A x , Y . z ) , w e m a y c h o o s e

t h e p a t h t o b e a s t r a i g h t l i n e j o i n i n g t h e s e p o i n t s s o t h a t d y a n d d z a r e z e r o . T h e n

O ( x + A x , y , z ) - O ( x , y , z )

A x

1

( x + A x , y , Z )

O x

J

( x , y , z )

T a k i n g t h e l i m i t o f b o t h s i d e s a s O x - , 0 , w e h a v e a 0 = F 1 .

x

S i m i l a r l y , w e c a n s h o w

t h a t a a y = F 2 a n d a 0 = F 3 .

T h e n F = F 1 i + F 2 j + F 3 k =

- i + a - j

+

a - k

= V 0 .

x y

F 1 d x

( ' P 2

I f J

F . d r i s i n d e p e n d e n t o f t h e p a t h C j o i n i n g P 1 a n d P 2 , t h e n F i s c a l l e d a c o n s e r v a t i v e f i e l d .

I t

P 1

f o l l o w s t h a t i f F = V O t h e n F i s c o n s e r v a t i v e , a n d c o n v e r s e l y .

P r o o f u s i n g v e c t o r s .

I f t h e l i n e i n t e g r a l i s i n d e p e n d e n t o f t h e p a t h , t h e n

( x , y , z )

f ( x , y , z )

( x , y , z )

=

F

d s

A r - d s

f x 1 , Y 1 ,

Z 1 )

( x 1 , Y i , z 1 )

B y d i f f e r e n t i a t i o n ,

d ( t =

F

d r

B u t

d 4

= 0

d r

s o t h a t ( V - F )

d r

= 0 .

d s

d s

d s

d s

d s

S i n c e t h i s m u s t h o l d i r r e s p e c t i v e o f d s

,

w e h a v e F = V g .

1 1 . ( a ) I f F i s a c o n s e r v a t i v e f i e l d , p r o v e t h a t

c u r l F = V x F = 0 ( i . e . F i s i r r o t a t i o n a l ) .

( b ) C o n v e r s e l y , i f V x F = 0 ( i . e . F i s i r r o t a t i o n a l ) , p r o v e t h a t F i s c o n s e r v a t i v e .

( a )

I f F i s a c o n s e r v a t i v e f i e l d , t h e n b y P r o b l e m 1 0 , F = V o

.

T h u s c u r l F = V x V V = 0 ( s e e P r o b l e m 2 7 ( a ) , C h a p t e r 4 ) .

i j

k

( b ) I f O x F = 0 , t h e n

W e

a

a a

a x

a y

a z

= 0

a n d t h u s

F 1 F 2 F 3

I

F 3

F 2

- a a F 1 .

F 3

F 2

F 1

a y

-

a z a z = a x

' a x

= a y

m u s t p r o v e t h a t F = V V f o l l o w s a s a c o n s e q u e n c e o f t h i s .

T h e w o r k d o n e i n m o v i n g a p a r t i c l e f r o m ( x 1 , y 1 , z 1 ) t o ( x , y , z ) i n t h e f o r c e f i e l d F i s

Page 98: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 98/234

V E C T O R I N T E G R A T I O N

9 1

f e

F j ( x , y , z ) d x

+

F 2 ( x , y , z ) d y +

F 3 ( x , y , z ) d z

w h e r e C i s a p a t h j o i n i n g ( x 1 , y 1 , z l ) a n d ( x , y , z ) .

L e t u s c h o o s e a s a p a r t i c u l a r p a t h t h e s t r a i g h t l i n e

s e g m e n t s f r o m ( x 1 , y 1 , z 1 ) t o ( x , y l , z 1 ) t o ( x , y , z 1 ) t o ( x , y , z ) a n d c a l l 0 ( x , y , z ) t h e w o r k d o n e a l o n g t h i s

p a r t i c u l a r p a t h . T h e n

x

Y

z

( x , y , z )

=

J

x

F 1 ( x , y 1 , z 1 ) d x

+

F 2 ( x , y , z l ) d y

+

F 3 ( x , y , z ) d z

1

9 . 0

Y 1

f

1

I t f o l l o w s t h a t

a z

F 3 ( x , y , z )

_

a y

f z F

F 2 ( x , y , z 1 ) +

3

( x , y , z ) d z

a

1

z

' 8 a F 2

( x , y , z ) d z

F 2 ( x , y , z 1 )

+

J 2 1

-

a x

z

F 2 ( x , y , Z 1 ) + F 2 ( x , y , Z ) I

F 2 ( x , y , Z 1 ) +

F 2 ( x , y , z ) - F 2 ( x , y , Z 1 )

= F 2 ( x , y , Z )

Z 1

z

=

F 1 ( x , y 1 , z 1 )

+ S

Y e ( x ,

y , z 1 ) d y

+ f a z ( x , y , z ) d z

1

. f

1

z

F , ( x , y 1 , z - 1 )

+ Y

a Y F l

( x , y , z 1 ) d y

+

f l

a

1 ( x , Y , z ) f d z

z

l

y z

=

F 1 ( x , Y 1 , z 1 )

+ F 1 ( x , y , z j ) I

+

F 1 ( x , y , z ) I

y 1

z 1

=

F 1 ( x , y 1 , z 1 )

+ F 1 ( x , y , z 1 ) - F 1 ( x , Y 1 , z 1 )

+ F 1 ( x , y , z ) -

F 1 ( x , y , z 1 )

=

F 1 ( x , y , z )

T h e n

F =

F 1 i + F 2 j + F 3 k

a - i +

a - j +

k

=

Y

T h u s a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t a f i e l d F b e c o n s e r v a t i v e i s t h a t c u r l F = V x F = 0 .

1 2 . ( a ) S h o w t h a t F = ( 2 x y

+ z 3 ) i

+ x 2 j + 3 x z 2 k

i s a c o n s e r v a t i v e f o r c e f i e l d . ( b ) F i n d t h e s c a -

l a r p o t e n t i a l . ( c ) F i n d t h e w o r k d o n e i n m o v i n g a n o b j e c t i n t h i s f i e l d f r o m ( 1 , - 2 , 1 ) t o ( 3 , 1 , 4 ) .

( a ) F r o m P r o b l e m 1 1 , a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t a f o r c e w i l l b e c o n s e r v a t i v e i s t h a t

c u r l F = V x F = 0 .

N o w

V x F =

i

j

k

a

a

a

a x

a y a Z

2 x y + z 3

x 2

3 x z 2

=

0 .

T h u s F i s a c o n s e r v a t i v e f o r c e f i e l d .

Page 99: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 99/234

9 2

( b ) F i r s t M e t h o d .

I n t e g r a t i n g , w e f i n d f r o m ( 1 ) , ( 2 ) a n d ( 3 ) r e s p e c t i v e l y ,

B y P r o b l e m 1 0 , F = V O

o r a

i +

L O

j + a o k = ( 2 x y + z 3 ) i +

X 2

j + 3 x z 2 k . T h e n

Y

( 1 ) a

= 2 x y + z 3

( 2 )

= x 2 ( 3 )

= 3 x z 2

- a z

Y

x 2 y

+

x z 3

+

f ( y , z )

=

' Y ' 2

I V

+

( x z )

Z 5

9

x z

3

+

h ( x , y )

T h e s e a g r e e i f w e c h o o s e f ( y , z ) = 0 , g ( x , z ) = x z 3 , h ( x , y ) = x 2 y s o t h a t = x 2 y + x z 3 t o w h i c h m a y

b e a d d e d a n y c o n s t a n t .

S e c o n d M e t h o d .

d r i s i n d e p e n d e n t o f t h e p a t h C j o i n i n g

i n c e F i s c o n s e r v a t i v e ,

f c F

U s i n g t h e m e t h o d o f P r o b l e m 1 1 ( b ) ,

x

f x l

V E C T O R I N T E G R A T I O N

( 2 x y 1 + z 1 ) d x

+

f

Y

Y 1

z

x 2 d y

+ f i 3 x z

2

d z

z

( y

( x 2 y 1 + x z 3 )

I x

x 1

+

x 2 Y I y 1

+

x z 3 1 z 1

( x 1 , Y 1 , Z 1 )

a n d ( x , y , z ) .

x 2 y 1 +

x z 3 - x i 2 y 1

-

X : 1 z 3

+

x 2 y - x 2 y 1

+

x z

- x z

=

x 2 y

+

x z

-

x i y i -

x 1 z 3

x 2 y

+ x Z 3

+

c o n s t a n t

T h i r d M e t h o d .

V o - d r

=

a 0 d x + L o

d y +

.

o

d z

=

d o

Y

T h e n

d o

=

( 2 x y + z 3 ) d x

+ x 2 d y

+

3 x z 2 d z

( 2 x y d x + x 2 d y )

+

( z 3 d x + 3 x z 2 d z )

= d ( x 2 y )

+

d ( x z 3 )

d ( x 2 y + x z 3 )

a n d 0 =

x 2 y + x z 3 + c o n s t a n t .

P 2

( c ) W o r k d o n e =

P

F . d r

1

P 1

f

p i

P 2

A n o t h e r M e t h o d .

( 2 x y + z 3 ) d x + x 2 d y + 3 x z 2 d z

d ( x 2 y + x z 3 ) = x 2 y + x z 3 I

P 2

= x 2 y + x z 3 I

( 3 , i t 4 )

= 2 0 2

P 1

F r o m p a r t ( b ) ,

c ( x , y , z )

=

x 2 y + x z 3 + c o n s t a n t .

( 1 , - 2 , 1 )

T h e n w o r k d o n e

=

0 ( 3 , 1 , 4 ) - 0 ( 1 , - 2 , 1 )

=

2 0 2 .

Page 100: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 100/234

V E C T O R I N T E G R A T I O N

9 3

P 2

1 3 . P r o v e t h a t i f

F . d r

i s i n d e p e n d e n t o f t h e p a t h j o i n i n g a n y t w o p o i n t s P 1 a n d P 2 i n a g i v e n

J

P 1

r e g i o n , t h e n

F d r = 0 f o r a l l c l o s e d p a t h s i n t h e r e g i o n a n d c o n v e r s e l y .

L e t P 1 A P 2 B P 1 ( s e e a d j a c e n t f i g u r e ) b e a c l o s e d c u r v e . T h e n

5

f

f

J

P 1 A P 2 8 P 1

P 1 A P 2

P 2 B P 1

s i n c e t h e i n t e g r a l f r o m P 1 t o P 2 a l o n g a p a t h t h r o u g h A i s t h e s a m e a s

t h a t a l o n g a p a t h t h r o u g h B , b y h y p o t h e s i s .

f F . d r =

0

P 1 A P 2

P 1 B P 2

s o t h a t ,

C o n v e r s e l y i f f F d r = 0 ,

t h e n

f F d r

f

f 0

P 1 A P 2 B P 1

P 1 A P 2

P 2 B P 1

P 1 A P 2

P 1 B P 2

J

P 1 A P 2

F d r =

f

F d r .

P 1 B P 2

1 4 . ( a ) S h o w t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t F 1 d x + F 2 d y + F 3 d z b e a n e x a c t d i f f e r -

e n t i a l i s t h a t V x F = 0 w h e r e F = F 1 i + F 2 j + F 3 k .

( b ) S h o w t h a t ( y 2 z 3 c o s x - 4 x 3 z ) d x + 2 z 3 y s i n x d y + ( 3 y 2 z 2 s i n x - x 4 ) d z i s a n e x a c t d i f -

f e r e n t i a l o f a f u n c t i o n q 5 a n d f i n d 0 .

( a ) S u p p o s e

F 1 d x + F 2 d y + F 3 d z = d q 5 = a

d x + d y +

d z ,

a n e x a c t d i f f e r e n t i a l .

T h e n

s i n c e x , y a n d z a r e i n d e p e n d e n t v a r i a b l e s ,

x

y z

a

a

a

F 1 = .

,

F 2 = a

,

F 3 =

a

a n d s o F = F 1 i + F 2 J + F 3 k =

a

i +

j +

k = V 0 .

T h u s V x F = V x V q = 0 .

y

z

C o n v e r s e l y

i f O x F = 0 t h e n b y P r o b l e m 1 1 ,

F = V C a a n d s o F d r = V V V . d r = d O ,

i . e .

F 1 d x + F 2 d y + F 3 d z = d c / , a n e x a c t d i f f e r e n t i a l .

( b ) F = ( y 2 z 3 c o s x - 4 x 3 z ) i + 2 z 3 y s i n x j + ( 3 y 2 z 2 s i n x - x 4 ) k a n d O x F i s c o m p u t e d t o b e z e r o ,

s o t h a t b y p a r t ( a )

( y 2 z 3 c o s x - - 4 x 3 z ) d x

+

2 z 3 y s i n x d y

+

( 3 y 2 z 2 s i n x - x 4 ) d z

=

d o

B y a n y o f t h e m e t h o d s o f P r o b l e m 1 2 w e f i n d 0 = y 2 z 3 s i n x - x 4 z + c o n s t a n t .

1 5 . L e t F b e a c o n s e r v a t i v e f o r c e f i e l d s u c h t h a t F = - V O .

S u p p o s e a p a r t i c l e o f c o n s t a n t m a s s m

t o m o v e i n t h i s f i e l d .

I f A a n d B a r e a n y t w o p o i n t s i n s p a c e , p r o v e t h a t

( A ) + 2 m v A

f

0 ( B ) + 2 m v v

w h e r e v A a n d v B a r e t h e m a g n i t u d e s o f t h e v e l o c i t i e s o f t h e p a r t i c l e a t A a n d B r e s p e c t i v e l y .

Page 101: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 101/234

9 4

V E C T O R I N T E G R A T I O N

d 2 r

d r

=

d r d 2 r

_ i n

d

d r 2

F = m a = m d t 2

T h e n

F .

d t

' n d t d t 2

2

d t ( d t )

I n t e g r a t i n g ,

f A

B

J

B

I f F = - V o l

F d r

A

T h e n

0 ( A ) - 0 ( B )

=

2

v 2

B

- 2 m v A .

=

2 m V B

2

2

f B

2

2 m v B

A

B

d o

=

9 5 ( A ) - O ( B )

2 m A a n d t h e r e s u l t f o l l o w s .

O ( A ) i s c a l l e d t h e p o t e n t i a l e n e r g y a t A a n d 2 m v 2 i s t h e k i n e t i c e n e r g y a t A . T h e r e s u l t s t a t e s t h a t

t h e t o t a l e n e r g y a t A e q u a l s t h e t o t a l e n e r g y a t B

( c o n s e r v a t i o n o f e n e r g y ) . N o t e t h e u s e o f t h e m i n u s s i g n

i n F = - V V .

1 6 . I f 0 = 2 x y z 2 , F = x y i - z j + x 2 k a n d C I s t h e c u r v e x = t 2 , y = 2 t ,

z = t 3

f r o m t = 0 t o t = 1 ,

e v a l u a t e t h e l i n e i n t e g r a l s ( a )

C

d r ,

( b )

F x d r .

C

( a )

A l o n g C ,

d r

=

( 2 t i + 2 j + 3 t 2 k ) d t . T h e n

r

F - d r

2 x y z 2 =

2 ( t 2 ) ( 2 t ) ( t 3 ) 2

=

4 t 9 ,

=

x i + y j + z k

=

t 2 i + 2 t j + t 3 k ,

a n d

f 1

t = 0

I

4 t 9 ( 2 t i + 2 j + 3 t 2 k ) d t

1

1

1

=

i 8 t 1 O d t

+

j

8 t 9 d t

+

k

1 2 t 1 1 d t =

0

0

( b )

A l o n g C , F = x y t - z j + x 2 k = 2 t 3 i - t 3 1 + t 4 k .

T h e n F x d r =

( 2 t 3 i - t 3 j + t 4 k ) x ( 2 t i + 2 j + 3 t 2 k ) d t

d t

=

[ ( - 3 t

- 2 t 4 ) i + ( 2 t ' - 6 t 5 ) j

+ ( 4 t 3 + 2 t 4 ) k ] d t

( ' 1

1

1

- - 4 t 5 ) d t

+ k

( 4 t 3 + 2 t 4 ) d t

n d

F x d r

=

i J

( - 3 t 5 - 2 t 4 ) d t

+

j f o

C

o

S U R F A C E I N T E G R A L S .

1 7 . G i v e a d e f i n i t i o n o f

i

- 3 j + 5 k

A - n d S

o v e r a s u r f a c e S i n t e r m s o f l i m i t o f a s u m .

S

S u b d i v i d e t h e a r e a S i n t o M e l e m e n t s o f a r e a A S o w h e r e p = 1 , 2 , 3 , . . . , M .

C h o o s e a n y p o i n t P p w i t h i n

A S o w h o s e c o o r d i n a t e s a r e ( x p , y p , z , ) .

D e f i n e A ( x p , y p , z p ) = A . L e t n o b e t h e p o s i t i v e u n i t n o r m a l t o

A S a t P . F o r m t h e s u m

Page 102: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 102/234

V E C T O R I N T E G R A T I O N

M

A p n p A S p

w h e r e A p n p i s t h e n o r m a l c o m p o n e n t

o f A p a t P p .

N o w t a k e t h e l i m i t o f t h i s s u m a s

M - - a i n s u c h a w a y t h a t t h e l a r g e s t d i -

m e n s i o n o f e a c h A S p a p p r o a c h e s z e r o .

T h i s l i m i t , i f i t e x i s t s , i s c a l l e d t h e

s u r f a c e i n t e g r a l o f t h e n o r m a l c o m p o -

n e n t o f A o v e r S a n d i s d e n o t e d b y

f f A n d S

S

z

1 8 . S u p p o s e t h a t t h e s u r f a c e S h a s p r o j e c t i o n R o n t h e x y p l a n e ( s e e f i g u r e o f P r o b . 1 7 ) . S h o w t h a t

f f A . n d s

=

f f A . n %

S

R

B y P r o b l e m 1 7 , t h e s u r f a c e i n t e g r a l i s t h e l i m i t o f t h e s u m

M

( 1 )

A p . n p A s

p

= 1

9 5

T h e p r o j e c t i o n o f A S p o n t h e x y p l a n e i s

i ( n

p A S p ) k

i

o r

i n , - k i A S P w h i c h i s e q u a l t o

p y p

g y p

s o t h a t A S =

p

T h u s t h e s u m ( 1 ) b e c o m e s

p

( 2 )

M

A X P A n

p = 1

B y t h e f u n d a m e n t a l t h e o r e m o f i n t e g r a l c a l c u l u s t h e l i m i t o f t h i s s u m a s M - o o i n s u c h a m a n n e r t h a t

t h e l a r g e s t A x

P

a n d D y p a p p r o a c h z e r o i s

d x d y

A . n i n - k i

a n d s o t h e r e q u i r e d r e s u l t f o l l o w s .

R

S t r i c t l y s p e a k i n g , t h e r e s u l t A S p =

n p A y p

i s o n l y a p p r o x i m a t e l y t r u e b u t i t c a n b e s h o w n o n c l o s e r

p

k 1

e x a m i n a t i o n t h a t t h e y d i f f e r f r o m e a c h o t h e r b y i n f i n i t e s i m a l s o f o r d e r h i g h e r t h a n A x p A y p , a n d u s i n g t h i s

t h e l i m i t s o f ( 1 ) a n d ( 2 ) c a n i n f a c t b e s h o w n e q u a l .

1 9 . E v a l u a t e

A . n d S , w h e r e A = 1 8 z i - 1 2 j + 3 y k a n d S i s t h a t p a r t o f t h e p l a n e

S

2 x + 3 y + 6 z = 1 2 w h i c h i s l o c a t e d i n t h e f i r s t o c t a n t .

T h e s u r f a c e S a n d i t s p r o j e c t i o n R o n t h e x y p l a n e a r e s h o w n i n t h e f i g u r e b e l o w .

Page 103: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 103/234

9 6

V E C T O R I N T E G R A T I O N

z

F r o m P r o b l e m 1 7 ,

2 i + 3 j + 6 k

2 2 + 3 2 + 6 2

J ' f A n

R

d x d y

I n - k (

T o o b t a i n n n o t e t h a t a v e c t o r p e r p e n d i c u l a r t o t h e s u r f a c e 2 x + 3 y + 6 z = 1 2 i s g i v e n b y V ( 2 x + 3 y + 6 z ) _

2 i + 3 j + 6 k ( s e e P r o b l e m 5 o f C h a p t e r 4 ) .

T h e n a u n i t n o r m a l t o a n y p o i n t o f S ( s e e f i g u r e a b o v e ) i s

n

=

T h u s

n k

I I

7 i + 7 j + 7 k

( 7 i + 7 j + 7 k ) k =

7

a n d s o

1 d n - k y -

f i

d x d y .

2

3 i . 6

3 6 z - 3 6 + 1 8 y

3 6 - 1 2 x

A l s o

7 7

u s i n g t h e f a c t t h a t z =

1 2

- 6 -

3 y

f r o m t h e e q u a t i o n o f S .

T h e n

f f A . n d S

=

f f A - n

I n - k J

I f

S R R

( 3 6 7 1 2 x )

S

7

d x d y

=

f f

( 6 - 2 x )

d x d y

R

T o e v a l u a t e t h i s d o u b l e i n t e g r a l o v e r R , k e e p x f i x e d a n d i n t e g r a t e w i t h r e s p e c t t o y f r o m y = 0 ( P i n

t h e f i g u r e a b o v e ) t o y = 1 2 3

2 x

( Q i n t h e f i g u r e a b o v e ) ; t h e n i n t e g r a t e w i t h r e s p e c t t o x f r o m x = 0 t o

x = 6 . I n t h i s m a n n e r R i s c o m p l e t e l y c o v e r e d . T h e i n t e g r a l b e c o m e s

( 6 - 2 x ) d y d x

6

x = 0 y = O

x = 0

( 2 4 - 1 2 x +

3 2 ) d x

=

2 4

I f w e h a d c h o s e n t h e p o s i t i v e u n i t n o r m a l n o p p o s i t e t o t h a t i n t h e f i g u r e a b o v e , w e w o u l d h a v e o b t a i n e d

t h e r e s u l t - - 2 4 .

2 0 . E v a l u a t e

I

I

A - n d S ,

w h e r e A = z i + x j - 3 y 2 z k a n d S i s t h e s u r f a c e o f t h e c y l i n d e r

S

x 2 + y 2 = 1 6 i n c l u d e d i n t h e f i r s t o c t a n t b e t w e e n z = 0 a n d z = 5

.

6 5 ( 1 2 _ 2 x ) / 3

P r o j e c t S o n t h e x z p l a n e a s i n t h e f i g u r e b e l o w a n d c a l l t h e p r o j e c t i o n R . N o t e t h a t t h e p r o j e c t i o n o f

S o n t h e x y p l a n e c a n n o t b e u s e d h e r e . T h e n

Page 104: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 104/234

V E C T O R I N T E G R A T I O N

n

d z

f f

d S

=

f f

A

n o r m a l t o x 2 + y 2 = 1 6 i s V ( x 2 + y 2 ) = 2 x i + 2 y j .

T h u s t h e u n i t n o r m a l t o S a s s h o w n i n t h e a d j o i n i n g

f i g u r e , i s

n

2 x i + 2 y j

x i + y j

V ' r ( 2 x

+ ( 2 y ) 2

4

s i n c e x 2 + y 2 = 1 6 o n S .

( z i + x j - 3 y z k )

x i 4 + y j , j

= 4 .

T h e n t h e s u r f a c e i n t e g r a l e q u a l s

f f x z ; x Y d d z

=

Y

R

4 ( x z + x y )

x z

+ x ) d x d z

1 6 - - x 2

( x i + y j }

4

z = 0 x = 0

5

z = O

( 4 z + 8 ) d z

=

9 0

2 1 . E v a l u a t e

O n d S w h e r e 0 =

8

x y z a n d S i s t h e s u r f a c e o f P r o b l e m 2 0 .

S

W e h a v e

A d z

=

f f n

j J

n

R

f f c b n d S

S

U s i n g n = x i 4 y

n j =

4

a s i n P r o b l e m 2 0 , t h i s l a s t i n t e g r a l b e c o m e s

f f x z ( x i + Y i ) d x d z

8

R

z = O x = 0

3

8

( x 2 z i + x z 1 6 - x 2 j ) d x d z

( 3 4 z i + 3 4 z j ) d z =

1 0 0 1 + 1 0 0 j

9 7

2 2 . I f F = y i + ( x - g x z ) j - x y k ,

e v a l u a t e f f ( V x F ) n d S w h e r e S i s t h e s u r f a c e o f t h e s p h e r e

x 2 + y 2 + z 2 = a 2 a b o v e t h e x y p l a n e .

i j k

V x F =

a

a

a

a x

a y

a z

y

x - 2 x z

- - x y

S

= x i + y j - 2 z k

A n o r m a l t o x 2 + y 2 + z 2 = a 2 i s

V ( x 2 + y 2 + z 2 )

=

2 x 1 + 2 y j

+ 2 z k

Page 105: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 105/234

9 8

V E C T O R I N T E G R A T I O N

T h e n t h e u n i t n o r m a l n o f t h e f i g u r e a b o v e i s g i v e n b y

n =

s i n c e x 2 + y 2 + z 2 = a 2 .

2 x i + 2 y j + 2 z k

x i + y j + z k

4 x 2 + 4 y 2 + 4 z 2

a

T h e p r o j e c t i o n o f S o n t h e x y p l a n e i s t h e r e g i o n R b o u n d e d b y t h e c i r c l e x 2 + y 2 = a 2 , z = 0 ( s e e f i g -

u r e a b o v e ) . T h e n

r ( V x F ) . n

d S

=

f f ( V x F ) . n

f J

S

R

I f ( x i + y j - 2 z k ) . ( x i + y a j + z k )

d x d y

z 1 a

R

I r a

a

a 2 - x 2 - y 2

x = - a

d y d x

u s i n g t h e f a c t t h a t

z =

a 2 - x 2 - y 2 . T o e v a l u a t e t h e d o u b l e i n t e g r a l , t r a n s f o r m t o p o l a r c o o r d i n a t e s ( p , o )

w h e r e x = p c o s o , y = p s i n 0 a n d d y d x i s r e p l a c e d b y p d p d o .

T h e d o u b l e i n t e g r a l b e c o m e s

( ' 2 7

a

3 p

2 - 2 a 2

p

2 - 7 r

J

d p d

f

a 2 _ p 2

j a

0 = 0

p

= 0

= 0 p = 0

0 = 0

p = 0

f 2 7 7

J

( k = 0

3 ( p 2 - a 2 ) + a

2

d

  d p

V / a 2 - p 2

2

( - 3 p / a 2 - p 2

+ a 2

p

p

2 ) d p d o

[ ( a 2 _ p 2 ) 3 / 2

- a 2 V a ` p `

; = i d o

5 2 1 7

_

( a 3 - a 3 ) d o

= 0

2 3 . I f

F = 4 x z i - y 2 j + y z k ,

e v a l u a t e

F - n d S

S

w h e r e S i s t h e s u r f a c e o f t h e c u b e b o u n d e d b y x = 0 ,

x = 1 , y = 0 , y = 1 , z = 0 , z = 1 .

F a c e D E F G : n = i , x = l . T h e n

1

1

J

F - n d S =

( 4 z 1 - y 2 j + y z k )

i d y d z

f j

E F G

_ / ' i

1

J J

4 z d y d z = 2

0 0

Page 106: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 106/234

V E C T O R I N T E G R A T I O N

F a c e A B C O : n = - i , x = 0 .

T h e n

f f

F n d S

f T

0

( - y 2

j + y z k ) . ( - i ) d y d z

=

0

A R C O

F a c e A B E F : n = j , y = 1 . T h e n

f f F . n d S

A B E F

( 4 x z i - j + z k ) . j d x d z

F a c e O G D C : n = - j , y = 0 .

T h e n

1

)

( - j ) d x d z

0

f F - n d S

= f f ( 4 x z i

O G D C

F a c e B C D E : n = k , z = 1 . T h e n

f f ( 4 x 1 _ y 2 i + Y k ) . k d x d Y

f F . n d S

=

o

B C D E

F a c e A F G O : n = - k , z = 0 .

T h e n

0

f f F . n d s

f f

J ( - y 2

A d d i n g ,

J ' J " F . n d S =

2 + 0 + ( - 1 ) + 0 +

S

2

+ 0

9 9

- d x d z =

- 1

Y

d x d y

2

2 4 . I n d e a l i n g w i t h s u r f a c e i n t e g r a l s w e h a v e r e s t r i c t e d o u r s e l v e s t o s u r f a c e s w h i c h a r e t w o - s i d e d .

G i v e a n e x a m p l e o f a s u r f a c e w h i c h i s n o t t w o - s i d e d .

T a k e a s t r i p o f p a p e r s u c h a s A B C D a s s h o w n i n

A

t h e a d j o i n i n g f i g u r e . T w i s t t h e s t r i p s o t h a t p o i n t s A a n d B

B f a l l o n D a n d C r e s p e c t i v e l y , a s i n t h e a d j o i n i n g f i g -

u r e . I f n i s t h e p o s i t i v e n o r m a l a t p o i n t P o f t h e s u r f a c e ,

w e f i n d t h a t a s n m o v e s a r o u n d t h e s u r f a c e i t r e v e r s e s

i t s o r i g i n a l d i r e c t i o n w h e n i t r e a c h e s P a g a i n .

I f w e

t r i e d t o c o l o r o n l y o n e s i d e o f t h e s u r f a c e w e w o u l d f i n d

t h e w h o l e t h i n g c o l o r e d . T h i s s u r f a c e , c a l l e d a M o e b i u s

s t r i p ,

i s a n e x a m p l e o f a o n e - s i d e d s u r f a c e . T h i s i s

s o m e t i m e s c a l l e d a n o n - o r i e n t a b l e s u r f a c e . A t w o - s i d e d

s u r f a c e i s o r i e n t a b l e .

V O L U M E I N T E G R A L S

C

A

D

D

2 5 . L e t q = 4 5 x 2 y a n d l e t V d e n o t e t h e c l o s e d r e g i o n b o u n d e d b y t h e p l a n e s 4 x + 2 y + z = 8 , x

= 0 ,

y = 0 , z = 0 . ( a ) E x p r e s s f f f 0 d V a s t h e l i m i t o f a s u m . ( b ) E v a l u a t e t h e i n t e g r a l i n ( a ) .

V

Page 107: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 107/234

1 0 0

V E C T O R I N T E G R A T I O N

( a ) S u b d i v i d e r e g i o n V i n t o M c u b e s h a v i n g v o l u m e

A V k

=

k A y k A z k k = 1 , 2 , . . . , M a s i n d i c a t e d

i n t h e a d j o i n i n g f i g u r e a n d l e t ( x k , y k , z k ) b e a

p o i n t w i t h i n t h i s c u b e . D e f i n e p ( x k , y k , z k )

q k . C o n s i d e r t h e s u m

M

( 1 ) O k A V k

k = 1

t a k e n o v e r a l l p o s s i b l e c u b e s i n t h e r e g i o n .

T h e l i m i t o f t h i s s u m , w h e n M - - c i n s u c h a

m a n n e r t h a t t h e l a r g e s t o f t h e q u a n t i t i e s A u k

w i l l a p p r o a c h z e r o , i f i t e x i s t s , i s d e n o t e d b y

f f f 0 d V .

I t c a n b e s h o w n t h a t t h i s l i m i t

V

i s i n d e p e n d e n t o f t h e m e t h o d o f s u b d i v i s i o n i f

i s c o n t i n u o u s t h r o u g h o u t V .

2

I n f o r m i n g t h e s u m ( 1 ) o v e r a l l p o s s i b l e c u b e s i n t h e r e g i o n , i t i s a d v i s a b l e t o p r o c e e d i n a n o r d e r -

l y f a s h i o n . O n e p o s s i b i l i t y i s t o a d d f i r s t a l l t e r m s i n ( 1 ) c o r r e s p o n d i n g t o v o l u m e e l e m e n t s c o n t a i n e d

i n a c o l u m n s u c h a s P Q i n t h e a b o v e f i g u r e . T h i s a m o u n t s t o k e e p i n g x k a n d y k f i x e d a n d a d d i n g o v e r

a l l z k ' s . N e x t , k e e p x k f i x e d b u t s u m o v e r a l l y k ' s . T h i s a m o u n t s t o a d d i n g a l l c o l u m n s s u c h a s P Q

c o n t a i n e d i n a s l a b R S , a n d c o n s e q u e n t l y a m o u n t s t o s u m m i n g o v e r a l l c u b e s c o n t a i n e d i n s u c h a s l a b .

F i n a l l y , v a r y x k . T h i s a m o u n t s t o a d d i t i o n o f a l l s l a b s s u c h a s R S .

I n t h e p r o c e s s o u t l i n e d t h e s u m m a t i o n i s t a k e n f i r s t o v e r z k ' s t h e n o v e r y k ' s a n d f i n a l l y o v e r x k ' s .

H o w e v e r , t h e s u m m a t i o n c a n c l e a r l y b e t a k e n i n a n y o t h e r o r d e r .

( b ) T h e i d e a s i n v o l v e d i n t h e m e t h o d o f s u m m a t i o n o u t l i n e d i n ( a ) c a n b e u s e d i n e v a l u a t i n g t h e i n t e g r a l .

K e e p i n g x a n d y c o n s t a n t , i n t e g r a t e f r o m

z = 0 ( b a s e o f c o l u m n P Q ) t o

z = 8 - 4 x - 2 y ( t o p o f c o l u m n

P Q ) . N e x t k e e p x c o n s t a n t a n d i n t e g r a t e w i t h r e s p e c t t o y . T h i s a m o u n t s t o a d d i t i o n o f c o l u m n s h a v i n g

b a s e s i n t h e x y p l a n e ( z = 0 ) l o c a t e d a n y w h e r e f r o m R ( w h e r e y = 0 ) t o S ( w h e r e 4 x + 2 y = 8 o r y =

4 - 2 x ) ,

a n d t h e i n t e g r a t i o n i s f r o m y = 0 t o y = 4 - 2 x . F i n a l l y , w e a d d a l l s l a b s p a r a l l e l t o t h e y z p l a n e , w h i c h

a m o u n t s t o i n t e g r a t i o n f r o m x = 0 t o x = 2 . T h e i n t e g r a t i o n c a n b e w r i t t e n

f 2

5

4 - 2 x

8 - 4 x - 2 y

2

4 - 2 x

f

4 5 x 2 y d z d y d x

4 5

r

J

X = 0 y = 0

z = 0

x = o y = o

x 2 y ( 8 - 4 x - 2 y ) d y d x

2

4 5 J 3 x 2 ( 4

- 2 x ) 3 d x =

1 2 8

x = 0

N o t e : P h y s i c a l l y t h e r e s u l t c a n b e i n t e r p r e t e d a s t h e m a s s o f t h e r e g i o n V i n w h i c h t h e d e n s i t y

v a r i e s a c c o r d i n g t o t h e f o r m u l a

= 4 5 z y .

2 6 . L e t F = 2 x z i - x j + y 2 k .

E v a l u a t e f f f F d V w h e r e V i s t h e r e g i o n b o u n d e d b y t h e s u r -

f a c e s

x = O , y = 0 , y = 6 , z = x 2 , z = 4 .

V

T h e r e g i o n V i s c o v e r e d ( a ) b y k e e p i n g x a n d y f i x e d a n d i n t e g r a t i n g f r o m z = x 2 t o z = 4 ( b a s e t o t o p

o f

c o l u m n P Q ) , ( b ) t h e n b y k e e p i n g x f i x e d a n d i n t e g r a t i n g f r o m y = 0 t o y = 6 ( R t o S i n t h e s l a b ) , ( c ) f i n a l l y

i n t e g r a t i n g f r o m x = 0 t o x = 2 ( w h e r e z = x 2 m e e t s z = 4 ) .

T h e n t h e r e q u i r e d i n t e g r a l i s

Page 108: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 108/234

V E C T O R I N T E G R A T I O N

f 2 5 6 1

x = 0 y = 0

z = x 2

6

4

2 ( ' 6

4

6 4

= i

2 x z d z d y d x -

i

2

f f f

2

x d z d y d x

+

k J J 2 y 2 d z d y d x

J J J

J

J

O x

0 O

x

0

O

x

= 1 2 8 i - 2 4 i

+ 3 8 4 k

1 0 1

. F i n d t h e v o l u m e o f t h e r e g i o n c o m m o n t o t h e i n t e r s e c t i n g c y l i n d e r s x 2 + y 2 = a

2 a n d x 2 + z 2 = a 2

.

1 1

x

R e q u i r e d v o l u m e =

8 t i m e s v o l u m e o f r e g i o n s h o w n i n a b o v e f i g u r e

8

( 2 x z i - x j + y 2 k ) d z d y d x

f a

a

v r a 2 - X 2

J

x = 0 y = 0

z = 0

f a

I

a 2 - x 2

d z d y d x

a 2 - x 2 d y d x

x = 0 Y = O

= 8

( a 2 - - x 2 ) d x

1 6 a 3

3

Page 109: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 109/234

1 0 2

V E C T O R I N T E G R A T I O N

S U P P L E M E N T A R Y P R O B L E M S

( ' 4

2 8 . I f R ( t ) = ( 3 t 2 - t ) i + ( 2 - 6 t ) j - 4 t k ,

f i n d ( a )

R ( t ) d t a n d ( b ) J

R ( t ) d t .

2

A n s . ( a ) ( t 3 - - . t 2 / 2 ) i + ( 2 t - 3 t 2 ) j - 2 t 2 k + c ( b ) 5 0 i - 3 2 j - 2 4 k

( ' T r / 2

2 9 . E v a l u a t e f ( 3 s i n u i + 2 c o s u j ) d u

A n s .

3 i + 2 j

0

2

2

3 0 . I f A ( t ) =

t i - t 2 j + ( t - 1 ) k a n d B ( t ) = 2 t 2 i + 6 t k , e v a l u a t e ( a ) J

A - B d t ,

( b ) A x B d t .

4

J

0

A n s .

( a ) 1 2

( b ) - 2 4 i -

4 3

i + 5

6 4

k

2 2

3 1 . L e t A = t i - 3 j + 2 t k , B = i - 2 j + 2 k , C = 3 i + t j - k . E v a l u a t e ( a )

r

A B x C d t , ( b )

A x ( B x C ) d t .

. J 1 z

A n s .

( a ) 0 ( b ) - 8 2 i - 4 3 j + 2 k

3 2 . T h e a c c e l e r a t i o n a o f a p a r t i c l e a t a n y t i m e t > 0 i s g i v e n b y a =

e - t i

- 6 ( t + 1 ) j + 3 s i n t k . I f t h e v e l o c -

i t y v a n d d i s p l a c e m e n t r a r e z e r o a t t = 0 , f i n d v a n d r a t a n y t i m e .

A n s . v = ( 1 - e - t ) i - ( 3 t 2 + 6 t ) j + ( 3 - 3 c o s t ) k ,

r = ( t - 1 + e t ) t - ( t 3 + 3 t 2 ) j + ( 3 t - 3 s i n t ) k

3 3 . T h e a c c e l e r a t i o n a o f a n o b j e c t a t a n y t i m e t i s g i v e n b y a = - g j , w h e r e g i s a c o n s t a n t . A t t

= 0 t h e v e -

l o c i t y i s g i v e n b y

v = v o c o s 6 0 i + v o s i n B o j a n d t h e d i s p l a c e m e n t r = 0 . F i n d v a n d r a t a n y t i m e t

> 0 .

T h i s d e s c r i b e s t h e m o t i o n o f a p r o j e c t i l e f i r e d f r o m a c a n n o n i n c l i n e d a t a n g l e 6 0 w i t h t h e p o s i t i v e x - a x i s

w i t h i n i t i a l v e l o c i t y o f m a g n i t u d e v o .

A n s . v = v 0 c o s 6 0 1 + ( v o s i n 6 0 - g t ) j , r = ( v 0 c o s 6 0 ) t i + [ ( v o s i n 6 0 ) t - Z g t 2 ] j

3 4 . E v a l u a t e I

3

A d A d t

i f A ( 2 ) = 2 1 - - j + 2 k a n d A ( 3 ) = 4 i - 2 j + 3 k .

A n s .

1 0

2

3 5 . F i n d t h e a r e a l v e l o c i t y o f a p a r t i c l e w h i c h m o v e s a l o n g t h e p a t h r = a c o s w e i + b s i n c o t j w h e r e

a , b , c o

a r e c o n s t a n t s a n d t i s t i m e .

A n s . 2 a b w k

3 6 . P r o v e t h a t t h e s q u a r e s o f t h e p e r i o d s o f p l a n e t s i n t h e i r m o t i o n a r o u n d t h e s u n a r e p r o p o r t i o n a l t o t h e c u b e s

o f t h e m a j o r a x e s o f t h e i r e l l i p t i c a l p a t h s ( K e p l e r ' s t h i r d l a w )

.

3 7 . I f A = ( 2 y + 3 ) i + x z j + ( y z - x ) k ,

e v a l u a t e f

A - d r a l o n g t h e f o l l o w i n g p a t h s C :

( a ) x = 2 t 2 , y = t ,

z = t 3

f r o m t = 0 t o t = 1 ,

C

( b ) t h e s t r a i g h t l i n e s f r o m ( 0 , 0 , 0 ) t o ( 0 , 0 , 1 ) , t h e n t o ( 0 , 1 , 1 ) , a n d t h e n t o ( 2 , 1 , 1 ) ,

( c ) t h e s t r a i g h t l i n e j o i n i n g ( 0 , 0 , 0 ) a n d ( 2 , 1 , 1 ) .

A n s . ( a ) 2 8 8 / 3 5

( b ) 1 0

( c ) 8

r

3 8 . I f F = ( 5 x y - - - 6 x 2 ) i + ( 2 y - 4 x ) j ,

e v a l u a t e J F d r a l o n g t h e c u r v e C i n t h e x y p l a n e , y = x 3 f r o m t h e

C

p o i n t ( 1 , 1 ) t o ( 2 , 8 ) .

A n s . 3 5

3 9 . I f F = ( 2 x + y ) i + ( 3 y - x ) j , e v a l u a t e f

F d r w h e r e C i s t h e c u r v e i n t h e x y p l a n e c o n s i s t i n g o f t h e

C

s t r a i g h t l i n e s f r o m ( 0 , 0 ) t o ( 2 , 0 ) a n d t h e n t o ( 3 , 2 ) .

A n s .

1 1

4 0 . F i n d t h e w o r k d o n e i n m o v i n g a p a r t i c l e i n t h e f o r c e f i e l d F = 3 x 2 i + ( 2 x z - y ) j + z k a l o n g

( a ) t h e s t r a i g h t l i n e f r o m ( 0 , 0 , 0 ) t o ( 2 , 1 , 3 ) .

( b ) t h e s p a c e c u r v e x = 2 t 2 , y = t , z = 4 t 2 - t f r o m t = 0 t o t = 1 .

( c ) t h e c u r v e d e f i n e d b y x 2 = 4 y , 3 x 3 = 8 z f r o m x = 0 t o x = 2 .

A n s .

( a ) 1 6

( b ) 1 4 . 2

( c ) 1 6

Page 110: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 110/234

V E C T O R I N T E G R A T I O N

1 0 3

4 1 . E v a l u a t e f F . d r w h e r e F = ( x - 3 y ) i + ( y - 2 x ) j a n d C i s t h e c l o s e d c u r v e i n t h e

x y p l a n e , x = 2 c o s t ,

C

y = 3 s i n t f r o m t = 0 t o t = 2 7 1 .

A n s .

6 7 1 , i f C i s t r a v e r s e d i n t h e p o s i t i v e ( c o u n t e r c l o c k w i s e ) d i r e c t i o n .

4 2 . I f T i s a u n i t t a n g e n t v e c t o r t o t h e c u r v e C , r = r ( u ) , s h o w t h a t t h e w o r k d o n e i n m o v i n g a p a r t i c l e i n a f o r c e

f i e l d F a l o n g C i s g i v e n b y

r

F . T d s w h e r e s i s t h e a r c l e n g t h .

4 3 . I f F = ( 2 x + y 2 ) i + ( 3 y - 4 x ) j ,

e v a l u a t e

F d r a r o u n d t h e t r i a n g l e C o f F i g u r e 1 , ( a ) i n t h e i n d i c a t e d

f c

d i r e c t i o n , ( b ) o p p o s i t e t o t h e i n d i c a t e d d i r e c t i o n .

A n s .

( a ) - 1 4 / 3

( b ) 1 4 / 3

( 2 , 1 )

0 1

( 2 , 0 )

x

F i g . 1

F i g . 2

d r a r o u n d t h e c l o s e d c u r v e C o f F i g . 2 a b o v e i f A = ( x - y ) i + ( x + y ) j .

A n s . 2 / 3

4 . E v a l u a t e

f r ' A

4 5 . I f A = ( y - 2 x ) i + ( 3 x + 2 y ) j ,

c o m p u t e t h e c i r c u l a t i o n o f A a b o u t a c i r c l e C i n t h e x y p l a n e w i t h c e n t e r a t

t h e o r i g i n a n d r a d i u s 2 , i f C i s t r a v e r s e d i n t h e p o s i t i v e d i r e c t i o n .

A n s . 8 7 1

- d r i s i n d e p e n d e n t o f t h e c u r v e C j o i n i n g

6 . ( a ) I f A = ( 4 x y - 3 x 2 z 2 ) i + 2 x 2 j - 2 x 3 z k , p r o v e t h a t

f c A

t w o g i v e n p o i n t s .

( b ) S h o w t h a t t h e r e i s a d i f f e r e n t i a b l e f u n c t i o n 4 s u c h t h a t A = V o a n d f i n d i t .

A n s . ( b ) 0 = 2 x 2 y - x 3 z 2 + c o n s t a n t

4 7 . ( a ) P r o v e t h a t F = ( y 2 c o s x + z 3 ) i + ( 2 y s i n x - 4 ) j + ( 3 x z 2 + 2 ) k i s

a c o n s e r v a t i v e f o r c e f i e l d .

( b ) F i n d t h e s c a l a r p o t e n t i a l f o r F .

( c ) F i n d t h e w o r k d o n e i n m o v i n g a n o b j e c t i n t h i s f i e l d f r o m ( 0 , 1 , - 1 ) t o ( 7 1 / 2 , - 1 , 2 ) .

A n s .

( b )

= y 2 s i n x + x z 3 - 4 y + 2 z + c o n s t a n t

( c ) 1 5 + 4 7 T

4

4 8 . P r o v e t h a t F = r 2 r i s c o n s e r v a t i v e a n d f i n d t h e s c a l a r p o t e n t i a l .

A n s .

= 4 + c o n s t a n t

4 9 . D e t e r m i n e w h e t h e r t h e f o r c e f i e l d F = 2 x z i + ( x 2 - y ) j + ( 2 z - x 2 ) k i s c o n s e r v a t i v e o r n o n - c o n s e r v a t i v e .

A n s . n o n - c o n s e r v a t i v e

5 0 . S h o w t h a t t h e w o r k d o n e o n a p a r t i c l e i n m o v i n g i t f r o m A t o B e q u a l s i t s c h a n g e i n k i n e t i c e n e r g i e s a t

t h e s e p o i n t s w h e t h e r t h e f o r c e f i e l d i s c o n s e r v a t i v e o r n o t .

A d r a l o n g t h e c u r v e x 2 + y 2 = 1 , z = 1 i n t h e p o s i t i v e d i r e c t i o n f r o m ( 0 , 1 , 1 ) t o ( 1 , 0 , 1 ) i f

1 . E v a l u a t e f c

A = ( y z + 2 x ) i + x z j + ( x y + 2 z ) k .

A n s . 1

5 2 . ( a ) I f E = r r , i s t h e r e a f u n c t i o n 0 s u c h t h a t E _ _ V ?

I f s o , f i n d i t .

( b ) E v a l u a t e 5 E d r i f C i s a n y

3

s i m p l e c l o s e d c u r v e . A n s .

( a )

+ c o n s t a n t

( b ) 0

C

2

3 . S h o w t h a t

( 2 x c o s y + z s i n y ) d x + ( x z c o s y - x s i n y ) d y + x s i n y d z

i s a n e x a c t d i f f e r e n t i a l .

H e n c e

Page 111: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 111/234

1 0 4

V E C T O R I N T E G R A T I O N

s o l v e t h e d i f f e r e n t i a l e q u a t i o n ( 2 x c o s y + z s i n y ) d x + ( x z c o s y - x 2 s i n y ) d y + x s i n y d z

= 0 .

A n s . x 2 c o s y + x z s i n y = c o n s t a n t

5 4 . S o l v e ( a )

( e - Y + 3 x 2 y 2 ) d x + ( 2 x 3 y - x e - Y ) d y = 0 ,

( b )

( z - e - x s i n y ) d x + ( I + e - x c o s y ) d y + ( x - 8 z ) d z = 0 .

A n s .

( a ) x e - y + x 3 y 2 = c o n s t a n t

( b ) x z +

e - x s i n y

+ y - 4 z 2 = c o n s t a n t

5 5 . I f

= 2 x y 2 z + x 2 y ,

e v a l u a t e f

4 ) d r w h e r e C

C

( a ) i s t h e c u r v e x = t , y = t 2 , z = t 3 f r o m t = 0 t o t = 1

( b ) c o n s i s t s o f t h e s t r a i g h t l i n e s f r o m ( 0 , 0 , 0 ) t o ( 1 , 0 , 0 ) , t h e n t o ( 1 , 1 , 0 ) , a n d t h e n t o ( 1 , 1 , 1 ) .

A n s .

( a ) 4 5 i

+ 1 5 j

+ 7 7 k

( b )

2

j

+ 2 k

5 6 . I f F = 2 y i - z j + x k ,

e v a l u a t e f

F x d r a l o n g t h e c u r v e x = c o s t , y = s i n t , z = 2 c o s t

f r o m t = 0

C

t o t = 7 T / 2 .

A n s . ( 2 - 4 ) i + ( 7 T - z ) j

5 7 . I f A = ( 3 x + y ) i - x j + ( y - 2 ) k a n d B = 2 i - 3 j + k ,

e v a l u a t e f c ( A x B ) x d r a r o u n d t h e c i r c l e i n t h e

x y p l a n e h a v i n g c e n t e r a t t h e o r i g i n a n d r a d i u s 2 t r a v e r s e d i n t h e p o s i t i v e d i r e c t i o n .

A n s . 4 7 T ( 7 i + 3 j )

5 8 . E v a l u a t e f J A - n d S f o r e a c h o f t h e f o l l o w i n g c a s e s .

S

( a ) A = y i + 2 x j - z k a n d S i s t h e s u r f a c e o f t h e p l a n e 2 x + y = 6 i n t h e f i r s t o c t a n t c u t o f f b y t h e p l a n e

z = 4 .

( b ) A = ( x + y 2 ) i - 2 x j + 2 y z k a n d S i s t h e s u r f a c e o f t h e p l a n e 2 x + y + 2 z

= 6 i n t h e f i r s t o c t a n t .

A n s . ( a ) 1 0 8

( b ) 8 1

5 9 . I f F = 2 y i - - z j + x 2 k a n d S i s t h e s u r f a c e o f t h e p a r a b o l i c c y l i n d e r y 2 = 8 x i n t h e f i r s t

o c t a n t b o u n d e d

b y t h e p l a n e s y = 4 a n d z = 6 , e v a l u a t e

f f F . n d S .

A n s .

1 3 2

S

6 0 . E v a l u a t e f f

d S o v e r t h e e n t i r e s u r f a c e S o f t h e r e g i o n b o u n d e d b y t h e c y l i n d e r x 2 + z 2 = 9 , x = 0 ,

3

Y = O , z = 0 a n d y = 8 , i f A = 6 z i + ( 2 x + y ) j - x k .

A n s .

1 8 7 T

6 1 . E v a l u a t e

J ' J r n d S o v e r : ( a ) t h e s u r f a c e S o f t h e u n i t c u b e b o u n d e d b y t h e c o o r d i n a t e p l a n e s a n d t h e

S

p l a n e s x = 1 , y = 1 , z = 1 ; ( b ) t h e s u r f a c e o f a s p h e r e o f r a d i u s a w i t h c e n t e r a t ( 0 , 0 , 0 ) .

A n s .

( a ) 3

( b ) 4 7 T a 3

6 2 . E v a l u a t e f f A . n d S o v e r t h e e n t i r e s u r f a c e o f t h e r e g i o n a b o v e t h e x y p l a n e b o u n d e d b y t h e c o n e

S

z 2 = x 2 + y 2 a n d t h e p l a n e z = 4 , i f A = 4 x z i + x y z 2 j + 3 z k

.

A n s .

3 2 0 7 T

6 3 . ( a ) L e t R b e t h e p r o j e c t i o n o f a s u r f a c e S o n t h e x y p l a n e .

P r o v e t h a t t h e s u r f a c e a r e a o f S i s g i v e n b y

i f

f

1 + ( ) + ( ) d x d y i f t h e e q u a t i o n f o r S i s z = f ( x , y ) .

v

Y

R

Page 112: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 112/234

V E C T O R I N T E G R A T I O N

1 0 5

( '

( a z 2

+ ( a F ) 2

+ ( F ) 2

( b ) W h a t i s t h e s u r f a c e a r e a i f S h a s t h e e q u a t i o n F ( x , y , z ) = 0 ?

A n s .

y

a F

d x d y

R

a z

6 4 . F i n d t h e s u r f a c e a r e a o f t h e p l a n e x + 2 y + 2 z = 1 2 c u t o f f b y :

( a ) x = 0 , y = 0 , x = 1 , y = 1 ; ( b ) x = 0 , y = 0 ,

a n d x 2 + y 2 = 1 6 .

A n s .

( a ) 3 / 2

( b ) 6 7 7

6 5 . F i n d t h e s u r f a c e a r e a o f t h e r e g i o n c o m m o n t o t h e i n t e r s e c t i n g c y l i n d e r s x 2 + Y 2 = a 2 a n d x 2 + z 2 =

a 2

.

A n s .

1 6 a 2

6 6 . E v a l u a t e ( a ) f f ( V x F ) . n d S a n d

( b ) f f 0 n d S

i f F = ( x + 2 y ) i - 3 z j + x k ,

= 4 x + 3 y - 2 z ,

S

S

a n d S i s t h e s u r f a c e o f 2 x + y + 2 z = 6 b o u n d e d b y x = 0 , x = 1 , y = 0 a n d y

= 2 .

A n s . ( a ) 1

( b ) 2 i + j + 2 k

6 7 . S o l v e t h e p r e c e d i n g p r o b l e m i f S i s t h e s u r f a c e o f 2 x + y + 2 z = 6 b o u n d e d b y x = 0 , y = 0 ,

a n d z = 0 .

A n s . ( a ) 9 / 2

( b ) 7 2 i + 3 6 j + 7 2 k

6 8 . E v a l u a t e

x 2 + y 2 d x d y o v e r t h e r e g i o n R i n t h e x y p l a n e b o u n d e d b y x 2 + y 2 = 3 6 .

A n s .

1 4 4 7 7

R

6 9 . E v a l u a t e

f f f ( 2 x + y )

d V , w h e r e V i s t h e c l o s e d r e g i o n b o u n d e d b y t h e c y l i n d e r

z = 4 - x 2 a n d t h e

V

p l a n e s x = 0 , y = 0 , y = 2 a n d z = 0 .

A n s . 8 0 / 3

7 0 . I f F = ( 2 x 2 - 3 z ) i - 2 x y j - 4 x k , e v a l u a t e ( a )

f f f V . F d V a n d ( b )

f f J ' v x F d V , w h e r e V i s

V

V

t h e c l o s e d r e g i o n b o u n d e d b y t h e p l a n e s x = 0 , y = 0 , z = 0 a n d 2 x + 2 y + z = 4 .

A n s .

( a ) 3

( b ) 3 ( j - k )

Page 113: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 113/234

T H E D I V E R G E N C E T H E O R E M O F G A U S S s t a t e s t h a t i f V i s t h e v o l u m e b o u n d e d b y a c l o s e d s u r -

f a c e S a n d A i s a v e c t o r f u n c t i o n o f p o s i t i o n w i t h c o n -

t i n u o u s d e r i v a t i v e s , t h e n

f f f v .

A d V

=

Y

f f A . n d S

S

w h e r e n i s t h e p o s i t i v e ( o u t w a r d d r a w n ) n o r m a l t o S .

3

S T O K E S ' T H E O R E M s t a t e s t h a t i f S i s a n o p e n , t w o - s i d e d s u r f a c e b o u n d e d b y a c l o s e d , n o n - i n t e r -

s e c t i n g c u r v e C ( s i m p l e c l o s e d c u r v e ) t h e n i f A h a s c o n t i n u o u s d e r i v a t i v e s

J A . d r

=

f f ( v x A ) . n d s

c

f f v x

A ) . d s

S

w h e r e C i s t r a v e r s e d i n t h e p o s i t i v e d i r e c t i o n . T h e d i r e c t i o n o f C i s c a l l e d p o s i t i v e i f a n o b s e r v e r ,

w a l k i n g o n t h e b o u n d a r y o f S i n t h i s d i r e c t i o n , w i t h h i s h e a d p o i n t i n g i n t h e d i r e c t i o n o f t h e p o s i t i v e

n o r m a l t o S , h a s t h e s u r f a c e o n h i s l e f t .

G R E E N ' S T H E O R E M I N T H E P L A N E . I f R i s a c l o s e d r e g i o n o f t h e x y p l a n e b o u n d e d b y a s i m p l e

c l o s e d c u r v e C a n d i f M a n d N a r e c o n t i n u o u s f u n c t i o n s o f x

a n d y h a v i n g c o n t i n u o u s d e r i v a t i v e s i n R , t h e n

M d x + N d y

=

( a x

-

a t e ) d x d y

i t ,

w h e r e C i s t r a v e r s e d i n t h e p o s i t i v e ( c o u n t e r c l o c k w i s e d i r e c t i o n . U n l e s s o t h e r w i s e s t a t e d w e s h a l l

a l w a y s a s s u m e f t o m e a n t h a t t h e i n t e g r a l i s d e s c r i b e d i n t h e p o s i t i v e s e n s e .

G r e e n ' s t h e o r e m i n t h e p l a n e i s a s p e c i a l c a s e o f S t o k e s ' t h e o r e m ( s e e P r o b l e m 4 ) . A l s o , i t i s

o f i n t e r e s t t o n o t i c e t h a t G a u s s ' d i v e r g e n c e t h e o r e m i s a g e n e r a l i z a t i o n o f G r e e n ' s t h e o r e m i n t h e

p l a n e w h e r e t h e ( p l a n e ) r e g i o n R a n d i t s c l o s e d b o u n d a r y ( c u r v e ) C a r e r e p l a c e d b y a ( s p a c e ) r e g i o n

V a n d i t s c l o s e d b o u n d a r y ( s u r f a c e ) S . F o r t h i s r e a s o n t h e d i v e r g e n c e t h e o r e m i s o f t e n c a l l e d G r e e n ' s

t h e o r e m i n s p a c e ( s e e P r o b l e m 4 ) .

G r e e n ' s t h e o r e m i n t h e p l a n e a l s o h o l d s f o r r e g i o n s b o u n d e d b y a f i n i t e n u m b e r o f s i m p l e

c l o s e d c u r v e s w h i c h d o n o t i n t e r s e c t ( s e e P r o b l e m s 1 0 a n d 1 1 ) .

R

1 0 6

Page 114: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 114/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 0 7

R E L A T E D I N T E G R A L T H E O R E M S .

1 .

+ ( v 0 ) ( v q ) ] d V

=

f f ( c 5 v ) . d s

Y

S

T h i s i s c a l l e d G r e e n ' s f i r s t i d e n t i t y o r t h e o r e m .

2 . f f f ( o

V ' O ) d V

Y

( O v a . - v t h ) . d s

3

T h i s i s c a l l e d G r e e n ' s s e c o n d i d e n t i t y o r s y m m e t r i c a l t h e o r e m . S e e P r o b l e m 2 1 .

3 .

f f f V x

A d V

=

f f ( n

x A ) d S =

f f d s

x A

V 3

S

N o t e t h a t h e r e t h e d o t p r o d u c t o f G a u s s ' d i v e r g e n c e t h e o r e m i s r e p l a c e d b y t h e c r o s s p r o d u c t .

S e e P r o b l e m 2 3 .

4 .

0

' c i r

C

f J ' ( n x V ) d S

=

3

f f d s

x V t h

S

5 .

L e t

r e p r e s e n t e i t h e r a v e c t o r o r s c a l a r f u n c t i o n a c c o r d i n g a s t h e s y m b o l o d e n o t e s a d o t o r

c r o s s , o r a n o r d i n a r y m u l t i p l i c a t i o n . T h e n

f f f v o q j d V

=

f n o q j d 5

= f f d s o q j

V

3

3

A o

J ' f ( n x V )

o i d S

=

J ' f c d S x V )

o

f

C

3 3

G a u s s ' d i v e r g e n c e t h e o r e m , S t o k e s ' t h e o r e m a n d t h e r e s u l t s 3 a n d 4 a r e s p e c i a l c a s e s o f t h e s e .

S e e P r o b l e m s 2 2 , 2 3 , a n d 3 4

.

I N T E G R A L O P E R A T O R F O R M F O R v . I t i s o f i n t e r e s t t h a t , u s i n g t h e t e r m i n o l o g y o f P r o b l e m 1 9 ,

t h e o p e r a t o r V c a n b e e x p r e s s e d s y m b o l i c a l l y i n t h e f o r m

v o

A v

1

o A V

d

0

' A S

w h e r e o d e n o t e s a d o t , c r o s s o r a n o r d i n a r y m u l t i p l i c a t i o n ( s e e P r o b l e m 2 5 ) . T h e r e s u l t p r o v e s u s e -

f u l i n e x t e n d i n g t h e c o n c e p t s o f g r a d i e n t , d i v e r g e n c e a n d c u r l t o c o o r d i n a t e s y s t e m s o t h e r t h a n r e c -

t a n g u l a r ( s e e P r o b l e m s 1 9 , 2 4 a n d a l s o C h a p t e r 7 ) .

Page 115: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 115/234

1 0 8

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

S O L V E D P R O B L E M S

G R E E N ' S T H E O R E M I N T H E P L A N E

1 . P r o v e G r e e n ' s t h e o r e m i n t h e p l a n e i f C i s a c l o s e d

c u r v e w h i c h h a s t h e p r o p e r t y t h a t a n y s t r a i g h t l i n e

p a r a l l e l t o t h e c o o r d i n a t e a x e s c u t s C i n a t m o s t t w o

p o i n t s .

L e t t h e e q u a t i o n s o f t h e c u r v e s A E B a n d A F B ( s e e

a d j o i n i n g f i g u r e ) b e y = Y j ( x ) a n d y = Y 2 ( x ) r e s p e c t i v e l y .

I f R i s t h e r e g i o n b o u n d e d b y C , w e h a v e

a M

d x d y =

Y

1 b [

f Y 2 ( x )

J

= a

= Y

D M M

d y

I

d x =

f b

x = a

Y

f

e

0

a

M ( x , y )

I Y 2 ( x )

d x

y = Y Y ( x )

b

f M ( Y )

- J

M ( x , Y Y ) d x

-

d x = - 5 M d x

a

b C

T h e n

( 1 ) 5 M d x

=

C

M d x d y

a , y

J a

R

f b

a

b

x

[ M ( x Y 2 )

- M ( x , Y i ) d x

S i m i l a r l y l e t t h e e q u a t i o n s o f c u r v e s E A F a n d E B F b e x = X 1 ( y ) a n d x = X 2 ( y ) r e s p e c t i v e l y . T h e n

J J

a x

d x d y

R

f

f

X 2 ( Y ) a N

( ' f

f

a x

d x d y

J

N ( X 2 , y ) N ( X l , Y )

d Y

y x = X 1 ( y )

e

f N ( x ) d y

+

f N ( X 2 . Y ) d 7

=

i f

N d y

f

e

C

T h e n

( 2 )

5 N d y

=

f f d x d y

f -

R

A d d i n g ( 1 ) a n d ( 2 ) ,

+ N d y

=

f f ( a N -

M ) d x d y .

M d x

a x

a

R Y

2 . V e r i f y G r e e n ' s t h e o r e m i n t h e p l a n e f o r

5 ( x y + y 2 ) d x + x 2 d y

w h e r e C i s t h e

c l o s e d c u r v e o f t h e r e g i o n b o u n d e d b y

y = x a n d y = x 2 .

y = x a n d y = x 2 i n t e r s e c t a t ( 0 , 0 ) a n d ( 1 , 1 ) .

T h e p o s i t i v e d i r e c t i o n i n t r a v e r s i n g C i s a s

Page 116: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 116/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

A l o n g y = x 2 , t h e l i n e i n t e g r a l e q u a l s

L I

( x ) ( x 2 ) + x 4 ) d x

+

( x 2 ) ( 2 x ) d x =

A l o n g y = x f r o m ( 1 , 1 ) t o ( 0 , 0 ) t h e l i n e i n t e g r a l e q u a l s

I

f t

0

( 3 x 3 + x 4 ) d x

1 9

2 0

0

( W ( x ) + x 2 ) d x

+

x 2 d x

f O

2 d x

=

- 1

x

T h e n t h e r e q u i r e d l i n e i n t e g r a l = 2 0 - 1

f f

a N a M

( a x - a M d x d y

=

I

f f ( x _ 2 7 ) d x d 7

f

f X _ Y X+

R x = = 0 y = x 2

I

f X

f

( x - 2 y ) d y I d x

2

t

x

( x Y - Y 2 ) 2

d x

0 x 0

f t

J

0

s o t h a t t h e t h e o r e m i s v e r i f i e d .

( x 4 - x 3 ) d x

1

2 0

3 . E x t e n d t h e p r o o f o f G r e e n ' s t h e o r e m i n t h e p l a n e

g i v e n i n P r o b l e m 1 t o t h e c u r v e s C f o r w h i c h l i n e s

p a r a l l e l t o t h e c o o r d i n a t e a x e s m a y c u t C i n m o r e

t h a n t w o p o i n t s .

-

C o n s i d e r a c l o s e d c u r v e C s u c h a s s h o w n i n t h e a d -

j o i n i n g f i g u r e , i n w h i c h l i n e s p a r a l l e l t o t h e a x e s m a y

m e e t C i n m o r e t h a n t w o p o i n t s . B y c o n s t r u c t i n g l i n e S T

t h e r e g i o n i s d i v i d e d i n t o t w o r e g i o n s R . a n d R 2 w h i c h a r e

o f t h e t y p e c o n s i d e r e d i n P r o b l e m 1 a n d f o r w h i c h G r e e n ' s

t h e o r e m a p p l i e s , i . e . ,

( 1 )

f M d x + N d y

S T U S

f f

( a x -

a M ) d x d y

Y

( 2 )

f

M d x + N d y

=

f f

( a N

-

E M - ) d x d y

Y

S V T S

R 2

0

A d d i n g t h e l e f t h a n d s i d e s o f ( 1 ) a n d ( 2 ) , w e h a v e , o m i t t i n g t h e i n t e g r a n d M d x + N d y i n e a c h c a s e ,

f + f + f + f

T U S

S V T S

S T

T U S

S V T

T S

u s i n g t h e f a c t t h a t

f

= - J

S T

T S

1

2 0

[

- x

( x 2 ) - - y ( x y + y 2 ) ] d x d y

R

R

= f + f f

U S

S V T

T U S V T

1 0 9

x

A d d i n g t h e r i g h t h a n d s i d e s o f ( 1 ) a n d ( 2 ) , o m i t t i n g t h e i n t e g r a n d ,

Page 117: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 117/234

1 1 0

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

f f

+

f f

R 1

R 2

w h e r e R c o n s i s t s o f r e g i o n s R 1 a n d R 2 .

f f

T h e n

M d x + N d y

=

f f ( i a z

a M ) d x d y a n d t h e t h e o r e m i s p r o v e d .

Y

T U S V T

R

A r e g i o n R s u c h a s c o n s i d e r e d h e r e a n d i n P r o b l e m 1 , f o r w h i c h a n y c l o s e d c u r v e l y i n g i n R c a n b e

c o n t i n u o u s l y s h r u n k t o a p o i n t w i t h o u t l e a v i n g R , i s c a l l e d a s i m p l y - c o n n e c t e d r e g i o n . A r e g i o n w h i c h i s

n o t s i m p l y - c o n n e c t e d i s c a l l e d m u l t i p l y - c o n n e c t e d . W e h a v e s h o w n h e r e t h a t G r e e n ' s t h e o r e m i n t h e p l a n e

a p p l i e s t o s i m p l y - c o n n e c t e d r e g i o n s b o u n d e d b y c l o s e d c u r v e s .

I n P r o b l e m 1 0 t h e t h e o r e m i s e x t e n d e d t o

m u l t i p l y - c o n n e c t e d r e g i o n s .

F o r m o r e c o m p l i c a t e d s i m p l y - c o n n e c t e d r e g i o n s i t m a y b e n e c e s s a r y t o c o n s t r u c t m o r e l i n e s , s u c h a s

S T , t o e s t a b l i s h t h e t h e o r e m .

4 . E x p r e s s G r e e n ' s t h e o r e m i n t h e p l a n e i n v e c t o r n o t a t i o n .

W e h a v e M d x + N d y = ( M i + N j ) . ( d x i + d y j ) = A = M i + N j a n d

t h a t

d r = d x i + d y j .

A l s o , i f A = M i + N j t h e n

V x A

i

j

k

a

a

a

a x

a y

a z

M

N

0

s o t h a t ( ` 7 x A ) k =

a N

_

a M

a x a y

` a z

i

+ a M ' +

( a x

a M ) k

Y

T h e n G r e e n ' s t h e o r e m i n t h e p l a n e c a n b e w r i t t e n

w h e r e d R = d x d y .

5 A . d r

=

C

f f ( V x A ) - k d R

R

r = x i + y j s o

A g e n e r a l i z a t i o n o f t h i s t o s u r f a c e s S i n s p a c e h a v i n g a c u r v e C a s b o u n d a r y l e a d s q u i t e n a t u r a l l y t o

S t o k e s ' t h e o r e m w h i c h i s p r o v e d i n P r o b l e m 3 1 .

A n o t h e r M e t h o d .

A s a b o v e , M d x f N d y = A - d r = A . L d s = A - T d s ,

w h e r e d = T = u n i t t a n g e n t v e c t o r t o C ( s e e a d j a c e n t f i g -

u r e ) .

I f n i s t h e o u t w a r d d r a w n u n i t n o r m a l t o C , t h e n T = k x n

s o t h a t

M d x + N d y = A - T d s = A ( k x n ) d s = ( A x k ) n d s

S i n c e A = M i + N j , B = A x k = ( M I + N j ) x k = N i - M j

a n d

a N

- a m

= V . B . T h e n G r e e n ' s t h e o r e m i n t h e p l a n e b e c o m e s

a x ` a y

f f

n

R

0

x

w h e r e d R = d x d y .

Page 118: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 118/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 1 1

G e n e r a l i z a t i o n o f t h i s t o t h e c a s e w h e r e t h e d i f f e r e n t i a l a r c l e n g t h d s o f a c l o s e d c u r v e C i s r e p l a c e d b y

t h e d i f f e r e n t i a l o f s u r f a c e a r e a d S o f a c l o s e d s u r f a c e S , a n d t h e c o r r e s p o n d i n g p l a n e r e g i o n R e n c l o s e d b y

C i s r e p l a c e d b y t h e v o l u m e V e n c l o s e d b y S , l e a d s t o G a u s s ' d i v e r g e n c e t h e o r e m o r G r e e n ' s t h e o r e m i n

s p a c e .

f f

f f f v . B d v

S V

5 . I n t e r p r e t p h y s i c a l l y t h e f i r s t r e s u l t o f P r o b l e m 4 .

I f A d e n o t e s t h e f o r c e f i e l d a c t i n g o n a p a r t i c l e , t h e n f e A d r i s t h e w o r k d o n e i n m o v i n g t h e p a r t i c l e

a r o u n d a c l o s e d p a t h C a n d i s d e t e r m i n e d b y t h e v a l u e o f V x A .

I t f o l l o w s i n p a r t i c u l a r t h a t i f V x A = 0 o r

e q u i v a l e n t l y i f A = V 0 , t h e n t h e i n t e g r a l a r o u n d a c l o s e d p a t h i s z e r o . T h i s a m o u n t s t o s a y i n g t h a t t h e w o r k

d o n e i n m o v i n g t h e p a r t i c l e f r o m o n e p o i n t i n t h e p l a n e t o a n o t h e r i s i n d e p e n d e n t o f t h e p a t h i n t h e p l a n e

j o i n i n g t h e p o i n t s o r t h a t t h e f o r c e f i e l d i s c o n s e r v a t i v e . T h e s e r e s u l t s h a v e a l r e a d y b e e n d e m o n s t r a t e d f o r

f o r c e f i e l d s a n d c u r v e s i n s p a c e ( s e e C h a p t e r 5 ) .

C o n v e r s e l y , i f t h e i n t e g r a l i s i n d e p e n d e n t o f t h e p a t h j o i n i n g a n y t w o p o i n t s o f a r e g i o n , i . e . i f t h e

i n t e g r a l a r o u n d a n y c l o s e d p a t h i s z e r o , t h e n V x A = 0 .

I n t h e p l a n e , t h e c o n d i t i o n V x A = 0 i s e q u i v a l e n t t o

t h e c o n d i t i o n a M = a N w h e r e A = M i + N j .

Y

( '

( 2 , 1 )

6 . E v a l u a t e

J

( 1 0 x 4 - 2 x y 3 ) d x - 3 x 2 y 2 d y a l o n g t h e p a t h x 4 - 6 x y 3 = 4 y 2 .

( 0 , 0 )

A d i r e c t e v a l u a t i o n i s d i f f i c u l t . H o w e v e r , n o t i n g t h a t M = l 0 x 4 - - 2 x y 3 , N = - 3 x 2 y 2 a n d a M = - 6 x y 2

Y

= a x ,

i t f o l l o w s t h a t t h e i n t e g r a l i s i n d e p e n d e n t o f t h e p a t h . T h e n w e c a n u s e a n y p a t h , f o r e x a m p l e t h e

p a t h c o n s i s t i n g o f s t r a i g h t l i n e s e g m e n t s f r o m ( 0 , 0 ) t o ( 2 , 0 ) a n d t h e n f r o m ( 2 , 0 ) t o ( 2 , 1 ) .

2

A l o n g t h e s t r a i g h t l i n e p a t h f r o m ( 0 , 0 ) t o ( 2 , 0 ) , y = 0 , d y = 0 a n d t h e i n t e g r a l e q u a l s

f

1 0 x 4 d x = 6 4 .

x = 0

A l o n g t h e s t r a i g h t l i n e p a t h f r o m ( 2 , 0 ) t o ( 2 , 1 ) , x = 2 , d x = 0 a n d t h e i n t e g r a l e q u a l s

T h e n t h e r e q u i r e d v a l u e o f t h e l i n e i n t e g r a l = 6 4 - 4 = 6 0 .

A n o t h e r M e t h o d .

a

a

I '

y = 0

- 1 2 y 2 d y = - 4 .

S i n c e

a M

= ,

( 1 0 x 4 - 2 x y 3 ) d x - 3 x 2 y 2 d y i s a n e x a c t d i f f e r e n t i a l ( o f 2 x 5 - x 2 y 3 ) .

T h e n

z

( 2 , 1 )

( 2 , 1 )

( 1 0 x 4

- 2 x y 3 ) d x

- 3 x 2 y 2

d y

J

d ( 2 x 5 - x 2 y 3 )

( 0 , 0 )

( 0 , 0 )

7 .

S h o w t h a t t h e a r e a b o u n d e d b y a s i m p l e c l o s e d c u r v e C i s g i v e n b y

I n G r e e n ' s t h e o r e m , p u t M = - y , N = x .

T h e n

f x d y - y d x

f f

( a ( x )

-

a y ( - y ) ) d x d y =

R

w h e r e A i s t h e r e q u i r e d a r e a . T h u s A = 2

x d y - y d x .

2 x 5 - x 2 y 3 I

( 2 , 1 )

=

6 0

( 0 . 0 )

2 J ' x d y - y d x .

. C

2 f

d x d y

2 A

R

Page 119: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 119/234

1 1 2

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

8 . F i n d t h e a r e a o f t h e e l l i p s e x = a c o s 6 , y = b s i n 6 .

A r e a

=

k f x d y _ y d x

=

r 2 7 7

` 2 2 J

( a c o s 6 ) ( b c o s O ) d O - ( b s i n 8 ) ( - a s i n 6 ) d O

0

2 7 r

2 7 7

f a b

( c o s 2 6 + s i n 2 8 ) d O

= Z

f a b

d O

=

9 . E v a l u a t e

( y - s i n x ) d x + c o s x d y , w h e r e C i s t h e

C

t r i a n g l e o f t h e a d j o i n i n g f i g u r e :

( a ) d i r e c t l y ,

( b ) b y u s i n g G r e e n ' s t h e o r e m i n t h e p l a n e .

( a ) A l o n g O A , y = 0 , d y = 0 a n d t h e i n t e g r a l e q u a l s

f o

0

c o s x

I T / 2

1 r / 2

( 0 - s i n x ) d x + ( c o s x ) ( 0 )

=

f

- s i n x d x

1 7 7 / 2

=

- 1

A l o n g A B , x = L T , d x = 0 a n d t h e i n t e g r a l e q u a l s

( y - 1 ) 0 + O d y

=

0

A l o n g B O , y = ,

f

0

( 2 x - s i n x ) d x

2

7 7

d y = 2 . d x a n d t h e i n t e g r a l e q u a l s

7 7 a b

+

7 T

c o s x d x

= ( - + c o s x +

7 7

s i n x )

1 0 / 2

=

1 - 4 - 2

T h e n t h e i n t e g r a l a l o n g C

= - 1 + 0 + 1 -

7 7

-

2 =

-

7 7

-

2

4

7 7

4

7 7

1

( b ) M = y - s i n x , N = c o s x , a z = - s i n x ,

' a m

= 1

a n d

y

M d x + N d y

= f f

( a x

-

a M ) d x d y

=

y

R

7 T / 2 [ 1 2 x / 1 7

X = 0

y = 0

R

f f ( - s i n x

( - s i n x - 1 ) d y

d x

1 7 / 2

=

J

( - k s i n x - 2 ) d x

=

0

2 x / n

( - y s i n x - y ) ' 0 d x

2

1 7 / 2

? ( - x c o s x + s i n x ) - x I

=

2

7 7

7 T

7 7

0

7 7

4

i n a g r e e m e n t w i t h p a r t ( a ) .

N o t e t h a t a l t h o u g h t h e r e e x i s t l i n e s p a r a l l e l t o t h e c o o r d i n a t e a x e s ( c o i n c i d e n t w i t h t h e c o o r d i -

n a t e a x e s i n t h i s c a s e ) w h i c h m e e t C i n a n i n f i n i t e n u m b e r o f p o i n t s , G r e e n ' s t h e o r e m i n t h e p l a n e s t i l l

h o l d s . I n g e n e r a l t h e t h e o r e m i s v a l i d w h e n C i s c o m p o s e d o f a f i n i t e n u m b e r o f s t r a i g h t l i n e s e g m e n t s .

1 0 . S h o w t h a t G r e e n ' s t h e o r e m i n t h e p l a n e i s a l s o v a l i d f o r a m u l t i p l y - c o n n e c t e d r e g i o n R s u c h a s

s h o w n i n t h e f i g u r e b e l o w .

- 1 ) d y d x

T h e s h a d e d r e g i o n R , s h o w n i n t h e f i g u r e b e l o w , i s m u l t i p l y - c o n n e c t e d s i n c e n o t e v e r y c l o s e d c u r v e

Page 120: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 120/234

I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 1 3

l y i n g i n R c a n b e s h r u n k t o a p o i n t w i t h o u t l e a v i n g

R . a s i s o b s e r v e d b y c o n s i d e r i n g a c u r v e s u r r o u n d i n g

D E F G D f o r e x a m p l e . T h e b o u n d a r y o f R , w h i c h c o n -

s i s t s o f t h e e x t e r i o r b o u n d a r y A H J K L A a n d t h e i n t e -

r i o r b o u n d a r y D E F G D , i s t o b e t r a v e r s e d i n t h e p o s -

i t i v e d i r e c t i o n , s o t h a t a p e r s o n t r a v e l i n g i n t h i s d i -

r e c t i o n a l w a y s h a s t h e r e g i o n o n h i s l e f t .

I t i s s e e n

t h a t t h e p o s i t i v e d i r e c t i o n s a r e t h o s e i n d i c a t e d i n t h e

a d j o i n i n g f i g u r e .

I n o r d e r t o e s t a b l i s h t h e t h e o r e m , c o n s t r u c t a

l i n e , s u c h a s A D , c a l l e d a c r o s s - c u t , c o n n e c t i n g t h e

e x t e r i o r a n d i n t e r i o r b o u n d a r i e s . T h e r e g i o n b o u n d e d

b y A D E F G D A L K J H A i s s i m p l y - c o n n e c t e d , a n d s o

G r e e n ' s t h e o r e m i s v a l i d . T h e n

M d x + N d y

I

( a x

a M ) d x d y

y

A D E F G D A L K J H A

R

B u t t h e i n t e g r a l o n t h e l e f t , l e a v i n g o u t t h e i n t e g r a n d , i s e q u a l t o

x

f +

I

+ f

+

 

- I

+

I

A D

D E F G D

D A

A L K J H A

D E F G D A L K J H A

s i n c e f z D = - £ A .

T h u s i f C 1 i s t h e c u r v e A L K J H A , C 2 i s t h e c u r v e D E F G D

c o n s i s t i n g o f C 1 a n d C 2 ( t r a v e r s e d i n t h e p o s i t i v e d i r e c t i o n s ) , t h e n f C +

f 2 =

1 C

M d x + N d y

_ 3 N

-

a x

a M ) d x d y

y

R

I I

a n d C i s t h e b o u n d a r y o f R

f c

a n d s o

1 1 . S h o w t h a t G r e e n ' s t h e o r e m i n t h e p l a n e h o l d s f o r t h e r e g i o n R , o f t h e f i g u r e b e l o w , b o u n d e d b y

t h e s i m p l e c l o s e d c u r v e s C 1 ( A B D E F G A )

,

C 2 ( H K L P H ) , C s ( Q S T U Q ) a n d C 4 ( V W X Y V )

.

C o n s t r u c t t h e c r o s s - c u t s A H , L Q a n d T V . T h e n t h e r e g i o n b o u n d e d b y A H K L Q S T V W X Y V T U Q L P H A -

B D E F G A i s s i m p l y - c o n n e c t e d a n d G r e e n ' s t h e o r e m a p p l i e s . T h e i n t e g r a l o v e r t h i s b o u n d a r y i s e q u a l t o

1 1 1 1 1 f + f + f + f + f + f + I

H H K L

L Q Q S T

T V

V W X Y V

V T

T ( I Q Q L

L P H

H A

A B D E F G A

S i n c e t h e i n t e g r a l s a l o n g A H a n d H A , L Q a n d Q L , T V a n d V T c a n c e l o u t i n p a i r s , t h i s b e c o m e s

Page 121: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 121/234

1 1 4

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

f + f

H K L Q S T

U L

L P H

Q S T

T U Q

= f + f + f +

f

H K L P H

Q S T U Q

V W X Y V

A B D E F G A

f + f + f

3

C 4

C 1

w h e r e C i s t h e b o u n d a r y c o n s i s t i n g o f C 1 , C 2 , C 3 a n d C 4 . T h e n

( S

M d x + N d y

=

C

a s r e q u i r e d .

+ f

+

f + f + f

V W X Y V

T U Q L P H

A B D E F G A

f +

f

+

f + r

+

f

+

f

J . 1

J

V W X Y V

A B D E F G A

I I

R

- -

a x

a M ) d x d y

y

1 2 . P r o v e t h a t

M d x + N d y = 0 a r o u n d e v e r y c l o s e d c u r v e C i n a s i m p l y - c o n n e c t e d r e g i o n i f a n d

o n l y i f

7 Y -

M = a N e v e r y w h e r e i n t h e r e g i o n .

A s s u m e t h a t M a n d N a r e c o n t i n u o u s a n d h a v e c o n t i n u o u s p a r t i a l d e r i v a t i v e s e v e r y w h e r e i n t h e r e g i o n

R b o u n d e d b y C , s o t h a t G r e e n ' s t h e o r e m i s a p p l i c a b l e . T h e n

f M d x + N d y

C

I f

a M

a x

I f

( a x -

a M ) d x d y

R

y

i n R , t h e n c l e a r l y f M d x + N d y = 0 .

C

C o n v e r s e l y , s u p p o s e

M d x + N d y = 0 f o r a l l c u r v e s C .

I f

a x

- a y

> 0

a t a p o i n t P , t h e n

C y

- A U

a N

-

r o m t h e c o n t i n u i t

o f t h e d e r i v a t i v e s i t f o l l o w s t h a t

.

, a > 0 i n s o m e r e g i o n A s u r r o u n d i n g P .

I f

x

y

I ' i s t h e b o u n d a r y o f A t h e n

M d x + N d y

f f

( a x

a M ) d x d y > 0

y

A

w h i c h c o n t r a d i c t s t h e a s s u m p t i o n t h a t t h e l i n e i n t e g r a l i s z e r o a r o u n d e v e r y c l o s e d c u r v e . S i m i l a r l y t h e

a s s u m p t i o n

a x _

a M < 0 l e a d s t o a c o n t r a d i c t i o n . T h u s

a x

- - = 0 a t a l l p o i n t s .

y

a M

_ a N

a y

a x

i s e q u i v a l e n t t o t h e c o n d i t i o n V x A = 0 w h e r e A = M i + N j

( s e e P r o b l e m s 1 0 a n d 1 1 , C h a p t e r 5 ) . F o r a g e n e r a l i z a t i o n t o s p a c e c u r v e s , s e e P r o b l e m 3 1 .

Page 122: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 122/234

I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 1 5

1 3 . L e t F

- y i + x j

=

x 2 + y 2

.

( a ) C a l c u l a t e V x F .

( b ) E v a l u a t e

F A a r o u n d a n y c l o s e d p a t h a n d

e x p l a i n t h e r e s u l t s .

i j

( a ) V x F =

a

a a

a x

a y

a z

- y

x

x 2 + Y 2

x 2 + y 2

0

= 0

i n a n y r e g i o n e x c l u d i n g ( 0 , 0 ) .

x 2 + 2

L e t x = p c o s 0 , y = p s i n 0 , w h e r e ( p , o ) a r e p o l a r c o o r d i n a t e s .

b )

F d r

5 _ y d x + x d y

T h e n

d x

a n d s o

- y d x + x d y

y

x 2 + y 2

= d o =

d ( a r c t a n x

F o r a c l o s e d c u r v e A B C D A ( s e e F i g u r e ( a ) b e l o w ) s u r r o u n d i n g t h e o r i g i n ,

= 0 a t A a n d = 2 7 T

f 2 d

  f t e r a c o m p l e t e c c u i t b a c k t o A . I n t h i s c a s e t h e l i n e i n t e g r a l e q u a l s

2 .

F i g . ( a )

F i g . ( b )

F o r a c l o s e d c u r v e P Q R S P ( s e e F i g u r e ( b ) a b o v e ) n o t s u r r o u n d i n g t h e o r i g i n , o _ o o a t P a n d

0 0

o _ 0 o a f t e r a c o m p l e t e c i r c u i t b a c k t o P . I n t h i s c a s e t h e l i n e i n t e g r a l e q u a l s

f

d o = 0

.

S i n c e F = M i + N j , V x F = 0 i s e q u i v a l e n t t o

M

= a N a n d t h e r e s u l t s w o u l d s e e m t o c o n t r a -

a y

d i c t t h o s e o f P r o b l e m 1 2 .

H o w e v e r , n o c o n t r a d i c t i o n e x i s t s s i n c e M =

a n d N = x 2 + y 2 d o

X T ?

n o t h a v e c o n t i n u o u s d e r i v a t i v e s t h r o u g h o u t a n y r e g i o n i n c l u d i n g ( 0 , 0 ) , a n d t h i s w a s a s s u m e d i n P r o b . 1 2 .

T H E D I V E R G E N C E T H E O R E M

1 4 . ( a ) E x p r e s s t h e d i v e r g e n c e t h e o r e m i n w o r d s a n d ( b ) w r i t e i t i n r e c t a n g u l a r f o r m .

- p s i n 0 d o + d p c o s

0 ,

d y =

p c o s 0 d o + d p s i n 0

( a ) T h e s u r f a c e i n t e g r a l o f t h e n o r m a l c o m p o n e n t o f a v e c t o r A t a k e n o v e r a c l o s e d s u r f a c e i s e q u a l t o t h e

i n t e g r a l o f t h e d i v e r g e n c e o f A t a k e n o v e r t h e v o l u m e e n c l o s e d b y t h e s u r f a c e .

Page 123: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 123/234

1 1 6 D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

( b ) L e t A = A l i + A 2 j + A s k . T h e n d i v A = V . A = 2 x 1 + a

2 + a s 3

y

T h e u n i t n o r m a l t o S i s n = n 1 i + n 2 j + n 3 k . T h e n n 1 = n i = c o s a , n 2 = n j = c o s 8 a n d

n 3 = n k = c o s y , w h e r e a , , 8 , y a r e t h e a n g l e s w h i c h n m a k e s w i t h t h e p o s i t i v e x , y , z a x e s o r i ,

j , k

d i r e c t i o n s r e s p e c t i v e l y . T h e q u a n t i t i e s c o s a , c o s / 3 , c o s y a r e t h e d i r e c t i o n c o s i n e s o f n . T h e n

A - n

= ( A 1 i + A 2 j + A 3 k )

( c o s a i + c o s , 8 j + c o s y k )

= A l c o s a + A 2 c o s / 3 + A s c o s y

a n d t h e d i v e r g e n c e t h e o r e m c a n b e w r i t t e n

f f f ( a A 1

+

d A 2

+

- A s )

d x d y d z

f f ( A i c o s a + A 2 c o s , 8 + A s c o s y ) d S

V

a x

a y

a z

S

1 5 . D e m o n s t r a t e t h e d i v e r g e n c e t h e o r e m p h y s i c a l l y .

L e t A = v e l o c i t y v a t a n y p o i n t o f a m o v i n g f l u i d . F r o m F i g u r e ( a ) b e l o w :

V o l u m e o f f l u i d c r o s s i n g d S i n A t s e c o n d s

= v o l u m e c o n t a i n e d i n c y l i n d e r o f b a s e d S a n d s l a n t h e i g h t v A t

=

T h e n , v o l u m e p e r s e c o n d o f f l u i d c r o s s i n g d S = v n d S

F i g . ( a )

F r o m F i g u r e ( b ) a b o v e :

F i g . ( b )

T o t a l v o l u m e p e r s e c o n d o f f l u i d e m e r g i n g f r o m c l o s e d s u r f a c e S

f f

S

F r o m P r o b l e m 2 1 o f C h a p t e r 4 ,

d V i s t h e v o l u m e p e r s e c o n d o f f l u i d e m e r g i n g f r o m a v o l u m e e l e

m e n t d V . T h e n

T o t a l v o l u m e p e r s e c o n d o f f l u i d e m e r g i n g f r o m a l l v o l u m e e l e m e n t s i n S

=

f f f v . v d v

V

T h u s

J ' f

f f f

V

Page 124: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 124/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 1 7

1 6 . P r o v e t h e d i v e r g e n c e t h e o r e m .

L e t S b e a c l o s e d s u r f a c e w h i c h i s s u c h t h a t a n y l i n e p a r a l l e l t o t h e c o o r d i n a t e a x e s c u t s S i n a t

m o s t t w o p o i n t s . A s s u m e t h e e q u a t i o n s o f t h e l o w e r a n d u p p e r p o r t i o n s , S 1 a n d S 2 , t o b e z = f 1 ( x , y )

a n d

z = f 2 ( x , y ) r e s p e c t i v e l y . D e n o t e t h e p r o j e c t i o n o f t h e s u r f a c e o n t h e x y p l a n e b y R . C o n s i d e r

f f f d v

V

f f f a A 3 d z d y d x

a z

V

f A 3 ( x , y , z )

I f z f d y d x

R

f f

[ A 3 ( x , y , f 2 ) - A 3 ( x , y , f 1 ) ] d y d x

R

F o r t h e u p p e r p o r t i o n S 2 , d y d x = c o s y 2 d S 2 = k . n 2 d S 2 s i n c e t h e n o r m a l n 2 t o S 2 m a k e s a n a c u t e

a n g l e y 2 w i t h k .

F o r t h e l o w e r p o r t i o n S 1 ,

d y d x = - c o s y 1 d S 1 = - k n 1 d S 1

t u s e a n g l e y i w i t h k .

T h e n

a n d

f f A o ( x y r 2 )

d y d x

R

f f

A 3 ( x , y , f 1 ) d y d x

R

f 2 ( x , y ) a A 3

f f

f a z

R

L z = f 1 ( x , y )

s i n c e t h e n o r m a l n 1 t o S 1 m a k e s a n o b -

f A s k n 2

d S 2

S 2

f f A s k . n 1 d S 1

S i

f f A n k . n 2 d s 2

+

f f A s k . n i d S i

S 2

3 1

f f A 2 k . f l d s

S

s o t h a t

( 1 )

f f f d v

=

f f A k . f l d s

V

S

f f A 3 ( x , y , f 2 ) d y d x

R

f f

A s ( x , y , f 1 ) d y d x

=

R

S i m i l a r l y , b y p r o j e c t i n g S o n t h e o t h e r c o o r d i n a t e p l a n e s ,

Page 125: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 125/234

1 1 8

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

( 2 )

f f f - 1 d v

=

f f A i i . n d s

V

S

( 3 )

f j ' f 4 _ a d v

=

f f A 2 J . n d s

V S

A d d i n g ( 1 ) , ( 2 ) a n d ( 3 ) ,

I

f f A 1

+

a A 2

+

a A 3 ) d V

a x

a y

a z

V

o r

f f f v . A d v

f f ( A i i

+ A 2 j

d S

f f A . n d s

V

S

T h e t h e o r e m c a n b e e x t e n d e d t o s u r f a c e s w h i c h a r e s u c h t h a t l i n e s p a r a l l e l t o t h e c o o r d i n a t e a x e s

m e e t t h e m i n m o r e t h a n t w o p o i n t s . T o e s t a b l i s h t h i s e x t e n s i o n , s u b d i v i d e t h e r e g i o n b o u n d e d b y S i n t o

s u b r e g i o n s w h o s e s u r f a c e s d o s a t i s f y t h i s c o n d i t i o n . T h e p r o c e d u r e i s a n a l o g o u s t o t h a t u s e d i n G r e e n ' s

t h e o r e m f o r t h e p l a n e .

1 7 . E v a l u a t e f f F . n d S ,

w h e r e F = 4 x z i - y 2 j + y z k a n d S i s t h e s u r f a c e o f t h e c u b e b o u n d e d

S

b y x = 0 , x = 1 , y = 0 , y = 1 , z = 0 , z = 1 .

B y t h e d i v e r g e n c e t h e o r e m , t h e r e q u i r e d i n t e g r a l i s e q u a l t o

f f f v . F d v

=

1 f f a x ( 4 x z ) +

a y ( - y 2 )

+ a z ( y z )

d V

V V

=

f f f 4 Z _ Y ) d v

V

=

f

r J

2 z 2 - y z

I

z _ o d y d x

x = o y = o

z = o

( 4 z - y ) d z d y d x

f , f

= o y = o

x = o

y = o

( 2 - y ) d y d x = 3

2

T h e s u r f a c e i n t e g r a l m a y a l s o b e e v a l u a t e d d i r e c t l y a s i n P r o b l e m 2 3 , C h a p t e r 5 .

1 8 . V e r i f y t h e d i v e r g e n c e t h e o r e m f o r A = 4 x i - 2 y 2 j + z 2 k t a k e n o v e r t h e r e g i o n b o u n d e d b y

x 2 + y 2 = 4 , z = 0 a n d z = 3 . '

f f f

o l u

m e i n t e g r a l

f J J V . A d V

a x

( 4 x ) + ( - 2 y 2 ) +

( z 2 )

d V

1 1 1 ( 4 - 4 y + 2 z ) d V

V

f 2

x = - - 2

4 - x 2

3

f ( 4 - 4 y + 2 z ) d z d y d x = 8 4 7 r

y

4 - x 2 z = 0

T h e s u r f a c e S o f t h e c y l i n d e r c o n s i s t s o f a b a s e S 1 ( z = 0 ) , t h e t o p S 2 ( z = 3 ) a n d t h e c o n v e x p o r t i o n

S 3 ( x 2 + y 2 = 4 ) . T h e n

Page 126: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 126/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

S u r f a c e i n t e g r a l

=

f f A . n d s

S

f f A . n d S 1 + f f A . n d S 2 + f f A . n d S 3

S i

S z

O n S 1 ( z = o ) , n = - k , A = 4 x i - 2 y 2 j a n d

s o t h a t

f f A . n

d S 1

0 .

S 1

O n S 2 ( z = 3 ) , n = k , A = 4 x i - 2 y 2 j + 9 k a n d

9 ,

s o t h a t

f f A . n

d S 2

=

9

f

d S 2

=

3 6 7 7 ,

s i n c e a r e a o f S 2 = 4 7 7

S 2

S 2

O n S 3 ( x 2 + y 2 = 4 ) . A p e r p e n d i c u l a r t o x 2 + y 2 = 4 h a s t h e d i r e c t i o n V ( x 2 + y 2 ) = 2 x i + 2 y j .

T h e n a u n i t n o r m a l i s n =

2 x i + 2 y j

=

x i + y j

s i n c e x 2 + y 2 = 4 .

4 x ' 2 + 4 y 2

2

A . n

=

( 4 X

- -

2 y 2

+ z 2

i +

k ) . (

x

2

y J

2 x 2 - y 3

d V = d x d y d z

F r o m t h e f i g u r e a b o v e , x = 2 c o s 0 , y = 2 s i n 9 , d S 3 = 2 d 6 d z a n d s o

f f A . n d s o

=

S 3

7 2 7 7

f

3

6 = 0 z = 0

0 = 0

[ 2 ( 2 c o s 6 ) 2 - ( 2 s i n 6 } 3 ]

2 d z d 6

c o s 2 6 - 4 8 s i n 3 6 ) d O = c o

s 2 6 d 6 =

4 8 ? r

( 4 8

5 4 8

6 = 0

1 1 9

T h e n t h e s u r f a c e i n t e g r a l = 0 + 3 6 1 7 + 4 8 7 7 = 8 4 7 7 , a g r e e i n g w i t h t h e v o l u m e i n t e g r a l a n d v e r i f y -

i n g t h e d i v e r g e n c e t h e o r e m .

N o t e t h a t e v a l u a t i o n o f t h e s u r f a c e i n t e g r a l o v e r S 3 c o u l d a l s o h a v e b e e n d o n e b y p r o j e c t i o n o f S 3 o n

t h e x z o r y z c o o r d i n a t e p l a n e s .

1 9 . I f d i v A d e n o t e s t h e d i v e r g e n c e o f a v e c t o r f i e l d A a t a p o i n t P , s h o w t h a t

d S

d i v A

= l m

f f A . n

`

A V - . o

A V

w h e r e A V i s t h e v o l u m e e n c l o s e d b y t h e s u r f a c e A S a n d t h e l i m i t i s o b t a i n e d b y s h r i n k i n g A V

t o t h e p o i n t P .

Page 127: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 127/234

1 2 0

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

B y t h e d i v e r g e n c e t h e o r e m ,

V

( a x i + a y j

f f

f f

d S

A S

B y t h e m e a n - v a l u e t h e o r e m f o r i n t e g r a l s , t h e l e f t s i d e c a n b e w r i t t e n

d i v A 5 f f d V

=

7 1 v - A A V

A V

w h e r e d i v A i s s o m e v a l u e i n t e r m e d i a t e b e t w e e n t h e m a x i m u m a n d m i n i m u m o f d i v A t h r o u g h o u t A V . T h e n

f f

d i v A

A V

T a k i n g t h e l i m i t a s A V - . 0 s u c h t h a t P i s a l w a y s i n t e r i o r t o A V , d i v A a p p r o a c h e s t h e v a l u e d i v A a t

p o i n t P ; h e n c e

f f f d i v A d V

=

A V

f f

A

=

l i m

A S

A V

T h i s r e s u l t c a n b e t a k e n a s a s t a r t i n g p o i n t f o r d e f i n i n g t h e d i v e r g e n c e o f A , a n d f r o m i t a l l t h e p r o p -

e r t i e s m a y b e d e r i v e d i n c l u d i n g p r o o f o f t h e d i v e r g e n c e t h e o r e m .

I n C h a p t e r 7 w e u s e t h i s d e f i n i t i o n t o

e x t e n d t h e c o n c e p t o f d i v e r g e n c e o f a v e c t o r t o c o o r d i n a t e s y s t e m s o t h e r t h a n r e c t a n g u l a r . P h y s i c a l l y ,

f f

A S

A Y

r e p r e s e n t s t h e f l u x o r n e t o u t f l o w p e r u n i t v o l u m e o f t h e v e c t o r A f r o m t h e s u r f a c e A S . I f d i v A i s p o s i t i v e

i n t h e n e i g h b o r h o o d o f a p o i n t P i t m e a n s t h a t t h e o u t f l o w f r o m P i s p o s i t i v e a n d w e c a l l P a s o u r c e . S i m -

i l a r l y , i f d i v A i s n e g a t i v e i n t h e n e i g h b o r h o o d o f P t h e o u t f l o w i s r e a l l y a n i n f l o w a n d P i s c a l l e d a s i n k .

I f i n a r e g i o n t h e r e a r e n o s o u r c e s o r s i n k s , t h e n d i v A = 0 a n d w e c a l l A a s o l e n o i d a l v e c t o r f i e l d .

2 0 . E v a l u a t e j f r . n

d S , w h e r e S i s a c l o s e d s u r f a c e .

S

B y t h e d i v e r g e n c e t h e o r e m ,

f f r - n d S

S

V

w h e r e V i s t h e v o l u m e e n c l o s e d b y S .

3 f f f

d V

=

3 V

V

2 1 . P r o v e

f / f ( q 5 V 2

q - q V 2 ( S ) d V =

f f ( v

q - & V o ) d S .

V

S

V

f f f

( a x + a

+ a z )

d V

=

Y

L e t A = q V b i n t h e d i v e r g e n c e t h e o r e m . T h e n

Page 128: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 128/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 2 1

f f f

V . ( v l j ) d V

V

B u t

T h u s

o r

f f c q v i i . n

d S

S

V . ( g v q )

_

O ( V . V ) + ( V ) . ( v b )

_

f f f v . ( v ) d v

=

V

( 1 )

f f f

« v ,

V

f f ( v ) . d s

S

O V 2 0 + ( V O ) ( V

)

( V O ) ( V / ) J d V

f f f [ O v 2

+ ( v O )

( v o ) ) d V f f ( v ) . d S

V

S

w h i c h p r o v e s G r e e n ' s f i r s t i d e n t i t y .

I n t e r c h a n g i n g 0 a n d / i i n ( 1 ) ,

( 2 )

f f f [ & v 2 ( + ( V

d V

=

f f ( v ) . d s

V S

S u b t r a c t i n g ( 2 ) f r o m ( 1 ) , w e h a v e

( 3 )

f f f ( q 5 v 2 b - - V 2 O ) d V =

f f ( v a

-

V

S

w h i c h i s G r e e n ' s s e c o n d i d e n t i t y o r s y m m e t r i c a l t h e o r e m .

I n t h e p r o o f w e h a v e a s s u m e d t h a t 0 a n d

s c a l a r f u n c t i o n s o f p o s i t i o n w i t h c o n t i n u o u s d e r i v a t i v e s o f t h e s e c o n d o r d e r a t l e a s t .

2 2 . P r o v e

j f f v c )

d V

= f f 0 n d S .

V

S

I n t h e d i v e r g e n c e t h e o r e m , l e t A = O C w h e r e C i s a c o n s t a n t v e c t o r . T h e n

f f f v . ( C ) d v =

f f c . n d s

V

S

S i n c e

a n d

f / f

C . V

d V

=

f f C . n d s

V

S

T a k i n g C o u t s i d e t h e i n t e g r a l s ,

'

C . J + f

v O d V

c o J f

O n d S

V

S

a n d s i n c e C i s a n a r b i t r a r y c o n s t a n t v e c t o r ,

f f f v c

d V

f f n d s

V

S

q

a r e

2 3 . P r o v e f f f v x B d V

=

n

x B d S .

V

3

Page 129: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 129/234

1 2 2

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

I n t h e d i v e r g e n c e t h e o r e m , l e t A = B x C w h e r e C i s a c o n s t a n t v e c t o r . T h e n

f f f v . B x c d v

=

V

f f B x c . n

d S

S

( C x n ) _ ( C x n ) B

i n c e

V . ( B x C ) = C ( V x B )

a n d

( B x C ) n = B f f c . n x B d s

f f f c . v x B d v

=

V

S

T a k i n g C o u t s i d e t h e i n t e g r a l s , '

C

f

J f

O x B d V

= C J J n x B d S

V

S

a n d s i n c e C i s a n a r b i t r a r y c o n s t a n t v e c t o r ,

2 4 . S h o w t h a t a t a n y p o i n t P

f f f v x B d v

=

V

f f n x

B d S

S

C ( n x B ) ,

f f n d s

f f n x

A d S

( a ) V

l i m

A S

a n d

( b ) V x A =

l i m

A S

A 7 - 0

A V

A 7 - 0

A V

w h e r e A V i s t h e v o l u m e e n c l o s e d b y t h e s u r f a c e A S , a n d t h e l i m i t i s o b t a i n e d b y s h r i n k i n g A V

t o t h e p o i n t P .

( a ) F r o m P r o b l e m 2 2 ,

f f f v c i

d V =

f f n

d S .

T h e n

f f f v c

i d V =

f f c t ' n . i

d S .

A V

A S

A V

A S

U s i n g t h e s a m e p r i n c i p l e e m p l o y e d i n P r o b l e m 1 9 , w e h a v e

f f q n . i d S

L A S

A V

w h e r e V V i

i s s o m e v a l u e i n t e r m e d i a t e b e t w e e n t h e m a x i m u m a n d m i n i m u m o f V ( k

i t h r o u g h o u t A V .

T a k i n g t h e l i m i t a s

i n s u c h a w a y t h a t P i s a l w a y s i n t e r i o r t o A V , V V i a p p r o a c h e s t h e v a l u e

f f c t n . i d s

( 1 )

V

t

o v

S

H

A 7 - 0

A V

S i m i l a r l y w e f i n d

( 2 )

( 3 )

7 o . j

f f

d S

l i m

S

A Y - 0 A V

f f c b n . k d s

l i m

S

A V

Page 130: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 130/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 2 3

M u l t i p l y i n g ( 1 ) , ( 2 ) , ( 3 ) b y i , j , k r e s p e c t i v e l y , a n d a d d i n g , u s i n g

O c p =

( V ( t . j ) j +

n =

( s e e P r o b l e m 2 0 , C h a p t e r 2 ) t h e r e s u l t f o l l o w s .

( b ) F r o m P r o b l e m 2 3 , r e p l a c i n g B b y A , f f f V x A d V =

A V

T h e n a s i n p a r t ( a ) , w e c a n s h o w t h a t

( O x

l i m

A V m

I

o A V

a n d s i m i l a r r e s u l t s w i t h j a n d k r e p l a c i n g i .

M u l t i p l y i n g b y i , j , k a n d a d d i n g , t h e r e s u l t f o l l o w s .

T h e r e s u l t s o b t a i n e d c a n b e t a k e n a s s t a r t i n g p o i n t s f o r d e f i n i t i o n o f g r a d i e n t a n d c u r l . U s i n g

t h e s e d e f i n i t i o n s , e x t e n s i o n s c a n b e m a d e t o c o o r d i n a t e s y s t e m s o t h e r t h a n r e c t a n g u l a r .

2 5 . E s t a b l i s h t h e o p e r a t o r e q u i v a l e n c e

V O A

=

l i m

L J J d S 0 A

A Y - o A V

d S o

w h e r e o i n d i c a t e s a d o t p r o d u c t , c r o s s p r o d u c t o r o r d i n a r y p r o d u c t .

T o e s t a b l i s h t h e e q u i v a l e n c e , t h e r e s u l t s o f t h e o p e r a t i o n o n a v e c t o r o r s c a l a r f i e l d m u s t b e c o n s i s t -

e n t w i t h a l r e a d y e s t a b l i s h e d r e s u l t s .

I f o i s t h e d o t p r o d u c t , t h e n f o r a v e c t o r A ,

o r

A S

=

l i m 1

f J

d S

A V

A S

e s t a b l i s h e d i n P r o b l e m 1 9 .

S i m i l a r l y i f o i s t h e c r o s s p r o d u c t ,

c u r l A

=

O x A

A V l i m

_ - L

- 0 A V

i i d s x A

A S

l i m 1

f f n x A d S

A V - ' o

A V

A S

e s t a b l i s h e d i n P r o b l e m 2 4 ( b ) .

A l s o i f o i s o r d i n a r y m u l t i p l i c a t i o n , t h e n f o r a s c a l a r 0 ,

V o

l i m

o r

o

l i m

f

d S

f d s o q

A V - 0 A V

A S

A S

  I

n x A d S .

f f

d S

A S

A S

A S

d i v A

= l i m 1 j J d S A

A V - o

A V

e s t a b l i s h e d i n P r o b l e m 2 4 ( a ) .

Page 131: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 131/234

1 2 4

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

2 6 . L e t S b e a c l o s e d s u r f a c e a n d l e t r d e n o t e t h e p o s i t i o n v e c t o r o f a n y p o i n t ( x , y , z ) m e a s u r e d f r o m

a n o r i g i n 0 . P r o v e t h a t

f f n . r

d S

T 3

S

i s e q u a l t o ( a ) z e r o i f 0 l i e s o u t s i d e S ; ( b ) 4 7 7 i f 0 l i e s i n s i d e S . T h i s r e s u l t i s k n o w n a s G a u s s '

t h e o r e m .

( a ) B y t h e d i v e r g e n c e t h e o r e m , J J

n n 3 r d l

= j j J

V .

r

d V .

S

V

B u t V .

3

= 0 ( P r o b l e m 1 9 , C h a p t e r 4 ) e v e r y w h e r e w i t h i n V p r o v i d e d r

0 i n V . i . e . p r o v i d e d 0

r 3

i s o u t s i d e o f V a n d t h u s o u t s i d e o f S .

T h e n f f n n

r

d S = 0 .

r 3

S

( b )

I f 0 i s i n s i d e S , s u r r o u n d 0 b y a s m a l l s p h e r e s o f r a d i u s a .

L e t ' r d e n o t e t h e r e g i o n b o u n d e d b y S a n d

s . T h e n b y t h e d i v e r g e n c e t h e o r e m

f f

n r

d S

r 3

f f r d s +

r 3

S + S

S

s i n c e r / 0 i n - r . T h u s

I f

n * - r

d S

r 3

f f f v .

d V

S

T

f f r r d s

=

-

f f r d 5

S

N o w o n s , r = a , n = -

f I

d S

T 3

S

d S

=

I f

d S

=

2

f f d s

a

S

S

2 7 . I n t e r p r e t G a u s s ' t h e o r e m ( P r o b l e m 2 6 ) g e o m e t r i c a l l y .

L e t d S d e n o t e a n e l e m e n t o f s u r f a c e a r e a a n d

c o n n e c t a l l p o i n t s o n t h e b o u n d a r y o f d S t o 0 ( s e e

a d j o i n i n g f i g u r e ) , t h e r e b y f o r m i n g a c o n e . L e t d O b e

t h e a r e a o f t h a t p o r t i o n o f a s p h e r e w i t h 0 a s c e n t e r

a n d r a d i u s r w h i c h i s c u t o u t b y t h i s c o n e ; t h e n t h e

s o l i d a n g l e s u b t e n d e d b y d S a t 0 i s d e f i n e d a s d w =

r

a n d i s n u m e r i c a l l y e q u a l t o t h e a r e a o f t h a t p o r -

2

t i o n o f a s p h e r e w i t h c e n t e r 0 a n d u n i t r a d i u s c u t o u t

b y t h e c o n e . L e t n b e t h e p o s i t i v e u n i t n o r m a l t o d S

a n d c a l l 0 t h e a n g l e b e t w e e n n a n d r ;

t h e n c o s 0 =

n T r r

.

A l s o , d O _ ± d S c o s 6 = ± n r r d S s o t h a t

d w

n n 3 r d S

,

t h e + o r - b e i n g c h o s e n a c c o r d i n g

a s n a n d r f o r m a n a c u t e o r a n o b t u s e a n g l e 0 w i t h

e a c h o t h e r .

r s o t h a t

n . r = - r / a . r

_ -

r . r

-

a 2

_ .

1

a n d

a

r 3

a 3 a 4

a 4 -

0

= 0

4 7 T a 2

a 2

4 7 T

L e t S b e a s u r f a c e , a s i n F i g u r e ( a ) b e l o w , s u c h t h a t a n y l i n e m e e t s S i n n o t m o r e t h a n t w o p o i n t s .

I f 0 l i e s o u t s i d e S , t h e n a t a p o s i t i o n s u c h a s 1 ,

1 1 3 r d S = d w ; w h e r e a s a t t h e c o r r e s p o n d i n g p o s i t i o n 2 ,

Page 132: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 132/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 2 5

n 3 r

d S = - d o ) . A n i n t e g r a t i o n o v e r t h e s e t w o r e g i o n s g i v e s z e r o , s i n c e t h e c o n t r i b u t i o n s t o t h e s o l i d

r

a n g l e c a n c e l o u t . W h e n t h e i n t e g r a t i o n i s p e r f o r m e d o v e r S i t t h u s f o l l o w s t h a t

f f - _ r

d S = 0 , s i n c e f o r

e v e r y p o s i t i v e c o n t r i b u t i o n t h e r e i s a n e g a t i v e o n e .

S

I n c a s e 0 i s i n s i d e S . h o w e v e r , t h e n a t a p o s i t i o n s u c h a s 3 ,

n n 3 r d S = d a ) a n d a t 4 , n 3 r d S = d c v

, s o t h a t t h e c o n t r i b u t i o n s a d d i n s t e a d o f c a n c e l . T h e t o t a l s o l i d a n g l e i n t h i s c a s e i s e q u a l t o t h e a r e a o f a

u n i t s p h e r e w h i c h i s 4 7 T , s o t h a t

F i g . ( a )

F i g . ( b )

F o r s u r f a c e s S , s u c h t h a t a l i n e m a y m e e t S i n m o r e t h a n t w o p o i n t s , a n e x a c t l y s i m i l a r s i t u a t i o n

h o l d s a s i s s e e n b y r e f e r e n c e t o F i g u r e ( b ) a b o v e .

I f 0 i s o u t s i d e S , f o r e x a m p l e , t h e n a c o n e w i t h v e r t e x

a t 0 i n t e r s e c t s S a t a n e v e n n u m b e r o f p l a c e s a n d t h e c o n t r i b u t i o n t o t h e s u r f a c e i n t e g r a l i s z e r o s i n c e t h e

s o l i d a n g l e s s u b t e n d e d a t 0 c a n c e l o u t i n p a i r s .

I f 0 i s i n s i d e S , h o w e v e r , a c o n e h a v i n g v e r t e x a t 0 i n -

t e r s e c t s S a t a n o d d n u m b e r o f p l a c e s a n d s i n c e c a n c e l l a t i o n o c c u r s o n l y f o r a n e v e n n u m b e r o f t h e s e ,

t h e r e w i l l a l w a y s b e a c o n t r i b u t i o n o f 4 7 T f o r t h e e n t i r e s u r f a c e S .

2 8 . A f l u i d o f d e n s i t y p ( x , y , z , t ) m o v e s w i t h v e l o c i t y v ( x , y , z , t ) . I f t h e r e a r e n o s o u r c e s o r s i n k s ,

p r o v e t h a t

O J + a p = 0

w h e r e J = p v

V i s

C o n s i d e r a n a r b i t r a r y s u r f a c e e n c l o s i n g a v o l u m e V o f t h e f l u i d . A t a n y t i m e t h e m a s s o f f l u i d w i t h i n

M

=

f f f p d v

V

T h e t i m e r a t e o f i n c r e a s e o f t h i s m a s s i s

' a m

a t

a

f f f p d v

=

f f f d v

t

V V

T h e m a s s o f f l u i d p e r u n i t t i m e l e a v i n g V i s

f f p v n d S

f f n . r

d S = 4 T r .

r

S

S

( s e e P r o b l e m 1 5 ) a n d t h e t i m e r a t e o f i n c r e a s e i n m a s s i s t h e r e f o r e

Page 133: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 133/234

1 2 6

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

- f f p v . n d S

S

b y t h e d i v e r g e n c e t h e o r e m . T h e n

5 f f a p d v

t

V

o r

f f f v . p v ) +

a p ) d V

a t

V

= 0

S i n c e V i s a r b i t r a r y , t h e i n t e g r a n d , a s s u m e d c o n t i n u o u s , m u s t b e i d e n t i c a l l y z e r o , b y r e a s o n i n g s i m i -

l a r t o t h a t u s e d i n P r o b l e m 1 2 . T h e n

V J + L P

=

0 w h e r e J = p v

a t

T h e e q u a t i o n i s c a l l e d t h e c o n t i n u i t y e q u a t i o n .

I f p i s a c o n s t a n t , t h e f l u i d i s i n c o m p r e s s i b l e a n d V . v =

0 , i . e . v i s s o l e n o i d a l .

T h e c o n t i n u i t y e q u a t i o n a l s o a r i s e s i n e l e c t r o m a g n e t i c t h e o r y , w h e r e p i s t h e c h a r g e d e n s i t y a n d

J = p v i s t h e c u r r e n t d e n s i t y .

2 9 . I f t h e t e m p e r a t u r e a t a n y p o i n t ( x , y , z ) o f a s o l i d a t t i m e t i s U ( x , y , z , t ) a n d i f K , p

a n d c a r e r e -

s p e c t i v e l y t h e t h e r m a l c o n d u c t i v i t y , d e n s i t y a n d s p e c i f i c h e a t o f t h e s o l i d , a s s u m e d c o n s t a n t ,

s h o w t h a t

a t -

k V 2 U

w h e r e k = K / p c

L e t V b e a n a r b i t r a r y v o l u m e l y i n g w i t h i n t h e s o l i d , a n d l e t S d e n o t e i t s s u r f a c e . T h e t o t a l f l u x o f

h e a t a c r o s s S , o r t h e q u a n t i t y o f h e a t l e a v i n g S p e r u n i t t i m e , i s

f f K v u ) . f l d S

S

T h u s t h e q u a n t i t y o f h e a t e n t e r i n g S p e r u n i t t i m e i s

( 1 )

f f ( K V u ) . n d S

=

f f f v . ( K v u )

d V

S

V

b y t h e d i v e r g e n c e t h e o r e m . T h e h e a t c o n t a i n e d i n a v o l u m e V i s g i v e n b y

f f f c p U d V

V

T h e n t h e t i m e r a t e o f i n c r e a s e o f h e a t i s

( 2 )

a

J J J

c p U d V

=

f f f c p d v

a t

t

V V

E q u a t i n g t h e r i g h t h a n d s i d e s o f ( 1 ) a n d ( 2 ) ,

f f f

[ c p a U - -

V ( K V U ) ] d V

=

0

V

a n d s i n c e V i s a r b i t r a r y , t h e i n t e g r a n d , a s s u m e d c o n t i n u o u s , m u s t b e i d e n t i c a l l y z e r o s o t h a t

Page 134: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 134/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 2 7

o r i f K , c , ) o a r e c o n s t a n t s ,

c p a c

=

V ( K D U )

T h e q u a n t i t y k i s c a l l e d t h e d i f f u s i v i t y .

F o r s t e a d y - s t a t e h e a t f l o w

t i m e ) t h e e q u a t i o n r e d u c e s t o L a p l a c e ' s e q u a t i o n V U = 0 .

S T O K E S ' T H E O R E M

( i . e .

a U

= 0

o r U i s i n d e p e n d e n t o f

3 0 . ( a ) E x p r e s s S t o k e s ' t h e o r e m i n w o r d s a n d ( b ) w r i t e i t i n r e c t a n g u l a r f o r m .

( a ) T h e l i n e i n t e g r a l o f t h e t a n g e n t i a l c o m p o n e n t o f a v e c t o r A t a k e n a r o u n d a s i m p l e c l o s e d c u r v e C i s

e q u a l t o t h e s u r f a c e i n t e g r a l o f t h e n o r m a l c o m p o n e n t o f t h e c u r l o f A t a k e n o v e r a n y s u r f a c e S h a v i n g

C a s i t s b o u n d a r y .

( b ) A s i n P r o b l e m 1 4 ( b ) ,

A = A 1 i + A 2 j + A 3 k , n = c o s a i + c o s / 3 j + c o s y k

T h e n

V X A =

A d r

i j

a a

a

a x a y a z

A l

A 2 A 3

- a U

k 0 2 U

a t

c

A 3

_

a A 2 )

i

+

a

_ a A 3

+

A 2

-

a A 1

k

a y

a z ( a z

a x

a x a y

( a A 3

_

a A 2 )

c o s a +

( A l a _ a A 3

a A e

_

a A 1

) c o s y

z a z a x )

c o s , C 3

+ (

a x

a y

a n d S t o k e s ' t h e o r e m b e c o m e s

f a A 3 a A 2

c

a A 1

_ 3 A 3

_ 3 A 2

a A 1

[ ( a y

a z ) o s

a +

( a z - a x ) c o s

+ ( a x

a

) c o s y ] d S =

f A i d x + A 2 d y + A s d z

y

C

S

L e t S b e a s u r f a c e w h i c h i s s u c h t h a t i t s p r o j e c t i o n s

o n t h e x y , y z a n d x z p l a n e s a r e r e g i o n s b o u n d e d b y s i m p l e

c l o s e d c u r v e s , a s i n d i c a t e d i n t h e a d j o i n i n g f i g u r e . A s -

s u m e S t o h a v e r e p r e s e n t a t i o n

z = f ( x , y ) o r x = g ( y , z ) o r

y = , h ( x , z ) ,

w h e r e f , g , h a r e s i n g l e - v a l u e d , c o n t i n u o u s a n d

d i f f e r e n t i a b l e f u n c t i o n s . W e m u s t s h o w t h a t

f f ( v x A ) . n d s

=

f f [ v x ( A i i + 1 4 2 i + A s k ) ] . n d s

S

S

n _

f

C

w h e r e C i s t h e b o u n d a r y o f S .

z

Page 135: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 135/234

1 2 8

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

C o n s i d e r f i r s t

f f

d S .

S

i

j

k

S i n c e

V x ( A 1 i )

_

a a a

a x

a y a z

A 1

0 0

a A I

a 4 1

a z a y

( 1 )

- a A ' n - k )

y

I f z = f ( x , y ) i s t a k e n a s t h e e q u a t i o n o f S , t h e n t h e p o s i t i o n v e c t o r t o a n y p o i n t o f S i s r = x i

+ y j + z k =

x i + y j + f ( x , y ) k s o t h a t

a r = j +

a z

k = j +

o f

k . B u t

a r

i s a v e c t o r t a n g e n t t o S ( s e e P r o b l e m 2 5 ,

C h a p t e r 3 ) a n d t h u s

p e r p e n d i c u l a r t o n , s o t h a t

a y a y

S u b s t i t u t e i n ( 1 ) t o o b t a i n

a A 1

a

d S

( a z

.

n

a r

=

a z

0

o r

- a z

n . k

a y

a y

a y

o r

( 2 ) d S

a a A 1

a z

a a 1

y

a A 1 a A 1 a z )

n . k d S

a y + a z a y

N o w o n S , A 1 ( x , y , z ) = A 1 ( x , y , f ( x , y ) ) = F ( x , y ) ; h e n c e

T h e n

a A 1

a A 1 a z

=

a F

a y + a z a y

a y

x ( A 1 i ) ] n d S

=

-

a F

n k d S

=

- -

a F

d x d y

a y

a y

f f [ V x ( A 1 i ) ] n d S

=

S

d x w h e r e F i s t h e b o u n d a r y o f R .

S i n c e a t e a c h p o i n t ( x , y ) o f F t h e v a l u e o f F i s t h e s a m e a s t h e

I T ,

F

f f 4

a n d ( 2 ) b e c o m e s

w h e r e R i s t h e p r o j e c t i o n o f S o n t h e x y p l a n e . B y G r e e n ' s t h e o r e m f o r t h e p l a n e t h e l a s t i n t e g r a l e q u a l s

v a l u e o f A 1 a t e a c h p o i n t ( x , y , z ) o f C , a n d s i n c e d x i s t h e s a m e f o r b o t h c u r v e s , w e m u s t h a v e

o r

f T F d x

f

A 1 d x

0

f f [ V x ( A 1 i ) ]

n d S

A , d x

S

S i m i l a r l y , b y p r o j e c t i o n s o n t h e o t h e r c o o r d i n a t e p l a n e s ,

f f

d S

S

A 2 d y

A s d z

f f

9

S

C

Page 136: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 136/234

I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 2 9

T h u s b y a d d i t i o n ,

f f ( v x A . n d s

S

T h e t h e o r e m i s a l s o v a l i d f o r s u r f a c e s S w h i c h m a y n o t s a t i s f y t h e r e s t r i c t i o n s i m p o s e d a b o v e . F o r

a s s u m e t h a t S c a n b e s u b d i v i d e d i n t o s u r f a c e s S 1 , S 2 , . . . S k w i t h b o u n d a r i e s C 1 , C 2 , . . . C k w h i c h d o s a t i s f y

t h e r e s t r i c t i o n s . T h e n S t o k e s ' t h e o r e m h o l d s f o r e a c h s u c h s u r f a c e . A d d i n g t h e s e s u r f a c e i n t e g r a l s , t h e

t o t a l s u r f a c e i n t e g r a l o v e r S i s o b t a i n e d . A d d i n g t h e c o r r e s p o n d i n g l i n e i n t e g r a l s o v e r C 1 , C 2 , . . . C k , t h e

l i n e i n t e g r a l o v e r C i s o b t a i n e d .

3 2 . V e r i f y S t o k e s ' t h e o r e m f o r A = ( 2 x - y ) i - y z 2 j - y 2 z k ,

w h e r e S i s t h e u p p e r h a l f s u r f a c e o f

t h e s p h e r e x 2 + y 2 + z 2 = 1

a n d C i s i t s b o u n d a r y .

T h e b o u n d a r y C o f S i s a c i r c l e i n t h e x y p l a n e o f r a d i u s o n e a n d c e n t e r a t t h e o r i g i n . L e t x = c o s t ,

y = s i n t , z = 0 , 0 < t < 2 7 7 b e p a r a m e t r i c e q u a t i o n s o f C . T h e n

f ( 2 x

- y ) d x - y z 2 d y - y 2 z d z

C

r 2 n

=

J

( 2 c o s t - s i n t ) ( - s i n t ) d t

=

? r

0

i j

k

A l s o ,

V x A

=

a a

a

a x a y a z

2 x - y

- y Z 2 - y 2 z

k

T h e n

f f

( V x

A ) n d S

=

f f k . n d S

=

J ' f d x d y

S S

R

s i n c e n k d S = d x d y a n d R i s t h e p r o j e c t i o n o f S o n t h e x y p l a n e . T h i s l a s t i n t e g r a l e q u a l s

x - = -

( i

= x 2

t

, / , = x 2

i

d x

=

7

f d y d x

=

4 f

( '

J

d y d x

4 I -

r

- x 2

- V i

a n d S t o k e s ' t h e o r e m i s v e r i f i e d .

3 3 . P r o v e t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t A A . d r = 0 f o r e v e r y c l o s e d c u r v e C i s

t h a t V x A = 0 i d e n t i c a l l y .

S u f f i c i e n c y . S u p p o s e O x A = 0 . T h e n b y S t o k e s ' t h e o r e m

f

C

f f ( V X A ) . n d S

=

S

0

N e c e s s i t y . S u p p o s e

f

A - d r = 0 a r o u n d e v e r y c l o s e d p a t h C , a n d a s s u m e O x A

0 a t s o m e p o i n t

C

P . T h e n a s s u m i n g O x A i s c o n t i n u o u s t h e r e w i l l b e a r e g i o n w i t h P a s a n i n t e r i o r p o i n t , w h e r e O x A # 0 .

L e t S b e a s u r f a c e c o n t a i n e d i n t h i s r e g i o n w h o s e n o r m a l n a t e a c h p o i n t h a s t h e s a m e d i r e c t i o n a s O x A ,

i . e . O x A = a n w h e r e 0 6 i s a p o s i t i v e c o n s t a n t . L e t C b e t h e b o u n d a r y o f S . T h e n b y S t o k e s ' t h e o r e m

Page 137: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 137/234

1 3 0

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

f A - d r

C

J ' f ( n x v )

x B d S .

S

f f ( V x A ) . n

d S =

S

w h i c h c o n t r a d i c t s t h e h y p o t h e s i s t h a t 5 A d r = 0 a n d s h o w s t h a t V x A = 0 .

P 2

I t f o l l o w s t h a t V x A = 0 i s a l s o a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n f o r a l i n e I n t e g r a l

A . d r

t o b e i n d e p e n d e n t o f t h e p a t h j o i n i n g p o i n t s P 1 a n d P 2 .

( S e e P r o b l e m s 1 0 a n d 1 1 , C h a p t e r 5 . )

3 4 . P r o v e

j I

d r x B

I n S t o k e s ' t h e o r e m , l e t A = B x C w h e r e C i s a c o n s t a n t v e c t o r , T h e n

f f [ V x ( B x C ) ] n d S

S

f f

[ ( C V ) B - C ( V . B ) ] n d S

S

f f

n d S

S

c t f f n . n

d S

>

0

S

I I

[ C ( V B ) ] n d S

=

f f c . [ V ( B n ) ] d S

S

- - -

f f c . [ n ( V B ) ] d S

S

C f f [ V ( B n ) - n V . B ) ] d S

=

C f f ( n x V ) x B d S

S S

S i n c e C i s a n a r b i t r a r y c o n s t a n t v e c t o r 5 d r x B

=

f f ( n x v )

x B d S

S

P 1

3 5 . I f A S i s a s u r f a c e b o u n d e d b y a s i m p l e c l o s e d c u r v e C , P i s a n y p o i n t o f A S n o t o n C a n d n i s

a u n i t n o r m a l t o A S a t P , s h o w t h a t a t P

A A

( c u r l A ) . n

=

l i r a C

A S

w h e r e t h e l i m i t i s t a k e n i n s u c h a w a y t h a t A S s h r i n k s t o P .

B y S t o k e s ' t h e o r e m ,

f f ( c u r l

A ) n d S

=

5

A A . d r .

A S

C

U s i n g t h e m e a n v a l u e t h e o r e m f o r i n t e g r a l s a s i n P r o b l e m s 1 9 a n d 2 4 , t h i s c a n b e w r i t t e n

( c u r l A ) n

f A d r

C

A s

Page 138: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 138/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 3 1

a n d t h e r e q u i r e d r e s u l t f o l l o w s u p o n t a k i n g t h e l i m i t a s A S - 0 .

T h i s c a n b e u s e d a s a s t a r t i n g p o i n t f o r d e f i n i n g c u r l A ( s e e P r o b l e m 3 6 ) a n d i s u s e f u l i n o b t a i n i n g

c u r l A i n c o o r d i n a t e s y s t e m s o t h e r t h a n r e c t a n g u l a r . S i n c e

,

A A . d r i s c a l l e d t h e c i r c u l a t i o n o f A a b o u t

C

C , t h e n o r m a l c o m p o n e n t o f t h e c u r l c a n b e i n t e r p r e t e d p h y s i c a l l y a s t h e l i m i t o f t h e c i r c u l a t i o n p e r u n i t

a r e a , t h u s a c c o u n t i n g f o r t h e s y n o n y m r o t a t i o n o f A ( r o t A ) i n s t e a d o f c u r l o f A .

3 6 . I f

c u r l A i s d e f i n e d a c c o r d i n g t o t h e l i m i t i n g p r o c e s s o f P r o b l e m 3 5 , f i n d t h e z c o m p o n e n t o f

c u r l A .

z

L e t E F G H b e a r e c t a n g l e p a r a l l e l t o t h e x y p l a n e w i t h i n t e r i o r p o i n t P ( x , y , z ) t a k e n a s m i d p o i n t , a s

s h o w n i n t h e f i g u r e a b o v e . L e t A l a n d A 2 b e t h e c o m p o n e n t s o f A a t P i n t h e p o s i t i v e x a n d y d i r e c t i o n s

r e s p e c t i v e l y .

I f C i s t h e b o u n d a r y o f t h e r e c t a n g l e , t h e n

J

J

f J

A d r

= ( A 1

1 a A 1

A Y ) A X

2 a y

F G

G H

H E

J

A ' d r

=

- ( A 1 +

I

a A l

A Y ) A x

Y

E F

G H

J

A . d r

=

( A 2 + 1 a s 2 A X ) A y

J A A

= - ( A 2

3 A 2

A x ) A y

t a x

F G

H E

e x c e p t f o r i n f i n i t e s i m a l s o f h i g h e r o r d e r t h a n A x A y .

A d d i n g , w e h a v e a p p r o x i m a t e l y 5 A . d r

=

( a x e

-

a A 1 ) A x A y .

C

Y

T h e n , s i n c e A S = A x A y ,

f A - d r

z c o m p o n e n t o f c u r l A

=

( c u r l A ) k

=

l i m

A 1 - o

A s

( a z 2

-

a 1 ) A x A y

l i m

y

A x A y

a A 2

a A 1

a x

a y

Page 139: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 139/234

1 3 2

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

S U P P L E M E N T A R Y P R O B L E M S

3 7 . V e r i f y G r e e n ' s t h e o r e m i n t h e p l a n e f o r f ( 3 x 2 - 8 y 2 ) d x + ( 4 y - 6 x y ) d y , w h e r e C i s t h e b o u n d a r y o f t h e

C

r e g i o n d e f i n e d b y : ( a ) y = f x , y = x 2 ;

( b ) x = 0 , y = 0 , x + y = 1 .

A n s .

( a ) c o m m o n v a l u e = 3 / 2 ( b ) c o m m o n v a l u e = 5 / 3

3 8 . E v a l u a t e f ( 3 x + 4 y ) d x + ( 2 x - - 3 y ) d y w h e r e C , a c i r c l e o f r a d i u s t w o w i t h c e n t e r a t t h e o r i g i n o f t h e x y

C

p l a n e , i s t r a v e r s e d i n t h e p o s i t i v e s e n s e . A n s . - 8 7 T

3 9 . W o r k t h e p r e v i o u s p r o b l e m f o r t h e l i n e i n t e g r a l f ( x 2 + y 2 ) d x + 3 x y 2 d y .

A n s . 1 2 7 T

C

4 0 . E v a l u a t e f ( x 2 - 2 x y ) d x + ( x 2 y + 3 ) d y a r o u n d t h e b o u n d a r y o f t h e r e g i o n d e f i n e d b y y 2 = 8 x a n d x = 2

( a ) d i r e c t l y , ( b ) b y u s i n g G r e e n ' s t h e o r e m .

A n s . 1 2 8 / 5

( T T . 2 )

4 1 . E v a l u a t e

f

( 6 x y - y 2 ) d x + ( 3 x 2 - - - 2 x y ) d y a l o n g t h e c y c l o i d x = 6 - s i n 6 , y = 1 - c o s 6 .

( o , o )

A n s . 6 7 7 2 - 4 7 T

4 2 . E v a l u a t e ' ( 3 x 2 + 2 y ) d x - - ( x + 3 c o s y ) d y a r o u n d t h e p a r a l l e l o g r a m h a v i n g v e r t i c e s a t ( 0 , 0 ) , ( 2 , 0 ) , ( 3 , 1 )

a n d ( 1 , 1 ) .

A n s . - 6

4 3 . F i n d t h e a r e a b o u n d e d b y o n e a r c h o f t h e c y c l o i d x = a ( 6 - s i n 6 ) , y = a ( l - c o s 6 ) , a > 0 ,

a n d t h e x a x i s .

A n s . 3 7 T a 2

4 4 . F i n d t h e a r e a b o u n d e d b y t h e h y p o c y c l o i d x

2 / 3

+ y 2 / 3 = a

2 / 3 ,

a > 0 .

H i n t : P a r a m e t r i c e q u a t i o n s a r e x = a c o s 3 6 , y = a s i n 3 6 . A n s . 3 7 7 a 2 / 8

4 5 . S h o w t h a t i n p o l a r c o o r d i n a t e s ( p , 0 ) t h e e x p r e s s i o n x d y - y d x = p 2 d c .

I n t e r p r e t

4 6 . F i n d t h e a r e a o f a l o o p o f t h e f o u r - l e a f e d r o s e p = 3 s i n 2 0 .

A n s . 9 7 T / 8

4 7 . F i n d t h e a r e a o f b o t h l o o p s o f t h e l e m n i s c a t e p 2 = a 2 c o s

A n s . a 2

4 8 . F i n d t h e a r e a o f t h e l o o p o f t h e f o l i u m o f D e s c a r t e s

x 3 + y 3 = 3 a x y , a > 0 ( s e e a d j o i n i n g f i g u r e ) .

H i n t : L e t y = t x a n d o b t a i n t h e p a r a m e t r i c e q u a -

t i o n s o f t h e c u r v e . T h e n u s e t h e f a c t t h a t

A r e a = 2 x d y - - y d x

x 2

d ( z )

=

i

x 2 d t

A n s . 3 a 2 / 2

y

x d y - y d x .

4 9 . V e r i f y G r e e n ' s t h e o r e m i n t h e p l a n e f o r f ( 2 x - y 3 ) d x - x y d y , w h e r e C i s t h e b o u n d a r y o f t h e r e g i o n e n -

C

c l o s e d b y t h e c i r c l e s x 2 + y 2 = 1 a n d x 2 + y 2 = 9 .

A n s . c o m m o n v a l u e = 6 0 7 T

f ( - 1 ' 0 ) - y d x + x d y

5 0 . E v a l u a t e

( i . o )

x 2 + Y 2

a l o n g t h e f o l l o w i n g p a t h s :

Page 140: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 140/234

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

1 3 3

( a ) s t r a i g h t l i n e s e g m e n t s f r o m ( 1 , 0 ) t o ( 1 , 1 ) , t h e n t o ( - 1 , 1 ) , t h e n t o ( - 1 , 0 ) .

( b ) s t r a i g h t l i n e s e g m e n t s f r o m ( 1 , 0 ) t o ( 1 , - 1 ) , t h e n t o ( - 1 , - i ) , t h e n t o ( - 1 , 0 ) .

S h o w t h a t a l t h o u g h a R = a N , t h e l i n e i n t e g r a l i s d e p e n d e n t o n t h e p a t h j o i n i n g ( 1 , 0 ) t o ( - 1 , 0 ) a n d e x p l a i n .

y

x

A n s . ( a ) 7 ( b ) - 7

5 1 . B y c h a n g i n g v a r i a b l e s f r o m ( x , y ) t o ( u , v ) a c c o r d i n g t o t h e t r a n s f o r m a t i o n x = x ( u , v ) , y = y ( u , v ) , s h o w t h a t

t h e a r e a A o f a r e g i o n R b o u n d e d b y a s i m p l e c l o s e d c u r v e C i s g i v e n b y

A

f f

J ( u , v )

d u d v

w h e r e

R

J ( u v )

a x

a y

a u a u

a x a y

a v

a v I

i s t h e J a c o b i a n o f x a n d y w i t h r e s p e c t t o u a n d v .

W h a t r e s t r i c t i o n s s h o u l d y o u m a k e ? I l l u s t r a t e t h e r e -

s u l t w h e r e u a n d v a r e p o l a r c o o r d i n a t e s .

H i n t : U s e t h e r e s u l t A = i f x d y - y d x ,

t r a n s f o r m t o u , v c o o r d i n a t e s a n d t h e n u s e G r e e n ' s t h e o r e m .

5 2 . E v a l u a t e f f F n d S ,

w h e r e F = 2 x y i + y z 2 j + x z k a n d S i s :

S

( a ) t h e s u r f a c e o f t h e p a r a l l e l e p i p e d b o u n d e d b y x = 0 , y = 0 , z = 0 , x = 2 , y = 1 a n d z

= 3 ,

( b ) t h e s u r f a c e o f t h e r e g i o n b o u n d e d b y x = 0 , y = 0 , y = 3 , z = 0 a n d x + 2 z =

6 .

A n s . ( a ) 3 0

( b ) 3 5 1 / 2

5 3 . V e r i f y t h e d i v e r g e n c e t h e o r e m f o r A = 2 x - 2 y i - y 2 j + 4 x z 2 k t a k e n o v e r t h e r e g i o n i n t h e f i r s t o c t a n t

b o u n d e d b y y 2 + z 2 = 9 a n d x = 2 .

A n s . 1 8 0

5 4 . E v a l u a t e f f r n d S w h e r e ( a ) S i s t h e s p h e r e o f r a d i u s 2 w i t h c e n t e r a t ( 0 , 0 , 0 ) , ( b ) S i s t h e s u r f a c e o f

S

t h e c u b e b o u n d e d b y x = - 1 , y = - 1 , z = - 1 , x = 1 , y = 1 , z = 1 ,

( c ) S i s t h e s u r f a c e b o u n d e d b y t h e p a r a b o l o i d

z = 4 - ( x 2 + y 2 ) a n d t h e x y p l a n e .

A n s . ( a ) 3 2 7 ( b ) 2 4 ( c ) 2 4 7

5 5 . I f S i s a n y c l o s e d s u r f a c e e n c l o s i n g a v o l u m e V a n d A = a x i + b y j + c z k ,

p r o v e t h a t f f A n d S

( a + b + c ) V .

S

5 6 . I f R = c u r l A , p r o v e t h a t f f H n d S = 0 f o r a n y c l o s e d s u r f a c e S .

S

5 7 . I f n i s t h e u n i t o u t w a r d d r a w n n o r m a l t o a n y c l o s e d s u r f a c e o f a r e a S , s h o w t h a t f f f d i v n d Y = S .

V

5 8 . P r o v e

f f f

2

= f f

T e n d S

.

r

7

S

5 9 . P r o v e f f r 5 n d S = f f f s r s r d V .

S

V

6 0 . P r o v e

f f n d S = 0

f o r a n y c l o s e d s u r f a c e S .

S

6 1 . S h o w t h a t G r e e n ' s s e c o n d i d e n t i t y c a n b e w r i t t e n

f f f ( c 1 5 V 2 q i

-

b V 2 c p ) d V

=

f f w / d

-

d - O )

d S

V

S

6 2 . P r o v e f f r x d S = 0

f o r a n y c l o s e d s u r f a c e S .

3

Page 141: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 141/234

1 3 4

D I V E R G E N C E T H E O R E M , S T O K E S ' T H E O R E M , R E L A T E D I N T E G R A L T H E O R E M S

6 3 . V e r i f y S t o k e s ' t h e o r e m f o r A = ( y - z + 2 ) i + ( y z + 4 ) i - x z k ,

w h e r e S i s t h e s u r f a c e o f t h e c u b e x = 0 ,

y = 0 , z = 0 , x = 2 , y = 2 , z = 2 a b o v e t h e x y p l a n e . A n s . c o m m o n v a l u e = - 4

6 4 . V e r i f y S t o k e s ' t h e o r e m f o r F = x z i - y j + x 2 y k , w h e r e S i s t h e s u r f a c e o f t h e r e g i o n b o u n d e d b y

x = 0 ,

y = 0 , z = 0 , 2 x + y + 2 z = 8 w h i c h i s n o t i n c l u d e d i n t h e x z p l a n e .

A n s . c o m m o n v a l u e = 3 2 / 3

6 5 . E v a l u a t e

f f ( V x A ) . n d S ,

w h e r e A = ( x 2 + y - 4 ) i + 3 x y j + ( 2 z z + z 2 ) k a n d S i s t h e s u r f a c e o f ( a ) t h e

S

h e m i s p h e r e x 2 + y 2 + z 2 = 1 6 a b o v e t h e x y p l a n e , ( b ) t h e p a r a b o l o i d z = 4 - ( x 2 + y 2 ) a b o v e t h e x y p l a n e .

A n s . ( a ) - 1 6 7 7 , ( b ) - 4 7 7

6 6 . I f A = 2 y z i - ( x + 3 y - 2 ) j + ( x 2 + z ) k , e v a l u a t e

f f ( V x A ) . n d S

o v e r t h e s u r f a c e o f i n t e r s e c t i o n o f t h e

S

2

c y l i n d e r s x 2 + y 2 = a 2 , x 2 + z 2 = a 2 w h i c h i s i n c l u d e d i n t h e f i r s t o c t a n t .

A n s . - 1 2 ( 3 7 7 + 8 a )

6 7 . A v e c t o r B i s a l w a y s n o r m a l t o a g i v e n c l o s e d s u r f a c e S . S h o w t h a t

f f f c u r l B d V

= 0 , w h e r e V i s t h e

r e g i o n b o u n d e d b y S .

V

6 8 . I f

E d r = -

c a t

f f n d S , w h e r e S i s

a n y s u r f a c e b o u n d e d b y t h e c u r v e C , s h o w t h a t V x E _

C S

1 a H

C a t

6 9 . P r o v e

f o d r = f f d S x V o .

S

7 0 . U s e t h e o p e r a t o r e q u i v a l e n c e o f S o l v e d P r o b l e m 2 5 t o a r r i v e a t ( a ) V 0 , ( b ) V . A , ( c ) V x A i n r e c t a n g u l a r

c o o r d i n a t e s .

7 1 . P r o v e

f f f v c 7 5 . A d v = f f A . n d s

- f f f V . A d v .

V S

V

7 2 . L e t r b e t h e p o s i t i o n v e c t o r o f a n y p o i n t r e l a t i v e t o a n o r i g i n 0 . S u p p o s e 0 h a s c o n t i n u o u s d e r i v a t i v e s o f

o r d e r t w o , a t l e a s t , a n d l e t S b e a c l o s e d s u r f a c e b o u n d i n g a v o l u m e V . D e n o t e 0 a t 0 b y 0 o . S h o w t h a t

f f [ 3 V q _ g 5 V ( 3 ) ] . d S

=

f f f i d v + a

S

w h e r e a = 0 o r 4 7 7 0 , a c c o r d i n g a s 0 i s o u t s i d e o r i n s i d e S .

7 3 . T h e p o t e n t i a l O ( P ) a t a p o i n t P ( x , y , z ) d u e t o a s y s t e m o f c h a r g e s ( o r m a s s e s )

v e c t o r s r 1 , r 2 , . . . , r n w i t h r e s p e c t t o P i s g i v e n b y

n

P r o v e G a u s s ' l a w

f f E . d s

= 4 7 7 Q

S

g l , g 2 , . . . , q n

h a v i n g p o s i t i o n

n

w h e r e E = - V V i s t h e e l e c t r i c f i e l d i n t e n s i t y , S i s a s u r f a c e e n c l o s i n g a l l t h e c h a r g e s a n d Q = Y q n

i s t h e t o t a l c h a r g e w i t h i n S .

' a = I

7 4 . I f a r e g i o n V b o u n d e d b y a s u r f a c e S h a s a c o n t i n u o u s c h a r g e ( o r m a s s ) d i s t r i b u t i o n o f d e n s i t y p , t h e p o -

t e n t i a l

( P ) a t a p o i n t P i s d e f i n e d b y

=

f f f _ - . .

D e d u c e t h e f o l l o w i n g u n d e r s u i t a b l e a s s u m p t i o n s :

( a ) f f E - d S = 4 7 7 f f f p d V ,

w h e r e E _ - V .

S V

Page 142: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 142/234

T R A N S F O R M A T I O N O F C O O R D I N A T E S . L e t t h e r e c t a n g u l a r c o o r d i n a t e s ( x , y , z ) o f a n y p o i n t b e

e x p r e s s e d a s f u n c t i o n s o f ( u 1 , u 2 , u 3 ) s o t h a t

( 1 )

x = x ( u 1 , u 2 , u 3 ) ,

y = y ( u 1 , u 2 , u 3 ) ,

z = z ( u 1 , u 2 , u 3 )

S u p p o s e t h a t ( 1 ) c a n b e s o l v e d f o r u 1 , u 2 , u 3 i n t e r m s o f x , y , z , i . e . ,

( 2 )

u 1 = u 1 ( x , y , z ) ,

u 2 = u 2 ( x , y , z ) ,

u s = u 3 ( x , y , z )

T h e f u n c t i o n s i n ( 1 ) a n d ( 2 ) a r e a s s u m e d t o b e s i n g l e - v a l u e d a n d t o h a v e c o n t i n u o u s d e r i v a t i v e s s o

t h a t t h e c o r r e s p o n d e n c e b e t w e e n ( x , y , z ) a n d ( u 1 , u 2 , u 3 ) i s u n i q u e . i n p r a c t i c e t h i s a s s u m p t i o n m a y

n o t a p p l y a t c e r t a i n p o i n t s a n d s p e c i a l c o n s i d e r a t i o n i s r e q u i r e d .

G i v e n a p o i n t P w i t h r e c t a n g u l a r c o o r d i n a t e s ( x , y , z ) w e c a n , f r o m ( 2 ) a s s o c i a t e a u n i q u e s e t

o f c o o r d i n a t e s ( u 1 , u 2 , u 3 ) c a l l e d t h e c u r v i l i n e a r c o o r d i n a t e s o f P . T h e s e t s o f e q u a t i o n s ( 1 ) o r ( 2 )

d e f i n e a t r a n s f o r m a t i o n o f c o o r d i n a t e s .

z

O R T H O G O N A L C U R V I L I N E A R C O O R D I N A T E S .

T h e s u r f a c e s u 1 = c 1 , u 2 = c 2 , u 3 = c 3 ,

w h e r e

c 1 , r 2 , c 3

a r e c o n s t a n t s , a r e c a l l e d c o o r d i n a t e s u r -

f a c e s a n d e a c h p a i r o f t h e s e s u r f a c e s i n t e r s e c t i n

c u r v e s c a l l e d c o o r d i n a t e c u r v e s o r l i n e s ( s e e F i g . 1 ) .

I f t h e c o o r d i n a t e s u r f a c e s i n t e r s e c t a t r i g h t a n g l e s

t h e c u r v i l i n e a r c o o r d i n a t e s y s t e m i s c a l l e d o r t h o g o -

n a l . T h e u 1 , u 2 a n d u 3 c o o r d i n a t e c u r v e s o f a c u r v i -

l i n e a r s y s t e m a r e a n a l o g o u s t o t h e x , y a n d z c o o r -

d i n a t e a x e s o f a r e c t a n g u l a r s y s t e m .

F i g . 1

U N I T V E C T O R S I N C U R V I L I N E A R S Y S T E M S . L e t r = x i + y 3 + z k b e t h e p o s i t i o n v e c t o r o f a p o i n t

P . T h e n ( 1 ) c a n b e w r i t t e n r = r ( u 1 , u 2 , u 3 ) , A t a n -

g e n t v e c t o r t o t h e u 1 c u r v e a t P ( f o r w h i c h u 2 a n d u 3 a r e c o n s t a n t s ) i s a u 1

. T h e n a u n i t t a n g e n t

' a r

v e c t o r i n t h i s d i r e c t i o n i s e 1 = b - - / ,

-

-

y

s o t h a t

a u 1 = h 1

e 1 w h e r e h 1 =

,

a u 1

I

.

S i m i l a r l y , i f

e 2 a n d e 3 a r e u n i t t a n g e n t v e c t o r s t o t h e u 2 a n d u 3 c u r v e s a t P r e s p e c t i v e l y , t h e n a

h 2 e 2 a n d

u 2

u s

=

h 3 e 3 w h e r e h 2 =

a

h 3

T h e

a r e

i n t h e d i r e c t i o n s o f i n c r e a s i n g u 1 , u 2 , U S . r e s p e c t i v e l y .

S i n c e V u 1 i s a v e c t o r a t P n o r m a l t o t h e s u r f a c e u 1 = c 1 ,

a u n i t v e c t o r i n t h i s d i r e c t i o n i s g i v -

Page 143: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 143/234

1 3 6

C U R V I L I N E A R C O O R D I N A T E S

e n b y E 1 =

V u 1 / I V u 1 I

.

S i m i l a r l y , t h e u n i t v e c t o r s E 2 = V u 2 / I D u 2 I

a n d

E 3 = V u 3 / I

V u 3

I

a t P

a r e n o r m a l t o t h e s u r f a c e s u 2 = c 2 a n d u 3 = c 3 r e s p e c t i v e l y .

T h u s a t e a c h p o i n t P o f a c u r v i l i n e a r s y s t e m t h e r e

e x i s t , i n g e n e r a l , t w o s e t s o f u n i t v e c t o r s , e 1 , e 2 , e 3 t a n -

g e n t t o t h e c o o r d i n a t e c u r v e s a n d E 1 , E 2 , E 3 n o r m a l t o

t h e c o o r d i n a t e s u r f a c e s ( s e e F i g . 2 ) . T h e s e t s b e c o m e

i d e n t i c a l i f a n d o n l y i f t h e c u r v i l i n e a r c o o r d i n a t e s y s t e m

i s o r t h o g o n a l ( s e e P r o b l e m 1 9 ) . B o t h s e t s a r e a n a l o g o u s

u

t o t h e i , j , k u n i t v e c t o r s i n r e c t a n g u l a r c o o r d i n a t e s b u t

r ' t -

- e 2

a r e u n l i k e t h e m i n t h a t t h e y m a y c h a n g e d i r e c t i o n s f r o m

p o i n t t o p o i n t .

I t c a n b e s h o w n ( s e e P r o b l e m 1 5 ) t h a t t h e

s e t s

-

a u , a u

a n d V u 1 , V u 2 , V u 3 c o n s t i t u t e r e c i p -

r o c a l s y s t e m s

o f

v e c t o r s .

f o r m

F i g . 2

A v e c t o r A c a n b e r e p r e s e n t e d i n t e r m s o f t h e u n i t b a s e v e c t o r s e 1 , e 2 , e 3 o r E 1 , E 2 , E 3 i n t h e

A =

A . e . + A 2 e 2 + A 3 e 3

=

a 1 E , + a 2 E 2 + a 3 E .

w h e r e A 1 , A 2 , A s a n d a 1 , a 2 , a s a r e t h e r e s p e c t i v e c o m p o n e n t s o f A i n e a c h s y s t e m .

- 6 r

W e c a n a l s o r e p r e s e n t A i n t e r m s o f t h e b a s e v e c t o r s

a u ,

- -

, a u

o r

V u 1 , V u 2 , V u 3 w h i c h

l . ' a

a r e c a l l e d u n i t a r y b a s e v e c t o r s b u t a r e n o t u n i t v e c t o r s i n g e n e r a l . I n 2 t h i s c a s e

A

_

C .

a u

+

C 2

a u

+

C .

a u

C 1 a 1

+

C 2 a 2 + C 3 a s

1

2

3

a n d

A

C 1 V u 1 +

C 2 V u 2 + C 3 V u 3

C 1 6 4 1 + C 2 1 r 2 + C 3 M 3

w h e r e C 1 , C 2 , C . a r e c a l l e d t h e c o n t r a v a r i a n t c o m p o n e n t s o f A a n d c 1 , c 2 , c 3 a r e c a l l e d t h e c o v a r i a n t

c o m p o n e n t s o f A ( s e e P r o b l e m s 3 3 a n d 3 4 ) . N o t e t h a t a 0 = a u ,

l 3 ¢ = V u ,

, p = 1 , 2 , 3 .

A R C L E N G T H A N D V O L U M E E L E M E N T S . F r o m r = r ( u 1 , u 2 i u 3 ) w e h a v e

d r =

a u d u l + a u d u 2 + a u d u 3

1

2 3

h 1 d u 1 e 1 + h 2 d u 2 e 2 + h 3 d u 3 e 3

T h e n t h e d i f f e r e n t i a l o f a r e l e n g t h d s i s d e t e r m i n e d f r o m

d s 2 = d r d r .

F o r o r t h o g o n a l s y s t e m s ,

e 1 e 2 = e 2 . e 3 =

e 3 e 1 = 0 a n d

d s 2 =

h 2 d u 2 + h 2 d u 2 + h 3 d u 3

F o r n o n - o r t h o g o n a l o r g e n e r a l c u r v i l i n e a r s y s t e m s s e e

P r o b l e m 1 7 .

A l o n g a u 1 c u r v e , u 2 a n d u 3 a r e c o n s t a n t s s o t h a t

d r = h 1 d u 1 e 1 .

T h e n t h e d i f f e r e n t i a l o f a r c l e n g t h d s 1

a l o n g u 1 a t P i s h 1 d u 1 .

S i m i l a r l y t h e d i f f e r e n t i a l a r c

l e n g t h s a l o n g u 2 a n d u 3 a t P a r e d s 2 = h 2 d u 2 , d s 3 = h 3 d u 3 .

u

R e f e r r i n g t o F i g . 3 t h e v o l u m e e l e m e n t f o r a n o r -

t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s y s t e m i s g i v e n b y

F i g . 3

Page 144: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 144/234

C U R V I L I N E A R C O O R D I N A T E S

1 3 7

d V

=

I ( h 1 d u 1 e 1 ) ( h 2 d u 2

e 2 ) x ( h 3 d u 3 e 3 ) I

=

h 1 h 2 h 3 d u 1 d u 2 d u 3

s i n c e

I e 1 . e 2 x e 3 l

=

1 .

T H E G R A D I E N T , D I V E R G E N C E A N D C U R L c a n b e e x p r e s s e d i n t e r m s o f c u r v i l i n e a r c o o r d i n a t e s .

I f 4 ) i s a s c a l a r f u n c t i o n a n d A = A l e 1 + A 2 e 2 + A . e 3

a v e c t o r f u n c t i o n o f o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s u 1 , u 2 , u 3 , t h e n t h e f o l l o w i n g r e s u l t s a r e v a l i d .

1 . © = g r a d < 1 ) _ 1 a

e 1 +

2

a u 2 - e 2 + h a T e 3

2 . . A =

d i v A =

h h h

a u ( h 2 h 3 A 1 )

+ a u ( h 3 h 1 A 2 ) + u

( A . h 2 A 3 )

1 2 3

1 2

3

h 1 e 1

3 . V x A =

c u r l A =

i

h 1 h 2 A S

h 2 e 2

h 3 e 3

a

a u 3

h 3 A 3

4 . V 2

=

L a p l a c i a n o f

_

1

a

h 2 A S a

A S h 1 - 6 ( D

)

a

h 1 h 2 a

h 1 h 2 h 3

a u 1 {

h 1 a u 1 ) + a u 2 {

h 2

a u 2

+ a u 3 {

h 3

a u 3

)

I f h 1 = h 2 = A S = 1

a n d

e 1 , e 2 , e 3 a r e r e p l a c e d b y i , j , k ,

t h e s e r e d u c e t o t h e u s u a l e x p r e s s i o n s i n

r e c t a n g u l a r c o o r d i n a t e s w h e r e ( u 1 , u 2 i u 3 ) i s r e p l a c e d b y ( x , y , z )

.

E x t e n s i o n s o f t h e a b o v e r e s u l t s a r e a c h i e v e d b y a m o r e g e n e r a l t h e o r y o f c u r v i l i n e a r s y s t e m s

u s i n g t h e m e t h o d s o f t e n s o r a n a l y s i s w h i c h i s c o n s i d e r e d i n C h a p t e r 8 .

S P E C I A L O R T H O G O N A L C O O R D I N A T E S Y S T E M S .

1 . C y l i n d r i c a l C o o r d i n a t e s ( p , 0 , z ) . S e e F i g . 4 b e l o w .

x = p c o s 4 ,

y = p s i n q 5 ,

z = z

w h e r e

p ? 0 , 0 < _ 0 < 2 7 r , - c o < z < o o

h P = i , h o = p , h z = 1

2 . S p h e r i c a l C o o r d i n a t e s ( r , 6 , 0 ) . S e e F i g . 5 b e l o w .

x = r s i n 6 c o s 0 ,

y = r s i n 6 s i n 0 ,

z

r c o s 6

w h e r e r > 0 , 0 < O < 2 7 T ,

0 < 6 < 7 r

h r = 1 ,

h e = r , h o = r s i n 6

Page 145: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 145/234

1 3 8

C U R V I L I N E A R C O O R D I N A T E S

z

F i g . 4

F i g . 5

3 .

P a r a b o l i c C y l i n d r i c a l C o o r d i n a t e s ( u , v , z ) . S e e F i g . 6 b e l o w .

x =

2

( u 2 - v 2 ) ,

y = u v ,

z = z

w h e r e - c o < u < c o , v > 0 , - o o < z < c o

h u = h v =

u 2 + v 2 ,

h z = 1

I n c y l i n d r i c a l c o o r d i n a t e s ,

u = 2 c o s

± ,

v = 2 s i n

.

,

z = z

T h e t r a c e s o f t h e c o o r d i n a t e s u r f a c e s o n t h e x y p l a n e a r e s h o w n i n F i g . 6 b e l o w . T h e y a r e

c o n f o c a l p a r a b o l a s w i t h a c o m m o n a x i s .

F i g . 6

Page 146: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 146/234

C U R V I L I N E A R C O O R D I N A T E S

1 3 9

4 . P a r a b o l o i d a l C o o r d i n a t e s ( u , v , 0 ) .

x = u v c o s 4 ,

y =

u v s i n ( p ,

z = z

( u 2

- v 2 )

w h e r e

u > O ,

v > O ,

0 < < f < 2 7 T

h u = b y =

u 2 + v 2 , h = u v

T w o s e t s o f c o o r d i n a t e s u r f a c e s a r e o b t a i n e d b y r e v o l v i n g t h e p a r a b o l a s o f F i g . 6 a b o v e

a b o u t t h e x a x i s w h i c h i s r e l a b e l e d t h e z a x i s . T h e t h i r d s e t o f c o o r d i n a t e s u r f a c e s a r e p l a n e s

p a s s i n g t h r o u g h t h i s a x i s .

5 .

E l l i p t i c C y l i n d r i c a l C o o r d i n a t e s ( u , v , z ) . S e e F i g . 7 b e l o w .

x = a c o s h u c o s y , y = a s i n h u s i n v ,

z = z

w h e r e

u > 0 ,

0 s v < 2 7 r ,

- o o < z < o o

h u = h v = a s i n h 2 u + s i r ? v ,

h 2 = 1

T h e t r a c e s o f t h e c o o r d i n a t e s u r f a c e s o n t h e x y p l a n e a r e s h o w n i n F i g . 7 b e l o w . T h e y a r e

c o n f o c a l e l l i p s e s a n d h y p e r b o l a s .

6 .

P r o l a t e S p h e r o i d a l C o o r d i n a t e s ( , 7 7 , 0 ) .

x = a s i n h 6 s i n 7 7 c o s 0 ,

y = a s i n h

s i n ? s i n ,

z = a c o s h 6 c o s

w h e r e ? 0 , 0 : 5 ? 7

7 r ,

4 < 2 7 T

a s i n h e s i n ? 7

T w o s e t s o f c o o r d i n a t e s u r f a c e s a r e o b t a i n e d b y r e v o l v i n g t h e c u r v e s o f F i g . 7 a b o v e a b o u t

t h e x a x i s w h i c h i s r e l a b e l e d t h e z a x i s . T h e t h i r d s e t o f c o o r d i n a t e s u r f a c e s a r e p l a n e s p a s s i n g

t h r o u g h t h i s a x i s .

Page 147: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 147/234

1 4 0

C U R V I L I N E A R C O O R D I N A T E S

7 . O b l a t e S p h e r o i d a l C o o r d i n a t e s ( 6 , 7 7 , q b ) .

x = a c o s h 6 c o s r c o s 0 ,

y

a c o s h e c o s 7 7 s i n 4 ) ,

w h e r e > _ p ,

2

2 , 0 < 9 5 < 2 7 T

z = a s i n h e s i n 7 7

h e = h 7 7 = a s i n h 2 6 + s i n 2 7 )

h j , = a c o s h C o s - q

T w o s e t s o f c o o r d i n a t e s u r f a c e s a r e o b t a i n e d b y r e v o l v i n g t h e c u r v e s o f F i g . 7 a b o v e a b o u t

t h e y a x i s w h i c h i s r e l a b e l e d t h e z a x i s . T h e t h i r d s e t o f c o o r d i n a t e s u r f a c e s a r e p l a n e s p a s s i n g

t h r o u g h t h i s a x i s .

8 . E l l i p s o i d a l C o o r d i n a t e s ( X , µ , v ) .

, , . 2

2

2

a 2 - X

b 2 -

c 2 - A

a 2

x 2

+

b 2

y 2

+

c 2

z 2

=

1 , c 2 < A < b 2 < a 2

/

2 x 2

+ 2 y 2

+ 2 z 2

=

1 ,

c 2 < b 2 < v < a 2

a - v

b - v c - v

h

_

1

( 1 a - X ) ( v - X )

h

=

1

( y - µ ) ( X - / . L )

2

2

( a 2 - 1 - p ) ( b 2 - 1 - i ) ( c 2 - / )

h

=

1

v

2

( a 2 - v ) ( b 2 - v ) ( c 2 - v )

9 . B i p o l a r C o o r d i n a t e s ( u , v , z ) .

S e e F i g . 8 b e l o w .

x 2 + ( y - a c o t u ) 2 = a 2 c s c 2 u ,

( x - a c o t h v ) 2 + y 2 = a 2 c s c h 2 v ,

z = z

+ -

Y

+

z

=

1 ,

) < c 2 < b 2 < a 2

F i g . 8

Page 148: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 148/234

C U R V I L I N E A R C O O R D I N A T E S

a s i n k v

a s i n u

o r

x =

c o s h v - c o s u '

y =

c o s h v - c o s u '

z = z

w h e r e O s u < 2 7 r , - o o < v < o o , - o o < z < o o

h u = h v =

,

h z = i

1 4 1

T h e t r a c e s o f t h e c o o r d i n a t e s u r f a c e s o n t h e x y p l a n e a r e s h o w n i n F i g . 8 a b o v e . B y r e -

v o l v i n g t h e c u r v e s o f F i g . 8 a b o u t t h e y a x i s a n d r e l a b e l i n g t h i s t h e z a x i s a t o r o i d a l c o o r d i n a t e

s y s t e m i s o b t a i n e d .

S O L V E D P R O B L E M S

a

c o s h v - c o s u

1 . D e s c r i b e t h e c o o r d i n a t e s u r f a c e s a n d c o o r d i n a t e c u r v e s f o r ( a ) c y l i n d r i c a l a n d ( b ) s p h e r i c a l c o -

o r d i n a t e s .

( a )

T h e c o o r d i n a t e s u r f a c e s ( o r l e v e l s u r f a c e s ) a r e :

P =

Z =

T h e c o o r d i n a t e c u r v e s a r e :

I n t e r s e c t i o n o f p = c 1 a n d

= c 2 ( z c u r v e ) i s a s t r a i g h t l i n e .

I n t e r s e c t i o n o f p = c 1 a n d z = c 3 ( r p c u r v e ) i s a c i r c l e ( o r p o i n t ) .

I n t e r s e c t i o n o f 0 = c 2 a n d z = c 3 ( p c u r v e ) i s a s t r a i g h t l i n e .

c 1

c y l i n d e r s c o a x i a l w i t h t h e z a x i s ( o r z a x i s i f c 1 = 0 ) .

c 2 p l a n e s t h r o u g h t h e z a x i s .

c 3

p l a n e s p e r p e n d i c u l a r t o t h e z a x i s .

( b ) T h e c o o r d i n a t e s u r f a c e s a r e :

r = c 1

s p h e r e s h a v i n g c e n t e r a t t h e o r i g i n ( o r o r i g i n i f c 1 = 0 ) .

B = c 2

c o n e s h a v i n g v e r t e x a t t h e o r i g i n ( l i n e s i f c 2 = 0 o r I T , a n d t h e x y p l a n e i f c 2 = 7 T / 2 ) .

= c 3 p l a n e s t h r o u g h t h e z a x i s .

T h e c o o r d i n a t e c u r v e s a r e ,

I n t e r s e c t i o n o f

r = c 2 a n d 8 = c 2

c u r v e ) i s a c i r c l e ( o r p o i n t ) .

I n t e r s e c t i o n o f r = c 1 a n d

= c 3 ( 8 c u r v e ) i s a s e m i - c i r c l e ( c 1

0 ) .

I n t e r s e c t i o n o f 8 = c 2 a n d

= c 3 ( r c u r v e ) i s a l i n e .

2 . D e t e r m i n e t h e t r a n s f o r m a t i o n f r o m c y l i n d r i c a l t o r e c t a n g u l a r c o o r d i n a t e s .

T h e e q u a t i o n s d e f i n i n g t h e t r a n s f o r m a t i o n f r o m r e c t a n g u l a r t o c y l i n d r i c a l c o o r d i n a t e s a r e

( 1 ) x = p c o s 0 ,

( 2 ) y = p s i n p ,

( 3 )

z = z

S q u a r i n g ( 1 ) a n d ( 2 ) a n d a d d i n g ,

p 2 ( c o s 2 o + s i n 2 o ) = x 2 + y 2

o r

p =

x 2 + y 2 , s i n c e c o s 2 0 + s i n 2 4 = 1 a n d p i s p o s i t i v e .

D i v i d i n g e q u a t i o n ( 2 ) b y ( 1 ) ,

y

=

p

s i n

= t a n 0 o r 0 = a r c t a n

y

.

X

p c o s q

X

T h e n t h e r e q u i r e d t r a n s f o r m a t i o n i s

( 4 ) p = V x 2 ' + y 2 ,

( 5 ) 0 = a r e t a n z ,

( 6 ) z = z .

F o r p o i n t s o n t h e z a x i s ( x = 0 , y = 0 ) , n o t e t h a t 0 i s i n d e t e r m i n a t e . S u c h p o i n t s a r e c a l l e d s i n g u l a r

p o i n t s o f t h e t r a n s f o r m a t i o n .

Page 149: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 149/234

1 4 2

C U R V I L I N E A R C O O R D I N A T E S

3 . P r o v e t h a t a c y l i n d r i c a l c o o r d i n a t e s y s t e m i s o r t h o g o n a l .

T h e p o s i t i o n v e c t o r o f a n y p o i n t i n c y l i n d r i c a l c o o r d i n a t e s i s

r

=

x i + y j + z k

=

p c o s c p i + p s i n g j

+ z k

T h e t a n g e n t v e c t o r s t o t h e p , 0 a n d z c u r v e s a r e g i v e n r e s p e c t i v e l y b y a P ,

a n d a s w h e r e

= k

a p

=

c o s

i

+ s i n

j ,

a

= - p s i n 0 i + p c o s 0 j ,

' 3 Z

T h e u n i t v e c t o r s i n t h e s e d i r e c t i o n s a r e

e 1

_ e p =

a r / a p

J

c o s 0 i

+ s i n 4 ) j

=

c o s 0 i

+ s i n 0 j

I a r / a p I

c o s t g 5 + s i n e g 5

e 2

e

_

- p s i n Q 5 i + p c o s 0 j

= - s i n 4 i + c o s 0 i

' I a r / a I y

p 2 s i n 2 c 5 + p 2 c o s 2 g 5

e 3

= e z =

a r / a z

k

j a r / a z I

T h e n

e 1 . e 2

= ( c o s g 5 i + s i n g 5 j ) . ( - s i n g 5 i + c o s 0 j )

=

0

e 1 . e 3

= ( c o s c p i + s i n g 5 j ) ( k ) = 0

e 2 e 3 =

( - s i n c b i + c o s g 5 j )

( k ) =

0

a n d s o e 1 , e 2 a n d e 3 a r e m u t u a l l y p e r p e n d i c u l a r a n d t h e c o o r d i n a t e s y s t e m i s o r t h o g o n a l .

4 . R e p r e s e n t t h e v e c t o r A = z i - 2 x j + y k i n c y l i n d r i c a l c o o r d i n a t e s . T h u s d e t e r m i n e A O , 4 a n d A z .

F r o m P r o b l e m 3 ,

( 1 ) e p

=

c o s c p i

+ s i n 0 j ( 2 ) s i n 0 i

+ c o s 4 5 j

( 3 ) e 2 = k

S o l v i n g ( 1 ) a n d ( 2 ) s i m u l t a n e o u s l y ,

i =

c o s c 5 e p - s i n 0 e o ,

j =

s i n 0 e p + c o s c p e ( k

T h e n A = z i - 2 x j + y k

=

z ( c o s 4 e p - s i n g 5 e e ) - - 2 p c o s g 5 ( s i n 0 e p + c o s 0 e ( + p s i n c a e 2

( z c o s c a - 2 p c o s ( 5 s i n g 5 ) e p - ( z s i n 6 + 2 p c o s 2 0 ) e 4 + p s i n 0 e 2

a n d A P =

z c o s o - 2 p c o s g 5 s i n o , A 0 = - z s i n c p - 2 p c o s 2 g 5 ,

A z = p s i n g 5 .

5 . P r o v e

d t

e p =

e , , a t e .

c b e p

w h e r e d o t s d e n o t e d i f f e r e n t i a t i o n w i t h r e s p e c t t o t i m e t .

F r o m P r o b l e m 3 ,

e p

=

c o s g 5 i + s i n g 5 j ,

e ,

s i n 0 i + c o s g 5 j

T h e n

d t

e p

= - ( s i n 0 ) g 5 i

+ ( c o s 0 )

s i n 0 i + c o s 0 j ) g 5

_

g 5 e ( k

d

e ( h

_

- ( c o s g 5 ) g S I - ( s i n

- ( c o s g 5 i + s i n 0 j ) c p

=

- r , e p

Page 150: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 150/234

C U R V I L I N E A R C O O R D I N A T E S

6 . E x p r e s s t h e v e l o c i t y v a n d a c c e l e r a t i o n a o f a p a r t i c l e i n c y l i n d r i c a l c o o r d i n a t e s .

1 4 3

I n r e c t a n g u l a r c o o r d i n a t e s t h e p o s i t i o n v e c t o r i s

r = x i + y j + z k a n d t h e v e l o c i t y a n d a c c e l e r a t i o n

v e c t o r s a r e

v

= d t

=

z i + y j + A

a n d

a

I n c y l i n d r i c a l c o o r d i n a t e s , u s i n g P r o b l e m 4 ,

r

d t r

=

z i + y j + a k

x i + y j + z k

= ( p c o s 0 ) ( c o s c b e p - s i n 0

( p s i n ( ; b ) ( s i n o e p + c o s 0 e d , )

+

p e p + z e z

z e z

d p

d e

e z = P e p + p q e o + z e Z

h e n

v

`

d t

d t e p

+ p d t p +

d z

u s i n g P r o b l e m 5 .

D i f f e r e n t i a t i n g a g a i n ,

a

=

d 2

=

d t

( p

d t

d e p

. ,

. d e b

d t + P e p + P , d t

+ p e o +

e + z e z

p e o + P .

+ p

( - e p ) + P 4 e e + P c e o +

e z

( p - p 2 ) e p + ( p

+ 2 p ) e b +

e z

u s i n g P r o b l e m 5 .

7 . F i n d t h e s q u a r e o f t h e e l e m e n t o f a r c l e n g t h i n c y l i n d r i c a l c o o r d i n a t e s a n d d e t e r m i n e t h e c o r r e -

s p o n d i n g s c a l e f a c t o r s .

F i r s t M e t h o d .

x = p c o s 0 ,

y = p s i n o ,

z = z

d x

p s i n c p d o + c o s o d p ,

d y

= p c o s 0 d o + s i n 0 d p ,

d z = d z

T h e n

d s 2 = d x 2 + d y 2 + d z 2 =

( - p s i n o

d o +

c o s 0

d p ) 2 +

( p c o s o d c /

+ s i n %

d p ) 2 +

( d z ) 2

( d p )

+ p 2 ( d c b ) 2 + ( d z ) 2 = h 1 ( d p ) 2 + h 2 ( d o ) 2 + h 2

( d z ) 2

a n d

h 1 = h = 1 , h 2 = h q = p ,

h s = h z = I

a r e t h e s c a l e f a c t o r s .

S e c o n d M e t h o d . T h e p o s i t i o n v e c t o r i s r = p c o s 0 i

+ p s i n

j

+ z k .

T h e n

d r

=

a p d p + . 0

r d o

+

a z

d z

= ( c o s

i + s i n 0 j ) d p + ( - p s i n

i + p c o s 0 j ) d o + k d z

( c o s

d p - p s i n 0 d c p ) i

+ ( s i n

d p + p c o s c p d o ) j

+ k d z

T h u s

d s 2 = d r d r =

( c o s

0 d p - p s i n 0 d c ) 2 + ( s i n 0 d p + p c o s 0 d o ) 2 + ( d z ) 2

( d p f + p 2 ( d c b ) 2 +

( d z ) 2

Page 151: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 151/234

1 4 4

C U R V I L I N E A R C O O R D I N A T E S

8 .

W o r k P r o b l e m 7 f o r ( a ) s p h e r i c a l a n d ( b ) p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s .

( a )

x =

r s i n 6 c o s 0 , y = r s i n 6 s i n 0 ,

z = r c o s 6

T h e n

d x

= - r s i n B s i n 0 d o + r c o s 6 c o s 0 d 6 + s i n 6 c o s 4 d r

d y = r s i n 6 c o s q d o + r c o s 6 s i n % d 6 + s i n 6 s i n 0 d r

d z

= - r s i n 6 d 6 + c o s 6 d r

( b )

a n d

( d s ) 2

=

( d x ) 2 +

( d y ) 2 + ( d z )

( d r ) 2 + r 2 ( d O ) + r 2 s i n 2 6 ( d o

T h e s c a l e f a c t o r s a r e h 1 = h r = 1 ,

h 2 = h 8 = r , h 3 = h o = r s i n 6 .

x =

2 ( u 2 - v 2 ) ,

y = u v ,

z = z

T h e n

d x =

u d u - v d v ,

d y = u d v + v d u ,

d z = d z

a n d

( d s ) 2

( d x ) 2 + ( d y ) 2 + ( d z ) 2

=

( u 2 + v 2 ) ( d u ) 2 +

( u 2 + v 2 ) ( d v ) 2

+ ( d z ) 2

T h e s c a l e f a c t o r s a r e

h 1 = h u = V u 2 + v 2 ,

h 2 = h

v =

u 2 + v 2 , h 3 = h z = 1 .

9 .

S k e t c h a v o l u m e e l e m e n t i n ( a ) c y l i n d r i c a l a n d ( b ) s p h e r i c a l c o o r d i n a t e s g i v i n g t h e m a g n i t u d e s

o f i t s e d g e s .

( a ) T h e e d g e s o f t h e v o l u m e e l e m e n t i n c y l i n d r i c a l c o o r d i n a t e s ( F i g . ( a ) b e l o w ) h a v e m a g n i t u d e s p d o , d p

a n d d z . T h i s c o u l d a l s o b e s e e n f r o m t h e f a c t t h a t t h e e d g e s a r e g i v e n b y

d s 1 = h 1 d u 1 = ( 1 ) ( d p ) = d p ,

d s 2 = h 2 d u 2 = p d o ,

d s 3 = ( 1 ) ( d 7 ) = d z

u s i n g t h e s c a l e f a c t o r s o b t a i n e d f r o m P r o b l e m 7 .

( p d o ) ( d p ) ( d z )

p d p d , d z

Y

Y

F i g . ( a ) V o l u m e e l e m e n t i n c y l i n d r i c a l c o o r d i n a t e s .

F i g . ( b ) V o l u m e e l e m e n t i n s p h e r i c a l c o o r d i n a t e s .

( b ) T h e e d g e s o f t h e v o l u m e e l e m e n t i n s p h e r i c a l c o o r d i n a t e s ( F i g . ( b ) a b o v e ) h a v e m a g n i t u d e s d r , r d 6 a n d

r s i n 6 d o . T h i s c o u l d a l s o b e s e e n f r o m t h e f a c t t h a t t h e e d g e s a r e g i v e n b y

d s 1 = h 1 d u 1 = ( 1 ) ( d r ) = d r ,

d s 2 = h 2 d u 2 = r d 6 ,

d s 3 = h 3 d u 3 = r s i n 6 d o

u s i n g t h e s c a l e f a c t o r s o b t a i n e d f r o m P r o b l e m 8 ( a ) .

Page 152: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 152/234

C U R V I L I N E A R C O O R D I N A T E S

1 4 5

1 0 . F i n d t h e v o l u m e e l e m e n t d V i n ( a ) c y l i n d r i c a l , ( b ) s p h e r i c a l a n d ( c ) p a r a b o l i c c y l i n d r i c a l c o o r -

d i n a t e s .

T h e v o l u m e e l e m e n t i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s u 1 , u 2 , a 3 i s

d V

=

h 1 h 2 h 3 d u 1 d u 2 d u 3

( a ) I n c y l i n d r i c a l c o o r d i n a t e s u 1 p , u 2 = 4 ) , u 3 = z , h 1 = 1 , h 2 = p , h 3 = 1 ( s e e P r o b l e m 7 ) .

T h e n

d V =

( 1 ) ( p ) ( 1 ) d p d o d z =

p d p d o d z

T h i s c a n a l s o b e o b s e r v e d d i r e c t l y f r o m F i g . ( a ) o f P r o b l e m 9 .

( b ) I n s p h e r i c a l c o o r d i n a t e s

u 1 = r , u 2 = 6 , u 3 = 0 , h 1 = 1 , h 2 = r , h 3 = r s i n 6 ( s e e P r o b l e m 8 ( a ) ) .

T h e n

d V

=

( 1 ) ( r ) ( r s i n 6 ) d r d 8 d o

= r 2 s i n 6 d r d 6 d o

T h i s c a n a l s o b e o b s e r v e d d i r e c t l y f r o m F i g . ( b ) o f P r o b l e m 9 .

< c ) I n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s u 1 = u , u 2 = v , u 3 = z , h 1 =

h 2 =

u 2 + v 2 , h 3 = 1 ( s e e P r o b -

l e m 8 ( b ) ) . T h e n

d V

=

( u 2 + v 2 ) ( u 2 + v 2 ) ( 1 ) d u d v d z

=

( u 2 + v 2 ) d u d v d z

1 1 . F i n d ( a ) t h e s c a l e f a c t o r s a n d ( b ) t h e v o l u m e e l e m e n t d V i n o b l a t e s p h e r o i d a l c o o r d i n a t e s .

( a )

x = a c o s h 6 c o s 7 ) c o s 0 ,

y = a c o s h 6 c o s 7 ) s i n o ,

z = a s i n h

s i n ' r )

d x = - a c o s h 6 c o s 7 ) s i n q d o - a c o s h 5 s i n 7 ) c o s 4 d 7 ) + a s i n h

c o s 7 ) c o s c a d

d y = a c o s h 6 c o s 7 ) c o s c p d o - a c o s h 6 s i n 7 ) s i n 0 d 7 7 + a s i n h

c o s ? ) s i n 0 d e

d z = a s i n h

c o s 7 j d 7 7 + a c o s h e s i n 7 7 d e

T h e n

( d s ) 2 =

( d x ) 2 + ( d y ) 2 +

( d z ) 2 = a 2 ( s i n h 2 + s i n 2 7 ) ) ( d e ) 2

+ a 2 ( s i n h 2 e + s i n 2 7 ) ) ( d 7 7 ) 2

+ a 2 c o s h 2 6 c o s 2 7 ) ( d o ) 2

a n d

h 1 = h e = a s i n h 2 e + s i n 2 7 ) ,

h 2 = h , = a s i n h 2 e + s i n 2 7 ) ,

h 3 = h o = a c o s h

c o s 7 ) .

( b )

d V =

( a c o s h

c o s 7 7 ) d 6 d 7 ) d o

= a 3 ( s i n h 2

+ s i n e 7 ) ) c o s h

c o s 7 ) d e d 7 ) d o

1 2 . F i n d e x p r e s s i o n s f o r t h e e l e m e n t s o f a r e a i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s .

R e f e r r i n g t o F i g u r e 3 , p . 1 3 6 , t h e a r e a e l e m e n t s a r e g i v e n b y

d A 1

=

I

( h 2 d u 2 e 2 ) x ( h 3 d u 3 e 3 ) I

=

h 2 h 3 e 2 x e 3 I

d u e d u 3

=

h 2 h 3 d u e d u 3

s i n c e

I e 2 x e 3

=

I

e 1 I

=

1 .

S i m i l a r l y

d A 2

=

I ( h 1 d u 1 e 1 ) x ( h 3 d u 3 e 3 )

I

=

h 1 h 3 d u 1 d u 3

d A 3

=

I

( h 1 d u 1 e 1 ) x ( h 2 d u 2 e 2 )

I

=

h 1 h 2 d u 1 d u 2

Page 153: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 153/234

1 4 6

C U R V I L I N E A R C O O R D I N A T E S

1 3 .

I f u 1 , u 2 , u 3 a r e o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s , s h o w t h a t t h e J a c o b i a n o f x , y , z w i t h r e s p e c t

t o u 1 , u 2 , u 3 i s

R

x , y , z

( x , y , Z )

U 1 , U 2 , u 3

( u 1 + u 2 + u 3 )

h 1 h 2 4

a x

a y

a Z

a u 1

a u ,

a u 1

a x

a y

a z

a u 2

a u 2

a u 2

a x

a y

a z

a u 3 a u 3

a u 3

B y P r o b l e m 3 8 o f C h a p t e r 2 , t h e g i v e n d e t e r m i n a n t e q u a l s

a x

- a y - a Z - a x

- a z

- a x

- a - a Z

i + a u i + a u

i +

a y i +

a

k ) x ( . a 3 i + a u i + a 3 k )

1 1

2 2

2

3

a r

a r

x

a r

= h 1 e 1 , h 2 e 2 x h 3 e 3

a U l a u 2

a u 3

h 1 h 2 h 3 e 1 e 2 x e 3

= h 1 h 2 h 3

I f t h e J a c o b i a n e q u a l s z e r o i d e n t i c a l l y t h e n

a r

,

a r

a r

a r e c o p l a n a r v e c t o r s a n d t h e c u r v i -

a U 1

a u 2 a u 3

l i n e a r c o o r d i n a t e t r a n s f o r m a t i o n b r e a k s d o w n , i . e . t h e r e i s a r e l a t i o n b e t w e e n x , y , z

h a v i n g t h e f o r m

F ( x , y , z ) = 0 . W e s h a l l t h e r e f o r e r e q u i r e t h e J a c o b i a n t o b e d i f f e r e n t f r o m z e r o .

1 4 .

E v a l u a t e f f f ( x 2 + y 2 + z 2 ) d x d y d z w h e r e V i s a s p h e r e h a v i n g c e n t e r a t t h e o r i g i n a n d r a -

v

d i u s e q u a l t o a .

z

F i g . ( a )

F i g . ( b )

T h e r e q u i r e d i n t e g r a l i s e q u a l t o e i g h t t i m e s t h e i n t e g r a l e v a l u a t e d o v e r t h a t p a r t o f t h e s p h e r e c o n -

t a i n e d i n t h e f i r s t o c t a n t ( s e e F i g . ( a ) a b o v e ) .

T h e n i n r e c t a n g u l a r c o o r d i n a t e s t h e i n t e g r a l e q u a l s

( ' a

V a t - x 2 a 2 - x 2 _ y 2

8

J

J

f

( x 2 + y 2 + z 2 ) d z d y d x

x = o y = 0 z = 0

b u t t h e e v a l u a t i o n , a l t h o u g h p o s s i b l e , i s t e d i o u s .

I t i s e a s i e r t o u s e s p h e r i c a l c o o r d i n a t e s f o r t h e e v a l -

Page 154: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 154/234

C U R V I L I N E A R C O O R D I N A T E S

1 4 7

u a t i o n .

I n c h a n g i n g t o s p h e r i c a l c o o r d i n a t e s , t h e i n t e g r a n d x 2 + y 2 + z 2 i s r e p l a c e d b y i t s e q u i v a l e n t r 2

w h i l e t h e v o l u m e e l e m e n t d x d y d z

i s r e p l a c e d b y t h e v o l u m e e l e m e n t r 2 s i n 8 d r d e d o ( s e e P r o b l e m

1 0 ( b ) ) . T o c o v e r t h e r e q u i r e d r e g i o n i n t h e f i r s t o c t a n t , f i x 8 a n d 0 ( s e e F i g . ( b ) a b o v e ) a n d i n t e g r a t e f r o m

r = 0 t o r = a ; t h e n k e e p 0 c o n s t a n t a n d i n t e g r a t e f r o m 6 = 0 t o 7 T / 2 ; f i n a l l y i n t e g r a t e w i t h r e s p e c t t o 0

f r o m 9 5 = 0 t o 0 _ 7 T / 2 .

H e r e w e h a v e p e r f o r m e d t h e i n t e g r a t i o n i n t h e o r d e r r , 8 , o a l t h o u g h a n y o r d e r c a n

b e u s e d . T h e r e s u l t i s

7 1 / 2

7 1 / 2 a 7 1 / 2

f X 7 1 / 2 ( '

a

8 f

J

J

( r 2 ) ( r 2 s i n 6 d r d 8 d o )

=

8

f J

J

r ' s i n 6 d r d 6 d o

( k = o

0 = o r = o

= o

0 = 0

r = 0

7 1 / 2

7 1 / 2

a

7 1 / 2

7 1 / 2

8

f

f

5 s i n 8 I r = o d 8 d o

=

8 6 f f

s i n 6 d 8 d ( p

< h = o

a = o

7 1 / 2

7 1 / 2

8 a 5 f

- c o s 6

I B = o d o

5

= O

f

a s

d o

4 7 T a s

-

5

- o

P h y s i c a l l y t h e i n t e g r a l r e p r e s e n t s t h e m o m e n t o f i n e r t i a o f t h e s p h e r e w i t h r e s p e c t t o t h e o r i g i n , i . e . t h e

p o l a r m o m e n t o f i n e r t i a , i f t h e s p h e r e h a s u n i t d e n s i t y .

I n g e n e r a l , w h e n t r a n s f o r m i n g m u l t i p l e i n t e g r a l s f r o m r e c t a n g u l a r t o o r t h o g o n a l c u r v i l i n e a r c o o r d i -

n a t e s t h e v o l u m e e l e m e n t d x d y d z i s r e p l a c e d b y h 1 h 2 h 3 d u l d u . 2 d u 3 o r t h e e q u i v a l e n t J ( u i 1 ' u 2 z u 3 ) d u l d u 2 d u 3

w h e r e J i s t h e J a c o b i a n o f t h e t r a n s f o r m a t i o n f r o m x , y , z t o u 1 , u 2 , u 3 ( s e e P r o b l e m 1 3 ) .

' 3 r

' a r

- a r

1 5 .

I f

u 1 , u 2 , u 3 a r e g e n e r a l c o o r d i n a t e s , s h o w t h a t

a u '

a u a n d V u , , V u 2 , V u 3 a r e r e c i p r o -a u

1

2 3

c a l s y s t e m s o f v e c t o r s .

W e m u s t s h o w t h a t

a r

. V u -

W e h a v e

d u p

` +

0 i f p A q

c = o

0 = 0

l t / 2

w h e r e p a n d q c a n h a v e a n y o f t h e v a l u e s 1 , 2 , 3 .

d r

=

a u d u 1

+

a u d u e

+

a u d u 3

1 2

3

M u l t i p l y b y V u 1

.

T h e n

o r

=

d u 1

=

( V u 1

- D - r ) d u 1

+

( V u 1

_ r _ )

d u e

+

( V , ,

a r )

d u 3

-

1

i f p = q

a u 1

a u 2

a u 3

a

1 = 1 ,

v u 1 - = 0

,

V U 1

u 3 = 0

S i m i l a r l y , u p o n m u l t i p l y i n g b y V u 2 '

a n d V u 3

t h e r e m a i n i n g r e l a t i o n s a r e p r o v e d .

- a r

1 6 . P r o v e

a u

. a u X a r

V u 1

V u 2 X V u 3

= 1 .

1 2

3

F r o m P r o b l e m 1 5 ,

- a

' a u ' a u

a n d V u 1 r V u 2 , V u 3 a r e r e c i p r o c a l s y s t e m s o f v e c t o r s . T h e n t h e

- a U l 2

3

r e q u i r e d r e s u l t f o l l o w s f r o m P r o b l e m 5 3 ( c ) o f C h a p t e r 2 .

T h e r e s u l t i s e q u i v a l e n t t o a t h e o r e m o n J a c o b i a n s f o r

Page 155: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 155/234

1 4 8

C U R V I L I N E A R C O O R D I N A T E S

a n d s o

J ( x , Y , z

) J ( u 1 , u 2 . u 3 )

_

3 u 1

a u 1

a u 1

a x

a y

a z

a u 2

a u 2

a u 2

a x

a y

a z

a u 3 a u 2 a u 3

a x

a y

a z

1

u s i n g P r o b l e m 1 3 .

=

J ( u 1 , U 2 ' u 3 )

x , y , z

1 7 . S h o w t h a t t h e s q u a r e o f t h e e l e m e n t o f a r e l e n g t h i n g e n e r a l c u r v i l i n e a r c o o r d i n a t e s c a n b e e x -

p r e s s e d b y

P = 1 q = 1

T h i s i s c a l l e d t h e f u n d a m e n t a l q u a d r a t i c f o r m o r m e t r i c f o r m . T h e q u a n t i t i e s g 0 a r e c a l l e d m e t r i c

c o e f f i c i e n t s a n d a r e s y m m e t r i c , 2 i . e . g , , : 3

2

g q p .

I f

9 0 q = 0 , p / q , t h e n t h e c o o r d i n a t e s y s t e m i s o r t h o g o n a l .

I n t h i s c a s e g 1 1 = h i . g 2 2 = h 2

, 9 3 3 =

. T h e m e t r i c f o r m e x t e n d e d t o h i g h e r d i m e n s i o n a l s p a c e i s o f

f u n d a m e n t a l i m p o r t a n c e i n t h e t h e o r y o f r e l a t i v i t y ( s e e C h a p t e r 8 ) .

G R A D I E N T , D I V E R G E N C E A N D C U R L I N O R T H O G O N A L C O O R D I N A T E S .

u i , u 2 , u 3

x , y , z

W e h a v e

=

a 1 d u i + d 2 d u e + d d u 3

r

=

- a u l .

+

a u

d u 2 +

a u s

1

2 3

T h e n

d s 2

3

3

d s 2

g p q d u , d u q

1 , = 1

q = 1

d r

d r

=

C E ,

4 2 , d u i + a , - 4 2 d u i d u 2 + a i a 3 d u i d u 3

+ C 6 2 a 1 d u 2 d u i + d 2 I t 2 d u 2 + a 2 Q 3 d u 2 d u 3

+ a 3 Q i d u 3 d u 1 + a c 3 Q 2 d u 3 d u 2 + U 3 a 3 d u 3

3 3

g 0 q d u o d u q

w h e r e g p q

i t i p 0 1 q

1 8 . D e r i v e a n e x p r e s s s i o n f o r v 4 ) i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s .

L e t 7 1 ) =

f 1 e i + f 2 e 2 + f 3 e 3 w h e r e f 1 , f 2 , f 3 a r e t o b e d e t e r m i n e d .

S i n c e

d r

a u d u i + a u d u 2 + a u

d u 3

1

2

3

h 1 e 1 d u i + h 2 e 2 d u 2 + h 3 e 3 d u 3

w e h a v e

( 1 )

d < P

=

V

d r

h 1 f i d u i + h 2 f 2 d u 2 + h 3 f 3 d u 3

B u t

( 2 )

d 4 )

=

a

d u i +

a -

d u g +

a c p

d u 3

i

u 2

3

Page 156: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 156/234

C U R V I L I N E A R C O O R D I N A T E S

E q u a t i n g ( 1 ) a n d ( 2 ) ,

T h e n

f =

f = 1 a

1 - h 1 a u l '

2

h 2 a u 2

3

h 3 a u 3

T h i s i n d i c a t e s t h e o p e r a t o r e q u i v a l e n c e

e l a

e 2 a 4 e 3 a

h 1 a u 1 + h 2 a u - 2 + h 3 a u 3

e 1

e 2

e 3

h 1 a u 1 + h 2 a u 2 + h 3 a u 3

w h i c h r e d u c e s t o t h e u s u a l e x p r e s s i o n f o r t h e o p e r a t o r V i n r e c t a n g u l a r c o o r d i n a t e s .

1 9 . L e t u 1 , u 2 , u 3 b e o r t h o g o n a l c o o r d i n a t e s . ( a ) P r o v e t h a t

I V u p l = h p

p = 1 , 2 , 3 .

( b ) S h o w t h a t e p = E p .

1 4 9

( a ) L e t

= u 1 i n P r o b l e m 1 8 . T h e n V u t = h 1 a n d s o I V u 1 i

=

I e 1 1 1 h , = h 1 1 ,

s i n c e

I e 1 I = 1 .

S i m i -

1

- 1

1

l a r l y b y l e t t i n g C I ) = u 2 a n d u s ,

I v u 2 I

= h 2

a n d

I v u 3

h 3 -

.

V u p

( b ) B y d e f i n i t i o n E p =

I

v u p I .

F r o m p a r t ( a ) , t h i s c a n b e w r i t t e n E p = h p v u p = e p a n d t h e r e s u l t i s p r o v e d .

2 0 . P r o v e e 1 = h 2 h 3 v u 2 x V u 3 w i t h s i m i l a r e q u a t i o n s f o r e 2 a n d e 3 , w h e r e u l , u 2 , u 3 a r e o r t h o g o n a l

c o o r d i n a t e s .

F r o m P r o b l e m 1 9 , v u 1 =

h l

= e 2

3 =

e 2

- ,

V U

2

h

u

h

T h e n

v u 2 x v u 3 =

e 2 x e 3

-

e 1

a n d

e 1 = h 2 h 3 v u 2 x V 3 3 .

h 2 . h 3

- h 2 h 3

S i m i l a r l y

e 2 = h 3 h 1 v u 3 x V u 1 - a n d e 3 = h 1 h 2 V u 1 x v u 2 .

2 1 . S h o w t h a t i n o r t h o g o n a l c o o r d i n a t e s

( a )

V

.

( A l e 1 )

h h h

a u

( A l , h 2 h 3 )

1 2 3 1

( b ) V x ( A 1 e 1 )

h 3 2

- 6 u 3 ( A 1 h 1 ) - h e h 2 a u 2 ( A 1 h 1 )

w i t h s i m i l a r r e s u l t s f o r v e c t o r s A 2 e 2 a n d A 3 e 3 .

( a ) F r o m P r o b l e m 2 0 ,

V ' ( A l e , )

=

V

( A 1 h 2 h 3 V u 2 x V u 3 )

=

V ( A 1 h 2 h 3 ) , V u 2 x V u 3 + A 1 h 2 h 3 V ( V u 2 X v u 3 )

h 2

h 3

V ( A 1 h 2 h 3 )

X

e 1

a

h 1

u 1

( A 1 h 2 h 3 ) +

a

1

+

0

= V ( A h h )

  3

e 1

1

h 2 h 3

2

3

e

h

a u

( A 1 h 2 h 3 ) +

h

a u ( A 1 h 2 h 3 )

I

h h

2 3

3

2 3

h 1 h 2 h 3

a u 1 ( A 1 h 2 h 3 )

Page 157: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 157/234

1 5 0

C U R V I L I N E A R C O O R D I N A T E S

( b ) O x ( A i e i )

=

V x ( A i h i V u i )

= V ( A i h i ) x V u i + A i h i V x V u i

Q ( A i h i ) x h i +

1

0

h l

- a u ,

( A 1 h i ) + h 2

a

2 2

( A i h i ) + h

u 3

( A i h i )

x

h i

e 2

a

A h

h 3 h i

a u 3 (

1

1 ) e 3 a ( A i h i )

h i h 2

a u 2

2 2 . E x p r e s s d i v A = V - A i n o r t h o g o n a l c o o r d i n a t e s .

V I A = V . ( A 1 e i + A 2 e 2 + A 3 e 3 )

= V ( A 1 e 1 ) +

V ( A 2 e 2 ) + V ' ( A 3 e 3 )

_

1

a

( A 1 h 2 h 3 ) +

2

( A 2 h 3 h i ) +

a

( A 3 h 1 h 2 )

T

h 1 h 2 h 3 a u i a u 2

a u 3

u s i n g P r o b l e m 2 1 ( a ) .

2 3 . E x p r e s s c u r l A = V x A i n o r t h o g o n a l c o o r d i n a t e s .

V x A

e 2

( A 1 h 1 ) -

e 3

( A i h i )

h 3 h i

u 3

h i h 2 a u 2

+

h h a u i

( ' 4 2 h 2 ) -

h e

h 3 a u 3 ( A 2 h 2 )

= V x ( A i e i + A 2 e 2 + A 3 e 3 )

=

V x ( A i e i ) + V x ( A 2 e 2 ) + V x ( A 3 e 3 )

e i

a

+

h 2 h 3 a u 2

( A 3 h 3 )

e i

( A 3 h 3 ) - ( A 2 h 2 ) +

h 2 h 3

a u 2

u 3

e 2

a ( A 3

h 3 )

h 3 h i a u i

e 2

a

( A 1 h 1 ) -

a

( A 3 h 3 )

h 3 h i

a u 3

a u i

e 3

a

( A 2 h 2 ) -

a

( A i h i )

h i h 2

a u i

a u 2

u s i n g P r o b l e m 2 1 ( b ) . T h i s c a n b e w r i t t e n

V X A

= 1

h 1 h 2 h 3

h i e 1

a

a u 1

A i h 1

2 4 . E x p r e s s V 2 q i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s .

e i a l ' J

e 2

V b

r o m P r o b l e m 1 8 ,

h i a u i

h 2 a u 2

A 2 h 2 A 3 h 3

e 3 a

h 3 a u 3

Page 158: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 158/234

C U R V I L I N E A R C O O R D I N A T E S

I f A = v q , t h e n

_

1

a

_ 1

a /

_ a

A i

h a u

A 2

h 2 '

A 3

h a u

1

2

2 3

3

a n d b y P r o b l e m 2 2 ,

v - A =

v 2 J

1

a ( h 2 1 1 3

+

( h 3 h 1 a t e )

+

( h 1 h 2 a q

h i h 2 h 3

a u i

h 1

- a u ,

a u 2

h 2

a u 2

a u 3

h 3

a u 3

2 5 . U s e t h e i n t e g r a l d e f i n i t i o n

f f A

n d S

l i m

A S

A V

( s e e P r o b l e m 1 9 , C h a p t e r 6 ) t o e x p r e s s V A

i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s .

C o n s i d e r t h e v o l u m e e l e m e n t A V ( s e e a d j a -

c e n t f i g u r e ) h a v i n g e d g e s h j A u 1 , h 2 A u 2 , h 3 A u 3 .

L e t A = A i e 1 + A 2 e 2 + A 3 e 3 a n d l e t n b e

t h e o u t w a r d d r a w n u n i t n o r m a l t o t h e s u r f a c e A S o f

A V . O n f a c e J K L P , n = - e 1 . T h e n w e h a v e a p -

p r o x i m a t e l y ,

e 1

f f A n d S

=

( A n a t p o i n t P ) ( A r e a o f J K L P )

J K L P

[ ( A 1 e 1 + A 2 e 2 + A 3 e 3 )

( - e l ) I ( h 2 h 3 A u 2 A u 3 )

- A l h 2 h 3 A u 2 A u 3

O n f a c e E F G H , t h e s u r f a c e i n t e g r a l i s

1 5 1

e 2

A l h 2 h 3 D u 2 A u 3

+

a u ( A 1 h 2 h 3 A u 2 A u 3 ) A U 1

1

a p a r t f r o m i n f i n i t e s i m a l s o f o r d e r h i g h e r t h a n A 1 A 2 A 3 .

T h e n t h e n e t c o n t r i b u t i o n t o t h e s u r f a c e

i n t e g r a l f r o m t h e s e t w o f a c e s i s

a u

( A , . h 2 h 2 A u 2 A u 3 ) A

1

1

T h e c o n t r i b u t i o n f r o m a l l s i x f a c e s o f A V i s

a

( A 1 h 2 h 3 ) A u 1 A u 2 A u 3

1

a u i

( A 1 h 2 h 3 ) +

a - ( A 2 h 1 h 3 ) + a u 3 ( A 3 h l h 2 )

A u 1 A u 2 A u 3

U 2

I

D i v i d i n g t h i s b y t h e v o l u m e h 1 h 2 h 3 A 1 A 2 A u 3 a n d t a k i n g t h e l i m i t a s A u 1 , A u 2 , A 3 3 a p p r o a c h z e r o ,

w e f i n d

d i v A

=

v A

1

[ -

( A 1 h 2 h 3 ) +

( A 2 h 1 h 3 ) + a ( A 3 h 1 h 2 )

h i h 2 h 3

a u 1

o u 2

- 3 u 3

N o t e t h a t t h e s a m e r e s u l t w o u l d b e o b t a i n e d h a d w e c h o s e n t h e v o l u m e e l e m e n t A V s u c h t h a t P i s

a t i t s c e n t e r .

I n t h i s c a s e t h e c a l c u l a t i o n w o u l d p r o c e e d i n a m a n n e r a n a l o g o u s t o t h a t o f P r o b l e m 2 1 ,

C h a p t e r 4 .

Page 159: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 159/234

1 5 2

2 6 . U s e t h e i n t e g r a l d e f i n i t i o n

J

A

d r

( c u r l A )

n = ( O x A ) n =

l i m

A S - 0

L A S

( s e e P r o b l e m 3 5 , C h a p t e r 6 ) t o e x p r e s s V x A

i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s .

L e t u s f i r s t c a l c u l a t e ( c u r l A )

e 1 .

T o d o

t h i s c o n s i d e r t h e s u r f a c e S 1 n o r m a l t o e 1 a t P , a s

s h o w n i n t h e a d j o i n i n g f i g u r e . D e n o t e t h e b o u n d a r y

o f S 1 b y C 1 . L e t A = A l e 1 + A 2 e 2 + A 3 e 3 .

W e

h a v e

P Q

Q b

T h e f o l l o w i n g a p p r o x i m a t i o n s h o l d

( 1 )

f A

d r

=

( A a t P )

( h 2 A u 2 e 2 )

P Q

T h e n

o r

C U R V I L I N E A R C O O R D I N A T E S

+

f A . d r

+

f A . d r

L M

( A 1 e 1 + A 2 e 2 + A 3 e 3 )

h 2 u 2 e 2 )

f

A d r

= A 2 h 2 A U - 2

M L

( 2 )

f A . d r

L M

S i m i l a r l y ,

o r

f A .

d r

P M

- A 2 h 2 A - 2

- a

( A 2 h 2 A u 2 ) L \ u 3

- a u s

a u 3 ( A 2

h 2 A u 2 ) A 3

( A a t P ) ( h 3 D u 3 e 3 )

=

A 3 h 3 A u 3

( 3 )

f

A - d r

=

- A 3 h 3 D u 3

M P

a n d

( 4 )

f A . d r

=

A s h 3 D u 3 + -

u

( A 3 h 3 A u 3 ) A u 2

Q L

A d d i n g ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) w e h a v e

J

A d r =

c 1

2

M P

A 2 h 2 A u 2

a ( A 3 h 3

A 3 ) u 2

-

a ( A 2 h 2 A u 2 ) A u 3

2 3

=

a u 2

( A 3 h 3 ) -

a 3 3

( A 2 h 2 )

A U 2 A 3

a p a r t f r o m i n f i n i t e s i m a l s o f o r d e r h i g h e r t h a n A 2 A u 3 .

Page 160: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 160/234

C U R V I L I N E A R C O O R D I N A T E S

z e r o ,

1

( c u r l A )

- e 1

=

h h 3

a 2 2

( A 3 h 3 ) - " a u 3 ( A 2 h 2 )

S i m i l a r l y , b y c h o o s i n g a r e a s S 2 a n d S 3 p e r p e n d i c u l a r t o e 2 a n d e 3 a t P r e s p e c t i v e l y , w e f i n d ( c u r l A ) - e 2

a n d ( c u r l A ) - e 3 . T h i s l e a d s t o t h e r e q u i r e d r e s u l t

c u r l A =

1 5 3

D i v i d i n g b y t h e a r e a o f S 1 e q u a l t o h 2 h 3 D u 2 t a u 3 a n d t a k i n g t h e l i m i t a s A U 2 a n d A 3 a p p r o a c h

e i

' 6

a u ( A 3 h 3 ) - a ( A 2 h 2 )

h 2 h 3

2

3

+

e h

a u ( A 1 h 1 )

- a u

( A 3 h 3 )

h 3 1

3

1

+ e

I - a u ,

( A 2 h 2 '

a u ( A 1 h 1 )

h 1 h 2

2

h i e 1

h 2 e 2

h 3 e 3

a a

a

- 3 u 1

a u 2

a u 3

h 1 A 1

h 2 A 2 h 3 A 3

T h e r e s u l t c o u l d a l s o h a v e b e e n d e r i v e d b y c h o o s i n g P a s t h e c e n t e r o f a r e a S i ; t h e c a l c u l a t i o n

w o u l d t h e n p r o c e e d a s i n P r o b l e m 3 6 , C h a p t e r 6 .

2 7 . E x p r e s s i n c y l i n d r i c a l c o o r d i n a t e s t h e q u a n t i t i e s ( a ) V < P , ( b ) V - A , ( c ) V x A , ( d ) V 2 < P .

a n d

1 a w e 1 +

a y e 2

+

a y e 3

h 1 a u ,

h 2 a u 2

h 3 a u 3

1 a

e

+

1

e +

1 a T

1 a p

P

p a 0

1

a z

a

1 a

a

a p

e p +

T

p

e o

+

a Z

e z

e z

( b )

V -

A

1 - 3 u , ( h 2 h 3 A 1 ) + a u ( h 3 h 1 A 2 ) +

1 h 2 h 3

2

a

a u 3

1

a

( ( p ) ( 1 ) A p }

+

( i c )

( 1 ) ( p ) a

a p

a A

p a p

( p A p )

+

+

a z ( p A z )

F o r c y l i n d r i c a l c o o r d i n a t e s ( p , q , z ) ,

u 1 = p u 2 = 0 , u 3 = z ;

e 1 e p ,

e 3 = e z

h 1 = h p = 1 ,

h 2 = h o = p ,

h 3 = h z = 1

1

h 1 h 2 h 3

( h 1 h 2 A 3 )

+

a z

( ( 1 ) ( p ) A Z ) ]

w h e r e A = A P e 1 + A o e 2 + A Z e 3 ,

i . e . A I = A , , A 2 = A k , A 3 = A Z .

( c )

V X A

= 1

h 1 h 2 h 3

h 1 e 1

h 2 e 2

h 3 e 3

a

a

a

a u 1

a u 2

a u 3

1

=

P

e p p e g

e z

a a

a

a p 4 a z

h 1 A 1

h 2 A 2 h 3 A 3

I A p p A 0 A Z

Page 161: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 161/234

1 5 4

1

P

C U R V I L I N E A R C O O R D I N A T E S

a A z

_

a

( P A k )

e p

+

a

L A P

a p

( P A ) _ )

o

e z

( d )

V 2

x

1

a

( ? t h

a

h 3 h I

+

h 1 h 2

V 2 4 )

h 1 h 2 h 3 L a u 1

h 1

a u ,

a u 2

h 2

a u 2

a u 3

h 3

1

a ( ( p ) ( 1 )

- a ( D )

+

a ( ( 1 ) ( 1 ) a

+

a

( 1 ) ( P ) a q )

a z

( 1 )

a z

r

( 1 ) ( P ) ( 1 )

a P

( 1 )

a P

P

a ( a i l

P a p ` p a p l

2 8 . E x p r e s s ( a ) V x A a n d ( b ) V 2

H e r e

u 1 = r , u 2 = e , U 3 = 0 ;

O 1  A =

a )

h 1 h 2 h 3

P

a A p

P

a A z

a z

a P

( 1 ) ( r ) ( r s i n e )

h 1 e 1

a

a u ,

1 a 2 a 2 < p

+

P 2

4 2

+ a z 2

i n s p h e r i c a l c o o r d i n a t e s .

e 2 =

h , 2 =

h 2 e 2

h 3 e 3

a

a

- 3 U 2

a u 3

h 1 A 1 h 2 A 2 h 3 A 3

r 2 s i n e

- 6 0

( r s i n e A o ) - - a ( r A e )

a A r

1 ( r s i n 0 A O )

( b ) V 2

_

1

a ( h 2 h s P \ +

a

h 1 h 2 h 3

- 3 u ,

h l

- 3 u ,

a u 2

r e 6

+

e r

e , ; +

e r

r e e r s i n 0 e ( k

a

a

a

a r

a &

a 0

A r r A e

r s i n e

a ( r A e ) _ a A r

r s i n e e ( h

a r

a e

h 3 h 1 a

+

a

( h - j h - 2 a q

J

h 2

a u 2 a u 3

h 3

a u 3

1

[ - 3 ( ( r ) ( r s i n e ) a

( 1 ) ( r ) ( r s i n e )

a r

( 1 )

a r

+

a

( r s i n e ) 0 ) ( 1 ) ' a q j

' 3 0

r a e

+

1 s i n e

a ( r : 2 a

+

s i n e

r 2 s i n e

a r

a r a e

a e

1

a

r 2

+

1

a ( s i n O ' \

r 2 - 6 r

a r

r 2 s i n e ' 3 0

a e

2 9 . W r i t e L a p l a c e ' s e q u a t i o n i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s .

2 q

r 2 s i n 2 9

F r o m P r o b l e m 8 ( b ) ,

u 1 = u , u 2 = v , u 3 = z ;

h 1 =

u 2 + v 2 , h 2 = u 2 + v 2 , h 3

Page 162: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 162/234

C U R V I L I N E A R C O O R D I N A T E S

T h e n

V 2

` f '

=

2 2

I

u

a +

  + v

a a v

a 2 ` Y +

a - 2

q

a 2

u 2 + v 2

a u 2

a v 2

a z 2

a n d L a p l a c e ' s e q u a t i o n i s V 2 ' = 0 o r

+ j

( u + v

2

z

a 2

+

a 2

+

( u 2 + v 2 )

a 2

= 0

a u

a v

a t p

a v

a z 2

3 0 . E x p r e s s t h e h e a t c o n d u c t i o n e q u a t i o n

a U

= K

V 2 U i n e l l i p t i c c y l i n d r i c a l c o o r d i n a t e s .

H e r e

u 1 = u , u 2 - , = v , u 3 = z ;

h l = h , 2 = a s i n h 2 u + s i n e v ,

h 3 = 1 .

T h e n

0 2 U

=

1 a

( i u ) +

a

( L U ) +

a ( a 2 ( s i n h 2 u

a 2 ( s i n h 2 u + s i n 2 v )

a u

a u

a v

a v

a z

1

r a 2 U

+

a 2 U

+

a 2 U

a 2 ( s i n h 2 u + s i n 2 v ) L a u 2

- a v 2

a z 2

a n d t h e h e a t c o n d u c t i o n e q u a t i o n i s

a U

a t

1

a 2 U + a 2 U

+

a 2 U

a 2 ( s i n h 2 u + s i n 2 v )

[ a U 2

a v 2

- a Z 2

S U R F A C E C U R V I L I N E A R C O O R D I N A T E S

+ s i n 2 v )

3 1 . S h o w t h a t t h e s q u a r e o f t h e e l e m e n t o f a r c l e n g t h o n t h e s u r f a c e r = r ( u , v ) c a n b e w r i t t e n

d s 2

=

E d u 2

+

2 F d u d v

+

G d v 2

W e h a v e

T h e n

d s 2 =

d r d r

d r

=

a d .

+ a a

- v d v

_

a r

a r

2

a r

a r

a r

a r

a u

a u

d u

+

2

a u

a v

d u d v

+

a v a v

d v 2

E d u 2

+

2 F d u d v

+

G d v 2

3 2 . S h o w t h a t t h e e l e m e n t o f s u r f a c e a r e a o f t h e s u r f a c e r = r ( u , v ) i s g i v e n b y

d S

=

E

d u d v

T h e e l e m e n t o f a r e a i s g i v e n b y

d S

f ( d u ) x ( i - d v )

+

-

a r

x

a r

d u d v

=

a u

a v

J

1 5 5

) d u d v

x

a v )

a u

x

a v

u

T h e q u a n t i t y u n d e r t h e s q u a r e r o o t s i g n i s e q u a l t o ( s e e P r o b l e m 4 8 , C h a p t e r 2 )

( a r

a r ) ( a r

a r )

-

( a r

a r ) ( a r

a r )

=

E G - F 2

a n d t h e r e s u l t f o l l o w s .

a u a u

a v a v

a u

a v

a v

a u

Page 163: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 163/234

1 5 6

C U R V I L I N E A R C O O R D I N A T E S

M I S C E L L A N E O U S P R O B L E M S O N G E N E R A L C O O R D I N A T E S .

3 3 . L e t A b e a g i v e n v e c t o r d e f i n e d w i t h r e s p e c t t o t w o g e n e r a l c u r v i l i n e a r c o o r d i n a t e s y s t e m s

( u i , u 2 , u 3 ) a n d ( u i , u 2 , u 3 ) .

F i n d t h e r e l a t i o n b e t w e e n t h e c o n t r a v a r i a n t c o m p o n e n t s o f t h e v e c t o r

i n t h e t w o c o o r d i n a t e s y s t e m s .

S u p p o s e t h e t r a n s f o r m a t i o n e q u a t i o n s f r o m a r e c t a n g u l a r

( x , y , z ) s y s t e m t o t h e ( u i , u 2 i u 3 ) a n d

( u i , u 2 , i . L 3 ) s y s t e m s a r e g i v e n b y

( 1 )

x = X 1 ( u i , u 2 . U 3 ) ,

Y = Y 1 ( u 1 , u 2 , u 3 ) ,

x = x . , 0 7 1 , 4 2 , u 3 ) ,

Y = Y - 2 0 7 1 , u 2 , u 3 ) ,

z = z i ( u 1 , u 2 , u 3 )

z = z 2 0 7 1 , u 2 , u 3 )

T h e n t h e r e e x i s t s a t r a n s f o r m a t i o n d i r e c t l y f r o m t h e ( u 1 , u 2 , u 3 ) s y s t e m t o t h e ( u i , u 2 , u 3 ) s y s t e m d e f i n e d b y

( 2 )

u 1 = u 1 6 1 , u 2 , u 3 ) ,

u 2 = u 2 ( u 1 , u 2 , u 3 ) ,

a n d c o n v e r s e l y . F r o m ( 1 ) ,

u 3 =

u 3 0 i 1 , u 2 , u 3 )

d r

=

a d u 1

+

a u d u 2

+

a u d u 3

a 1 d u 1

+

a 2 d u 2

+

a 3 d u 3

1

2

3

d r

=

a r

d u i

+

a r

d u 2

+

a r

d u 3

=

a i d u i +

a 2 d u 2

+ a n d u 3

- a u ,

a u ` 2 a u 3

T h e n

( 3 )

a 1 d u 1

+

a t 2 d u 2

+

d o d u 3

=

a i d u i

+

a 2 d i 1 2

+

a 3 d u 3

F r o m ( 2 ) ,

d u i

=

a u 1 d u i

+

a u 1 d 7 2

+

a u 1 d u 3

1 2

d u 2

=

a u 2

d u i

+

a u 2

d u 2

+ a u 2

t h i s

a u i

a u 2

a u 3

d u 3

=

a u 3

d u i

+ a u

d u 2

+

a u 3

d u 3

a u i

a u 2

a u 3

S u b s t i t u t i n g i n t o ( 3 ) a n d e q u a t i n g c o e f f i c i e n t s o f d u i , d u 2 , d u ` 3 o n b o t h s i d e s , w e f i n d

a 1

a u i

a u 2

' U . 1

a l

- 3 7 ; , L

+

a 2

a i

+

a 3

a u i

( 4 )

° ` 2

= a 1

1

+

a 2 u

2

+

a 3

u 3

u

a

a u 2

2

a 3

a u i

a

+

2

3

a u 3

a u 3

a u 3

N o w A c a n b e e x p r e s s e d i n t h e t w o c o o r d i n a t e s y s t e m s a s

( 5 )

A

C , C 1 1 + C 2 a 2 + C 3 & a

a n d

A

c 1 a 1 + c 2 a 2 + c 3 a 3

w h e r e C 1 , C 2 , C 3 a n d C 1 , C 2 , C 3 a r e t h e c o n t r a v a r i a n t c o m p o n e n t s o f A i n t h e t w o s y s t e m s . S u b s t i t u t i n g

( 4 ) i n t o ( 5 ) ,

c 1 a 1

+

C 2 a c 2

+

C 3 a 3 =

c i a i

+

c 2 a 2 +

c 3 a 3

a u 2

a u 3

-

+

W

a u i

- a u , - a u , a u 2

-

a u 2

a u 2 -

a u 3

- a u 3

-

a U 3

( C 1

a u i

+ c 2

a u 2 +

a u 3 ' a l

+

( C l a u i

+

a u 2

+

- a - a s )

a 2 +

( C 1

a u i

+ C 2

a 2

+ c 3 u n ) a 3

Page 164: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 164/234

C U R V I L I N E A R C O O R D I N A T E S

T h e n

6 )

C l

=

C 2

=

a u 1

- C

a u l

C 1

a u 1 +

2

a U 2

+

- a u 2

- a u 2

+C 2

C 1

a u 1

C 3

a u 3

a u 2

C 3

-

3

=

a - u 1

a 2

a u 3

- a u 3

C 1 a a ,

+

C 2

a u 2

+

a - u 3

a u 3

C 3

a u 3

o r i n s h o r t e r n o t a t i o n

( 7 )

C ,

=

a u

C 1

u P

+

C 2

P

+

a u

C 3

P

p = 1 , 2 , 3

a u ' 1

a u 2 a u 3

a n d i n e v e n s h o r t e r n o t a t i o n

( 8 ) C

3

-

a u

C

k

=

1

2

3p

,

,

a u

9

S i m i l a r l y , b y i n t e r c h a n g i n g t h e c o o r d i n a t e s w e s e e t h a t

9

C

3

a u p

C

=

1

2 3

)

p

E

q

a

p ,

,

u

9

1 5 7

T h e a b o v e r e s u l t s l e a d u s t o a d o p t t h e f o l l o w i n g d e f i n i t i o n . I f t h r e e q u a n t i t i e s C 1 , C 2 , C 3 o f a c o -

o r d i n a t e s y s t e m ( u 1 , u 2 , u 3 ) a r e r e l a t e d t o t h r e e o t h e r q u a n t i t i e s C 1 , C 2 , C 3 o f a n o t h e r c o o r d i n a t e s y s t e m

( Z 1 , 2 , u 3 ) b y t h e t r a n s f o r m a t i o n e q u a t i o n s ( 6 ) , ( 7 ) , ( 8 ) o r ( 9 ) , t h e n t h e q u a n t i t i e s a r e c a l l e d c o m p o n e n t s o f

a c o n t r a v a r i a n t v e c t o r o r a c o n t r a v a r i a n t t e n s o r o f t h e f i r s t r a n k .

3 4 . W o r k P r o b l e m 3 3 f o r t h e c o v a r i a n t c o m p o n e n t s o f A .

W r i t e t h e c o v a r i a n t c o m p o n e n t s o f A i n t h e s y s t e m s

( u 1 , u 2 , u 3 ) a n d ( u 1 , u 2 , u 3 ) a s

c 1 , c 2 , c 3 a n d

c 1 , c 2 , c 3 r e s p e c t i v e l y . T h e n

( 1 ) A

=

C 1 D u 1 +

C 2 V U 2 + C 3 V U 3

=

c 1 D u 1 +

C 2 V U 2 +

c 3 V U - 3

N o w s i n c e

u p = i p ( u s , u 2 , u 3 ) w i t h p = 1 , 2 , 3 ,

( 2 )

z

a ; j , a u 1

a u 1 a z

a u p a u 1

a u 1 a x

a ' u p a u 1

a u 1 a y

A l s o ,

( 3 )

C 1 V u 1 + C 2 V u 2 + C 3 V u 3

a u p a u 2 a u k - 6 U 3

a u 2 a x

a u 3 a x

a a p a u 2

a u p a u 3

a u 2 a y a u 3 a y

- a u o a u 2

a u i - 3 u 3

a u 2 a z

a u 3 a Z

a u 1

+

a u 2 a u 3 )

( c l a x

c 2

a x

+ c 3 a x i

p = 1 , 2 , 3

a u 1 a u 2

a u 3

a u 1

a u 2

a u 3

+ ( C 1

a y

+ c 2 - j -

+ c 3 a y )

+ ( C 1

a Z + C 2 a Z + C 3 a z

) k

a n d

Page 165: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 165/234

1 5 8

( 4 )

c 1 V U , + c 2 V u 2 + C 3 V u 3

a u 1

a u 2 a u 3

a u l

_

a u 2

F S

u 3

+ { C 1

y

+ C 2

a y

y

+ C 3 a )

+ { C 1

a Z + C 2 a Z +

a Z

k

E q u a t i n g c o e f f i c i e n t s o f

a u 1

C l

a x

( 5 )

a u l

C l a

a u 1

C l a Z

C U R V I L I N E A R C O O R D I N A T E S

i , 3 , k i n ( 3 ) a n d ( 4 ) ,

a u 2

C 2

+x

a u 3

_ a u 1

_ - a - U 2

_ a u g

c g

a x

c l

a x +

c 2

a x +

c 3

a x

a u 2

a u 3

a u l

a u 2

a u 3

+ c 2 a y + c 3 a y

=

c l a y + c 2

a y

+ c 3 a y

+ C

a u 2

+

C

U 3

c

a u 1

+ C

- a - U 2

+ c

- a - U 3

2

a z

3

a z

l

a z

2 a Z

3

a z

S u b s t i t u t i n g e q u a t i o n s ( 2 ) w i t h p = 1 , 2 , 3 i n a n y o f t h e e q u a t i o n s ( 5 ) a n d

a u 2 a u 3

a u 1

a u 2 a u 3

a u l

a u 2

a u 3

o n e a c h s i d e , w e f i n d

'

' '

z

x

a x

a y

a y a y

d

_

a 1 4 1

_ a u 2

_

a u g )

( C l a x + c 2 a x + c g a x

1

a z

a Z

a u , .

a u 2

C l .

=

+

a u ,

a u l

c 2 a u 1

+

_ a u 2

( 6 )

C 2

C l

a u 2

+

C 2

a u 2

+

, . ,

a u 1

a u 2

C S

a u 3

+

C 2

- a a U 3

+

w h i c h c a n b e w r i t t e n

a u l

a u 2

c

7 )

c

+

1

2

+

o r

a u k a u p

( 8 )

S i m i l a r l y , w e c a n s h o w t h a t

( 9 )

3

_ a u q

c l ,

=

q = 1

c q a u 0

C l ,

E 3

q = l

p = 1 , 2 , 3

p = 1 , 2 , 3

o f

T h e a b o v e r e s u l t s l e a d u s t o a d o p t t h e f o l l o w i n g d e f i n i t i o n .

I f t h r e e q u a n t i t i e s c 1 , c 2 , c 3 o f a c o -

o r d i n a t e s y s t e m ( u 1 , u 2 , u 3 ) a r e r e l a t e d t o t h r e e o t h e r q u a n t i t i e s

c 1 , c 2 , c 3 o f a n o t h e r c o o r d i n a t e s y s t e m

( u 1 , u 2 , u 3 ) b y t h e t r a n s f o r m a t i o n e q u a t i o n s ( 6 ) , ( 7 ) , ( 8 ) o r ( 9 ) , t h e n t h e q u a n t i t i e s a r e c a l l e d c o m p o n e n t s o f

a c o v a r i a n t v e c t o r o r a c o v a r i a n t t e n s o r o f t h e f i r s t r a n k .

I n g e n e r a l i z i n g t h e c o n c e p t s i n t h i s P r o b l e m a n d i n P r o b l e m 3 3 t o h i g h e r d i m e n s i o n a l s p a c e s , a n d

i n g e n e r a l i z i n g t h e c o n c e p t o f v e c t o r , w e a r e l e d t o t e n s o r a n a l y s i s w h i c h w e t r e a t i n C h a p t e r 8 . I n t h e

p r o c e s s o f g e n e r a l i z a t i o n i t i s c o n v e n i e n t t o u s e a c o n c i s e n o t a t i o n i n o r d e r t o e x p r e s s f u n d a m e n t a l i d e a s

i n c o m p a c t f o r m . I t s h o u l d b e r e m e m b e r e d , h o w e v e r , t h a t d e s p i t e t h e n o t a t i o n u s e d , t h e b a s i c i d e a s t r e a t -

e d i n C h a p t e r 8 a r e i n t i m a t e l y c o n n e c t e d w i t h t h o s e t r e a t e d i n t h i s c h a p t e r .

a u 3

c 3 a u 1

e q u a t i n g c o e f f i c i e n t s

c 3

a u 3

p = 1 , 2 , 3

a u o

Page 166: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 166/234

3 5 .

C U R V I L I N E A R C O O R D I N A T E S

( a ) P r o v e t h a t i n g e n e r a l c o o r d i n a t e s ( u 1 , u 2 , u 3 ) ,

g

( b ) S h o w t h a t t h e v o l u m e e l e m e n t i n g e n e r a l c o o r d i n a t e s i s

v " g d u 1 d u 2 d u 3 .

( a ) F r o m P r o b l e m 1 7 ,

9 =

a p

a t q

-

a u a u

=

a x

a x

+

a y a y + a z a z

p , 4 = 1 , 2 , 3

q

a u l , a u q

a u p a u q

a u p a u q

g 1 1 g 1 2 g 1 3

g 2 1

g 2 2

g 2 3

g 3 1

g 3 2

g 3 3

w h e r e g , g , a r e t h e c o e f f i c i e n t s o f d u , d u q i n d s 2 ( P r o b l e m 1 7 ) .

T h e n , u s i n g t h e f o l l o w i n g t h e o r e m o n m u l t i p l i c a t i o n o f d e t e r m i n a n t s ,

( 1 )

a 1 a 2 a s

b 1 b 2 b 3

C 1 C 2 C 3

A l B 1 C 1

A 2 B 2 C 2

A s B 3 C 3

w e h a v e

( a r a r

x

a r ) 2

a u 1 a u 2

a u 3

( a r

a r

) ,

a r ) 2

a u 1

a u 2

a u 3

a 1 A 1 + a 2 A 2 + a s A .

a 1 B 1 + a 2 B 2 + a s B 3

1 5 9

a 1 C 1 + a 2 C 2 + a s C 3

b 1 A l + b 2 A 2 + b 3 A s

b 1 B 1 + b 2 B 2 + b 3 B 3

b 1 C 1 + b 2 C 2 + b 3 C 3

c 1 A l + C 2 A 2 + C 3 A S

C 1 B 1 + C 2 B 2 + c 3 B 3

a x a y a z

a u 1

a u 1 a u 1

a x

a y a z

a u 2

a u 2

a u 2

a x

a y

a z

a u 3 a u 3 a u 3

a x

a y a z

a u 1

a u 1

a u 1

a x

a y

a z

a u 2 a u 2

a u 2

a x a y

a z

a u 3

a u 3

a u 3

( b ) T h e v o l u m e e l e m e n t i s g i v e n b y

a x a x

a u 1 a u 2

a u 3

a y

a y

a y

a u 1 a u 2 a u 3

a z a z a z

a u 1 a u 2

a u 3

C 1 C 1 + C 2 C 2 + C 3 C 3

g 1 1

g 1 2 g 1 3

g 2 1

g 2 2

g 2 3

g 3 1 g 3 2 g 3 3

- 6 r

d V

=

1

( a u

d u 1 ) ' ( a u d u 2 ) X ( a

r 3 1

d u 3 )

I

I

a u - 6

r

1

'

a u 2

x o u r

2 3

' d u 1 d u 2 d u 3

b y p a r t ( a ) .

d u 1 d u 2 d u 3

N o t e t h a t v / - g - i s t h e a b s o l u t e v a l u e o f t h e J a c o b i a n o f x , y , z w i t h r e s p e c t t o u 1 , u 2 , u 3 ( s e e P r o b . 1 3 ) .

Page 167: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 167/234

1 6 0

C U R V I L I N E A R C O O R D I N A T E S

S U P P L E M E N T A R Y P R O B L E M S

A n s w e r s t o t h e S u p p l e m e n t a r y P r o b l e m s a r e g i v e n a t t h e e n d o f t h i s C h a p t e r .

3 6 . D e s c r i b e a n d s k e t c h t h e c o o r d i n a t e s u r f a c e s a n d c o o r d i n a t e c u r v e s f o r ( a ) e l l i p t i c c y l i n d r i c a l , ( b ) b i p o l a r ,

a n d ( c ) p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s .

3 7 . D e t e r m i n e t h e t r a n s f o r m a t i o n f r o m ( a ) s p h e r i c a l t o r e c t a n g u l a r c o o r d i n a t e s , ( b ) s p h e r i c a l t o c y l i n d r i c a l

c o o r d i n a t e s .

3 8 . E x p r e s s e a c h o f t h e f o l l o w i n g l o c i i n s p h e r i c a l c o o r d i n a t e s :

( a ) t h e s p h e r e

x 2 + y 2 + z 2 = 9

( c ) t h e p a r a b o l o i d

z = x 2 + y 2

( b ) t h e c o n e z 2 = 3 ( x 2 + y 2 )

( d ) t h e p l a n e

z = 0

( e ) t h e p l a n e

y = x .

3 9 .

I f p , 0 , z a r e c y l i n d r i c a l c o o r d i n a t e s , d e s c r i b e e a c h o f t h e f o l l o w i n g l o c i a n d w r i t e t h e e q u a t i o n o f e a c h

l o c u s i n r e c t a n g u l a r c o o r d i n a t e s : ( a ) p = 4 , z = 0 ; ( b ) p = 4 ; ( c ) 0 = 7 T / 2 ;

( d ) 0 = 7 T / 3 , z = 1 .

4 0 . I f u , v , z a r e e l l i p t i c c y l i n d r i c a l c o o r d i n a t e s w h e r e a = 4 , d e s c r i b e e a c h o f t h e f o l l o w i n g l o c i a n d w r i t e t h e

e q u a t i o n o f e a c h l o c u s i n r e c t a n g u l a r c o o r d i n a t e s :

( a ) v = 7 T / 4 ;

( b ) u = 0 , z = 0 ; ( c ) u = 1 n 2 , z = 2 ; ( d ) v = 0 , z = 0 .

4 1 .

I f u , v , z a r e p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s , g r a p h t h e c u r v e s o r r e g i o n s d e s c r i b e d b y e a c h o f t h e f o l -

l o w i n g : ( a ) u = 2 , z = 0 ; ( b ) v = 1 , z = 2 ; ( c )

3 , z = 0 ; ( d ) 1 < u < 2 , 2 < v < 3 , z = 0 .

4 2 .

( a ) F i n d t h e u n i t v e c t o r s e r , e e a n d

o f a s p h e r i c a l c o o r d i n a t e s y s t e m i n t e r m s o f i , j a n d k .

( b ) S o l v e f o r i , j a n d k i n t e r m s o f e r , e e a n d e o .

4 3 . R e p r e s e n t t h e v e c t o r A = 2 y i - z j + 3 x k i n s p h e r i c a l c o o r d i n a t e s a n d d e t e r m i n e A r , A e a n d

4 4 . P r o v e t h a t a s p h e r i c a l c o o r d i n a t e s y s t e m i s o r t h o g o n a l .

4 5 . P r o v e t h a t ( a ) p a r a b o l i c c y l i n d r i c a l , ( b ) e l l i p t i c c y l i n d r i c a l , a n d ( c ) o b l a t e s p h e r o i d a l c o o r d i n a t e s y s t e m s

a r e o r t h o g o n a l .

4 6 . P r o v e e r = B e e + s i n 6

e " ,

e e =

e . ,

e 0 = - s i n 6

e r - c o s 6

e e .

4 7 . E x p r e s s t h e v e l o c i t y v a n d a c c e l e r a t i o n a o f a p a r t i c l e i n s p h e r i c a l c o o r d i n a t e s .

4 8 . F i n d t h e s q u a r e o f t h e e l e m e n t o f a r e l e n g t h a n d t h e c o r r e s p o n d i n g s c a l e f a c t o r s i n ( a ) p a r a b o l o i d a l ,

( b ) e l l i p t i c c y l i n d r i c a l , a n d ( c ) o b l a t e s p h e r o i d a l c o o r d i n a t e s .

4 9 . F i n d t h e v o l u m e e l e m e n t d V i n ( a ) p a r a b o l o i d a l , ( b ) e l l i p t i c c y l i n d r i c a l , a n d ( c ) b i p o l a r c o o r d i n a t e s .

5 0 . F i n d ( a ) t h e s c a l e f a c t o r s a n d ( b ) t h e v o l u m e e l e m e n t d V f o r p r o l a t e s p h e r o i d a l c o o r d i n a t e s .

5 1 . D e r i v e e x p r e s s i o n s f o r t h e s c a l e f a c t o r s i n ( a ) e l l i p s o i d a l a n d ( b ) b i p o l a r c o o r d i n a t e s .

5 2 . F i n d t h e e l e m e n t s o f a r e a o f a v o l u m e e l e m e n t i n ( a ) c y l i n d r i c a l , ( b ) s p h e r i c a l , a n d ( c ) p a r a b o l o i d a l c o -

o r d i n a t e s .

5 3 . P r o v e t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t a c u r v i l i n e a r c o o r d i n a t e s y s t e m b e o r t h o g o n a l i s t h a t

g P q = 0 f o r p I q .

Page 168: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 168/234

C U R V I L I N E A R C O O R D I N A T E S

1 6 1

5 4 . F i n d t h e J a c o b i a n J ( x ' y ' z )

f o r

( a ) c y l i n d r i c a l , ( b ) s p h e r i c a l , ( c ) p a r a b o l i c c y l i n d r i c a l , ( d ) e l l i p t i c

u 1 , u 2 . u 3

c y l i n d r i c a l , a n d ( e ) p r o l a t e s p h e r o i d a l c o o r d i n a t e s .

5 5 . E v a l u a t e

1 f f

x 2 + y 2 d x d y d z , w h e r e V i s t h e r e g i o n b o u n d e d b y z = x 2 + y 2 a n d

V

H i n t : U s e c y l i n d r i c a l c o o r d i n a t e s .

z = 8 - ( X

2 + y 2 )

.

5 6 . F i n d t h e v o l u m e o f t h e s m a l l e r o f t h e t w o r e g i o n s b o u n d e d b y t h e s p h e r e x 2 + y 2 + z 2 = 1 6 a n d t h e c o n e

z 2 = x 2 + y 2 .

5 7 . U s e s p h e r i c a l c o o r d i n a t e s t o f i n d t h e v o l u m e o f t h e s m a l l e r o f t h e t w o r e g i o n s b o u n d e d b y a s p h e r e o f

r a d i u s a a n d a p l a n e i n t e r s e c t i n g t h e s p h e r e a t a d i s t a n c e h f r o m i t s c e n t e r .

5 8 .

( a ) D e s c r i b e t h e c o o r d i n a t e s u r f a c e s a n d c o o r d i n a t e c u r v e s f o r t h e s y s t e m

x 2 - y 2 = 2 u 1 c o s u 2 ,

x y = u 1 s i n U 2 ,

x

z

z = u 3

( b ) S h o w t h a t t h e s y s t e m i s o r t h o g o n a l . ( c ) D e t e r m i n e J (

' y '

) f o r t h e s y s t e m .

( d ) S h o w t h a t u 1 a n d

u 1 , u 2 , u 3

u 2 a r e r e l a t e d t o t h e c y l i n d r i c a l c o o r d i n a t e s p a n d 0 a n d d e t e r m i n e t h e r e l a t i o n s h i p .

5 9 . F i n d t h e m o m e n t o f i n e r t i a o f t h e r e g i o n b o u n d e d b y x 2 - y 2 = 2 ,

x 2 - y 2 = 4 , x y = 1 , x y = 2 , z = 1 a n d

z = 3 w i t h r e s p e c t t o t h e z a x i s i f t h e d e n s i t y i s c o n s t a n t a n d e q u a l t o K . H i n t : L e t x 2 - y 2 = 2 u ,

x y = v .

6 0 . F i n d

a u ,

r

, o u r ,

D u 1 , O u t , Q u a i n ( a ) c y l i n d r i c a l , ( b ) s p h e r i c a l , a n d ( c ) p a r a b o l i c c y l i n d r i c a l c o -

t

a u 2

3

o r d i n a t e s . S h o w t h a t e 1 = E 1 , e 2 = E 2 , e 3 = E 3 f o r t h e s e s y s t e m s .

6 1 . G i v e n t h e c o o r d i n a t e t r a n s f o r m a t i o n u 1 = x y , 2 u 2 = x 2 + y 2 , u 3 = z .

( a ) S h o w t h a t t h e c o o r d i n a t e s y s t e m i s

n o t o r t h o g o n a l .

( b ) F i n d J (

x ,

y '

z

) .

( c ) F i n d d s 2 .

u 1 i u 2 , u 3

6 2 . F i n d T D , d i v A a n d c u r l A i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s .

6 3 . E x p r e s s ( a ) V J i a n d ( b ) V A i n s p h e r i c a l c o o r d i n a t e s .

6 4 . F i n d V q i n o b l a t e s p h e r o i d a l c o o r d i n a t e s .

a 2 . : p

a 2 ( 1 )

6 5 . W r i t e t h e e q u a t i o n

a x e

+

a 2

=

i n e l l i p t i c c y l i n d r i c a l c o o r d i n a t e s .

Y

6 6 . E x p r e s s M a x w e l l ' s e q u a t i o n V x E

- a n

i n p r o l a t e s p h e r o i d a l c o o r d i n a t e s .

2

6 7 . E x p r e s s S c h r o e d i n g e r ' s e q u a t i o n o f q u a n t u m m e c h a n i c s V q + $

2

m ( E

- V ( x , y , z ) ) i i = 0 i n p a r a b o l i c

c y l i n d r i c a l c o o r d i n a t e s w h e r e m , h a n d E a r e c o n s t a n t s .

6 8 . W r i t e L a p l a c e ' s e q u a t i o n i n p a r a b o l o i d a l c o o r d i n a t e s .

6 9 . E x p r e s s t h e h e a t e q u a t i o n a U = K V 2 U i n s p h e r i c a l c o o r d i n a t e s i f U i s i n d e p e n d e n t o f ( a ) 0 , ( b ) Q S a n d

e , ( c ) r a n d t , ( d ) a n d t .

7 0 . F i n d t h e e l e m e n t o f a r e l e n g t h o n a s p h e r e o f r a d i u s a .

7 1 . P r o v e t h a t i n a n y o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s y s t e m , d i v c u r l A = 0 a n d c u r l g r a d

= 0 .

Page 169: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 169/234

1 6 2

C U R V I L I N E A R C O O R D I N A T E S

7 2 . P r o v e t h a t t h e s u r f a c e a r e a o f a g i v e n r e g i o n R o f t h e s u r f a c e r = r ( u , v ) i s

f f / E G _ F 2

d u d v .

U s e

R

t h i s t o d e t e r m i n e t h e s u r f a c e a r e a o f a s p h e r e .

7 3 . P r o v e t h a t a v e c t o r o f l e n g t h p w h i c h i s e v e r y w h e r e n o r m a l t o t h e s u r f a c e

r = r ( u , v ) i s g i v e n b y

A =

± p ( a r x

a r )

E E G - F 2

a u

a v

7 4 .

( a ) D e s c r i b e t h e p l a n e t r a n s f o r m a t i o n x = x ( u , v ) , y = y ( u , v ) .

( b ) U n d e r w h a t c o n d i t i o n s w i l l t h e i t , v c o o r d i n a t e l i n e s b e o r t h o g o n a l ?

7 5 . L e t ( x , y ) b e c o o r d i n a t e s o f a p o i n t P i n a r e c t a n g u l a r x y p l a n e a n d ( u , v ) t h e c o o r d i n a t e s o f a p o i n t Q i n

a r e c t a n g u l a r u v p l a n e .

I f x = x ( u , v ) a n d y = y ( u , v ) w e s a y t h a t t h e r e i s a c o r r e s p o n d e n c e o r m a p p i n g

b e t w e e n p o i n t s P a n d Q .

( a ) I f x = 2 u + v a n d y = u - 2 v , s h o w t h a t t h e l i n e s i n t h e x y p l a n e c o r r e s p o n d t o l i n e s i n t h e

u v p l a n e .

( b ) W h a t d o e s t h e s q u a r e b o u n d e d b y x = 0 , x = 5 , y = 0 a n d y = 5 c o r r e s p o n d t o i n t h e u v

p l a n e ?

( c ) C o m p u t e t h e J a c o b i a n J ( X ,

v )

a n d s h o w t h a t t h i s i s r e l a t e d t o t h e r a t i o s o f t h e a r e a s o f t h e s q u a r e

a n d i t s i m a g e i n t h e u v p l a n e .

7 6 .

I f x = 2 ( u 2 - v 2 ) , y = u v v

d e t e r m i n e t h e i m a g e ( o r i m a g e s ) i n t h e u v p l a n e o f a s q u a r e b o u n d e d b y x = 0 ,

x = l , y = 0 . y = 1 i n t h e x y p l a n e .

7 7 . S h o w t h a t u n d e r s u i t a b l e c o n d i t i o n s o n F a n d G ,

f

0 0 0 "

0 0

f e - s t

0

0

t

F ( u ) G ( t - u ) d u

d t

- s ( x + y ) F ( x ) G ( y ) d x d y

H i n t : U s e t h e t r a n s f o r m a t i o n x + y = t , x = v f r o m t h e x y p l a n e t o t h e v t p l a n e . T h e r e s u l t i s i m p o r t a n t i n

t h e t h e o r y o f L a p l a c e t r a n s f o r m s .

7 8 .

( a ) I f x = 3 u 1 + u 2 - u 3 , y = u , + 2 u 2 + 2 u 3 , z = 2 u 1 - u 2 - u 3 ,

f i n d t h e v o l u m e s o f t h e c u b e b o u n d e d b y

x = 0 , x = 1 5 , y = 0 , y = 1 0 ,

= 0 a n d z = 5 , a n d t h e i m a g e o f t h i s c u b e i n t h e u 1 u 2 u 3 r e c t a n g u l a r c o o r -

d i n a t e s y s t e m .

( b ) R e l a t e t h e r a t i o o f t h e s e v o l u m e s t o t h e J a c o b i a n o f t h e t r a n s f o r m a t i o n .

7 9 . L e t ( x , y , z ) a n d ( u 1 , u 2 i u 3 ) b e r e s p e c t i v e l y t h e r e c t a n g u l a r a n d c u r v i l i n e a r c o o r d i n a t e s o f a p o i n t .

( a ) I f x = 3 u 1 + u 2 - - U 3 , y = u 1 + 2 u 2 + 2 u 3 ; z = 2 u 1 - u 2 - U 3 , i s t h e s y s t e m u 1 u 2 u 3 o r t h o g o n a l ?

( b ) F i n d d s 2 a n d g f o r t h e s y s t e m .

( c ) W h a t i s t h e r e l a t i o n b e t w e e n t h i s a n d t h e p r e c e d i n g p r o b l e m ?

2

2

+ +

`

b

b i

0

d t h

a ( x , y , z )

V i f

t h t 2 =

, y = u 1

( a

g a n

)

e J a c o

a n2 , z = u 3 - - - i t ,

f i n

I f x = u 1

A N S W E R S T O S U P P L E M E N T A R Y P R O B L E M S .

- 3 ( U - 1 ' U 2 , u s )

e r

y

a ] g .

3 6 .

( a ) u = c 1 a n d v = c 2 a r e e l l i p t i c a n d h y p e r b o l i c c y l i n d e r s r e s p e c t i v e l y , h a v i n g z a x i s a s c o m m o n a x i s .

z = c 3 a r e p l a n e s . S e e F i g . 7 , p a g e 1 3 9 .

( b ) i s = c 1 a n d v = c 2 a r e c i r c u l a r c y l i n d e r s w h o s e i n t e r s e c t i o n s w i t h t h e x y p l a n e a r e c i r c l e s w i t h c e n t e r s

o n t h e y a n d x a x e s r e s p e c t i v e l y a n d i n t e r s e c t i n g a t r i g h t a n g l e s . T h e c y l i n d e r s u = c 1 a l l p a s s

t h r o u g h t h e p o i n t s ( - a , 0 , 0 ) a n d ( a , 0 , 0 ) .

z = c 3 a r e p l a n e s .

S e e F i g . 8 , p a g e 1 4 0 .

( c ) i s = c 1 a n d v = c 2 a r e p a r a b o l i c c y l i n d e r s w h o s e t r a c e s o n t h e x y p l a n e a r e i n t e r s e c t i n g m u t u a l l y p e r -

p e n d i c u l a r c o a x i a l p a r a b o l a s w i t h v e r t i c e s o n t h e x a x i s b u t o n o p p o s i t e s i d e s o f t h e o r i g i n .

z = c 3

a r e p l a n e s . S e e F i g . 6 , p a g e 1 3 8 .

T h e c o o r d i n a t e c u r v e s a r e t h e i n t e r s e c t i o n s o f t h e c o o r d i n a t e s u r f a c e s .

Page 170: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 170/234

C U R V I L I N E A R C O O R D I N A T E S

1 6 3

3 7 . ( a )

( b )

3 8 . ( a )

( e )

r =

V / x 2 + y 2 + z 2 ,

e = a r c t a n

a r c t a n

Y

z x

r =

p 2 + z 2 , 6

a r c t a n P ,

r = 3 ,

( b ) e = 7 r / 6 ,

( c )

r s i n g e = c o s 6 ,

( d ) 6 = 7 7 / 2 ,

t h e p l a n e y = x i s m a d e u p o f t h e t w o h a l f p l a n e s 0 = 7 r / 4 a n d

= 5 7 T / 4

3 9 .

( a ) C i r c l e i n t h e x y p l a n e x 2 + y 2 = 1 6 , z = 0 .

( b ) C y l i n d e r x 2 + y 2 = 1 6 w h o s e a x i s c o i n c i d e s w i t h z a x i s .

( c ) T h e y z p l a n e w h e r e y ? 0 .

( d ) T h e s t r a i g h t l i n e y =

x , z = 1 w h e r e x > 0 , y > 0 .

4 0 .

( a ) H y p e r b o l i c c y l i n d e r x 2 - y 2 = 8 .

( b ) T h e l i n e j o i n i n g p o i n t s ( - 4 , 0 , 0 ) a n d ( 4 , 0 , 0 ) , i . e . x = t , y = 0 , z = 0

w h e r e - 4 ' t < 4 .

( c ) E l l i p s e 2 5 + 9 = 1 , z = 2 .

( d ) T h e p o r t i o n o f t h e x a x i s d e f i n e d b y x ? 4 , y = 0 ,

z = 0 .

4 1 .

( a ) P a r a b o l a y 2 = - 8 ( x - 2 ) , z = 0 .

( b ) P a r a b o l a y 2 = 2 x + 1 , z = 2 .

( c ) R e g i o n i n x y p l a n e b o u n d e d b y

p a r a b o l a s y 2 = - 2 ( x - 1 / 2 ) , y 2 = - 8 ( x - 2 ) , y 2 = 8 ( x + 2 ) a n d y 2 = 1 8

( x + 9 / 2 ) i n c l u d i n g t h e b o u n d a r y .

( d ) S a m e a s ( c ) b u t e x c l u d i n g t h e b o u n d a r y .

4 2 . ( a ) e r

= s i n 6 c o s

i

+

s i n 6 s i n 0 j

+

c o s 6 k

e 0

=

c o s e c o s

i

+

c o s 6 s i n j

- s i n 6 k

e ( ,

=

- s i n 0 1

+

c o s 0 j

( b ) i =

s i n 6 c o s 0 e r

+

c o s 6 c o s 0 e e - s i n o e 4 ,

j

= s i n 6 s i n o e r

+

c o s 6 s i n o e e

+

c o s 0 e

k =

c o s 6 e r - s i n 6 e e

4 3 . A

=

A r e r

+

A 9 e e

+

A 0 e o

w h e r e

A r

=

2 , s i n 2 6 s i n 0 c o s 0 -

r s i n e c o s 0 s i n 0 +

3 r s i n 6 c o s 6 c o s

A e

=

2 r s i n 6 c o s 6 s i n o c o s o -

r c o s 2 6 s i n o - 3 r s i n 2 6 c o s o

A 0

- 2 r s i n a s i n 2 0 - r C o s 6 c o s 0

4 7 . v

=

y r e r + v 0 e 0 + v . e . w h e r e

a

= a r e r + a e e e + a o e ( h

w h e r e

r =

r , v

e = r 6 , v = r s i n 6

. . 2

2

a r = r - r 6 - r s i n 2 6

a e = T

f ( r 2 8 ) _ r

s i n 6 c o s 6 c

a o =

1

d

( r 2 s i n 2

e c )

r s i n 6 d t

4 8 .

( a ) d s 2

=

( u 2 + v 2 ) ( d u 2 + d v 2 ) + u 2 v 2 d 0 2 ,

h u = b y =

u 2 + v 2 ,

h o = u v

( b ) d s 2

=

a 2 ( s i n h 2 u + s i n 2 v ) ( d u e + d v 2 ) + d z 2 ,

h u = b y = a s i n h 2 u + s i n 2 v ,

h z = 1

( c ) d s 2

=

a 2 ( s i n h 2 e + s i n 2 v ) ( d 2 + d 7 J 2 ) + a 2 c o s h 2

C o s 2 7 J d o e ,

h e = h , r = a s i n h 2

+ s i n 2 7 j ,

a c o s h

C o s 7 7

2

2

2

2

a 2 d u d v d z

4

9

2

+ v

v u

( a )

( ) d u d v d W ,

( b ) a ( s i n k u + s i n v ) d u d v d z

,

( c )

( c o s h v - c o s u ) 2

5 0 .

( a ) h e = h , 7 = a s i n h 2 e + s i n 2 7 7 ,

a s i n h

s i n 7 7

( b ) a 3 ( s i n h 2 e + s i n 2 7 ) ) s i n h e s i n 7 7 d e d 7 7 d o

Page 171: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 171/234

1 6 4

5 2 .

5 6 .

6 4 7 T ( 2 - V )

5 4 . ( a ) p , ( b ) r 2 s i n 0 ,

( c ) u 2 + v 2 ,

( d ) a 2 ( s i n h 2 u + s i n 2 v ) ,

( e ) a 3 ( s i n h 2 6 + s i n e ? ) ) s i n h

s i n 7 )

5 5 .

( a ) p d p d o ,

p d c / d z , d p d z

( b ) r s i n 0 d r d o , r 2 s i n 0 d 9 d o , r d r d O

( c )

( u 2 + v 2 ) d u d v , u v u 2 + v 2 d u d % ,

u v u 2 + v 2 d v d o

2 5 6 7 T

1 5

5 9 .

2 K

r c o s 9 c o s 0 i

+ r c o s 9 s i n 0 j - r s i n 9 k

6 0 . ( a )

r r

=

c o s c ) i + s i n 0 j .

P

a _ r

=

_ p s i n 0 i

+ p c o s c a j ,

a r

=

k .

v z = k

a z

5 8 .

( c )

z ; ( d ) u z = 2 P 2 , u 2 = 2 0

x i + y j

O p =

- c o s 0 i + s i n

j

x 2 + y 2

= - S i n e i + c o s 4 j

p

( b ) a r

=

s i n e c o s

i + s i n e s i n

j

+ c o s 9 k

a r

a 9

a r

a q

- r s i n 9 s i n ¢ i + r s i n e c o s 0 j

V r

=

x i + y j + z k

=

s i n e c o s 0 i

+ s i n a s i n j + c o s 9 k

x 2 + y 2 + z 2

V 9

=

x z i + y z j - ( x 2 + y 2 ) k

c o s e c o s

i + c o s 9 s i n 0 j - s i n 9 k

( x 2 + y 2 + z 2 ) x 2 + y 2

r

v

y i + x j

- s i n

i

+ c o s t j

x 2 + y 2

r s i n e

( c ) a u = u i + v i ,

a v = - v i + u j ,

a a r

= k

v u

u i + v j

C U R V I L I N E A R C O O R D I N A T E S

3

v v =

V z = k

5 7 .

3

( 2 a 3 - 3 a 2 h + h 3 )

- v i + u j

u 2 + v 2

, u 2 + v 2

,

6 1 . ( b )

y 2

1 x 2

,

( c ) d s 2

u

a u u 2 + v 2 a v

+

1

a

e

+

2 .

v 4 )

=

1

a

e

d i v A

c u r l A

u 2

( x 2 + y 2 ) ( d u i + d u e ) - 4 x y d u 1 d u 2

+ d u 2

=

( x 2 - y 2 ) 2

s

v

u 2 + v 2

A u )

1

a A z

-

u 2 + v 2

a v

a -

a e

z

z

A v l

+ a A z

/ J a Z

( 1 / 2 A ) }

u V

` + v 2 e u

a z

u 2 ( d u i + d u e ) - 2 u 1 d u 1 d u e

+ d u _

2

2 ( u 2 - u 1 )

+

a

(

u 2 + v 2 A

- a A z

u ,

+ v 2

v

- )

z

u

a u

Page 172: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 172/234

C U R V I L I N E A R C O O R D I N A T E S

6 3 .

( a ) V 1 i

=

a

e r +

T

e 8 +

1

e

a r

a e

r s i n 6 a 0

( b )

1

( r 2

A ) +

B

r s i n 6 a 6

r s i n 6 a q 5

2 a r

r

( c o s h

a 2 c o s h 4 ( s i n h 2 6 + s i n 2 7 7 ) a e

a 2

a

1

a

1

+

a 2 c o s 7 7 ( s i n h 2 6 + s i n 2 7 7 )

( c o s r J

a 2 c o s h 2 : c o s 2 l a c e

2

-

=

a 2 ( s i n h 2 u + s i n 2 v ) c P

5 .

- a

( 1 )

+

a v 2

1

- a

S 2

( R E D ) -

a

( S E , 7 )

S e , -

6 .

a R

+

( M e ) - ( R E D )

S e , 7

+

{ ( s E 7 1 )

-

a

( S E s e ) R e o

a

a a

a

1

a x

1 a x

1

a x e

c a t

e ,

- c

a t e e 7 7

c

a t

e o

w h e r e R

s i n h 6 s i n 7 7

a n d

S =

s i n h 2 e + s i n 2 7

2

2

2

2

m

[

7 .

u 2 + v 2

a

+

a

+

a

+

8 h e

( E

-

W ( u , v ,

z )

a

a q j

28 . u v

a u

'

( u a u )

+ u 2 v a ( v a )

+

)

s l

( u 2 + v 2 )

a 2 p

a 0 2

= 0

6 9 . ( a )

a U

=

K

1

a

( r 2

a U )

+

1 a

( S i n 6 a U )

a t

r 2 a r a r

r 2

s i n

6 a 6

a 6

- a U

( b )

a t

K

[ - 4 k

a r

( r 2 a U )

( c ) s i n B a 6 ( s i n 6

7 0 . d s 2 =

a 2 [ d 6 2 + s i n 2 6 d 0 2 ]

7 4 .

( b )

a x a x

+ a y a y

a u a v

a u a v

1

a

. n 6 A

+

1

a A

0

q

a 2 u

1 6 5

=

0 ,

w h e r e W ( u , v , z ) = V ( x , y , z ) .

0

4 2

( d ) d r ( r 2 U ) = 0

7 8 .

( a ) 7 5 0 , 7 5 ;

( b ) J a c o b i a n = 1 0

7 9 .

( a ) N o .

( b ) d s 2

=

1 4 d u i + 6 d u 2 + 6 d u 2 + 6 d u 1 d u 2 - - 6 d u 1 d u 3 + 8 d u 2 d u 3 ,

g = 1 0 0

8 0 .

( a ) g = 1 6 u 1 u 3 ,

I =

Page 173: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 173/234

C h a p t e r 8

P H Y S I C A L L A W S m u s t b e i n d e p e n d e n t o f a n y p a r t i c u l a r c o o r d i n a t e s y s t e m s u s e d i n d e s c r i b i n g t h e m

m a t h e m a t i c a l l y , i f t h e y a r e t o b e v a l i d . A s t u d y o f t h e c o n s e q u e n c e s o f t h i s r e - L

q u i r e m e n t l e a d s t o t e n s o r a n a l y s i s , o f g r e a t u s e i n g e n e r a l r e l a t i v i t y t h e o r y , d i f f e r e n t i a l g e o m e t r y ,

m e c h a n i c s , e l a s t i c i t y , h y d r o d y n a m i c s , e l e c t r o m a g n e t i c t h e o r y a n d n u m e r o u s o t h e r f i e l d s o f s c i e n c e

a n d e n g i n e e r i n g .

S P A C E S O F N D I M E N S I O N S . I n t h r e e d i m e n s i o n a l s p a c e a p o i n t i s a s e t o f t h r e e n u m b e r s , c a l l e d

c o o r d i n a t e s , d e t e r m i n e d b y s p e c i f y i n g a p a r t i c u l a r c o o r d i n a t e s y s t e m

o r f r a m e o f r e f e r e n c e .

F o r e x a m p l e ( x , y , z ) , ( p , c , z ) , ( r , 8 , 5 5 )

a r e c o o r d i n a t e s o f a p o i n t i n r e c t a n -

g u l a r , c y l i n d r i c a l a n d s p h e r i c a l c o o r d i n a t e s y s t e m s r e s p e c t i v e l y . A p o i n t i n N d i m e n s i o n a l s p a c e i s ,

b y a n a l o g y , a s e t o f N n u m b e r s d e n o t e d b y ( x 1 , x 2 , . . . , x N ) w h e r e

1 , 2 , . . . , N a r e t a k e n n o t a s e x p o -

n e n t s b u t a s s u p e r s c r i p t s , a p o l i c y w h i c h w i l l p r o v e u s e f u l .

T h e f a c t t h a t w e c a n n o t v i s u a l i z e p o i n t s i n s p a c e s o f d i m e n s i o n h i g h e r t h a n t h r e e h a s o f c o u r s e

n o t h i n g w h a t s o e v e r t o d o w i t h t h e i r e x i s t e n c e .

C O O R D I N A T E T R A N S F O R M A T I O N S . L e t ( x 1 , x 2 , . . . , x N ) a n d ( x 1 , x 2 , . . . , R N ) b e c o o r d i n a t e s o f a p o i n t

i n t w o d i f f e r e n t f r a m e s o f r e f e r e n c e .

S u p p o s e t h e r e e x i s t s N

i n d e p e n d e n t r e l a t i o n s b e t w e e n t h e c o o r d i n a t e s o f t h e t w o s y s t e m s h a v i n g t h e f o r m

1 _

- X ' 1

2

2 2 1 2

( 1 )

w h i c h w e c a n i n d i c a t e b r i e f l y b y

( 2 )

x N

=

z N ( x 1 , x 2 ,

. . . ,

x N )

x k

=

x k ( x 1 , x 2 ,

. . . ,

x N ) k = 1 , 2 ,

. . . , N

w h e r e i t i s s u p p o s e d t h a t t h e f u n c t i o n s i n v o l v e d a r e s i n g l e - v a l u e d , c o n t i n u o u s , a n d h a v e c o n t i n u o u s

d e r i v a t i v e s .

T h e n c o n v e r s e l y t o e a c h s e t o f c o o r d i n a t e s ( x 1 , x 2 , . . . , x N ) t h e r e w i l l c o r r e s p o n d a

u n i q u e s e t ( x 1 , x 2 ,

. . . ,

x N ) g i v e n b y

k

= 1

2

N

( 3 )

X

k

x , x , . . . , x ) k = 1 , 2 , . . . , N

T h e r e l a t i o n s ( 2 ) o r ( 3 ) d e f i n e 4 t r a n s f o r m a t i o n o f c o o r d i n a t e s f r o m o n e f r a m e o f r e f e r e n c e t o a n o t h e r .

1 6 6

Page 174: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 174/234

T E N S O R A N A L Y S I S

1 6 7

T H E S U M M A T I O N C O N V E N T I O N . I n w r i t i n g a n e x p r e s s i o n s u c h a s a 1 x 1 + a 2 x 2 + . . . + a 1 y x 1 w e c a n

X

u s e t h e s h o r t n o t a t i o n j Z 1

x i . A n e v e n s h o r t e r n o t a t i o n i s s i m -

p l y t o w r i t e i t a s a j x i , w h e r e w e a d o p t t h e c o n v e n t i o n t h a t w h e n e v e r a n i n d e x ( s u b s c r i p t o r s u p e r -

s c r i p t ) i s r e p e a t e d i n a g i v e n t e r m w e a r e t o s u m o v e r t h a t i n d e x f r o m 1 t o N u n l e s s o t h e r w i s e s p e c -

i f i e d . T h i s i s c a l l e d t h e s u m m a t i o n c o n v e n t i o n . C l e a r l y , i n s t e a d o f u s i n g t h e i n d e x j w e c o u l d h a v e

u s e d a n o t h e r l e t t e r , s a y p , a n d t h e s u m c o u l d b e w r i t t e n a o x O . A n y i n d e x w h i c h i s r e p e a t e d i n a g i v -

e n t e r m , s o t h a t t h e s u m m a t i o n c o n v e n t i o n a p p l i e s , i s c a l l e d a d u m m y i n d e x o r u m b r a l i n d e x .

A n i n d e x o c c u r r i n g o n l y o n c e i n a g i v e n t e r m i s c a l l e d a f r e e i n d e x a n d c a n s t a n d f o r a n y o f t h e

n u m b e r s 1 , 2 , . . . , N s u c h a s k i n e q u a t i o n ( 2 ) o r ( 3 ) , e a c h o f w h i c h r e p r e s e n t s N e q u a t i o n s .

C O N T R A V A R I A N T A N D C O V A R I A N T V E C T O R S . I f N q u a n t i t i e s A 1 , A 2 , . . . ,

A N i n

a c o o r d i n a t e s y s -

t e m ( x 1 , x 2 , . . . , x 1 ) a r e r e l a t e d t o N o t h e r q u a n t i t i e s

A 1 , A 2 ,

. . . ,

f f

i n a n o t h e r c o o r d i n a t e s y s t e m ( x 1 , x 2 , . . . , x N ) b y t h e t r a n s f o r m a t i o n e q u a t i o n s

A

_

a x 9 A q

p =

1 , 2 , . . . , N

q = 1

w h i c h b y t h e c o n v e n t i o n s a d o p t e d c a n s i m p l y b e w r i t t e n a s

A =

a x P A q

a x q

t h e y a r e c a l l e d c o m p o n e n t s o f a c o n t r a v a r i a n t v e c t o r o r c o n t r a v a r i a n t t e n s o r o f t h e f i r s t r a n k o r f i r s t

o r d e r . T o p r o v i d e m o t i v a t i o n f o r t h i s a n d l a t e r t r a n s f o r m a t i o n s , s e e P r o b l e m s 3 3 a n d 3 4 o f C h a p t e r 7 .

I f N q u a n t i t i e s

A 1 i A 2 ,

. . . ,

A N

i n a c o o r d i n a t e s y s t e m ( x 1 , 1 2 , . . . , x 1 ) a r e r e l a t e d t o N o t h e r

q u a n t i t i e s A t , A 2 , . . . , A f f i n a n o t h e r c o o r d i n a t e s y s t e m ( x 1 , x 2 , . . . , x N ) b y t h e t r a n s f o r m a t i o n e q u a t i o n s

A p

=

a x p A q

p =

1 , 2 , . . . , N

q = 1

o r

A P

a x q A

a z p

q

t h e y a r e c a l l e d c o m p o n e n t s o f a c o v a r i a n t v e c t o r o r c o v a r i a n t t e n s o r o f t h e f i r s t r a n k o r f i r s t o r d e r .

N o t e t h a t a s u p e r s c r i p t i s u s e d t o i n d i c a t e c o n t r a v a r i a n t c o m p o n e n t s w h e r e a s a s u b s c r i p t i s

u s e d t o i n d i c a t e c o v a r i a n t c o m p o n e n t s ; a n e x c e p t i o n o c c u r s i n t h e n o t a t i o n f o r c o o r d i n a t e s .

I n s t e a d o f s p e a k i n g o f a t e n s o r w h o s e c o m p o n e n t s a r e A p o r A P w e s h a l l o f t e n r e f e r s i m p l y t o

t h e t e n s o r A P o r A P A . N o c o n f u s i o n s h o u l d a r i s e f r o m t h i s .

C O N T R A V A R I A N T , C O V A R I A N T A N D M I X E D T E N S O R S . I f N 2 q u a n t i t i e s A q s i n a c o o r d i n a t e s y s t e m

_ ( x 1 , x 2 , . . . , x 1 ) a r e r e l a t e d t o N 2 o t h e r q u a n -

t i t i e s A

i n a n o t h e r c o o r d i n a t e s y s t e m ( x 1 , x 2 , . . . , x " ) b y t h e t r a n s f o r m a t i o n e q u a t i o n s

A i r

a x 9 a x s A q s

p , r = 1 , 2 , . . . , N

S = 1 q = 1

x

x

o r

Page 175: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 175/234

1 6 8

T E N S O R A N A L Y S I S

a x q

a x r A g s

a x q a x s

b y t h e a d o p t e d c o n v e n t i o n s , t h e y a r e c a l l e d c o n t r a v a r i a n t c o m p o n e n t s o f a t e n s o r o f t h e s e c o n d r a n k

o r r a n k t w o .

T h e N 2 q u a n t i t i e s A q s a r e c a l l e d c o v a r i a n t c o m p o n e n t s o f a t e n s o r o f t h e s e c o n d r a n k i f

A P r

a x q a x s

A

a x p - a y r

q s

S i m i l a r l y t h e N 2 q u a n t i t i e s A S a r e c a l l e d c o m p o n e n t s o f a m i x e d t e n s o r o f t h e s e c o n d r a n k i f

A P

=

a x P a x s

A

q

a x q o x r

s

T H E K R O N E C K E R D E L T A , w r i t t e n 8 k , i s d e f i n e d b y

S k

J 0

i f j A k

1

i f j = k

A s i t s n o t a t i o n i n d i c a t e s , i t i s a m i x e d t e n s o r o f t h e s e c o n d r a n k .

T E N S O R S O F R A N K G R E A T E R T H A N T W O a r e e a s i l y d e f i n e d .

F o r e x a m p l e , A k i t

a r e t h e c o m p o -

n e n t s o f a m i x e d t e n s o r o f r a n k 5 , c o n t r a v a r i a n t o f o r d e r

3 a n d c o v a r i a n t o f o r d e r 2 , i f t h e y t r a n s f o r m a c c o r d i n g t o t h e r e l a t i o n s

A f i r m

=

a x p a x r a z m a x k a x 1 .

A g s t

t i

a x q a x s a x t a x i a x 9

k i

S C A L A R S O R I N V A R I A N T S . S u p p o s e 0 i s a f u n c t i o n o f t h e c o o r d i n a t e s x k , a n d l e t

d e n o t e t h e

f u n c t i o n a l v a l u e u n d e r a t r a n s f o r m a t i o n t o a n e w s e t o f c o o r d i n a t e s x k

T h e n c b i s c a l l e d a s c a l a r o r i n v a r i a n t w i t h r e s p e c t t o t h e c o o r d i n a t e t r a n s f o r m a t i o n i f

_ . A

s c a l a r o r i n v a r i a n t i s a l s o c a l l e d a t e n s o r o f r a n k z e r o .

T E N S O R F I E L D S . I f t o e a c h p o i n t o f a r e g i o n i n N d i m e n s i o n a l s p a c e t h e r e c o r r e s p o n d s a d e f i n i t e

t e n s o r , w e s a y t h a t a t e n s o r f i e l d h a s b e e n d e f i n e d . T h i s i s a v e c t o r f i e l d o r

a s c a l a r f i e l d a c c o r d i n g a s t h e t e n s o r i s o f r a n k o n e o r z e r o .

I t s h o u l d b e n o t e d t h a t a t e n s o r o r

t e n s o r f i e l d i s n o t j u s t t h e s e t o f i t s c o m p o n e n t s i n o n e s p e c i a l c o o r d i n a t e s y s t e m b u t a l l t h e p o s s i -

b l e s e t s u n d e r a n y t r a n s f o r m a t i o n o f c o o r d i n a t e s .

S Y M M E T R I C A N D S K E W - S Y M M E T R I C T E N S O R S . A t e n s o r i s c a l l e d s y m m e t r i c w i t h r e s p e c t t o t w o

c o n t r a v a r i a n t o r t w o c o v a r i a n t i n d i c e s i f i t s c o m -

p o n e n t s r e m a i n u n a l t e r e d u p o n i n t e r c h a n g e o f t h e i n d i c e s . T h u s i f A q s r = A Q S r t h e t e n s o r i s s y m -

m e t r i c i n m a n d p . I f a t e n s o r i s s y m m e t r i c w i t h r e s p e c t t o a n y t w o c o n t r a v a r i a n t a n d a n y t w o c o -

v a r i a n t i n d i c e s , i t i s c a l l e d s y m m e t r i c .

A t e n s o r i s c a l l e d s k e w - s y m m e t r i c w i t h r e s p e c t t o t w o c o n t r a v a r i a n t o r t w o c o v a r i a n t i n d i c e s

i f i t s c o m p o n e n t s c h a n g e s i g n u p o n i n t e r c h a n g e o f t h e i n d i c e s . T h u s i f A q s r = - A q s r t h e t e n s o r i s

Page 176: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 176/234

T E N S O R A N A L Y S I S

1 6 9

s k e w - s y m m e t r i c i n m a n d p .

I f a t e n s o r i s s k e w - s y m m e t r i c w i t h r e s p e c t t o a n y t w o c o n t r a v a r i a n t a n d

a n y t w o c o v a r i a n t i n d i c e s i t i s c a l l e d s k e w - s y m m e t r i c .

F U N D A M E N T A L O P E R A T I O N S W I T H T E N S O R S .

1 . A d d i t i o n . T h e s u m o f t w o o r m o r e t e n s o r s o f t h e s a m e r a n k a n d t y p e ( i . e . s a m e n u m b e r o f c o n t r a -

v a r i a n t i n d i c e s a n d s a m e n u m b e r o f c o v a r i a n t i n d i c e s ) i s a l s o a t e n s o r o f t h e s a m e r a n k a n d t y p e .

T h u s i f A Q 0 a n d B q 0 a r e t e n s o r s , t h e n C O = A q 0 +

B r i s a l s o a t e n s o r .

A d d i t i o n o f t e n s o r s

i s c o m m u t a t i v e a n d a s s o c i a t i v e .

2 . S u b t r a c t i o n . T h e d i f f e r e n c e o f t w o t e n s o r s o f t h e s a m e r a n k a n d t y p e i s a l s o a t e n s o r o f t h e s a m e

r a n k a n d t y p e . T h u s i f A q 0 a n d B r a r e t e n s o r s , t h e n

D r = A q

O - B q 0 i s a l s o a t e n s o r .

3 . O u t e r M u l t i p l i c a t i o n . T h e p r o d u c t o f t w o t e n s o r s i s a t e n s o r w h o s e r a n k i s t h e s u m o f t h e r a n k s

o f t h e g i v e n t e n s o r s . T h i s p r o d u c t w h i c h i n v o l v e s o r d i n a r y m u l t i p l i c a t i o n o f t h e c o m p o n e n t s o f

t h e t e n s o r i s c a l l e d t h e o u t e r p r o d u c t . F o r e x a m p l e ,

A q r B S

= C q s ' i s t h e o u t e r p r o d u c t o f

A l i r

a n d B S .

H o w e v e r , n o t e t h a t n o t e v e r y t e n s o r c a n b e w r i t t e n a s a p r o d u c t o f t w o t e n s o r s o f l o w e r

r a n k . F o r t h i s r e a s o n d i v i s i o n o f t e n s o r s i s n o t a l w a y s p o s s i b l e .

4 . C o n t r a c t i o n . I f o n e c o n t r a v a r i a n t a n d o n e c o v a r i a n t i n d e x o f a t e n s o r a r e s e t e q u a l , t h e r e s u l t i n -

d i c a t e s t h a t a s u m m a t i o n o v e r t h e e q u a l i n d i c e s i s t o b e t a k e n a c c o r d i n g t o t h e s u m m a t i o n c o n -

v e n t i o n .

T h i s r e s u l t i n g s u m i s a t e n s o r o f r a n k t w o l e s s t h a n t h a t o f t h e o r i g i n a l t e n s o r . T h e

p r o c e s s i s c a l l e d c o n t r a c t i o n .

F o r e x a m p l e , i n t h e t e n s o r o f r a n k 5 , A g P r , s e t r = s t o o b t a i n

A g r r

= B q

"

a t e n s o r o f r a n k 3 .

F u r t h e r , b y s e t t i n g p = q w e o b t a i n 8 0

= C 2 a t e n s o r o f r a n k 1 .

5 . I n n e r M u l t i p l i c a t i o n . B y t h e p r o c e s s o f o u t e r m u l t i p l i c a t i o n o f t w o t e n s o r s f o l l o w e d b y a c o n t r a c -

t i o n , w e o b t a i n a n e w t e n s o r c a l l e d a n i n n e r p r o d u c t o f t h e g i v e n t e n s o r s . T h e p r o c e s s i s c a l l e d

i n n e r m u l t i p l i c a t i o n . F o r e x a m p l e , g i v e n t h e t e n s o r s A ' O a n d B s t , t h e o u t e r p r o d u c t i s A q 1 B r

s t *

L e t t i n g q = r , w e o b t a i n t h e i n n e r p r o d u c t A r k B

.

L e t t i n g q = r a n d p = s , a n o t h e r i n n e r p r o d u c t

A r 1 ' B r i s o b t a i n e d . I n n e r a n d o u t e r m u l t i p l i c a t i o n o f t e n s o r s i s c o m m u t a t i v e a n d

a s s o c i a t i v e .

6 . Q u o t i e n t L a w . S u p p o s e i t i s n o t k n o w n w h e t h e r a q u a n t i t y X i s a t e n s o r o r n o t .

I f a n i n n e r p r o d -

u c t o f X w i t h a n a r b i t r a r y t e n s o r i s i t s e l f a t e n s o r , t h e n X i s a l s o a t e n s o r . T h i s i s c a l l e d t h e

q u o t i e n t l a w .

M A T R I C E S . A m a t r i x o f o r d e r m b y n i s a n a r r a y o f q u a n t i t i e s a p q , c a l l e d e l e m e n t s , a r r a n g e d i n m

r o w s a n d n c o l u m n s a n d g e n e r a l l y d e n o t e d b y

a l l a 1 2

. . .

a l n

a l l a 1 2

. . .

a 2 1 a 2 2 . . .

a 2 n a n a 2 2

o r

a . 4 1 a n n

a , n s a n i 2 . . .

a i n n

a s n

a 2 n

o r i n a b b r e v i a t e d f o r m b y ( a 1 , q ) o r [ a p q ]

p = 1 , . . . , m ; q = 1 , . . . , n .

I f m = n t h e m a t r i x i s a s q u a r e

m a t r i x o f o r d e r m b y m o r s i m p l y m ; i f m = 1

i t i s a r o w m a t r i x o r r o w v e c t o r ; i f n = 1 i t i s a c o l u m n

m a t r i x o r c o l u m n v e c t o r .

T h e d i a g o n a l o f a s q u a r e m a t r i x c o n t a i n i n g t h e e l e m e n t s a s s , a t e , . . . , a n n i s c a l l e d t h e p r i n c i -

p a l o r m a i n d i a

o g T 1 . A s q u a r e m a t r i x w h o s e e l e m e n t s a r e e q u a l t o o n e i n t h e p r i n c i p a l d i a g o n a l a n d

z e r o e l s e h i s c a l l e d a u n i t m a t r i x a n d i s d e n o t e d b y 1 . A n u l l m a t r i x , d e n o t e d b y 0 , i s a m a t r i x

a l l o f w h o s e e l e m e n t s a r e z e r o .

Page 177: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 177/234

1 7 0

T E N S O R A N A L Y S I S

M A T R I X A L G E B R A . I f A = ( a p q ) a n d B = ( b p q ) a r e m a t r i c e s h a v i n g t h e s a m e o r d e r ( m b y n ) t h e n

1 . A = B i f a n d o n l y i f a p q = b 1 , q .

2 . T h e s u m S a n d d i f f e r e n c e D a r e t h e m a t r i c e s d e f i n e d b y

S = A + B = ( a j , q + b p q ) ,

D = A - B = ( a p q - b p q )

3 . T h e p r o d u c t P = A B i s d e f i n e d o n l y w h e n t h e n u m b e r n o f c o l u m n s i n A e q u a l s t h e n u m b e r o f r o w s

i n B a n d i s t h e n g i v e n b y

P = A B = ( a p q ) ( b p q ) = ( a p r b r q )

n

w h e r e

a l , r b r q =

a p r b r q b y t h e s u m m a t i o n c o n v e n t i o n .

M a t r i c e s w h o s e p r o d u c t i s d e f i n e d

r . 1

a r e c a l l e d c o n f o r m a b l e .

I n g e n e r a l , m u l t i p l i c a t i o n o f m a t r i c e s i s n o t c o m m u t a t i v e , i . e . A B A B A . H o w e v e r t h e a s s o -

c i a t i v e l a w f o r m u l t i p l i c a t i o n o f m a t r i c e s h o l d s , i . e . -

C ) _ ( A B ) C p r o v i d e d t h e m a t r i c e s a r e

c o n f o r m a b l e .

A l s o t h e d i s t r i b u t i v e l a w s h o l d , i . e . A ( B + C ) = A B + A C , ( A + B ) C = A C + B C .

4 . T h e d e t e r m i n a n t o f a s q u a r e m a t r i x A = ( a , q ) i s d e n o t e d b y

I A I , d e t A ,

I

I

o r d e t ( a j q ) .

I f P = A B t h e n

I P I = I A I B .

5 . T h e i n v e r s e o f a s q u a r e m a t r i x A i s a m a t r i x

A - 1 s u c h t h a t A A - 1

= 1 , w h e r e I i s t h e u n i t m a t r i x .

A n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t A - 1 e x i s t i s t h a t d e t A

0 .

I f d e t A = 0 , A i s c a l l e d

s i n g u l a r .

6 . T h e p r o d u c t o f a s c a l a r ? . b y a m a t r i x A

d e n o t e d b y X A , i s t h e m a t r i x ( X a p q ) w h e r e e a c h

e l e m e n t o f A i s m u l t i p l i e d b y X .

7 . T h e t r a n s p o s e o f a m a t r i x A i s a m a t r i x A T w h i c h i s f o r m e d f r o m A b y i n t e r c h a n g i n g i t s r o w s a n d

c o l u m n s . T h u s i f A = ( a p q ) , t h e n A T = ( a q p ) . T h e t r a n s p o s e o f A i s a l s o d e n o t e d b y A .

T H E L I N E E L E M E N T A N D M E T R I C T E N S O R . I n r e c t a n g u l a r c o o r d i n a t e s ( x , y , z ) t h e d i f f e r e n t i a l

a r e l e n g t h d s i s o b t a i n e d f r o m

B y t r a n s f o r m i n g t o g e n e r a l c u r v i l i n e a r c o o r d i n a t e s ( s e e P r o b l e m 1 7 , C h a p t e r 7 ) t h i s b e c o m e s d s

3

3

E I g o q d u p d u q .

S u c h s p a c e s a r e c a l l e d t h r e e d i m e n s i o n a l E u c l i d e a n s p a c e s .

P = 1 q = 1

A g e n e r a l i z a t i o n t o N d i m e n s i o n a l s p a c e w i t h c o o r d i n a t e s ( x 1 , x 2 , . . . , x N ) i s i m m e d i a t e . W e d e -

f i n e t h e l i n e e l e m e n t d s i n t h i s s p a c e t o b e g i v e n b y t h e q u a d r a t i c f o r m , c a l l e d t h e m e t r i c f o r m o r

m e t r i c ,

I n t h e s p e c i a l c a s e w h e r e t h e r e e x i s t s a t r a n s f o r m a t i o n o f c o o r d i n a t e s f r o m x I t o

x k

s u c h t h a t

Page 178: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 178/234

T E N S O R A N A L Y S I S

1 7 1

t h e m e t r i c f o r m i s t r a n s f o r m e d i n t o ( d z 1 ) 2 + ( d x 2 ) 2 + . . . + ( d x N ) 2 o r d x k d x k ,

t h e n t h e s p a c e i s c a l l -

e d N d i m e n s i o n a l E u c l i d e a n s p a c e .

I n t h e g e n e r a l c a s e , h o w e v e r , t h e s p a c e i s c a l l e d R i e m a n n i a n .

T h e q u a n t i t i e s g p q a r e t h e c o m p o n e n t s o f a c o v a r i a n t t e n s o r o f r a n k t w o c a l l e d t h e m e t r i c

t e n s o r o r f u n d a m e n t a l t e n s o r .

W e c a n a n d a l w a y s w i l l c h o o s e t h i s t e n s o r t o b e s y m m e t r i c ( s e e P r o b -

l e m 2 9 ) .

C O N J U G A T E O R R E C I P R O C A L T E N S O R S . L e t g =

g q

d e n o t e t h e d e t e r m i n a n t w i t h e l e m e n t s

p qa n d s u p p

e g A 0 . D e f i n e g b y -

g p q

p q

c o f a c t o r o f g p q

g

T h e n g p q i s a s y m m e t r i c c o n t r a v a r i a n t t e n s o r o f r a n k t w o c a l l e d t h e c o n j u g a t e o r r e c i p r o c a l t e n s o r

o f g p q ( s e e P r o b l e m 3 4 ) .

I t c a n b e s h o w n ( P r o b l e m 3 3 ) t h a t

g p q g r q

s p

r

A S S O C I A T E D T E N S O R S . G i v e n a t e n s o r , w e c a n d e r i v e o t h e r t e n s o r s b y r a i s i n g o r l o w e r i n g i n d i c e s .

F o r e x a m p l e , g i v e n t h e t e n s o r A p q w e o b t a i n b y r a i s i n g t h e i n d e x p , t h e ,

t e n s o r A

. q ,

t h e d o t i n d i c a t i n g t h e o r i g i n a l p o s i t i o n o f t h e m o v e d i n d e x . B y r a i s i n g t h e i n d e x q a l s o

w e o b t a i n . 4 ' ?

. W h e r e n o c o n f u s i o n c a n a r i s e w e s h a l l o f t e n o m i t t h e d o t s ; t h u s A p q c a n b e w r i t t e n

A p q .

T h e s e d e r i v e d t e n s o r s c a n b e o b t a i n e d b y f o r m i n g i n n e r p r o d u c t s o f t h e g i v e n t e n s o r w i t h t h e

m e t r i c t e n s o r g p q o r i t s c o n j u g a t e g p q

.

T h u s , f o r e x a m p l e

p

r p

A . q = g

A r q ,

A p q

=

g r p g s q A r s

A r s = g r q A - p s

A

q % n t k

_

g p k g

g r m

A

T h e s e b e c o m e c l e a r i f w e i n t e r p r e t m u l t i p l i c a t i o n b y g r p a s m e a n i n g : l e t r = p ( o r p = r ) i n w h a t e v e r

f o l l o w s a n d r a i s e t h i s i n d e x .

S i m i l a r l y w e i n t e r p r e t m u l t i p l i c a t i o n b y g r q a s m e a n i n g : l e t r = q ( o r

q = r ) i n w h a t e v e r f o l l o w s a n d l o w e r t h i s i n d e x .

A l l t e n s o r s o b t a i n e d f r o m a g i v e n t e n s o r b y f o r m i n g i n n e r p r o d u c t s w i t h t h e m e t r i c t e n s o r a n d

i t s c o n j u g a t e a r e c a l l e d a s s o c i a t e d t e n s o r s o f t h e g i v e n t e n s o r . F o r e x a m p l e A ' 4 a n d A . a r e a s s o -

c i a t e d t e n s o r s , t h e f i r s t a r e c o n t r a v a r i a n t a n d t h e s e c o n d c o v a r i a n t c o m p o n e n t s . T h e r e l a t i o n b e -

t w e e n t h e m i s g i v e n b y

A P

= g p q A q

o r A P = g p q A q

F o r r e c t a n g u l a r c o o r d i n a t e s g p q = 1

i f p = q ,

a n d 0 i f p A q ,

s o t h a t A p = A p , w h i c h e x p l a i n s w h y

n o d i s t i n c t i o n w a s m a d e b e t w e e n c o n t r a v a r i a n t a n d c o v a r i a n t c o m p o n e n t s o f a v e c t o r i n e a r l i e r c h a p -

t e r s .

L E N G T H O F A V E C T O R , A N G L E B E T W E E N V E C T O R S . T h e q u a n t i t y A P B P ,

w h i c h i s t h e i n n e r

p r o d u c t o f A P a n d B q

,

i s a s c a l a r a n a l -

o g o u s t o t h e s c a l a r p r o d u c t i n r e c t a n g u l a r c o o r d i n a t e s . W e d e f i n e t h e l e n g t h L o f t h e v e c t o r A O o r

A P a s g i v e n b y

Page 179: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 179/234

1 7 2

T E N S O R A N A L Y S I S

L 2

=

A P A P

= g 1 g A 1 ' A q

=

g 1 g A P A q

W e c a n d e f i n e t h e a n g l e 6 b e t w e e n

A P a n d B 1 '

a s g i v e n b y

A 1 B 1

c o s 6

=

( A 1 A 1 ' ) ( B 1 B 1 ' )

T H E P H Y S I C A L C O M P O N E N T S o f a v e c t o r

A 1 ' o r A 1 '

, d e n o t e d b y A u , A V , a n d A . a r e t h e p r o j e c -

t i o n s o f t h e v e c t o r o n t h e t a n g e n t s t o t h e c o o r d i n a t e c u r v e s a n d a r e

g i v e n i n t h e c a s e o f o r t h o g o n a l c o o r d i n a t e s b y

A u = v

A l

=

A l

V _ 9 _ 1

1

A v = 2 2 A 2 =

A w =

, s A s =

A

9 2 2

9 3 3

S i m i l a r l y t h e p h y s i c a l c o m p o n e n t s o f a t e n s o r

A

A

g

A

1 2

C H R I S T O F F E L ' S S Y M B O L S . T h e s y m b o l s

A 1 2

V ' 9 1 1 9 2 2

1 3

A 1 3

A u w = g 1 g A =

e t c .

- 1 1 - 9 3 31 9

a r e c a l l e d t h e C h r i s t o f f e l s y m b o l s o f t h e f i r s t a n d s e c o n d k i n d r e s p e c t i v e l y . O t h e r s y m b o l s u s e d i n -

s t e a d o

i s n o t t r u t - t f e n e r a l .

a n d 1 q .

T h e l a t t e r s y m b o l s u g g e s t s h o w e v e r a t e n s o r c h a r a c t e r , w h i c h

T R A N S F O R M A T I O N L A W S O F C H R I S T O F F E L ' S S Y M B O L S . I f w e d e n o t e b y a b a r a s y m b o l i n a c o -

o r d i n a t e s y s t e m x k , t h e n

[ j k m

[ p q , r ]

a 0 a x q a x r

+

g

a x 1 '

a 2 x q

a x k a x k a : x '

p q

a x ' s a x j a x k

n s

a x n a x 1 a x q

a z n

a 2 x q

1 k p q

a x s a x q a x k

a x q a x 3 a z k

a r e t h e l a w s o f t r a n s f o r m a t i o n o f t h e C h r i s t o f f e l s y m b o l s s h o w i n g t h a t t h e y a r e n o t t e n s o r s u n l e s s

t h e s e c o n d t e r m s o n t h e r i g h t a r e z e r o .

G E O D E S I C S . T h e d i s t a n c e s b e t w e e n t w o p o i n t s t 1 a n d t 2 o n a c u r v e x r = x ' ^ ( t )

i n a R i e m a n n i a n

s p a c e i s g i v e n b y

s =

J ; 1 t 2 / ; p q

2 d x

d t

t a t

Page 180: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 180/234

T E N S O R A N A L Y S I S

1 7 3

T h a t c u r v e i n t h e s p a c e w h i c h m a k e s t h e d i s t a n c e a m i n i m u m i s c a l l e d a g e o d e s i c o f t h e s p a c e . B y

u s e o f t h e c a l c u l u s o f v a r i a t i o n s ( s e e P r o b l e m s 5 0 a n d 5 1 ) t h e g e o d e s i c s a r e f o u n d f r o m t h e d i f f e r e n -

t i a l e q u a t i o n

d 2 x r

+

r

d x p d x q

=

d s 2

p q

d s

d s

0

w h e r e s i s t h e a r e l e n g t h p a r a m e t e r . A s e x a m p l e s , t h e g e o d e s i c s o n a p l a n e a r e s t r a i g h t l i n e s w h e r e -

a s t h e g e o d e s i c s o n a s p h e r e a r e a r c s o f g r e a t c i r c l e s .

T H E C O V A R I A N T D E R I V A T I V E o f a t e n s o r A p w i t h r e p e c t t o x q i s d e n o t e d b y A p , q a n d i s d e -

f i n e d b y

_

a A p

s

A p , q

a x q

_

p q

A s

a c o v a r i a n t t e n s o r o f r a n k t w o .

T h e c o v a r i a n t d e r i v a t i v e o f a t e n s o r A p w i t h r e s p e c t t o x 9 i s d e n o t e d b y A p q a n d i s d e f i n e d b y

A p

-

a A p

q

a x q

a m i x e d t e n s o r o f r a n k t w o .

1 P 1 ) , A S

q s

F o r r e c t a n g u l a r s y s t e m s , t h e C h r i s t o f f e l s y m b o l s a r e z e r o a n d t h e c o v a r i a n t d e r i v a t i v e s a r e t h e

u s u a l p a r t i a l d e r i v a t i v e s . C o v a r i a n t d e r i v a t i v e s o f t e n s o r s a r e a l s o t e n s o r s ( s e e P r o b l e m 5 2 ) .

T h e a b o v e r e s u l t s c a n b e e x t e n d e d t o c o v a r i a n t d e r i v a t i v e s o f h i g h e r r a n k t e n s o r s . T h u s

A P i . . . p n

_

a A P l

n C

i -

r

i . . . n , q

a x q

s

1 , 4 S r 2 . . . r n

-

r

S

A p .

s

r a p

r n

2

i q

q

s p .

. P l n

+ { P i A r 2 r

n

+ P 2

A p l s p 3 . . . P i n

q s

i . . . r n

p i . . . p i n

q

i s t h e c o v a r i a n t d e r i v a t i v e o f A r i

r n

w i t h r e s p e c t t o x

A p i . . . p X

r i . . . r n _ i s

+ . . .

+

P i n

A p i . .

p i n -

i

s

q s

1 . . . r n

T h e r u l e s o f c o v a r i a n t d i f f e r e n t i a t i o n f o r s u m s a n d p r o d u c t s o f t e n s o r s a r e t h e s a m e a s t h o s e

f o r o r d i n a r y d i f f e r e n t i a t i o n .

I n p e r f o r m i n g t h e d i f f e r e n t i a t i o n s , t h e t e n s o r s g p q , g p q a n d 8 0 m a y b e

t r e a t e d a s c o n s t a n t s s i n c e t h e i r c o v a r i a n t d e r i v a t i v e s a r e z e r o ( s e e P r o b l e m 5 4 ) .

S i n c e c o v a r i a n t

d e r i v a t i v e s e x p r e s s r a t e s o f c h a n g e o f p h y s i c a l q u a n t i t i e s i n d e p e n d e n t o f a n y f r a m e s o f r e f e r e n c e ,

t h e y a r e o f g r e a t i m p o r t a n c e i n e x p r e s s i n g p h y s i c a l l a w s .

P E R M U T A T I O N S Y M B O L S A N D T E N S O R S . D e f i n e a p q r b y t h e r e l a t i o n s

e 1 2 3 = e m 1 = e 3 1 2 = + 1 ,

e 2 1 3 = e 1 3 2 - = e 3 2 1 = - 1 ,

e p q r = 0

i f t w o o r m o r e i n d i c e s a r e e q u a l

a n d d e f i n e

e p g r

i n t h e s a m e m a n n e r . T h e s y m b o l s e p g r a n d

e p g r

a r e c a l l e d p e r m u t a t i o n s y m b o l s i n

Page 181: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 181/234

1 7 4

T E N S O R A N A L Y S I S

t h r e e d i m e n s i o n a l s p a c e .

F u r t h e r , l e t u s d e f i n e

I t c a n b e s h o w n t h a t E p q r a n d E p g r a r e c o v a r i a n t a n d c o n t r a v a r i a n t t e n s o r s r e s p e c t i v e l y , c a l l e d

p e r m u t a t i o n t e n s o r s i n t h r e e d i m e n s i o n a l s p a c e . G e n e r a l i z a t i o n s t o h i g h e r d i m e n s i o n s a r e p o s s i b l e .

T E N S O R F O R M O F G R A D I E N T , D I V E R G E N C E A N D C U R L .

1 . G r a d i e n t . I f < J ) i s a s c a l a r o r i n v a r i a n t t h e g r a d i e n t o f c i s d e f i n e d b y

g r a d c D

=

a C D

'

-

a x p

w h e r e < D ,

p

i s t h e c o v a r i a n t d e r i v a t i v e o f

w i t h r e s p e c t t o x p .

2 .

D i v e r g e n c e . T h e d i v e r g e n c e o f A P i s t h e c o n t r a c t i o n o f i t s c o v a r i a n t d e r i v a t i v e w i t h r e s p e c t t o

x g , i . e . t h e c o n t r a c t i o n o f A 1 , q .

T h e n

d i v A p =

A p , p

=

a k ( g A k )

g

1

h

1 f A A A -

  C T

a A p a A g

u r .

e c u r o

p

i s

p , q -

q , p

a x q

a x p

d e f i n e d a s - - E p g r A p , q .

r

p q

4 . L a p l a c i a n . T h e L a p l a c i a n o f

i s t h e d i v e r g e n c e o f g r a d c P o r

v 2

d i v 4 > , p

=

1

_

( V k

a x

a x

I n c a s e g < 0 ,

m u s t b e r e p l a c e d b y = g .

B o t h c a s e s g > 0 a n d g < 0 c a n b e i n c l u d e d b y

w r i t i n g g i n p l a c e o f V V .

8 A p

T H E I N T R I N S I C O R A B S O L U T E D E R I V A T I V E o f A p a l o n g a c u r v e x q = x q ( t ) , d e n o t e d b y

S t

, i s

d e f i n e d a s t h e i n n e r p r o d u c t o f t h e c o v a r i a n t d e r i v a -

q q

t i v e o f A P a n d d t

,

i . e .

A P , q d t

a n d i s g i v e n b y

S A P d A p

s t d t

S i m i l a r l y , w e d e f i n e

8 A p

_

d A p

b t

d t

a t e n s o r o f r a n k t w o . T h e c u r l i s a l s o

d x g

A r

a t

p A r d x q

q r

d t

T h e v e c t o r s A P o r A p a r e s a i d t o m o v e p a r a l l e l l y a l o n g a c u r v e

a l o n g t h e c u r v e a r e z e r o , r e s p e c t i v e l y .

i f t h e i r i n t r i n s i c d e r i v a t i v e s

I n t r i n s i c d e r i v a t i v e s o f h i g h e r r a n k t e n s o r s a r e s i m i l a r l y d e f i n e d .

Page 182: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 182/234

T E N S O R A N A L Y S I S

1 7 5

R E L A T I V E A N D A B S O L U T E T E N S O R S . A t e n s o r

A p 1 . . . p ' n

i s c a l l e d a r e l a t i v e t e n s o r o f w e i g h t w

r 1 . . . r n

i f i t s c o m p o n e n t s t r a n s f o r m a c c o r d i n g t o t h e e q u a t i o n

A g 1 . . . g l

_

a x w

A p 1 . . , p m

a z g 1

a z q i

i

a x r n

. . .

p i x

a x s 1

. . .

a x

s n

1 . . . s n

a x

r 1 . . . r n

a x p 1

a x

w h e r e J =

2 z I

i s t h e J a c o b i a n o f t h e t r a n s f o r m a t i o n . I f w = 0 t h e t e n s o r i s c a l l e d a b s o l u t e a n d i s

t h e t y p e o f t e n s o r w i t h w h i c h w e h a v e b e e n d e a l i n g a b o v e .

I f w = 1 t h e r e l a t i v e t e n s o r i s c a l l e d a

t e n s o r d e n s i t y . T h e o p e r a t i o n s o f a d d i t i o n , m u l t i p l i c a t i o n , e t c . , o f r e l a t i v e t e n s o r s a r e s i m i l a r t o

t h o s e o f a b s o l u t e t e n s o r s .

S e e f o r e x a m p l e P r o b l e m 6 4 .

S O L V E D P R O B L E M S

S U M M A T I O N C O N V E N T I O N .

1 . W r i t e e a c h o f t h e f o l l o w i n g u s i n g t h e s u m m a t i o n c o n v e n t i o n .

4

1

' 3 0

( a ) d W =

a x

+

a x e

d x 2 +

+

a 0

d x N .

a x N

( b )

d z k

=

a 3 F k d x 1 + a x k d x 2

+

. . .

+

a x k d x N

d t

- a x 1

d t a x 2 d t

a x ' d t

( c ) ( x 1 ) 2 + ( x 2 ) 2 + ( x 3 ) 2 +

. . . + ( x N ) 2 .

( d ) d s 2 =

g 1 1 ( d x 1 ) 2 + g . , ( d x 2 ) 2 + g a s ( d x 3 ) 2 .

3

3

( e )

} r

g

d x p d x q

p = 1 q = 1

p 9

2 . W r i t e t h e t e r m s i n e a c h o f t h e f o l l o w i n g i n d i c a t e d s u m s .

N

( a ) a ,

x k .

} ;

a . x k =

a

x 1 + a

x 2 + . . .

+

a j N

x N

j k

b = ,

j k

=

( b ) A p q

A q r .

A p q A q r

q = 1

A p 1 A 1 r + A p 2 A 2 r

+

. . .

d % = a 0 d x q

d z k

_

a x k d x y '

d t

a x r n d t

x k x k

d s 2 =

g k k

d x k d x k

, N = 3

g p q d x p d x q ,

N = 3

+

A p N A N r

a

( c ) g

x k

N = 3 .

r s

d k

a x a z s

,

Page 183: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 183/234

1 7 6

T E N S O R A N A L Y S I S

3

3

a x j a x k

_

g k

j = 1 k = 1

a x r a x s

r s

a x j a x 1

j = 1

j 1 a x a z s

a x , a x 2

a x , a x 3

+ g j 2 a x r a x s + g j 3 a x r a x s

- a x ' - a x ' +

' 6 X 2 a x 1

+

_ 6 X 3 a x 1

_ g 1 1

a ` r a x s g 2 1 a x r a z s

g 3 1 a x r a z s

a x 1 a x 2

a x 2 a x 2 a x 3 a x 2

+ g 1 2 a x r a z S

+ g 2 2

a z r a x S +

g 3 2

a x r a z

a x 1 a x 3

+

_ 6 X 2 a x 3

a x 3 a x 3

+

9 1 3 - a x '

a x S

g 2 3 a z r a z s

+

g 3 3 a ' x r a z s

3 . I f

x k , k = 1 , 2 ,

. . . , N a r e r e c t a n g u l a r c o o r d i n a t e s , w h a t l o c u s i f a n y , i s r e p r e s e n t e d b y e a c h o f t h e

f o l l o w i n g e q u a t i o n s f o r N = 2 , 3 a n d

A s s u m e t h a t t h e f u n c t i o n s a r e s i n g l e - v a l u e d , h a v e c o n -

t i n u o u s d e r i v a t i v e s a n d a r e i n d e p e n d e n t , w h e n n e c e s s a r y .

( a ) a x k = 1 , w h e r e a k a r e c o n s t a n t s .

F o r N = 2 , a 1 x 1 + a 2 x 2 = 1 , a l i n e i n t w o d i m e n s i o n s , i . ' e . a l i n e i n a p l a n e .

F o r N = 3 , a 1 x 1 + a 2 x 2 + a 3 x 3 = 1 ,

a p l a n e i n 3 d i m e n s i o n s .

F o r N > 4 , a 1 x 1 + a

2

X 2 +

. . . +

a N x N = 1

i s a h y p e r p l a n e .

( b ) x k x k = 1 .

F o r N = 2 , ( x 1 ) 2 + ( x 2 ) 2 = 1 ,

a c i r c l e o f u n i t r a d i u s i n t h e p l a n e .

F o r N = 3 , ( x 1 ) 2 + ( x 2 ) 2 + ( x 3 ) 2 = 1 , a s p h e r e o f u n i t r a d i u s .

F o r N > 4 , ( x 1 ) 2 + ( x 2 ) 2 + . . . + ( x N ) 2 = 1 ,

a h y p e r s p h e r e o f u n i t r a d i u s .

( c ) x k = x k ( u ) .

F o r N = 2 , x 1 = x 1 ( u ) , x 2 = x 2 ( u ) , a p l a n e c u r v e w i t h p a r a m e t e r u .

F o r N = 3 , x 1 = x 1 ( u ) , x 2 = x 2 ( u ) , x 3 = x 3 ( u ) , a t h r e e d i m e n s i o n a l s p a c e c u r v e .

F o r N > 4 , a n N d i m e n s i o n a l s p a c e c u r v e .

( d ) x k = x k ( u , v ) .

F o r N = 2 , x 1 = x 1 ( u , v ) , x 2 = x 2 ( u , v )

i s a t r a n s f o r m a t i o n o f c o o r d i n a t e s f r o m ( u , v ) t o ( x 1 , x 2 ) .

F o r N = 3 , x 1 = x 1 ( u , v ) , x 2 = x 2 ( u , v ) , x 3 = x 3 ( u , v ) i s a 3 d i m e n s i o n a l s u r f a c e w i t h p a r a m e t e r s u a n d v .

F o r N > 4 , a h y p e r s u r f a c e .

C O N T R A V A R I A N T A N D C O V A R I A N T V E C T O R S A N D T E N S O R S .

4 . W r i t e t h e l a w o f t r a n s f o r m a t i o n f o r t h e t e n s o r s ( a ) A k , ( b ) B k ,

( c ) C m

( a )

A

=

a x s a x j a x k

A i

q r

a x i a z q a x r

j k

A s a n a i d f o r r e m e m b e r i n g t h e t r a n s f o r m a t i o n , n o t e t h a t t h e r e l a t i v e p o s i t i o n s o f i n d i c e s p , q , r o n

t h e l e f t s i d e o f t h e t r a n s f o r m a t i o n a r e t h e s a m e a s t h o s e o n t h e r i g h t s i d e . S i n c e t h e s e i n d i c e s a r e a s -

s o c i a t e d w i t h t h e z c o o r d i n a t e s a n d s i n c e i n d i c e s i , j , k a r e a s s o c i a t e d r e s p e c t i v e l y w i t h i n d i c e s p , q , r

t h e r e q u i r e d t r a n s f o r m a t i o n i s e a s i l y w r i t t e n .

Page 184: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 184/234

T E N S O R A N A L Y S I S

p q

_

a x P a x Q a x i a x j a x k i n n

( b ) B

s t

a x ' n - n a z r a z s a x t

i j k

( c ) C p

C m

a x " n

1 7 7

5 . A q u a n t i t y A ( j , k , 1 , m ) w h i c h i s a f u n c t i o n o f c o o r d i n a t e s x x t r a n s f o r m s t o a n o t h e r c o o r d i n a t e s y s -

t e m z 2 a c c o r d i n g t o t h e r u l e

A ( p , q , r , s )

a x j a z k a x i a . s

A ( , k 1 m )

a x p a x

a x

a x

( a ) I s t h e q u a n t i t y a t e n s o r ? ( b ) I f s o , w r i t e t h e t e n s o r i n s u i t a b l e n o t a t i o n a n d ( c ) g i v e t h e c o n -

t r a v a r i a n t a n d c o v a r i a n t o r d e r a n d r a n k .

( a ) Y e s .

( b ) A j

1 ' .

( c ) C o n t r a v a r i a n t o f o r d e r 3 , c o v a r i a n t o f o r d e r 1 a n d r a n k 3 + 1 = 4 .

6 . D e t e r m i n e w h e t h e r e a c h o f t h e f o l l o w i n g q u a n t i t i e s i s a t e n s o r .

I f s o , s t a t e w h e t h e r i t i s c o n t r a -

s

N

v a r i a n t o r c o v a r i a n t a n d g i v e i t s r a n k :

( a ) d x k ,

( b )

a 0 ( a x k

' x

( a ) A s s u m e t h e t r a n s f o r m a t i o n o f c o o r d i n a t e s

z ' 1

=

x 1 ( x 1 ,

. . . ,

x N ) . T h e n d x 1 =

a x

d x k a n d s o d x k i s a

a x k

c o n t r a v a r i a n t t e n s o r o f r a n k o n e o r a c o n t r a v a r i a n t v e c t o r . N o t e t h a t t h e l o c a t i o n o f t h e i n d e x k i s

a p p r o p r i a t e .

( b ) U n d e r t h e t r a n s f o r m a t i o n x k = x k ( x 1 , . . . , x T ) , 0 i s a f u n c t i o n o f x k a n d h e n c e 0 s u c h t h a t q ( x 1 , . . . , J ) _

i . e . c P i s a s c a l a r o r i n v a r i a n t ( t e n s o r o f r a n k z e r o ) . B y t h e c h a i n r u l e f o r p a r t i a l d i f f e r -

k

a k

k

e n t i a t i o n ,

a 4

=

= a

a x =

- a x k

t r a n s f o r m s l i k e A =

a x

A . T h e n

i s

a x i

a z j

a x k a x 7

a z k a x k

a x k

J

a x i a x k

a c o v a r i a n t t e n s o r o f r a n k o n e o r a c o v a r i a n t v e c t o r .

N o t e t h a t i n

a O

t h e i n d e x a p p e a r s i n t h e d e n o m i n a t o r a n d t h u s a c t s l i k e a s u b s c r i p t w h i c h i n d i -

a x k

c a t e s i t s c o v a r i a n t c h a r a c t e r . W e r e f e r t o t h e t e n s o r

o r e q u i v a l e n t l y , t h e t e n s o r w i t h c o m p o n e n t s

a -

a x k

a k

,

a s t h e g r a d i e n t o f

,

w r i t t e n g r a d 0 o r V O .

7 . A c o v a r i a n t t e n s o r h a s c o m p o n e n t s x y , 2 y - z 2 , x z i n r e c t a n g u l a r c o o r d i n a t e s . F i n d i t s c o v a r i a n t

c o m p o n e n t s i n s p h e r i c a l c o o r d i n a t e s .

L e t

d e n o t e t h e c o v a r i a n t c o m p o n e n t s i n r e c t a n g u l a r c o o r d i n a t e s x 1 = x , x Z = y , x 3 = z .

T h e n

A l = x y = x 1 x 2 ,

A 2 = 2 y - - z 2 = 2 x 2 - ( x 3 ) 2 ,

A 3 = x 1 x 3

w h e r e c a r e m u s t b e t a k e n t o d i s t i n g u i s h b e t w e e n s u p e r s c r i p t s a n d e x p o n e n t s .

L e t A k d e n o t e t h e c o v a r i a n t c o m p o n e n t s i n s p h e r i c a l c o o r d i n a t e s

( 1 ) A k

x 1 = r , x 2 = 6 , x = 0 .

T h e n

Page 185: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 185/234

1 7 8

T E N S O R A N A L Y S I S

T h e t r a n s f o r m a t i o n e q u a t i o n s b e t w e e n c o o r d i n a t e s y s t e m s a r e

x 1 = 7 1 s i n x 2 C o s x 3 ,

x 2 = x 1 s i n x s i n V ,

x 3 = V - C o s - X - 2

T h e n e q u a t i o n s ( 1 ) y i e l d t h e r e q u i r e d c o v a r i a n t c o m p o n e n t s

A l

=

A 2

=

=

( s i n 1 2 c o s z 3 ) ( x 1 x 2 )

+

( s i n x 2 s i n x 3 ) ( 2 x 2 - ( x 3 ) 2 )

+

( c o s z 2 ) ( x l x 3 )

a x 1 A l +

a x 2 A 2 + a x 3 A 3

a x 1

a x 1 ' a x '

( s i n 6 c o s ( 1 b ) ( r 2 s i n 2 6 s i n 0 c o s 0 )

+ ( s i n 6 s i n m ) ( 2 r s i n 6 s i n ( P - r 2 c o s 2 6 )

+

( c o s 6 ) ( r 2 s i n 6 c o s 6 c o s ( )

a x 1

A l +

x 2 A 2

+ x 3

A s

a x

a x 2

a z 2

( r c o s 8 c o s 0 ) ( r 2 s i n e 6 s i n

c o s ( p )

+

( r c o s 6 s i n ( p ) ( 2 r s i n 6 s i n m - r 2 c o s 2 B )

+

( - r s i n 6 ) ( r 2 s i n 6 c o s 6 c o s ( P )

A

=

a x 1

A

+

a a x . 2 A

+

a x 3 A

3

a x 3

1 V x 3

2

a x 3

3

( - r s i n 6 s i n d ) ( r 2 s i n 2 0 s i n 0 c o s g y p )

+

( r s i n 6 c o s q 5 ) ( 2 r s i n 6 s i n

- r 2 c o s 2 6 )

+

( 0 ) ( r 2 s i n 6 c o s 6 c o s ( )

8 . S h o w t h a t

a A p

a x q

i s n o t a t e n s o r e v e n t h o u g h A p i s a c o v a r i a n t t e n s o r o f r a n k o n e .

B y h y p o t h e s i s , A ,

- a x ,

A p .

D i f f e r e n t i a t i n g w i t h r e s p e c t t o - k .

a x q

a A j

d x p a A p

C x p

+

k a x q

A

a x k

a x q a x k

a x

a x p a A p a x q

a 2 x p

+

A

a x q a x q a x k

a x k D V '

a x p a x q a A p

a z j a x k a x q

a 2

X P

+ a x k a x k

A

S i n c e t h e s e c o n d t e r m o n t h e r i g h t i s p r e s e n t ,

a A p

d o e s n o t t r a n s f o r m a s a t e n s o r s h o u l d .

L a t e r w e

a x q

a A p

s h a l l s h o w h o w t h e a d d i t i o n o f a s u i t a b l e q u a n t i t y t o

q c a u s e s t h e r e s u l t t o b e a t e n s o r ( P r o b l e m 5 2 ) .

a x

Page 186: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 186/234

T E N S O R A N A L Y S I S

1 7 9

9 . S h o w t h a t t h e v e l o c i t y o f a f l u i d a t a n y p o i n t i s a c o n t r a v a r i a n t t e n s o r o f r a n k o n e .

k

T h e v e l o c i t y o f a f l u i d a t a n y p o i n t h a s c o m p o n e n t s

d x

i n t h e c o o r d i n a t e s y s t e m x b . I n t h e c o o r -

d i n a t e s y s t e m x ) t h e v e l o c i t y i s

d i J

.

B u t

d t

d ' l

a x l d x k

d t

a x k d t

b y t h e c h a i n r u l e , a n d i t f o l l o w s t h a t t h e v e l o c i t y i s a c o n t r a v a r i a n t t e n s o r o f r a n k o n e o r a c o n t r a v a r i a n t

v e c t o r .

T H E K R O N E C K E R D E L T A .

1 0 . E v a l u a t e ( a ) 8 q A S S ,

( b )

b q 8 q .

S i n c e

8 q

= 1

i f p = q a n d 0 i f p X q ,

( a ) 8 q

A s r

=

w e h a v e

r

A S . ( b ) 8 g 8 - =

8 r

1 1 . S h o w

t h a t a a x q =

8 q

x

I f p = q ,

a x p

=

1

s i n c e x p = x q .

q

x

a x e

P

qf p

q ,

=

0

s i n c e x a n d x

a r e i n d e p e n d e n t .

a

q

x

T h e . .

a x 4

-

8 q

a x

1 2 . P r o v e t h a t

a x f i

a x

=

8

.

a z q a x r

r

C o o r d i n a t e s x P a r e f u n c t i o n s o f c o o r d i n a t e s

b y t h e c h a i n r u l e a n d P r o b l e m 1 1 ,

x q w h i c h a r e i n t u r n f u n c t i o n s o f c o o r d i n a t e s x r . T h e n

a x P

a x p a z 9

a x r

a x q a z

a

3 . I f A

= x q A q p r o v e t h a t A q =

a x

-

A t .

a x

a x

p

M u l t i p l y e q u a t i o n

A

=

a x A q

b y

a x r

a x q

a z p

Page 187: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 187/234

1 8 0

T E N S O R A N A L Y S I S

- a x -

a x r a x k ' q r q r

=

A = 8 q A

= A

b y P r o b . 1 2 . P l a c i n g r = q t h e r e s u l t f o l l o w s . T h i s

h e n

a z j '

A

a

z a x q

i n d i c a t e s t h a t i n t h e t r a n s f o r m a t i o n e q u a t i o n s f o r t h e t e n s o r c o m p o n e n t s t h e q u a n t i t i e s w i t h b a r s a n d q u a n -

t i t i e s w i t h o u t b a r s c a n b e i n t e r c h a n g e d , a r e s u l t w h i c h c a n b e p r o v e d i n g e n e r a l .

1 4 . P r o v e t h a t 8 Q i s a m i x e d t e n s o r o f t h e s e c o n d r a n k .

I f

8 q i s a m i x e d t e n s o r o f t h e s e c o n d r a n k i t m u s t t r a n s f o r m a c c o r a i n g t o t h e r u l e

6 k

a x q a x q 6 p

a X P a z k

q

T h e r i g h t s i d e e q u a l s

a x ' a x k

= k b y P r o b l e m 1 2 . S i n c e 8 k

j

= 8

k

= 1

i f j = k , a n d 0 i f j

k , i t f o l -

b

a x a x

l o w s t h a t 8 q i s a m i x e d t e n s o r o f r a n k t w o , j u s t i f y i n g t h e n o t a t i o n u s e d .

N o t e t h a t w e s o m e t i m e s u s e

8 p q = 1

i f p = q

a n d 0 i f p q , a s t h e K r o n e c k e r d e l t a . T h i s i s h o w -

e v e r n o t a c o v a r i a n t t e n s o r o f t h e s e c o n d r a n k a s t h e n o t a t i o n w o u l d s e e m t o i n d i c a t e .

F U N D A M E N T A L O P E R A T I O N S W I T H T E N S O R S .

1 5 . I f

A p q

a n d

B r q

a r e t e n s o r s , p r o v e t h a t t h e i r s u m a n d d i f f e r e n c e a r e t e n s o r s .

B y h y p o t h e s i s

A r q

a n d B r q

a r e t e n s o r s , s o t h a t

- 3 - i a x k

j r

P q

A Z a x p a x q a T l

A r

a x ' s a z k a x r

f i q

B l

a x p a x q a z l

B r

A d d i n g ,

( A

j k

+

i l k )

=

a x k a x k a x r ( A P q

+ B r

Z

l

a x p a x q a l l

r

r

j k

J k

a z k a z k a x r

p q 5 q

S u b t r a c t i n g ,

( A Z - B l ) -

Z

( A r - B r )

a x p a x q a x "

4 Y +

P q p q

P q

a r e

P q

T h e n

B r

a n d A r - B r a r e t e n s o r s o f t h e s a m e r a n k a n d t y p e a s A r a n d B r .

P s

1 6 . I f A r q a n d B t a r e t e n s o r s , p r o v e t h a t C r t = A r q B t i s a l s o a t e n s o r .

W e m u s t p r o v e t h a t

r t s

i s a t e n s o r w h o s e c o m p o n e n t s a r e f o r m e d b y t a k i n g t h e p r o d u c t s o f c o m p o -

Page 188: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 188/234

T E N S O R A N A L Y S I S

n e n t s o f t e n s o r s

A P g

a n d B t .

S i n c e A I r

a n d

a r e

r e t e n s o r s ,

j k

-

a x J a r k a x r A P q

l

a x p a x q a r l

a r m a x t B S

a x s a m

t

M u l t i p l y i n g ,

- 1 k

A l

B m

n

a r k a z k a x r a z m a x t A P q

B s

a x p a x q a z l a x S a x n

r

t

1 8 1

w h i c h s h o w s t h a t A P g B t i s a t e n s o r o f r a n k 5 , w i t h c o n t r a v a r i a n t i n d i c e s p , q , s a n d c o v a r i a n t i n d i c e s

r , t

, t h u s w a r r a n t i n g t h e n o t a t i o n

C a t s . W e c a l l C r r =

A , , B t t h e o u t e r p r o d u c t o f

A r g a n d B t

.

1 7 . L e t

A r s

t

b e a t e n s o r . ( a ) C h o o s e p = t a n d s h o w t h a t A r q p , w h e r e t h e s u m m a t i o n c o n v e n t i o n i s

e m p l o y e d , i s a t e n s o r . W h a t i s i t s r a n k ? ( b ) C h o o s e p = t a n d q = s a n d s h o w s i m i l a r l y t h a t A r g p

i s a t e n s o r . W h a t i s i t s r a n k ?

( a ) S i n c e

A r s t i s a t e n s o r ,

( 1 )

A j k

a x k a x k a x r a x s a x t A P q

l m n

a x k ' a x q a x l a r m a x n

r s t

W e m u s t s h o w t h a t A

P q p

i s a t e n s o r . P l a c e t h e c o r r e s p o n d i n g i n d i c e s j a n d n e q u a l t o e a c h o t h e r

a n d s u m o v e r t h i s i n d e x . T h e n

A '

l T n j

A

a x J a r k a x r a x s a t

p q

a x p a x g a z l ' a x - - M a x g

A r s t

a x t a r e a x k a x r a x s

v q

r s t

1

' a x g a x l a x m

x g a x

8 t a x k a x r a x s A b q

0 a x g a r t

a r m

r s t

a r k a x r a x s A p q

a x g

a x l

a x m

r s p

a n d s o

A r s e i s a t e n s o r o f r a n k 3 a n d c a n b e d e n o t e d b y

B q s

.

T h e p r o c e s s o f p l a c i n g a c o n t r a v a r i a n t

i n d e x e q u a l t o a c o v a r i a n t i n d e x i n a t e n s o r a n d s u m m i n g i s c a l l e d c o n t r a c t i o n . B y s u c h a p r o c e s s a

t e n s o r i s f o r m e d w h o s e r a n k i s t w o l e s s t h a n t h e r a n k o f t h e o r i g i n a l t e n s o r .

P q

( b ) W e m u s t s h o w t h a t A r g p i s a t e n s o r . P l a c i n g j = n a n d k = i n i n e q u a t i o n ( 1 ) o f p a r t ( a ) a n d s u m m i n g

o v e r j a n d k ,

w e h a v e

Page 189: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 189/234

1 8 2

T E N S O R A N A L Y S I S

- j k

_ a x q a z k a x r a x S a x t

1 ' q

A l k j

a x p a x q a z l a z k a z k

A r s t

- a x t a x 3 a x S a z k a x r

a z k a x p a z k a x q a z l

t

s a r P q

8 8

x A

1

q a x l

r s t

a x r

p q

a x l

A r q p

A p q

r s t

w h i c h s h o w s t h a t

A r q

p i s a t e n s o r o f r a n k o n e a n d c a n b e d e n o t e d b y C r . N o t e t h a t b y c o n t r a c t i n g

t w i c e , t h e r a n k w a s r e d u c e d b y 4 .

1 8 . P r o v e t h a t t h e c o n t r a c t i o n o f t h e t e n s o r

A q

i s a s c a l a r o r i n v a r i a n t .

W e h a v e

A

=

a x q a x q A p

k a x p a z k

q

A J

=

a x q a x q A P

=

S q A p

=

A p

u t t i n g j = k a n d s u m m i n g ,

a x p a x q q

p

q p

T h e n A =

A p

a n d i t f o l l o w s t h a t A l m u s t b e a n i n v a r i a n t .

S i n c e

A P

q

i s a t e n s o r o f r a n k t w o a n d

c o n t r a c t i o n w i t h r e s p e c t t o a s i n g l e i n d e x l o w e r s t h e r a n k b y t w o , w e a r e l e d t o d e f i n e a n i n v a r i a n t a s a

t e n s o r o f r a n k z e r o .

1 9 . S h o w t h a t t h e c o n t r a c t i o n o f t h e o u t e r p r o d u c t o f t h e t e n s o r s A 0 a n d B q i s a n i n v a r i a n t .

S i n c e

A p

a n d B q a r e t e n s o r s ,

T j =

a x q A p ,

B k =

a x q

B q .

T h e n

a x

a x

- a x q a x q

k

A B

a x p a x k

q

B y c o n t r a c t i o n ( p u t t i n g j = k a n d s u m m i n g )

A B .

=

a z j a x q

A p

B =

8 p q

A p

B q

=

A p

B

I

a x p a x q

q

p

a n d s o A 1 B 1 i s a n i n v a r i a n t . T h e p r o c e s s o f m u l t i p l y i n g t e n s o r s ( o u t e r m u l t i p l i c a t i o n ) a n d t h e n c o n t r a c t -

i n g i s c a l l e d i n n e r m u l t i p l i c a t i o n a n d t h e r e s u l t i s c a l l e d a n i n n e r p r o d u c t . S i n c e A p B p i s a s c a l a r , i t i s

o f t e n c a l l e d t h e s c a l a r p r o d u c t o f t h e v e c t o r s A P a n d B q .

p

q s

2 0 . S h o w t h a t a n y i n n e r p r o d u c t o f t h e t e n s o r s A r a n d B t

i s a t e n s o r o f r a n k t h r e e .

p

Bu t e r p r o d u c t o f A

a n d B t s = A p g s

t

Page 190: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 190/234

T E N S O R A N A L Y S I S

1 8 3

L e t u s c o n t r a c t w i t h r e s p e c t t o i n d i c e s p a n d t , i . e . l e t p = t a n d s u m . W e m u s t s h o w t h a t t h e r e s u l t -

i n g i n n e r p r o d u c t , r e p r e s e n t e d b y

0 B g s ,

i s a t e n s o r o f r a n k t h r e e .

s

B y h y p o t h e s i s , A r a n d B t

a r e t e n s o r s ; t h e n

A

=

a ` x j a x r

A B

I n

=

a x I a x n a x t B q s

k - a

a x k

n

a x q a x s a x n

t

M u l t i p l y i n g , l e t t i n g j = n a n d s u m m i n g , w e h a v e

a x k a x r a z l a x n a x t

q s

a x P a x k a x q a x s a x k

A r B t

8 t a x r a 3 1 a x n A P

B t

P a x k a x q a x s

r

t

a x r a i l a x n A P B q s

a z k a x q a x s

r p

s h o w i n g t h a t A B q s i s a t e n s o r o f r a n k t h r e e . B y c o n t r a c t i n g w i t h r e s p e c t t o q a n d r o r s a n d r i n t h e

p r o d u c t A B t s , w e c a n s i m i l a r l y s h o w t h a t a n y i n n e r p r o d u c t i s a t e n s o r o f r a n k t h r e e .

A n o t h e r M e t h o d . T h e o u t e r p r o d u c t o f t w o t e n s o r s i s a t e n s o r w h o s e r a n k i s t h e s u m o f t h e r a n k s o f

t h e g i v e n t e n s o r s .

T h e n A P B

q s

i s a t e n s o r o f r a n k 3 + 2 = 5 .

S i n c e a c o n t r a c t i o n r e s u l t s i n a t e n s o r

w h o s e r a n k i s t w o l e s s t h a n t h a t o f t h e g i v e n t e n s o r , i t f o l l o w s t h a t a n y c o n t r a c t i o n o f A P B q s i s a t e n s o r

o f r a n k 5 - 2 = 3 .

2 1 . I f X ( p , q , r ) i s a q u a n t i t y s u c h t h a t

X ( p , q , r ) B q n = 0

f o r a n a r b i t r a r y t e n s o r B q n ,

p r o v e t h a t

X ( p , q , r ) = 0 i d e n t i c a l l y .

n

S i n c e B r

i s a n a r b i t r a r y t e n s o r , c h o o s e o n e p a r t i c u l a r c o m p o n e n t ( s a y t h e o n e w i t h q = : 2 , r = 3 ) n o t

e q u a l t o z e r o , w h i l e a l l o t h e r c o m p o n e n t s a r e z e r o . T h e n X ( p , 2 , 3 ) B a n = 0 ,

s o t h a t X ( p , 2 , 3 ) = 0 s i n c e

B a n

0 . B y s i m i l a r r e a s o n i n g w i t h a l l p o s s i b l e c o m b i n a t i o n s o f q a n d r ,

w e h a v e X ( p , q , r ) = 0 a n d t h e

r e s u l t f o l l o w s .

2 2 . A q u a n t i t y A ( p , q , r ) i s s u c h t h a t i n t h e c o o r d i n a t e s y s t e m x 2 A ( p , q , r ) B r s = C 0 w h e r e

B r s

i s a n

a r b i t r a r y t e n s o r a n d C i s a t e n s o r . P r o v e t h a t A ( p , q , r ) i s a t e n s o r .

I n t h e t r a n s f o r m e d c o o r d i n a t e s x 2 , A ( j , k , 1 ) B

k i n

= C n .

j

s

T h e n

A ( j , k , l )

a x k a z n a x r B q s

=

- 6 7 V , a x p

C l ,

a x q a x s a x l

r

a x s a x k

o r

a x s

a x k a x

Z A ( j , k , 1 )

-

a x k

A ( p , q , r )

B q s

- 0

- a x s

a x a z k

Page 191: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 191/234

1 8 4

T E N S O R A N A L Y S I S

I n n e r m u l t i p l i c a t i o n b y

a x ,

( i . e . m u l t i p l y i n g b y

a x n

a n d t h e n c o n t r a c t i n g w i t h t = m ) y i e l d s

a x a x t

o r

n

a z k a x r

- a x '

q s

b S

a x q a z l

. 4 ( j , k , l )

A ( p , q , r )

B r

=

0

a x k a x r - a x k

q n

a x q a x l

A ( j , k , l ) -

a x A ( p , q , r )

B r

= 0 .

n

S i n c e B r

i s a n a r b i t r a r y t e n s o r , w e h a v e b y P r o b l e m 2 1 ,

a z k a x r

k , 1 )

-

a x

A ( p , q , r )

=

0

a x q a x l

a x i

a 9 a z n

I n n e r m u l t i p l i c a t i o n b y

x

y i e l d s

a x i n a x r

k n -

a x p a x q a x ` n

b 7 n 6 1 A ( j , k , l ) -

1

A ( p , q , r )

a z a x ' s a x r

o r 4 ( j , m , n )

a x p a x q a z n

a x j a z m a x r

A ( p , q , r )

=

0

w h i c h s h o w s t h a t A ( p , q , r ) i s a t e n s o r a n d j u s t i f i e s u s e o f t h e n o t a t i o n A q .

I n t h i s p r o b l e m w e h a v e e s t a b l i s h e d a s p e c i a l c a s e o f t h e q u o t i e n t l a w w h i c h s t a t e s t h a t i f a n i n n e r

p r o d u c t o f a q u a n t i t y X w i t h a n a r b i t r a r y t e n s o r B i s a t e n s o r C , t h e n X i s a t e n s o r .

S Y M M E T R I C A N D S K E W - S Y M M E T R I C T E N S O R S .

r

2 3 . I f a t e n s o r

. 4 S q

i s s y m m e t r i c ( s k e w - s y m m e t r i c ) w i t h r e s p e c t t o i n d i c e s p a n d q i n o n e c o o r d i n a t e

s y s t e m , s h o w t h a t i t r e m a i n s s y m m e t r i c ( s k e w - s y m m e t r i c ) w i t h r e s p e c t t o p a n d q i n a n y c o o r d i -

n a t e s y s t e m .

P q

S i n c e o n l y i n d i c e s p a n d q a r e i n v o l v e d w e s h a l l p r o v e t h e r e s u l t s f o r B

I f B

P q

P q

q

s s y m m e t r i c , B

= B

.

T h e n

B j k

=

- a l l a z k B p q = a z k a z k B q p

=

k j

a x P a x q

a x q a x p

a n d B P q

r e m a i n s s y m m e t r i c i n t h e z 2 c o o r d i n a t e s y s t e m .

I f B q i s s k e w - s y m m e t r i c ,

B

j k

=

a x k a x k B ? ' q

=

-

a z k a a c l B q p

_

a x p a x q

a x q a x k

a n d B P q

r e m a i n s s k e w - s y m m e t r i c i n t h e T i c o o r d i n a t e s y s t e m .

T h e a b o v e r e s u l t s a r e , o f c o u r s e , v a l i d f o r o t h e r s y m m e t r i c ( s k e w - s y m m e t r i c ) t e n s o r s .

Page 192: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 192/234

T E N S O R A N A L Y S I S

1 8 5

2 4 . S h o w t h a t e v e r y t e n s o r c a n b e e x p r e s s e d a s t h e s u m o f t w o t e n s o r s , o n e o f w h i c h i s s y m m e t r i c

a n d t h e o t h e r s k e w - s y m m e t r i c i n a p a i r o f c o v a r i a n t o r c o n t r a v a r i a n t i n d i c e s .

C o n s i d e r , f o r e x a m p l e , t h e t e n s o r B . W e h a v e

B P 9

( B P 9 +

B 9 P )

+

1 ( B P 4 -

B 4 P

B u t

R p q =

( B p q + B q ' )

=

R q ' i s s y m m e t r i c , a n d S P q

=

( B P q - B q ' ) = - S q ' i s s k e w - s y m m e t r i c .

B y s i m i l a r r e a s o n i n g t h e r e s u l t i s s e e n t o b e t r u e f o r a n y t e n s o r .

2 5 . I f

= a j k

A i A k s h o w t h a t

w e c a n a l w a y s w r i t e 4 ) = b k

A j A k w h e r e b k i s s y m m e t r i c .

( D

=

a j k

A A k

=

a k J

A k

A

=

a k , .

A A k

T h e n

2 C =

a j k

A j A k +

a k . 1

A i A k

=

( a j k + a k j )

A j A k

a n d

=

z ( a j k + a k i - )

A j A k

=

b j k

A ' A k

w h e r e

b . k =

2 ( a j k + a k ' ) = b k j i s s y m m e t r i c .

M A T R I C E S .

2 6 . W r i t e t h e s u m S = A + B , d i f f e r e n c e D = A - B , a n d p r o d u c t s P = A B , Q = B A o f t h e m a t r i c e s

3

1

- 2

2

0 - 1

A

=

4 - 2

3

,

B =

- 4 1

2

- 2

1

- 1

1 - 1

0

3 + 2

1 + 0

- 2 - 1

5

1

- 3

S = A + B =

4 - 4

- 2 + 1 3 + 2

=

0 - 1 5

- 2 + 1

1 - 1

- 1 + 0

- 1

0

- 1

3 - 2 1 - 0 - 2 + 1

1

1

- 1

D = A - B =

4 + 4 - 2 - 1

3 - 2 =

8 - 3

1

- 2 - 1

1 + 1

- 1 - 0

- 3

2 - 1

( 3 ) ( 2 ) + ( 1 ) ( - 4 ) + ( - 2 ) ( 1 )

( 3 ) ( 0 ) + ( 1 ) ( 1 ) + ( - 2 ) ( - 1 )

( 3 ) ( - 1 ) + ( 1 ) ( 2 ) + ( - 2 ) ( 0 )

P = A B =

( 4 ) ( 2 ) + ( - 2 ) ( - 4 ) +

( 3 ) ( 1 )

( 4 ) ( 0 ) + ( - 2 ) ( 1 ) + ( 3 ) ( - 1 )

( 4 ) ( - 1 ) + ( - 2 ) ( 2 ) + ( 3 ) ( 0 )

( - 2 ) ( 2 ) + ( 1 ) ( - 4 ) + ( - 1 ) ( 1 )

( - - 2 ) ( 0 ) + ( 1 ) ( 1 ) + ( - 1 ) ( - 1 )

( - 2 ) ( - 1 ) +

( 1 ) ( 2 ) + ( - 1 ) ( 0 )

0 3 - 1

1 9

- 5

- 8

- - 9 2

4

Q = B A =

8

1

- 3

- 1 2

- 4

9

1

3

- 5

T h i s s h o w s t h a t A B B A , i . e . m u l t i p l i c a t i o n o f m a t r i c e s i s n o t c o m m u t a t i v e i n g e n e r a l .

Page 193: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 193/234

1 8 6

T E N S O R A N A L Y S I S

2 7 . I f A =

2

1

a n d B =

( - I

2

,

s h o w t h a t ( A + B ) ( A - B ) A A 2 - B 2 .

- 1 3

3 - 2

A + B = 1 3 , A - B =

3 - 1

.

T h e n ( A + B ) ( A - B ) =

1

3 - 2

1

4 5

( _ :

5

A 2 -

2

1

2

1

- 1 3

- 1 3

T h e n A 2 - B 2 =

1 - 4

1 1

4 - 2

3 5

B 2

+ - 1

2

- 1 2 = 7 - 6

y - - 5 8

' 3 - 2 3 - 2 - 9 1 0

T h e r e f o r e , ( A + B ) ( A - B )

A ` - B 2 .

H o w e v e r , ( A + B ) ( A - B ) = A 2 - A B + B A - B 2 .

2 8 . E x p r e s s i n m a t r i x n o t a t i o n t h e t r a n s f o r m a t i o n e q u a t i o n s f o r ( a ) a c o v a r i a n t v e c t o r , ( b ) a c o n t r a -

v a r i a n t t e n s o r o f r a n k t w o , a s s u m i n g N = 3

.

a 9

( a ) T h e t r a n s f o r m a t i o n e q u a t i o n s A P =

x -

A q c a n b e w r i t t e n

a x

a x I a x 2

a x 3

a x 1 o x

o x

a x 1

a x 2

a x 3

a x 2 a x 2 a x 2

a x 1 a x 2

a x 3

a x 3

a x 3

a x 3

i n t e r m s o f c o l u m n v e c t o r s , o r e q u i v a l e n t l y i n t e r m s o f r o w v e c t o r s

a x 1

- a x '

a x 1

a x 1 a x 2

a x 3

( A 1 A 2 A 3 )

_

( A 1 A 2 A 3 )

a x 2

a x 2

a x 2

a y 1

a z 2

- 3 x 3

a x 3 a x 3 a x 3

a x 1 a x 2

a x 3

( b ) T h e t r a n s f o r m a t i o n e q u a t i o n s A

p r = a x

a x

q s

c a n b e w r i t t e n

a x q

a x s

A

- 2 1

A

- 2 2

A

2 3

'

_

A

3 1 A 3 2 A 3 3

E x t e n s i o n s o f t h e s e r e s u l t s c a n b e m a d e f o r N > 3 .

F o r h i g h e r r a n k t e n s o r s , h o w e v e r , t h e m a t r i x n o t a -

t i o n f a i l s .

Page 194: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 194/234

T E N S O R A N A L Y S I S

1 8 7

T H E L I N E E L E M E N T A N D M E T R I C T E N S O R .

2 9 . I f d s 2 =

g j

d x k d x k i s a n i n v a r i a n t , s h o w t h a t

9 j k

i s a s y m m e t r i c c o v a r i a n t t e n s o r o f r a n k t w o .

B y P r o b l e m 2 5 , 4 ) = d s 2 , A J = d x a n d

A k

= d x k ; i t f o l l o w s t h a t 9 , j k c a n b e c h o s e n s y m m e t r i c . A l s o

s i n c e d s 2 i s a n i n v a r i a n t ,

g d x ' d x q

=

g , k d x k

d x k

=

g k

a x

p d T P

a x e

d -

=

g . k

a x e a x k

d 0 d x ` q

p q

9 J a x

a x

9 a x

a x

T h e n g ` p q = g j k

a

a x k

a n d

g j k

i s a s y m m e t r i c c o v a r i a n t t e n s o r o f r a n k t w o , c a l l e d t h e m e t r i c t e n s o r .

a x a x

3 0 .

D e t e r m i n e t h e m e t r i c t e n s o r i n ( a ) c y l i n d r i c a l a n d ( b ) s p h e r i c a l c o o r d i n a t e s .

( a ) A s i n P r o b l e m 7 , C h a p t e r 7 ,

d s 2 = d p 2 + p 2 d 0 2 + d z 2 .

I f x = p , x 2 = 0 , x 3 = z t h e n

g 1 1 = 1 ' g 2 2 _ p 2

g 3 3 - I ' g 1 2J g 2 1 - 0 ' "2 3 - g 3 2 ^ O ' g 3 1 = g 1 3 = O .

9 1 1 g 1 2

g 1 3

I n m a t r i x f o r m t h e m e t r i c t e n s o r c a n b e w r i t t e n

9 2 1 9 2 2

g 2 3

\ g 2 1

g 3 2

9 3 3

( b ) A s i n P r o b l e m 8 ( a ) , C h a p t e r 7 ,

d s 2 = d r 2 + r 2 d 8 2 + r 2 s i n 2 8 d c 2 .

1 0 0

0

p 2

0

0 0

1

f 1 0

0

I f x 1 = r , x 2 = 8 , x 3 =

t h e m e t r i c t e n s o r c a n b e w r i t t e n

0

r 2

0

0 0

r 2 s i n 2 8

I n g e n e r a l f o r o r t h o g o n a l c o o r d i n a t e s , g k = 0 f o r i t k .

j

3 1 . ( a ) E x p r e s s t h e d e t e r m i n a n t g =

g 1 1

g 1 2

g 1 3

g 2 1 g 2 2 g 2 3

g 3 1

g 3 2

g 3 3

i n t e r m s o f t h e e l e m e n t s i n t h e s e c o n d r o w a n d

t h e i r c o r r e s p o n d i n g c o f a c t o r s .

( b ) S h o w t h a t

g j k

G ( j , k ) = g w h e r e G ( j , k ) i s t h e c o f a c t o r o f

g k i n g a n d w h e r e s u m m a t i o n i s o v e r k o n l y .

j

( a ) T h e c o f a c t o r o f

g j k

i s t h e d e t e r m i n a n t o b t a i n e d f r o m g b y ( 1 ) d e l e t i n g t h e r o w a n d c o l u m n i n w h i c h

g k a p p e a r s a n d ( 2 ) a s s o c i a t i n g t h e s i g n ( - 1 ) j + k t o t h i s d e t e r m i n a n t .

T h u s ,

C o f a c t o r o f g

=

( - 1 ) 2 + 1

g 1 2 g 1 2

,

C o f a c t o r o f g

=

( - - 1 ) 2 + 2 g 1 1 g 1 3

,

2 1

g 3 2 g 3 3

g 3 1 g d 3

C o f a c t o r o f g

_

( - 1 ) 2 + 3

9 1 1 9 1 2

g 3 1 g 3 2

D e n o t e t h e s e c o f a c t o r s b y G ( 2 , 1 ) , G ( 2 , 2 ) a n d G ( 2 , 3 ) r e s p e c t i v e l y . T h e n b y a n e l e m e n t a r y p r i n c i p l e

o f d e t e r m i n a n t s

g 2 1 G ( 2 , 1 ) + g 2 2 G ( 2 , 2 ) + g m G ( 2 , 3 ) =

g

Page 195: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 195/234

1 8 8

T E N S O R A N A L Y S I S

( b ) B y a p p l y i n g t h e r e s u l t o f ( a ) t o a n y r o w o r c o l u m n , w e h a v e g j k G ( j , k ) = g w h e r e t h e s u m m a t i o n i s

o v e r k o n l y . T h e s e r e s u l t s h o l d w h e r e g =

I g j k

I

i s a n N t h o r d e r d e t e r m i n a n t .

3 2 . ( a ) P r o v e t h a t

g 2 1

G ( 3 , l ) +

g 2 2

G ( 3 , 2 ) +

g 2 3

G ( 3 , 3 )

=

0 .

( b ) P r o v e t h a t

g 3 k G ( p , k ) = 0

i f

j A p .

( a ) C o n s i d e r t h e d e t e r m i n a n t

g 1 1

g 1 2 g 1 3

g 2 1

g 2 2

g 2 3

g 2 1 g 2 2

g 2 3

w h i c h i s z e r o s i n c e i t s l a s t t w o r o w s a r e i d e n t i c a l . E x -

p a n d i n g a c c o r d i n g t o e l e m e n t s o f t h e l a s t r o w w e h a v e

g 2 1

G ( 3 , 1 ) + g 2 2 G ( 3 , 2 ) + g 2 3 G ( 3 , 3 )

= 0

( b ) B y s e t t i n g t h e c o r r e s p o n d i n g e l e m e n t s o f a n y t w o r o w s ( o r c o l u m n s ) e q u a l w e c a n s h o w , a s i n p a r t ( a ) ,

t h a t g , j k G ( p , k ) = 0 i f j

p . T h i s r e s u l t h o l d s f o r N t h o r d e r d e t e r m i n a n t s a s w e l l .

3 3 . D e f i n e

g 7 k

=

G ( , k )

w h e r e G ( j , k ) i s t h e c o f a c t o r o f

g j k

i n t h e d e t e r m i n a n t g =

g j k

P r o v e t h a t g - k

9 O k

=

8 ' .

B y P r o b l e m 3 1 ,

i g k

G ( g k )

=

1

o r

j g k

g j k

= 1 , w h e r e s u m m a t i o n i s o v e r k o n l y .

B y P r o b l e m 3 2 ,

g k G ( g

k )

= 0

o r

g P k

= 0

i f p

j .

A 0 .

T h e n

g , k g P k ( = 1 i f p = j , a n d 0 i f p J j ) = b .

W e h a v e u s e d t h e n o t a t i o n

g i k

a l t h o u g h w e h a v e n o t y e t s h o w n t h a t t h e n o t a t i o n i s w a r r a n t e d , i . e .

t h a t g j k i s a c o n t r a v a r i a n t t e n s o r o f r a n k t w o . T h i s i s e s t a b l i s h e d i n P r o b l e m 3 4 . N o t e t h a t t h e c o f a c t o r

h a s b e e n w r i t t e n G ( j , k ) a n d n o t

G j k

s i n c e w e c a n s h o w t h a t i t i s n o t a t e n s o r i n t h e u s u a l s e n s e . H o w -

e v e r , i t c a n b e s h o w n t o b e a r e l a t i v e t e n s o r o f w e i g h t t w o w h i c h i s c o n t r a v a r i a n t , a n d w i t h t h i s e x t e n s i o n

o f t h e t e n s o r c o n c e p t t h e n o t a t i o n G j k c a n b e j u s t i f i e d ( s e e S u p p l e m e n t a r y P r o b l e m 1 5 2 ) .

3 4 . P r o v e t h a t

g j k

i s a s y m m e t r i c c o n t r a v a r i a n t t e n s o r o f r a n k t w o .

S i n c e g

3 . k

i s s y m m e t r i c , G ( j , k ) i s s y m m e t r i c a n d s o

g j k

= G ( j , k ) / g i s s y m m e t r i c .

I f

B 0

i s a n a r b i t r a r y c o n t r a v a r i a n t v e c t o r , B q = g

q

B 0 i s a n a r b i t r a r y c o v a r i a n t v e c t o r . M u l t i p l y i n g

b y g j q ,

g J q B q =

g J q

g

B '

=

8 i B O

=

B i

o r

g J q B q =

B , 9

q

0

S i n c e B q i s a n a r b i t r a r y v e c t o r , g I q i s a c o n t r a v a r i a n t t e n s o r o f r a n k t w o , b y a p p l i c a t i o n o f t h e q u o t i e n t

l a w . T h e t e n s o r g j k i s c a l l e d t h e c o n j u g a t e m e t r i c t e n s o r .

Page 196: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 196/234

T E N S O R A N A L Y S I S

3 5 . D e t e r m i n e t h e c o n j u g a t e m e t r i c t e n s o r i n (

( a ) F r o m P r o b l e m 3 0 ( a ) ,

S i m i l a r l y

g

3 k

= 0

9 1 1

g

9 2 2

_

1

0

0

0

p 2 0

0

0

1

y l i n d r i c a l a n d ( b ) s p h e r i c a l c o o r d i n a t e s .

p 2

c o f a c t o r o f g 1 1

1 p 2 0

g p 2 0

1

c o f a c t o r o f g 2 2 1

g

p 2

c o f a c t o r o f g

1

9 W

= g

=

2

c o f a c t o r o f g 1 2

1

g 1 2 =

g

p 2

1

0

0 p 2

0 0

0

1

1

P

2

= 0

i f j

k .

I n m a t r i x f o r m t h e c o n j u g a t e m e t r i c t e n s o r c a n b e r e p r e s e n t e d b y

1

0

0

0

1 / p 2 0

0

0

1

( b ) F r o m P r o b l e m 3 0 ( b ) ,

g

A s i n p a r t ( a ) , w e f i n d

t h i s c a n b e w r i t t e n

r 2

r 4 s i n 2 &

1 8 9

1

a n d g j k = 0 f o r j

k , a n d i n m a t r i x f o r m

r 2 s i n 2 6

1

0

0

0

1 / r 2

0

0

0

1 / r 2 s i n 2 6

3 6 . F i n d ( a ) g a n d ( b )

g j k

c o r r e s p o n d i n g t o d s 2 = 5 ( d x 1 ) 2 + 3 ( d x 2 ) 2 + 4 ( d x 3 ) 2 - 6 d x 1 d x 2 + 4 d x 2 d x 3

.

( a ) g 1 1 = 5 ,

g =

5 - 3 0

- 3 3

2

0 . 2 4

= 4 .

( b ) T h e c o f a c t o r s G ( j , k ) o f g J k a r e

G ( 1 , 1 ) = 8 , G ( 2 , 2 ) = 2 0 , G ( 3 , 3 ) = 6 , G ( 1 , 2 ) = G ( 2 , 1 ) = 1 2 , G ( 2 , 3 ) = G ( 3 , 2 ) = - 1 0 , G ( 1 , 3 ) = G ( 3 , 1 ) = - 6

T h e n g 1 1 = 2 , g 2 2 = 5 , g 3 3 = 3 / 2 , g 1 2 = g 2 . = 3 , e = g 2 2 = - 5 / 2 , g 1 3 = g 3 1 = - 3 / 2

N o t e t h a t t h e p r o d u c t o f t h e m a t r i c e s ( g J . k ) a n d ( g j k ) i s t h e u n i t m a t r i x I , i . e .

5

- 3

0 2 3

- 3 / 2 1

0

0

- 3

3

2

3 5 - 5 / 2

=

0

1

0

0

2

4 - 3 / 2 - 5 / 2 3 / 2

0 0

1

Page 197: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 197/234

1 9 0

T E N S O R A N A L Y S I S

A S S O C I A T E D T E N S O R S .

3 7 . I f A =

g j k

A k ,

s h o w t h a t

A k

= g i k A

.

M u l t i p l y A j = g J , k A k b y g " q

T h e n

g J q

A j = g j g g j k A " - = 8 q A k =

A q ,

i . e .

A q

=

g J q

A o r A k = g j k A j .

T h e t e n s o r s o f r a n k o n e , A j a n d A k , a r e c a l l e d a s s o c i a t e d . T h e y r e p r e s e n t t h e c o v a r i a n t a n d c o n t r a -

v a r i a n t c o m p o n e n t s o f a v e c t o r .

3 8 . ( a ) S h o w t h a t L 2 = g p q A P A q

i s a n i n v a r i a n t .

( b ) S h o w t h a t L 2 = g p g A P A q .

( a ) L e t A j a n d A k

b e t h e c o v a r i a n t a n d c o n t r a v a r i a n t c o m p o n e n t s o f a v e c t o r . T h e n

A p = a X A 1 ,

a n d A p

A

p

=

a x k a z p A . A k

a x ' p a x k

q

a x g A k

a x k

= k A A k

=

A . A l

s o t h a t A j A I

i s a n i n v a r i a n t w h i c h w e c a l l L 2 . T h e n w e c a n w r i t e

L 2

=

A j A ' l

=

g j k

A k A I

g p q

A 0 A q

( b ) F r o m ( a ) ,

L 2 = A . A I = A I g k j A k = g j k A j A k = g , q A p A q .

T h e s c a l a r o r i n v a r i a n t q u a n t i t y L =

A P

A P i s c a l l e d t h e m a g n i t u d e o r l e n g t h o f t h e v e c t o r w i t h

c o v a r i a n t c o m p o n e n t s A p a n d c o n t r a v a r i a n t c o m p o n e n t s A p .

3 9 .

( a )

I f

A P

a n d B q a r e v e c t o r s , s h o w t h a t g p q A P B q i s a n i n v a r i a n t .

A p B 4

( b ) S h o w t h a t 9 p g

i s a n i n v a r i a n t .

( A p A

p ) ( B g B q )

( a ) B y P r o b l e m 3 8 , A

0

B

0

=

A P g p q B g = g p q

A I B '

i s a n i n v a r i a n t .

( b ) S i n c e A p A P a n d B g B q a r e i n v a r i a n t s

( A p A p ) ( B g B q ) i s a n i n v a r i a n t a n d

i n v a r i a n t .

W e d e f i n e

c o s 6

g p g A P B g

s o

g p g A A B q

( A ' A p ) ( B q B q )

i s a n

( A P A p ) ( B g B q )

a s t h e c o s i n e o f t h e a n g l e b e t w e e n v e c t o r s A p a n d B q .

I f

g p q A 1 B ' =

A 1 B 1

= 0 , t h e v e c t o r s a r e

c a l l e d o r t h o g o n a l .

Page 198: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 198/234

T E N S O R A N A L Y S I S

4 0 . E x p r e s s t h e r e l a t i o n s h i p b e t w e e n t h e a s s o c i a t e d t e n s o r s :

( a )

A j k l a n d

A 0 g r

,

( b )

a n d

A g k r

( c ) A .

q . .

a n d

A j q . s l

t

k

( a )

A j k l

=

g j P g k g g l r

A p q r

o r

A p q r =

g .

g k q g 1 r A

( b )

A ' k l

g j q g l r

A g k r

o r

A g k r =

g j g 9 1 r A ' k l

j k l

P . r s .

j r k

. . . s l

. . . s l

t i

5 . r s .

o r

A

=

g

g

g

c ) A

9

A

q . . t

j g k

p j

l

r k 9

. q . . t ,

g k

1 9 1

4 1 . P r o v e t h a t t h e a n g l e s 8 1 2 , 0 2 3 a n d 6 3 1 b e t w e e n t h e c o o r d i n a t e c u r v e s i n a t h r e e d i m e n s i o n a l c o -

o r d i n a t e s y s t e m a r e g i v e n b y

c o s 6

= g 1 2

c o s 6

=

9 2 3

c o s 6

=

9 3 1

1 2

1

g 3

V " g 1 1 g 2 2

g

- -

2

3 3

A l o n g t h e x 1 c o o r d i n a t e c u r v e , x 2 = c o n s t a n t a n d x 3 = c o n s t a n t .

T h e n f r o m t h e m e t r i c f o r m ,

d s 2 = g 1 1 ( d x i 2

o r

d x 1

=

1

d s

7 9 1 ,

T h u s a u n i t t a n g e n t v e c t o r a l o n g t h e x 1 c u r v e i s A l =

6 1 . S i m i l a r l y , u n i t t a n g e n t v e c t o r s a l o n g

t h e x 2 a n d x 3 c o o r d i n a t e c u r v e s a r e A r -

a n d A r =

b r

2 -

; 7 1 8 2

3 - " r

3

3 3

T h e c o s i n e o f t h e a n g l e 6 1 2 b e t w e e n A l a n d A 2 i s g i v e n b y

p q

1

1

q

g 1 2

c o s 6 1 2 =

g p q A l A 2

=

p q V I ' g - 1 1

V I - g ;

8 1 2

g 1 1 g 2 2

S i m i l a r l y w e o b t a i n t h e o t h e r r e s u l t s .

4 2 . P r o v e t h a t f o r a n o r t h o g o n a l c o o r d i n a t e s y s t e m , g 1 2

= g 2 3 = g 3 1 = 0 .

T h i s f o l l o w s a t o n c e f r o m P r o b l e m 4 1 b y p l a c i n g 6

1

2 = 0 1 = 9 6 0 .

6

F r o m t h e f a c t t h a t 9 1 q = g q j

i t a l s o f o l l o w s t h a t

g 2 1 = g 3 2 = g 1 3 = D .

4 3 . P r o v e t h a t f o r a n o r t h o g o n a l c o o r d i n a t e s y s t e m , g 1 1 =

g 1 1 '

9 2 2

9 2 2 '

9 3 3

g 3 3

F r o m P r o b l e m 3 3 , g P r 9

r q

b q .

I f p = q = 1 ,

g 1 r 9 r 1 = 1

o r

T h e n u s i n g P r o b l e m 4 2 ,

9 1 1

1 1

9

9 1 1

+ g 1 2 g 2 1

+ 9 1 3 9 3 1

1

=

g 1 1 .

1 .

S i m i l a r l y i f p = q = 2 , g =

g 1

; a n d i f p = q = 3 , 9 3 8 = 1 3

Page 199: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 199/234

1 9 2

C H R I S T O F F E L ' S S Y M B O L S .

4 4 . P r o v e ( a ) [ p q , r ] _ [ q p , r ] ,

( a ) [ p q , r ]

_

T E N S O R A N A L Y S I S

( b )

P q

=

4 P

,

( c ) [ p q , r ] = g r s { ; q }

i ( a g P r +

a g g r

_

i a g g r +

. . _ P

-

a g g p )

_

[ q P , r ] .

a x q a x p

a x r

a x p a x q

a x r

( b )

p q

= g " [ P q , r ] =

g s r [ q p , r ]

=

f S

q P

( c )

g k s P q

=

g k s g s r [ p q , r ]

=

8 k [ p q , r ] = [ P q , k ]

s

o r

[ P q , k ] = g k s

p q

r s

p q , r ]

g

P q

i . e .

N o t e t h a t m u l t i p l y i n g

[ p q , r ]

b y g s r h a s t h e e f f e c t o f r e p l a c i n g r b y s , r a i s i n g t h i s i n d e x a n d r e -

p l a c i n g s q u a r e b r a c k e t s b y b r a c e s t o y i e l d

P q

{ ; }

.

S i m i l a r l y , m u l t i p l y i n g

F q

s

b y g r s o r g s r h a s t h e

e f f e c t o f r e p l a c i n g s b y r , l o w e r i n g t h i s i n d e x a n d r e p l a c i n g b r a c e s b y s q u a r e b r a c k e t s t o y i e l d [ p q , r ] .

4 5 . P r o v e ( a )

a g p q

= [ P m , q ] +

a x

[ q m , P ]

P n

( b )

a g t

=

q

l n V

c )

P

= a

g

q n p

a x m

m a

g

m n

( a ) ]

=

] +

[

m

2

a g

( a g + a g m

_

a g g r o ) =

a g m g

_ a g P K ) +

a g f i g

, pq

q

a x m

Z

a x p

a x q

a x m a x q

a x p

' a x " '

k

J k

b )

g i j )

a x m

( b i )

x m ( g

=

0 .

T h e n

p k a g J

+

a g

. .

a x

a x i

g i

a x m

- 9

t i r g i k ( [ i r n , j ]

+ [ j m , i ] )

_ i t

k

j k

r

g

i m

g

j m

a n d t h e r e s u l t f o l l o w s o n r e p l a c i n g r , k , i , j b y p , q , n , n r e s p e c t i v e l y .

0

o r

j

k

j k

a g i

a g

g i

a x m

g

a x m

i r

. .

a g ' k

i t g j k a g t i j

g g 2 J

a x m $ a x m

- 1

k

8 r 1 9 -

=

j a x

a g r k

( c ) F r o m P r o b l e m 3 1 , g = g j k G ( j , k )

( s u m o v e r k o n l y ) .

Page 200: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 200/234

T E N S O R A N A L Y S I S

a g .

a g .

a g

=

a g

r =

G ( j , r )

j r

a x ' s

a g x m

a x l n

j r

a g .

= 9 9

a r

a z j

= 9 9

j r

[ r m , j ] )

g

T h u s

i a g

2 g a x q

j m

T h e r e s u l t f o l l o w s o n r e p l a c i n g j b y p a n d m b y q .

1 9 3

4 6 . D e r i v e t r a n s f o r m a t i o n l a w s f o r t h e C h r i s t o f f e l s y m b o l s o f ( a ) t h e f i r s t k i n d , ( b ) t h e s e c o n d k i n d .

( a ) S i n c e

( 1 )

( 2 )

( 3 )

S i n c e G ( j , k ) d o e s n o t c o n t a i n g j k e x p l i c i t l y ,

a

= G ( j , r ) .

T h e n , s u m m i n g o v e r j a n d r ,

9 j - r

a x p - 6 . q

g j k

' 2

a z k a x k

g p q

a g j k

=

a x p a x q

a g p q

a x r

+

a x j '

a 2 x q g

+

a 2 x j ' a x q

a x q

a x j a ` x k a x r a x j a x k a x q a x k p q

a x q a z j a x k

g p 9

B y c y c l i c p e r m u t a t i o n o f i n d i c e s j , k , m a n d p , q , r

a g k l n

= a x q a x r a g q r a x p

+

a x q

a 2 x r

a x q a x k a x m a x q a z j

a x k a x q a x q

-

X 1

a x k

, a x - r a x k a g r j i a x q

+

a x r

a 2 x P

a ' m a z j a x q a x k

a x q ' a r k a x j

q r

a 2 x q

a x r

a x k a z k a x 1 a

'

q r

a 2 x r

a x 7 5

g

a z k - 3 x 1 4 a ' x j

r r

S u b t r a c t i n g ( 1 ) f r o m t h e s u m o f ( 2 ) a n d ( 3 ) a n d m u l t i p l y i n g b y 2 , w e o b t a i n o n u s i n g t h e d e f i n i t i o n

o f t h e C h r i s t o f f e l s y m b o l s o f t h e f i r s t k i n d ,

( 4 )

a x a x q a x r

a 2 X P

a x q

' 3 V a x k - a - %

a x j a x k a z j

g p q

( b ) M u l t i p l y ( 4 ) b y

- n m =

a x n a z

a x s a x t

t o o b t a i n

_

a x , a x q a x r a x - n a z j '

s t

a 2 x q

a x q a x n a z j

s t

n m [

a x j a x k a x m a x s a x t

g

[ p q , r ] +

a z j a x ' k a z m a x s a x t

g

g p q

Page 201: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 201/234

1 9 4

T h e n

j n

j k

}

T E N S O R A N A L Y S I S

a x p a x q a z n

r

g

s t

7 2 x 0

a z n

q S t

a z n a x k a x s

t

[ P q . r ]

- 6 1 i a x k a x s

b g

g p g

a x p a x q a z n j s

+

7 2 x 1 '

a z n

a x k a x k a x s

p q

a x k a z k a x p

4 7 . P r o v e

s i n c e

s

g s t

[ p q , r ]

7 2 x 2

a x q a x k

-

F r o m P r o b l e m 4 6 ( b ) ,

g s r [ p q , r ]

n

j k

n

j k

s

s t

s

1 ' q

a n d b g

g p q

= g

g g p q

=

b

s

P

.

a x ' s

a x p a x Q

m

a x n ` a x k a x k

p q

}

=

a x p a x q a x n

s

a x k a x k a x s

P q

+

a 2 x p

a x n

- a y j a x k a x p .

M u l t i p l y i n g b y

a x n

k

a x

=

a x p a x k

S S

s

a x

1

a x

d x j a x

P q

_

a x p a x q ` m

a z n a x k

P q

2

S o l v i n g f o r a x

,

t h e r e s u l t f o l l o w s .

a x q a x k

+

a 2 x p

a x k a z k

+

a 2

x

a x a x k

4 8 . E v a l u a t e t h e C h r i s t o f f e l s y m b o l s o f ( a ) t h e f i r s t k i n d , ( b ) t h e s e c o n d k i n d , f o r s p a c e s w h e r e

g 1 ' 9 = 0 i f p , - q .

( a )

I f P = q = r .

[ P q r ]

I f P = q t r .

I f P = r X q ,

[ P q , r ]

[ p p , r ]

1

` e g o

+

a g p p

a g p p

2

a x p a x p

a x p

1

( a g p r

+

a g p r _

N g p p )

2

a x p

a x p

a x ' _

1 a g p p

2 a x r

[ p q . p ] = 1

( ' 9 p p

+

a g g p _

a g p g

_

1

a g p p

2

a x q a x p a x p

2 a x q

I f p , q , r a r e d i s t i n c t ,

[ p q , r ] = 0 .

W e h a v e n o t u s e d t h e s u m m a t i o n c o n v e n t i o n h e r e .

( b ) B y P r o b l e m 4 3 , g i i = g

( n o t s u m m e d ) .

T h e n

1 J

p q

=

g s r [ p q , r ]

= 0 i f r # s ,

a n d = g s s [ p q , s ]

_ [

g q ,

s ] ( n o t s u m m e d ) i f

r = s .

s s

B y ( a ) :

Page 202: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 202/234

T E N S O R A N A L Y S I S

s

_ P

=

[ P P ' P ]

_

1

a g p p

I n g

P q

=

P P

g p p -

2 g p p

a x p

a x p

p p

s

s

[ P P s ]

1

a g p p

P q

P P

g s s 2 g s s a x s

S

=

P

[ p q , p ]

=

1

a g p p

a

I n g

P q

P q

g p p

2 g p p a x q

2 a x g

p p

I f p , q , s a r e d i s t i n c t ,

j s

P q

4 9 . D e t e r m i n e t h e C h r i s t o f f e l s y m b o l s o f t h e s e c o n d k i n d i n ( a ) r e c t a n g u l a r , ( b ) c y l i n d r i c a l , a n d

( c ) s p h e r i c a l c o o r d i n a t e s .

W e c a n u s e t h e r e s u l t s o f P r o b l e m 4 8 , s i n c e f o r o r t h o g o n a l c o o r d i n a t e s g p q = 0 i f p

q .

( a ) I n r e c t a n g u l a r c o o r d i n a t e s , g p p = 1 s o t h a t

i P q

= 0 .

( b ) I n c y l i n d r i c a l c o o r d i n a t e s , x 1 = p , x 2 = 0 , x 3 = z , w e h a v e b y P r o b l e m 3 0 ( a ) ,

g 1 1 =

1 , g 2 2 = p 2 , g 3 3 = 1 .

T h e o n l y n o n - z e r o C h r i s t o f f e l s y m b o l s o f t h e s e c o n d k i n d c a n o c c u r w h e r e p = 2 .

T h e s e a r e

1

1

2 2

2 g 1 1

( C )

T h e o n l y n o n - z e r o C h r i s t o f f e l s y m b o l s o f t h e s e c o n d k i n d c a n o c c u r w h e r e p = 2 o r 3 .

T h e s e

= 0 .

- a a

g 2 2

a x ,

-

2 ( p 2 )

p

2 2

g 2 2

1

a

2

( p

)

-

1

2 1

1 2

2 8 2 , a x l

2 ) 0 2 a p

p

I n s p h e r i c a l c o o r d i n a t e s , x 1 = r , x 2 = 6 , x 3 = 0 , w e h a v e b y P r o b . 3 0 ( b ) , g 1 1 = 1 ,

g 2 2 = r 2 , g , = r 2

s i n 2 6 .

1

2 2

1

g 2 2

2 g 1 1

a x 1

=

2

_ 2

_

1

2 1 1 2

2 g 2 2

2 8 2 2 a x e

=

2

d r

2 r 2 8 ( r 2 s i n

2 0 )

- s i n 6 c o s 0

3 3

_ _

1

a g

1

a

1

-

( r 2 s i n 2 6 )

_

3 1

1 3

2 8 3 3

a x I

2 r 2 s i n 2 6 a r

r

3

1 3

1

a g 3 3

_ 1 a

2

2

( r s i n 6 )

=

c o t 6

3 2 2 3

2 8 3 3 a x e

2 r 2 s i n 2 6 a 6

-

2

a ( r 2 )

_

- r

2

_

1

a ( r 2 )

=

1

a x 1

2 r 2 a r

r

1

a

( r 2 s i n 2 6 )

r s i n e 6

a r e

Page 203: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 203/234

1 9 6

T E N S O R A N A L Y S I S

G E O D E S I C S .

t

2 F ( t , x , z ) d t b e a n e x t r e m u m ( m a x i m u m o r m i n -0 . P r o v e t h a t a n e c e s s a r y c o n d i t i o n t h a t I = f t

1

i m u m ) i s t h a t

a F

_ d U

a x

d t

( a x )

L e t t h e c u r v e w h i c h m a k e s I a n e x t r e m u m b e x = X ( t ) , t 1 < t < t 2 .

T h e n x = X ( t ) + E 7 ] ( t ) , w h e r e E i s

i n d e p e n d e n t o f t , i s a n e i g h b o r i n g c u r v e t h r o u g h t 1 a n d t 2 s o t h a t

7 7 ( t 1 ) = 7 ) ( t 2 ) = 0 .

T h e v a l u e o f I f o r t h e

n e i g h b o r i n g c u r v e i s

1 ( E )

= f t

t 2 F ( t , X + E 7 7 , X + E 7 ] ) d t

1

T h i s i s a n e x t r e m u m f o r E = 0 . A n e c e s s a r y c o n d i t i o n t h a t t h i s b e s o i s t h a t

d l I

= 0 .

B u t b y d i f f e r -

e n t i a t i o n u n d e r t h e i n t e g r a l s i g n , a s s u m i n g t h i s v a l i d ,

a = o

( e ?

+

-

7 7 ) d t

0

d E

f t

E = 1

w h i c h c a n b e w r i t t e n a s

J t 2

7 1 d t

1

a x

t 2

t 2 , 7 7 d

+ a z

t 1

f

d t

( a x )

d t

=

1

S i n c e 7 7 i s a r b i t r a r y , t h e i n t e g r a n d

a F

_

d ( - F )

= 0 .

a x

d t

a x

t

2

f t

t 2

1

7 7

a F

d

a F

d t

a x

d t

( a x )

F ( t , x 1 , z 1 , X 2 , 1 2 , . . . , x X a c ' ) d t

h e r e s u l t i s e a s i l y e x t e n d e d t o t h e i n t e g r a l

J

t

a n d y i e l d s

1

a F

d ( a F )

_

a x k

d t a z k

0

c a l l e d E u l e r ' s o r L a g r a n g e ' s e q u a t i o n s . ( S e e a l s o P r o b l e m 7 3 . )

0

2 r

p

q

5 1 . S h o w t h a t t h e g e o d e s i c s i n a R i e m a n n i a n s p a c e a r e g i v e n b y

d d

s 2 +

r ) d x

d

=

d s

d s

0

p q

r t 2

W e m u s t d e t e r m i n e t h e e x t r e m u m o f g

. 1 p

x

d t u s i n g E u l e r ' s e q u a t i o n s ( P r o b l e m 5 0 ) w i t h

F = g p q z p z q .

W e h a v e

t 1

p q

a F

=

1 ( g

z p z q ) - 1 / 2

a g p q

z p z q

a x k

2

p q

a x k

a z

2

( g p q

x p x q ) - 1 / 2

2 g P k

U s i n g

d t

= g p g

z p z q

, E u l e r ' s e q u a t i o n s c a n b e w r i t t e n

Page 204: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 204/234

T E N S O R A N A L Y S I S

. p

g x

d

d t

S

o r

W r i t i n g

a g p k

a x q

g p k

x p

z p

+

a g p k

x p z q

a x q

a

a

1

- 3 9 p q

x p z q

=

0

2 s

- a x k

a g p q p g p k z

s

q

=

x

2

a x k

t h i s e q u a t i o n b e c o m e s

g p k x

. p . .

g k x s

z p q

[ p q ,

x =

S

s

I f w e u s e a r e l e n g t h a s p a r a m e t e r , 1 , I S ' = 0 a n d t h e e q u a t i o n b e c o m e s

g

a d _ x - 0

+

[ p q , k ]

d x p d x q

= 0

p k d s 2

d s

d s

M u l t i p l y i n g b y g r k , w e o b t a i n

d

2

x

r

+ r

d x p d x q

d s 2

P q

d s d s

T H E C O V A R I A N T D E R I V A T I V E

.

a A

5 2 . I f A p a n d

A P a r e t e n s o r s s h o w t h a t ( a )

a x q

s

A s

a n d ( b ) A p q = a

- p

+

4 S

A s a r e t e n s o r s .

( a ) S i n c e A .

=

x

A r

a - x I

a A

a x r

a A r

a x t

( 1 )

_

+

F r o m P r o b l e m 4 7 ,

a x k

- a x a x t - a x ,

a 2 x r

a x j a z k

n

j k

S u b s t i t u t i n g i n ( 1 ) ,

A .

a x r a x t

a A r

g p k

+

q = 1 (

g g k ) z p x q

2

a x q a x p

a x k

2

a x r

a z k a x k

A r

a x r

_ a x z a x l

r

a z n

a z j a x k ( i t

n

j k

a r

A

}

j

a x n

r

a x a x

z j a z k a t

a x p a x q a A p

a x p a z k a x q

n

a x p a x q

s

1 k

A n

w a x k a z k

P q

A s

o r

a A j

n

a x p a x q

a A p

_ _

A n

a x k

1 k

a x

a z k

a x g

a x i a x l

r

A .

1 9 7

Page 205: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 205/234

1 9 8

T E N S O R A N A L Y S I S

a n d

n d

-

s

A

i s a c o v a r i a n t t e n s o r o f s e c o n d r a n k , c a l l e d t h e c o v a r i a n t d e r i v a t i v e o f A w i t h

a x q

p q

s

r e s p e c t t o x q a n d w r i t t e n

( b ) S i n c e A j =

a x J

r

A r ,

a x

( 2 )

a A J

=

a z j a A r a x t

+

a 7 1

a x t A r

a x k

a x r a x t o x k

a x r o x t a x k

F r o m P r o b l e m 4 7 , i n t e r c h a n g i n g x a n d x c o o r d i n a t e s ,

S u b s t i t u t i n g i n ( 2 ) ,

a A

J

_

a x ` s a x t a A r

a x k a x r a z k a x t

a x k a x t a A r

a x r a x k a x t

a i d a x q a A P

a x p a x k a x q

o r

n

a z j

r t

a x n

a n t i o x l

j

a x r a x t

i l

+

n

a x k a x t A r

r t

a x n a x k

+ n a x j a x t

A r

r t

a x n a x k

s

+ { p } i ,

q a x k a x k

5 3 . W r i t e t h e c o v a r i a n t d e r i v a t i v e w i t h r e s p e c t t o x q o f e a c h o f t h e f o l l o w i n g t e n s o r s :

( a ) A j k , ( b ) A J k , ( c ) A k , ( d ) A k l ,

( a ) A j k , q

( b ) A

q

a x q

j

s

A s k -

1 9

/ A

s k +

q s

( c ) A j - a A k

- s

A j

k , q

a x q k q }

s

( d )

A j

_ a A k l

_ { : q } 4 i

k l , q

a x q

A

J S

a n d

a A q

+

p

A

s

i s a m i x e d t e n s o r o f s e c o n d r a n k , c a l l e d t h e c o v a r i a n t d e r i v a t i v e o f A " w i t h

s

r e s p e c t t o x q a n d w r i t t e n A , q .

A j s

a A k

{ - T } A

i

=

a z a x

( a A

+

p

A s

a x

k i

a x p a x a x q q s

- 6 . 4 1 k

a x q

j k

a A k

S

k q

{

k

q s

I I

q s

s

l q

a x e o x l o x t

1

a x r a x t a x k

i t

' a 7

r

a x r

k t i t

}

A r

A s

k

A i

+ 1 j

k s

q s

}

S

k l

A

Page 206: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 206/234

T E N S O R A N A L Y S I S

1 9 9

j k l

j k l

a A m n

( e ) A m n , q

a x q

s

A j k l

_

s

A j k l +

j

A s k l

+ j

k

A j s l +

I

A j k s

m q

s n

n q m s

q s

m n

q s

s n

q s m n

5 4 . P r o v e t h a t t h e c o v a r i a n t d e r i v a t i v e s o f ( a )

( b ) g j k , ( c ) 8 k a r e z e r o .

( a )

g 1 k , q

a g j k s

s

a x q

j q J g s k -

k q

i s

a g e

9

a x q

( b )

g j k

q

( c ) 8 k , q

-

[ j q , k ]

-

[ k q , j ] = 0 b y P r o b l e m 4 5 ( a ) .

a g j k

+

{ / } g s k

q s

x q

k

i s

+

q s

g

a b k

_

s

j

+

a x q

k { q } 6 s

=

0

b y P r o b l e m 4 5 ( b ) .

0

5 5 . F i n d t h e c o v a r i a n t d e r i v a t i v e o f

A k B u m w i t h r e s p e c t t o x q .

I

I n

( A k B n ) q

I

I s

a ( A k B n )

_

s A j B l n m

_

s

A j

B l m

n q

k s

q s

q

x

+

A s B l m

+ l

A j B s m +

r n

A j B l s

q s

k n

q s

k n

q s

k n

+

A k

I

s

A j

k q

s

+

j

, 4 s

B l n m

q s

k

a B l m

n

_

s

B l m s

+

l

B s m

a x q

n q q s

n

=

A

B l i n

+

A I B l i n

k , q n

k

n , q

+ m

B l s

q s

n

T h i s i l l u s t r a t e s t h e f a c t t h a t t h e c o v a r i a n t d e r i v a t i v e s o f a p r o d u c t o f t e n s o r s o b e y r u l e s l i k e t h o s e

o f o r d i n a r y d e r i v a t i v e s o f p r o d u c t s i n e l e m e n t a r y c a l c u l u s .

5 6 . P r o v e

k m

( g j k A n ) , q

_

g j k

A k i n

n q

k m

k m

(

j k

A n m

) , q

s i n c e g j k

q

= 0 b y P r o b . 5 4 ( a ) .

J

g k , q ` 4

+ g k A n , q

k A n , q

I n c o v a r i a n t d i f f e r e n t i a t i o n , g j k , g s k a n d

b j c a n b e t r e a t e d a s c o n s t a n t s .

k m

Page 207: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 207/234

2 0 0

A P

=

' 3 A

A

a x k

p k

G R A D I E N T , D I V E R G E N C E A N D C U R L I N T E N S O R F O R M .

5 7 . P r o v e t h a t

d i v

A P

=

1 a ( / A " ) .

a x k

T h e d i v e r g e n c e o f

A P i s t h e c o n t r a c t i o n o f t h e c o v a r i a n t d e r i v a t i v e o f A P , i . e . t h e c o n t r a c t i o n o f

A 0 , q

o r

A 0 , p .

T h e n , u s i n g P r o b l e m 4 5 ( c ) ,

d i v

A 0

T E N S O R A N A L Y S I S

a A k

a

k

a A k

1 - a v g -

k

1

a

k

a

}

  A

x k

+

I n ) A

=

k

+

(

,

a x k

- ) A

=

, a x k

x k

a x

5 8 . P r o v e t h a t

V 2 < p

=

1

a

V " g g k r

a x k

a x

T h e g r a d i e n t o f ( D i s

g r a d

_ V 4 ) = a x r

a c o v a r i a n t t e n s o r o f r a n k o n e ( s e e P r o b l e m 6 ( b ) ) d e -

f i n e d a s t h e c o v a r i a n t d e r i v a t i v e o f ( 1 ) , w r i t t e n ( D , , r . T h e c o n t r a v a r i a n t t e n s o r o f r a n k o n e a s s o c i a t e d w i t h

k

= g k r

a

r

i s A

a x r

. T h e n f r o m P r o b l e m 5 7 ,

d i v ( g k r

)

a x

5 9 . P r o v e t h a t

A p p q - A q , p

A p , q

A q . j , =

a A P

a A q

L A ,

_

s

A

a x q

p q S

T h i s t e n s o r o f r a n k t w o i s d e f i n e d t o b e t h e c u r l o f A P .

a k (

V ' g

- g k r

a x

a x

L A

( _ { : } A S )

a x q

r a x p

6 0 . E x p r e s s t h e d i v e r g e n c e o f a v e c t o r

A P i n t e r m s o f i t s p h y s i c a l c o m p o n e n t s f o r ( a ) c y l i n d r i c a l ,

( b ) s p h e r i c a l c o o r d i n a t e s .

( a ) , F o r c y l i n d r i c a l c o o r d i n a t e s x 1 = P . x 2 = 0 , x 3 = z ,

g

1

0

0

0 p 2 0

0 0

1

p 2

a n d ' = p

( s e e P r o b l e m 3 0 ( a ) )

T h e p h y s i c a l c o m p o n e n t s , d e n o t e d b y A . A o , A . a r e g i v e n b y

A p = V g _ A l = A l .

A =

g - A 2 = p A 2 ,

A z = V A 3 = A 3

Page 208: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 208/234

T E N S O R A N A L Y S I S

T h e n

( b ) F o r s p h e r i c a l c o o r d i n a t e s

g

1 0

0

0

r 2

0

0

r 4 s i n 2 8 a n d

I r g = r 2 s i n 8

( s e e P r o b l e m 3 0 ( b ) )

d i v

A 0

_

a x k

( 4 A k )

0

r 2 s i n 2 8

T h e p h y s i c a l c o m p o n e n t s , d e n o t e d b y A r , A 8 , A 4 ) a r e g i v e n b y

A r =

u A 1 = A I

,

T h e n

A e = V - g - A 2 = r A 2 ,

A O =

g 3 3 A 3 = r s i n 8 A 3

2 2

d i v A

=

1

- 6

A k )

- v l g

a x k

( v

( r s i n 8 A B ) +

( r A , ) ]

r 2 s i n e

- 6 r

( r 2 s i n 8 A r ) +

- 6 6

1

a ( r 2 A r )

+

1

a

( s i n 8 A ) +

1

r 2 a r

r s i n e a 8

e

r s i n e

6 1 . E x p r e s s t h e L a p l a c i a n o f 4 > , V 2 c

, i n ( a ) c y l i n d r i c a l c o o r d i n a t e s , ( b ) s p h e r i c a l c o o r d i n a t e s .

( a ) I n c y l i n d r i c a l c o o r d i n a t e s g 1 1 = 1 , g 2 2 = 1 / P 2 , g = 1 ( s e e P r o b l e m 3 5 ( a ) ) . T h e n f r o m P r o b l e m 5 8 ,

v 2 4 5

( , r g - g k r

V g - -

a x k a

l

a a

a 1 a

a a

P C a P c P a P ) + a o c P

a z

c P a z ) ]

1 a

a ( f )

1 D 2

A )

P a P c P a P ' +

p 2

2 2

+

a z 2

( b ) I n s p h e r i c a l c o o r d i n a t e s g 1 1 = 1 , g 2 2 = 1 / r 2 , g

= 1 / r 2 s i n 2 8 ( s e e P r o b l e m 3 5 ( b ) ) . T h e n

v % )

_

7 a x k ' ' g k r a

1

a 2

M )

a

a

1

a 4 )

r 2 s i n

8

- 6 r

( r s i n 8

a r ) + a e ( S i n

8

a e ) + V ( s i n 4 ]

x 1 = r , x 2 = 8 , x 3 = 0 ,

2 0 1

t

a r a

+

1

a

B

)

+

1

a 2

r 2 a r ( 2 r '

r 2 s i n e a e

( s i n

a 8 2 s i n 2 8

- 4 2

Page 209: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 209/234

2 0 2

T E N S O R A N A L Y S I S

I N T R I N S I C D E R I V A T I V E S .

6 2 . C a l c u l a t e t h e i n t r i n s i c d e r i v a t i v e s o f e a c h o f t h e f o l l o w i n g t e n s o r s , a s s u m e d t o b e d i f f e r e n t i a b l e

f u n c t i o n s o f t : ( a ) a n i n v a r i a n t ( l ) , ( b ) A i , ( c ) A k

,

( d ) A l k n .

4 d

q

a

q

d 4 )

t h

d i

d

i t i

( a ) b

, q =

t

a x

d t

=

,

e o r

n a r y

v a

r

v e .

( b )

8 A J

= A

d x q

a A i +

1

A s

d x q

=

a A i d x q +

1

A s d x q

8 t

q d t

a x q

q s

d t

a x q

d t

q s

d t

( c )

S A k

S t

A j

d x q

k , q

d t

d A I

+

1

A s d x q

d t

q s

d t

{ ; q } 4 + { } A : )

q

d t

d A k j

A j

d z

+

A s d x q

d t

k q

s d t

q s

k d t

j k

j k

j k

S

.

A l m n

,

j k

d x q

l a A l n n

s

A

l q

n

m q

l s n

s

A j k +

{ i }

A s k +

k A j s

n q

I n s

q s

I n n

q s

l m n

d A A

d x q

d t

l m n

I s

A j k

d x q _ s A j k d x q

s A j k

_

x

d t l q s 1 n n d t

l m q f l s n

d t

n q

i n s

d t

+ j A s k

d x q +

£ k A J S d x q

q s

l m n d t

q s

I n n

d t

6 3 . P r o v e t h e i n t r i n s i c d e r i v a t i v e s o f g j k ,

g j k a n d

a r e

r e z e r o .

8 9 j k

= ( g

k

)

d x q

= 0 ,

8 t

, q

d t

R E L A T I V E T E N S O R S .

8 g l k

=

g j k d x q

= 0 ,

S t ' q d t

S b k

- 8

d x q

= 0

b t

k , q

d t

b y P r o b l e m 5 4 .

6 4 . I f A q a n d B t s a r e r e l a t i v e t e n s o r s o f w e i g h t s w 1 a n d w 2 r e s p e c t i v e l y , s h o w t h a t t h e i r i n n e r a n d

o u t e r p r o d u c t s a r e r e l a t i v e t e n s o r s o f w e i g h t w 1 +

w 2 -

B y h y p o t h e s i s ,

A

k

j w 1 a z a x q A

T h e o u t e r p r o d u c t i s

A k B n m

B

l m _

j w 2 1 3 F - ' a z m a x t B r s

a x P a x k

q ' n

a x r a x s a x n

t

j w , w 2 a x q a x q a x l a x m a x t r s

a x p a z k a x r a x s a z n

A q B t

q

a r e l a t i v e t e n s o r o f w e i g h t w 1 + w 2 .

A n y i n n e r p r o d u c t , w h i c h i s a c o n t r a c t i o n o f t h e o u t e r p r o d u c t , i s a l s o

a r e l a t i v e t e n s o r o f w e i g h t w 1 + w 2 .

Page 210: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 210/234

T E N S O R A N A L Y S I S

2 0 3

6 5 . P r o v e t h a t V g - i s a r e l a t i v e t e n s o r o f w e i g h t o n e , i . e . a t e n s o r d e n s i t y .

T h e e l e m e n t s o f d e t e r m i n a n t g g i v e n b y g

t r a n s f o r m a c c o r d i n g t o g j

=

- 3 . p - 3 . . q

g

q

k

a x e a x k o q

T a k i n g d e t e r m i n a n t s o f b o t h s i d e s , g =

a x e

a x e

g =

J 2 g

o r

J V ,

w h i c h s h o w s

a z j

- 3 - x

6 6 . P r o v e t h a t d V = V r g - A l d x 2 . . . d x 1 i s a n i n v a r i a n t .

B y P r o b l e m 6 5 ,

d V =

V g - d x 1 d x

. . .

d x y =

v r g - J d x 1 d x ` 2

. . .

d x ' A

_ v g

a x

d z 1 d x . . . d x N = d x 1 d x 2 . . . d x " = d V

a )

F r o m t h i s i t f o l l o w s t h a t i f

f . . . f d v

i s a n i n v a r i a n t , t h e n

=

f . . . f d v

V

V

f o r a n y c o o r d i n a t e s y s t e m s w h e r e t h e i n t e g r a t i o n i s p e r f o r m e d o v e r a v o l u m e i n N d i m e n s i o n a l s p a c e . A

s i m i l a r s t a t e m e n t c a n b e m a d e f o r s u r f a c e i n t e g r a l s .

M I S C E L L A N E O U S A P P L I C A T I O N S .

6 7 . E x p r e s s i n t e n s o r f o r m ( a ) t h e v e l o c i t y a n d ( b ) t h e a c c e l e r a t i o n o f a p a r t i c l e .

( a ) I f t h e p a r t i c l e m o v e s a l o n g a c u r v e x k = x k ( t ) w h e r e t i s t h e p a r a m e t e r t i m e , t h e n v k =

k

d t

i s i t s v e -

l o c i t y a n d i s a c o n t r a v a r i a n t t e n s o r o f r a n k o n e ( s e e P r o b l e m 9 ) .

k

2 k

( b ) T h e q u a n t i t y d t

= t 2

i s n o t i n g e n e r a l a t e n s o r a n d s o c a n n o t r e p r e s e n t t h e p h y s i c a l q u a n t i t y

a c c e l e r a t i o n i n a l l c o o r d i n a t e s y s t e m s . W e d e f i n e t h e a c c e l e r a t i o n a k a s t h e i n t r i n s i c d e r i v a t i v e o f

t h e v e l o c i t y , i . e . a k = S t k

w h i c h i s a c o n t r a v a r i a n t t e n s o r o f r a n k o n e .

6 8 . W r i t e N e w t o n ' s l a w i n t e n s o r f o r m .

A s s u m e t h e m a s s M o f t h e p a r t i c l e t o b e a n i n v a r i a n t i n d e p e n d e n t o f t i m e t .

T h e n M a k = F k a

c o n t r a v a r i a n t t e n s o r o f r a n k o n e i s c a l l e d t h e f o r c e o n t h e p a r t i c l e . T h u s N e w t o n ' s l a w c a n b e w r i t t e n

F k = M a k = M

S k k

Page 211: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 211/234

2 0 4

2

k

6 9 . P r o v e t h a t

a k =

6 v k = d x

S t

d t 2

T E N S O R A N A L Y S I S

k

d x 0 d x q

p q

d t

d t

'

S i n c e v k i s a c o n t r a v a r i a n t t e n s o r , w e h a v e b y P r o b l e m 6 2 ( b )

8 v k

=

d v k

S t

d t

F r o m P r o b l e m 6 7 ( a ) , t h e c o n t r a v a r i a n t c o m p o n e n t s o f t h e v e l o c i t y a r e

_

d

2

x

k

+ k

d x p d x q

d - i

p q

d t

d t

d

2

x

k

+

k

V P

d x q

d t 2

q p

d t

7 0 . F i n d t h e p h y s i c a l c o m p o n e n t s o f ( a ) t h e v e l o c i t y a n d ( b ) t h e a c c e l e r a t i o n o f a p a r t i c l e i n c y l i n -

d r i c a l c o o r d i n a t e s .

( a )

d x 1 d p d x 2 d o

d x 3

d t

d t

'

d t

d t

a n d

d t

d z

d t

T h e n t h e p h y s i c a l c o m p o n e n t s o f t h e v e l o c i t y a r e

v

d x 1

=

d p d x 2

d o

a n d

v

d x 3

=

d z

9 1 1

d t d t 9 2 2 d t

' d t

9 3 3

d t

d t

u s i n g

+

k

v s d x q

q s

d t

9 1 1 = 1 , g 2 2 = p 2 . g 3 3 = 1 .

( b ) F r o m P r o b l e m s 6 9 a n d 4 9 ( b ) , t h e c o n t r a v a r i a n t c o m p o n e n t s o f t h e a c c e l e r a t i o n a r e

l

d 2 x 1 +

d x 2 d x 2

d 2 p

d o

2

d t 2 2 2

_

d t

d t

d t 2

_ p (

d t

)

2

a

d 2 x 2

+

2

d x l d x 2

+

2

d x 2 d x l d o

+

2 d p d o

d t 2

1 2

d t

d t

2 1

d t

d t

d t 2

p d t d t

d 2 x 3

d 2 z

a n d

3

a

_

d t 2 d t 2

T h e n t h e p h y s i c a l c o m p o n e n t s o f t h e a c c e l e r a t i o n a r e

a l = 0 - - p

1 1

2 2 a 2

= p

+ 2 p q 5

w h e r e d o t s d e n o t e d i f f e r e n t i a t i o n s w i t h r e s p e c t t o t i m e .

3

a n d

3 3 a = z

7 1 . I f t h e k i n e t i c e n e r g y T o f a p a r t i c l e o f c o n s t a n t m a s s M m o v i n g w i t h v e l o c i t y h a v i n g m a g n i t u d e v

i s g i v e n b y T = 2 M v 2 = 2 M g p q 0 x q , p r o v e t h a t

d ( a T )

_

a T

=

M a

d t a x k

a x k

k

w h e r e a k d e n o t e s t h e c o v a r i a n t c o m p o n e n t s o f t h e a c c e l e r a t i o n .

S i n c e T =

2 M g p q z p z q , w e h a v e

Page 212: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 212/234

T E N S O R A N A L Y S I S

a T

a x k

T h e n

I

a g p q

z p z q ,

a T

= M g

z q

a n d

a x k ' 3 1 k

k q

d ( a T )

-

a T

=

M

( g k q z q

+

d t

a z k

a x k

a g k

q

a x k

+ j q , ,

  ( ' 3 T

=

M ( g k 9

z q

a g

d t a x

a x

z j z q

-

1

a g p q

z P z q

2

a x k

M

z q + 1

( a g k q

+

a g k p

- a g p q )

x p

( g k q

2

a x p a x q

a x k

z q

+ [ p q , k ]

x p x q )

( g k q

x q

=

M g

x r

+

r

z j z q

=

M g

a r

=

M a k

k r p q

k r

u s i n g P r o b l e m 6 9 . T h e r e s u l t c a n b e u s e d t o e x p r e s s t h e a c c e l e r a t i o n i n d i f f e r e n t c o o r d i n a t e s y s t e m s .

2 0 5

7 2 . U s e P r o b l e m 7 1 t o f i n d t h e p h y s i c a l c o m p o n e n t s o f t h e a c c e l e r a t i o n o f a p a r t i c l e i n c y l i n d r i c a l

c o o r d i n a t e s .

S i n c e

d s 2 = d p 2 + , 0 2 d c a 2 + d z 2 ,

v 2 = ( ) 2

=

2 +

z 2

a n d

T = 2 M v 2 =

e ( ; ; ?

+ Z 2 ) ,

F r o m P r o b l e m 7 1 w i t h x 1 = p , x 2 = 0 , x 3 = z

w e f i n d

a 1 = P

a 2 = d t

a 3 z

T h e n t h e p h y s i c a l c o m p o n e n t s a r e g i v e n b y

a ,

a 2

a g

1 V , g j - l

2 2

3 3

s i n c e

g 1 1 = 1 , g 2 2 = p 2 ,

g 3 3 = 1 . C o m p a r e w i t h P r o b l e m 7 0 .

7 3 . I f t h e c o v a r i a n t f o r c e a c t i n g o n a p a r t i c l e i s g i v e n b y F k = - a

k

w h e r e V ( x 1 . . . . . x j ' ) i s t h e

p o t e n t i a l e n e r g y , s h o w t h a t d t ( a L k ) - a L k = 0 w h e r e L = T - - V .

F r o m L = T - - V ,

a L

r

_

a T

s i n c e V i s i n d e p e n d e n t o f z k . T h e n f r o m P r o b l e m 7 1 ,

a x k

a x k

d

a T a T

_

d t

( a z k

a z k

M a k

=

F k

=

- -

a V

a n d

d ( a L ) -

a L

a x k d t

a z k

a x k

0

T h e f u n c t i o n L i s c a l l e d t h e L a g r a n g e a n . T h e e q u a t i o n s i n v o l v i n g L , c a l l e d L a g r a n g e ' s e q u a t i o n s ,

a r e i m p o r t a n t i n m e c h a n i c s . B y P r o b l e m 5 0 i t f o l l o w s t h a t t h e r e s u l t s o f t h i s p r o b l e m a r e e q u i v a l e n t t o t h e

s t a t e m e n t t h a t a p a r t i c l e m o v e s i n s u c h a w a y t h a t f L d t i s a n e x t r e m u m . T h i s i s c a l l e d H a m i l t o n ' s

t 1

p r i n c i p l e .

Page 213: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 213/234

2 0 6

T E N S O R A N A L Y S I S

7 4 . E x p r e s s t h e d i v e r g e n c e t h e o r e m i n t e n s o r f o r m .

L e t A k d e f i n e a t e n s o r f i e l d o f r a n k o n e a n d l e t v k d e n o t e t h e o u t w a r d d r a w n u n i t n o r m a l t o a n y p o i n t

o f a c l o s e d s u r f a c e S b o u n d i n g a v o l u m e V . T h e n t h e d i v e r g e n c e t h e o r e m s t a t e s t h a t

f f f A

k k d V

I I

V

S

A k v k d S

F o r N d i m e n s i o n a l s p a c e t h e t r i p l e i n t e g r a l i s r e p l a c e d b y a n N t u p l e i n t e g r a l , a n d t h e d o u b l e i n t e g r a l b y

a n N - 1 t u p l e i n t e g r a l .

T h e i n v a r i a n t A k k i s t h e d i v e r g e n c e o f A k ( s e e P r o b l e m 5 7 ) .

T h e i n v a r i a n t

A k v k i s t h e s c a l a r p r o d u c t o f A k a n d v k , a n a l o g o u s t o A

n i n t h e v e c t o r n o t a t i o n o f C h a p t e r 2 .

W e h a v e b e e n a b l e t o e x p r e s s t h e t h e o r e m i n t e n s o r f o r m ; h e n c e i t i s t r u e f o r a l l c o o r d i n a t e s y s t e m s

s i n c e i t i s t r u e f o r r e c t a n g u l a r s y s t e m s ( s e e C h a p t e r 6 ) . A l s o s e e P r o b l e m 6 6 .

7 5 . E x p r e s s M a x w e l l ' s e q u a t i o n s ( a ) d i v B = 0 , ( b ) d i v D = 4 7 r p , ( c ) V x E = -

a B ,

( d ) V x H = 4 Z f

i n t e n s o r f o r m .

D e f i n e t h e t e n s o r s

c a n b e w r i t t e n

( a ) B k k 0

( b ) D k k = 4 7 T p

( c )

- - -

E J k q E k , q

( d ) - E j k q

H k

, 4

B k , D k , E k , H k , 1 k a n d

s u p p o s e t h a t p a n d c a r e i n v a r i a n t s . T h e n t h e e q u a t i o n s

1 a B j

C

a t

4 7 r 1

J

c

o r

E J W q E k . q

o r

E j k q

H k ,

q

1 a B j

c

T h e s e e q u a t i o n s f o r m t h e b a s i s f o r e l e c t r o m a g n e t i c t h e o r y .

7 6 . ( a ) P r o v e t h a t

A l , g r

A 0 , r q =

R n g r A n w h e r e A 0 i s a n a r b i t r a r y c o v a r i a n t t e n s o r o f r a n k

o n e .

( b ) P r o v e t h a t R

q r

i s a t e n s o r .

( c ) P r o v e t h a t

R p g r s

g n s

R '

i s a t e n s o r .

( a ) A p , g r =

( A O . q ) r

a A M

-

1

A .

- { ' } A

x r

{ P r

J . q

q r

O 9

a A

J , _

i

i

( B A .

j

k

P S

l

A . -

-

{ } A k )

-

P q

P r

q r

a x q

P 1

a 2 A

A j

k

A .

. -

- -

+

A

; ; i q }

P q - a x ,

P r

a x q

P r

I q

k

1

a A P

+

1

l

A

q r

a x q

q r

P 1

B y i n t e r c h a n g i n g q a n d r a n d s u b t r a c t i n g , w e f i n d

Page 214: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 214/234

T E N S O R A N A L Y S I S

A p , q r

_

A

i k

p r q

p r

j q

A k

w h e r e

R q r

-

p

r

k q

A j

=

R p J g r

A

I

a

j

J A .

-

k

a x r

P 4

I

{ p J q } { J } A

r

k

a ;

A

x r

P q

9

a

_

k j

p q

k r

A i

=

{ : r } { q } _

- { : q } { L r } +

i

x r P 4

a x q

p r

R e p l a c e j b y n a n d t h e r e s u l t f o l l o w s .

2 0 7

( b ) S i n c e A p , g r - A p , r q i s a t e n s o r , R q r A n i s a t e n s o r ; a n d s i n c e A n i s a n a r b i t r a r y t e n s o r , R q r i s

a t e n s o r b y t h e q u o t i e n t l a w . T h i s t e n s o r i s c a l l e d t h e R i e m a n n - C h r i s t o f f e l t e n s o r , a n d i s s o m e t i m e s

n

n

n

w r i t t e n R , p q r , R p q r ,

o r s i m p l y R p q r

( c ) R p g r s = g n s R p g r i s a n a s s o c i a t e d t e n s o r o f R p g r a n d t h u s i s a t e n s o r .

I t i s c a l l e d t h e c o v a r i a n t

c u r v a t u r e t e n s o r a n d i s o f f u n d a m e n t a l i m p o r t a n c e i n E i n s t e i n ' s g e n e r a l t h e o r y o f r e l a t i v i t y .

S U P P L E M E N T A R Y P R O B L E M S

A n s w e r s t o t h e S u p p l e m e n t a r y P r o b l e m s a r e g i v e n a t t h e e n d o f t h i s C h a p t e r .

7 7 . W r i t e e a c h o f t h e f o l l o w i n g u s i n g t h e s u m m a t i o n c o n v e n t i o n .

( a ) a 1 x 1 x 3 + a 2 x 2 x 3 + . . . + a ) x N x 3

( b )

A 2 1

B 1 + A 2 2 B 2 + A ' B 3 +

+

` 4 2 I

B y

( e ) B 1 1 1 + B

1 2 2

1 2

( c ) A l B 1 + A 2 B 2

+ A 3 B 3 +

( d ) g 2 1

g 1 1 + g 2 2 g 2 1

+

8 2 2 1 + 8 2 2 2

2 1

2 2

7 8 . W r i t e t h e t e r m s i n e a c h o f t h e f o l l o w i n g i n d i c a t e d s u m s .

k

( a )

a x k ( i A k ) , N = 3

( b )

B p

C

, N = 2

( c )

a z , 7

a '

k

+ g 2 3 g

3 1

. . . +

A j

B N

+ g 2 4 g

4 1

7 9 . W h a t l o c u s i s r e p r e s e n t e d b y a k x k x k = 1 w h e r e z k , k = 1 , 2 , . . . , N a r e r e c t a n g u l a r c o o r d i n a t e s , a k a r e

p o s i t i v e c o n s t a n t s a n d N = 2 , 3 o r 4 ?

8 0 . I f N = 2 , w r i t e t h e s y s t e m o f e q u a t i o n s r e p r e s e n t e d b y a p q x q = b p .

k

8 1 . W r i t e t h e l a w o f t r a n s f o r m a t i o n f o r t h e t e n s o r s ( a ) A k ,

( b ) B ,

( c ) C a n ,

( d ) A n .

Page 215: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 215/234

2 0 8

T E N S O R A N A L Y S I S

8 2 . D e t e r m i n e w h e t h e r t h e q u a n t i t i e s B ( j , k , m ) a n d C ( j , k , m , n ) w h i c h t r a n s f o r m f r o m a c o o r d i n a t e s y s t e m

x t i t o a n o t h e r x t i a c c o r d i n g t o t h e r u l e s

k a x r

a x p a x q a x q a x s

( a ) B ( p . q , r ) =

a x

a x

B ( j , k , m )

( b ) C ( p , q , r . s ) =

C ( j , k , m , n )

a x p a x q a x x

a x q a z k a z r a x n

a r e t e n s o r s . I f s o , w r i t e t h e t e n s o r s i n s u i t a b l e n o t a t i o n a n d g i v e t h e r a n k a n d t h e c o v a r i a n t a n d c o n t r a -

v a r i a n t o r d e r s .

8 3 . H o w m a n y c o m p o n e n t s d o e s a t e n s o r o f r a n k 5 h a v e i n a s p a c e o f 4 d i m e n s i o n s ?

8 4 . P r o v e t h a t i f t h e c o m p o n e n t s o f a t e n s o r a r e z e r o i n o n e c o o r d i n a t e s y s t e m t h e y a r e z e r o i n a l l c o o r d i n a t e

s y s t e m s .

8 5 . P r o v e t h a t i f t h e c o m p o n e n t s o f t w o t e n s o r s a r e e q u a l i n o n e c o o r d i n a t e s y s t e m t h e y a r e e q u a l i n a l l c o -

o r d i n a t e s y s t e m s .

k

k

8 6 . S h o w t h a t t h e v e l o c i t y t

=

v k o f

a f l u i d i s a t e n s o r , b u t t h a t v i s n o t a t e n s o r .

8 7 . F i n d t h e c o v a r i a n t a n d c o n t r a v a r i a n t c o m p o n e n t s o f a t e n s o r i n

( a ) c y l i n d r i c a l c o o r d i n a t e s p , 0 , z ,

( b ) s p h e r i c a l c o o r d i n a t e s r , 6 ,

i f i t s c o v a r i a n t c o m p o n e n t s i n r e c t a n g u l a r c o o r d i n a t e s a r e 2 x - - z , x 2 y ,

y z .

8 8 . T h e c o n t r a v a r i a n t c o m p o n e n t s o f a t e n s o r i n r e c t a n g u l a r c o o r d i n a t e s a r e y z , 3 , 2 x + y . F i n d i t s c o v a r i a n t

c o m p o n e n t s i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s .

8 9 . E v a l u a t e ( a ) 8 q B a s , ( b ) S q

S r A q s ,

( c )

8 p 8

q

8 s

, ( d ) 8 q 8 r 8 s

8 s

.

9 0 . I f

A r q

i s a t e n s o r , s h o w t h a t A

r

r

i s a c o n t r a v a r i a n t t e n s o r o f r a n k o n e .

9 1 . S h o w t h a t

1 j = k

0

j # k

i s n o t a c o v a r i a n t t e n s o r a s t h e n o t a t i o n m i g h t i n d i c a t e .

9 2 .

I f A 0 = a A q p r o v e t h a t A q =

- a x q

A P

9 3 .

I f A

=

a z p a x s

' I S p r o v e t h a t A s =

a x q a x r

.

a x q a z r

s s

a x p a x s

A r

9 4 . I f ( D i s a n i n v a r i a n t , d e t e r m i n e w h e t h e r

a i s a t e n s o r .

a x p a x q

9 5 .

I f A q a n d B r a r e t e n s o r s , p r o v e t h a t

A 0 B r

a n d A q B q a r e t e n s o r s a n d d e t e r m i n e t h e r a n k o f e a c h .

9 6 . S h o w t h a t i f A r s i s a t e n s o r , t h e n

P q

+ A S S i s a s y m m e t r i c t e n s o r a n d A r s - A s r

i s a s k e w - s y m m e t r i c

t e n s o r .

9 7 .

I f

A p q

a n d B r s a r e s k e w - s y m m e t r i c t e n s o r s , s h o w t h a t

C p s =

A p 4

B r s i s s y m m e t r i c .

9 8 . I f a t e n s o r i s s y m m e t r i c ( s k e w - s y m m e t r i c ) , a r e r e p e a t e d c o n t r a c t i o n s o f t h e t e n s o r a l s o s y m m e t r i c ( s k e w -

s y m m e t r i c ) ?

9 9 . P r o v e t h a t A p q x p x q = 0 i f A p q i s a s k e w - s y m m e t r i c t e n s o r .

Page 216: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 216/234

T E N S O R A N A L Y S I S

2 0 9

1 0 0 . W h a t i s t h e l a r g e s t n u m b e r o f d i f f e r e n t c o m p o n e n t s w h i c h a s y m m e t r i c c o n t r a v a r i a n t t e n s o r o f r a n k t w o

c a n h a v e i f ( a ) N = 4 . ( b ) N = 6 ?

W h a t i s t h e n u m b e r f o r a n y v a l u e o f N ?

1 0 1 . H o w m a n y d i s t i n c t n o n - z e r o c o m p o n e n t s , a p a r t f r o m a d i f f e r e n c e i n s i g n , d o e s a s k e w - s y m m e t r i c c o v a r i a n t

t e n s o r o f t h e t h i r d r a n k h a v e

1 0 2 .

I f A I r s i s a t e n s o r , p r o v e t h a t a d o u b l e c o n t r a c t i o n y i e l d s a n i n v a r i a n t .

1 0 3 . P r o v e t h a t a n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n t h a t a t e n s o r o f r a n k R b e c o m e a n i n v a r i a n t b y r e p e a t e d

c o n t r a c t i o n i s t h a t R b e e v e n a n d t h a t t h e n u m b e r o f c o v a r i a n t a n d c o n t r a v a r i a n t i n d i c e s b e e q u a l t o R / 2 .

1 0 4 .

I f A p q a n d

B r s

a r e t e n s o r s , s h o w t h a t t h e o u t e r p r o d u c t i s a t e n s o r o f r a n k f o u r a n d t h a t t w o i n n e r p r o d -

u c t s c a n b e f o r m e d o f r a n k t w o a n d z e r o r e s p e c t i v e l y .

1 0 5 .

I f A ( p , q ) B q = C

w h e r e B q i s a n a r b i t r a r y c o v a r i a n t t e n s o r o f r a n k o n e a n d C

i s a c o n t r a v a r i a n t t e n s o r

o f r a n k o n e , s h o w t h a t A ( p , q ) m u s t b e a c o n t r a v a r i a n t t e n s o r o f r a n k t w o .

1 0 6 . L e t

A P

a n d B q b e a r b i t r a r y t e n s o r s . S h o w t h a t i f A P R q C ( p , q ) i s a n i n v a r i a n t t h e n C ( p , q ) i s a t e n s o r

w h i c h c a n b e w r i t t e n C C .

1 0 7 . F i n d t h e s u m S = A + B , d i f f e r e n c e D = A - B , a n d p r o d u c t s P = A B a n d Q = B A , w h e r e A a n d B a r e

t h e

m a t r i c e s

3 - 1

4 3

( a ) A =

2

4

'

B

_

-

2 - 1

2

0

1 1

- i

2

( b ) A - 1

(

- 2

2

B =

3

2

- 4

_ 1

3 - 1

- i - 2

2

1 0 8 . F i n d ( 3 A - 2 B ) ( 2 A - B ) , w h e r e A a n d B a r e t h e m a t r i c e s i n t h e p r e c e d i n g p r o b l e m .

1 0 9 .

( a ) V e r i f y t h a t d e t ( A B ) = { d e t A } { d e t B }

f o r t h e m a t r i c e s i n P r o b l e m 1 0 7 .

( b ) I s

d e t ( A B ) = d e t ( B A ) ?

1 1 1 1 .

L e t

A =

I

- 3 2 - 1

B =

1

3

- 2

2

1

2

S h o w t h a t ( a ) A B i s d e f i n e d a n d f i n d i t , ( b ) B A a n d A + B a r e n o t d e f i n e d .

2

- 1 3

x

1

1 1 1 . F i n d x , y a n d z s u c h t h a t

1

2

- 4

y

=

- . 3

- 1

3 - 2 z

6

1 1 2 . T h e i n v e r s e o f a s q u a r e m a t r i x A , w r i t t e n

A ' 1

i s d e f i n e d b y t h e e q u a t i o n A A - 1 = 1 ,

w h e r e 1 i s t h e u n i t

m a t r i x h a v i n g o n e s d o w n t h e m a i n d i a g o n a l a n d z e r o s e l s e w h e r e .

_

( 1 2

- 1

1

F i n d A - ' i f ( a ) A = ( _ 5

4

( b ) A =

1

- 1

.

1 - 1

2

I s

A - 1

A = 1 i n t h e s e c a s e s ?

Page 217: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 217/234

2 1 0

T E N S O R A N A L Y S I S

2

1 - 2

1 1 3 . P r o v e t h a t

A =

1

- 2

3

h a s n o i n v e r s e .

4 - 3

4

1 1 4 . P r o v e t h a t ( A B ) 7 1 - = B - 1 A - 1 , w h e r e A a n d B a r e n o n - s i n g u l a r s q u a r e m a t r i c e s .

1 1 5 . E x p r e s s i n m a t r i x n o t a t i o n t h e t r a n s f o r m a t i o n e q u a t i o n s f o r

( a ) a c o n t r a v a r i a n t v e c t o r ( b ) a c o v a r i a n t t e n s o r o f r a n k t w o ( c ) a m i x e d t e n s o r o f r a n k t w o .

1 1 6 . D e t e r m i n e t h e v a l u e s o f t h e c o n s t a n t X s u c h t h a t A X = I N X ,

w h e r e A =

- 3

1

a n d X i s a n a r b i -

t r a r y m a t r i x . T h e s e v a l u e s o f X a r e c a l l e d c h a r a c t e r i s t i c v a l u e s o r e i g e n v a l u e s o f t h e m a t r i x A .

1 1 7 . T h e e q u a t i o n F ( X ) = 0 o f t h e p r e v i o u s p r o b l e m f o r d e t e r m i n i n g t h e c h a r a c t e r i s t i c v a l u e s o f a m a t r i x A i s

c a l l e d t h e c h a r a c t e r i s t i c e q u a t i o n f o r A . S h o w t h a t F ( A ) = 0 , w h e r e F ( A ) i s t h e m a t r i x o b t a i n e d b y r e -

p l a c i n g A . b y A i n t h e c h a r a c t e r i s t i c e q u a t i o n a n d w h e r e t h e c o n s t a n t t e r m c i s r e p l a c e d b y t h e m a t r i x c l ,

a n d 0 i s a m a t r i x w h o s e e l e m e n t s a r e z e r o ( c a l l e d t h e n u l l m a t r i x ) . T h e r e s u l t i s a s p e c i a l c a s e o f t h e

H a m i l t o n - C a y l e y t h e o r e m w h i c h s t a t e s t h a t a m a t r i x s a t i s f i e s i t s o w n c h a r a c t e r i s t i c e q u a t i o n .

1 1 8 . P r o v e t h a t ( A B )

= B T A _ T

.

1 1 9 . D e t e r m i n e t h e m e t r i c t e n s o r a n d c o n j u g a t e m e t r i c t e n s o r i n

( a ) p a r a b o l i c c y l i n d r i c a l a n d ( b ) e l l i p t i c c y l i n d r i c a l c o o r d i n a t e s .

1 2 0 . P r o v e t h a t u n d e r t h e a f f i n e t r a n s f o r m a t i o n

- ' r

= a s x p + b r , w h e r e a p a n d

b r a r e c o n s t a n t s s u c h t h a t

a p a q

= b q , t h e r e i s n o d i s t i n c t i o n b e t w e e n t h e c o v a r i a n t a n d c o n t r a v a r i a n t c o m p o n e n t s o f a t e n s o r .

I n

t h e s p e c i a l c a s e w h e r e t h e t r a n s f o r m a t i o n s a r e f r o m o n e r e c t a n g u l a r c o o r d i n a t e s y s t e m t o a n o t h e r , t h e

t e n s o r s a r e c a l l e d c a r t e s i a n t e n s o r s .

1 2 1 . F i n d g a n d g j k c o r r e s p o n d i n g t o

d s 2 = 3 ( d x 1 ) 2 + 2 ( d x 2 ) 2

1 2 2 .

I f A k = g i k A i , s h o w t h a t A J = g

J , k

A k a n d c o n v e r s e l y .

1 2 3 . E x p r e s s t h e r e l a t i o n s h i p b e t w e e n t h e a s s o c i a t e d t e n s o r s

( a ) A p q a n d q , ( b ) A q r a n d A j ' q l , ( c ) A p g r a n d A . . , ,

+ 4 ( d x 3 ) 2 - 6 d x 1 d x 3 .

1 2 4 . S h o w t h a t ( a ) A P q

B .

s

=

A 1 ' g B p r s

,

( b )

B 7 r = A A g r B p r =

B

.

H e n c e d e m o n s t r a t e t h e g e n -

e r a l r e s u l t t h a t a d u m m y s y m b o l i n a t e r m m a y b e l o w e r e d f r o m i t s u p p e r p o s i t i o n a n d r a i s e d f r o m i t s

l o w e r p o s i t i o n w i t h o u t c h a n g i n g t h e v a l u e o f t h e t e r m .

1 2 5 . S h o w t h a t i f

A

B

C r

A ;

q r

= B ;

q

a f r e e i n d e x i n a t e n s o r e q u a t i o n m a y b e r a i s e d o r l o w e r e d w i t h o u t a f f e c t i n g t h e v a l i d i t y o f t h e e q u a -

t i o n .

1 2 6 . S h o w t h a t t h e t e n s o r s g

p q '

g p q a n d 8 9 a r e a s s o c i a t e d t e n s o r s .

1 2 7 . P r o v e

( a ) E j k

a x

_ g p q

a x Q k

, ( b ) g d k

a x p

=

g p q a x e

a x p a x

a x

a x

1 2 8 . I f

A P

i s a v e c t o r f i e l d , f i n d t h e c o r r e s p o n d i n g u n i t v e c t o r .

Page 218: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 218/234

T E N S O R A N A L Y S I S

1 2 9 . S h o w t h a t t h e c o s i n e s o f t h e a n g l e s w h i c h t h e 3 d i m e n s i o n a l u n i t v e c t o r

c u r v e s a r e g i v e n b y

U 1

U 2

U 3

.

g 1 1 y g 2 2

9 3 3

2 1 1

U t i m a k e w i t h t h e c o o r d i n a t e

1 3 0 . D e t e r m i n e t h e C h r i s t o f f e l s y m b o l s o f t h e f i r s t k i n d i n ( a ) r e c t a n g u l a r , ( b ) c y l i n d r i c a l , a n d ( c ) s p h e r i c a l

c o o r d i n a t e s .

1 3 1 . D e t e r m i n e t h e C h r i s t o f f e l s y m b o l s o f t h e f i r s t a n d s e c o n d k i n d s i n ( a ) p a r a b o l i c c y l i n d r i c a l , ( b ) e l l i p t i c

c y l i n d r i c a l c o o r d i n a t e s .

1 3 2 . F i n d d i f f e r e n t i a l e q u a t i o n s f o r t h e g e o d e s i c s i n ( a ) c y l i n d r i c a l , ( b ) s p h e r i c a l c o o r d i n a t e s .

1 3 3 . S h o w t h a t t h e g e o d e s i c s o n a p l a n e a r e s t r a i g h t l i n e s .

1 3 4 . S h o w t h a t t h e g e o d e s i c s o n a s p h e r e a r e a r c s o f g r e a t c i r c l e s .

1 3 5 . W r i t e t h e C h r i s t o f f e l s y m b o l s o f t h e s e c o n d k i n d f o r t h e m e t r i c

d s 2

=

( d x 1 ) 2 +

[ ( x 2 ) 2 - ( x 1 ) 2 ] ( d x 2 ) 2

a n d t h e c o r r e s p o n d i n g g e o d e s i c e q u a t i o n s .

1 3 6 . W r i t e t h e c o v a r i a n t d e r i v a t i v e w i t h r e s p e c t t o x q o f e a c h o f t h e f o l l o w i n g t e n s o r s :

( a )

A i k , ( b )

A l m ' ( c ) A k 1 X , ( d )

A X k l '

( e ) A i n n

1

j

f r o m t h e c o v a r i a n t d e r i v a t i v e o f A k .

3 8 . U s e t h e r e l a t i o n A

-

- g

A k t o o b t a i n t h e c o v a r i a n t d e r i v a t i v e o f A

1 3 9 .

I f 4 > i s a n i n v a r i a n t , p r o v e t h a t , p q =

i . e . t h e o r d e r o f c o v a r i a n t d i f f e r e n t i a t i o n o f a n i n v a r i a n t

i s i m m a t e r i a l .

1 4 0 . S h o w t h a t E j g r a n d E p g r

a r e c o v a r i a n t a n d c o n t r a v a r i a n t t e n s o r s r e s p e c t i v e l y .

1 4 1 . E x p r e s s t h e d i v e r g e n c e o f a v e c t o r A P i n t e r m s o f i t s p h y s i c a l c o m p o n e n t s f o r ( a ) p a r a b o l i c c y l i n d r i c a l ,

( b ) p a r a b o l o i d a l c o o r d i n a t e s .

1 4 2 . F i n d t h e p h y s i c a l c o m p o n e n t s o f g r a d

i n ( a ) p a r a b o l i c c y l i n d r i c a l , ( b ) e l l i p t i c c y l i n d r i c a l c o o r d i n a t e s .

2

1 4 3 . F i n d V 4 ) i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s .

1 4 4 . U s i n g t h e t e n s o r n o t a t i o n , s h o w t h a t ( a ) d i v c u r l A r = 0 , ( b ) c u r l g r a d

= 0 .

1 4 5 . C a l c u l a t e t h e i n t r i n s i c d e r i v a t i v e s o f e a c h o f t h e f o l l o w i n g t e n s o r f i e l d s , a s s u m e d t o b e d i f f e r e n t i a b l e

f u n c t i o n s o f t : , k

( a ) A k , ( b ) A l ,

( c ) A j B k , ( d ) O A k w h e r e 0 i s a n i n v a r i a n t .

k

9 9

r

1 4 6 . F i n d t h e i n t r i n s i c d e r i v a t i v e o f ( a ) g j k A ,

( b ) 8 k A j A . ( c ) g j k r A .

1 4 7 . P r o v e

d t ( g p q A A A q )

=

2 9

P q

A

8 A

q

8 t

j k

Page 219: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 219/234

2 1 2

T E N S O R A N A L Y S I S

1 4 8 . S h o w t h a t i f n o e x t e r n a l f o r c e a c t s , a m o v i n g p a r t i c l e o f c o n s t a n t m a s s t r a v e l s a l o n g a g e o d e s i c g i v e n b y

p

a s ( d s ) =

a .

1 4 9 . P r o v e t h a t t h e s u m a n d d i f f e r e n c e o f t w o r e l a t i v e t e n s o r s o f t h e s a m e w e i g h t a n d t y p e i s a l s o a r e l a t i v e

t e n s o r o f t h e s a m e w e i g h t a n d t y p e .

1 5 0 .

i f

A p q i s

a r e l a t i v e t e n s o r o f w e i g h t w , p r o v e t h a t g - V / 2

A p q . i s

a n a b s o l u t e t e n s o r .

1 5 1 .

I f A ( p , q ) B q s =

w h e r e B r

i s a n a r b i t r a r y r e l a t i v e t e n s o r o f w e i g h t w l a n d C p r i s a k n o w n r e l a t i v e

t e n s o r o f w e i g h t w 2 , p r o v e t h a t A ( p , q ) i s a r e l a t i v e t e n s o r o f w e i g h t w 2 - - - w 1 . T h i s i s a n e x a m p l e o f

t h e q u o t i e n t l a w f o r r e l a t i v e t e n s o r s .

1 5 2 . S h o w t h a t t h e q u a n t i t y G ( j , k ) o f S o l v e d P r o b l e m 3 1 i s a r e l a t i v e t e n s o r o f w e i g h t t w o .

1 5 3 . F i n d t h e p h y s i c a l c o m p o n e n t s o f ( a ) t h e v e l o c i t y a n d ( b ) t h e a c c e l e r a t i o n o f a p a r t i c l e i n s p h e r i c a l c o -

o r d i n a t e s .

1 5 4 . L e t A r a n d B r b e t w o v e c t o r s i n t h r e e d i m e n s i o n a l s p a c e .

S h o w t h a t i f , \ a n d , i a r e c o n s t a n t s , t h e n

C r = X A r + L R r i s a v e c t o r l y i n g i n t h e p l a n e o f A r a n d B r . W h a t i s t h e i n t e r p r e t a t i o n i n h i g h e r d i m e n -

s i o n a l s p a c e ?

1 5 5 . S h o w t h a t a v e c t o r n o r m a l t o t h e s u r f a c e 0 ( x i , x 2 , x 3 ) = c o n s t a n t i s g i v e n b y

A O

= 9 a .

F i n d t h e

c o r r e s p o n d i n g u n i t n o r m a l .

a s

1 5 6 . T h e e q u a t i o n o f c o n t i n u i t y i s g i v e n b y V ( 0 - V ) +

a c

= 0 w h e r e c r i s t h e d e n s i t y a n d v i s t h e v e l o c i t y o f

a f l u i d . E x p r e s s t h e e q u a t i o n i n t e n s o r f o r m .

1 5 7 . E x p r e s s t h e c o n t i n u i t y e q u a t i o n i n ( a ) c y l i n d r i c a l a n d ( b ) s p h e r i c a l c o o r d i n a t e s .

1 5 8 . E x p r e s s S t o k e s ' t h e o r e m i n t e n s o r f o r m .

1 5 9 . P r o v e t h a t t h e c o v a r i a n t c u r v a t u r e t e n s o r R p q r s i s s k e w - s y m m e t r i c i n ( a ) p a n d q , ( b ) r a n d s , ( c ) q a n d s .

1 6 0 . P r o v e R p q r s = R r s j i q

1 6 1 . P r o v e

( a ) R j , g r s + R p s q r + R j i r s q

=

0 ,

0 .

( b ) R ¢ g r s + R r g p s + R r s p q + R ¢ s r q =

1 6 2 . P r o v e t h a t c o v a r i a n t d i f f e r e n t i a t i o n i n a E u c l i d e a n s p a c e i s c o m m u t a t i v e . T h u s s h o w t h a t t h e R i e m a n n -

C h r i s t o f f e l t e n s o r a n d c u r v a t u r e t e n s o r a r e z e r o i n a E u c l i d e a n s p a c e .

1 6 3 . L e t T

0

=

d s P b e t h e t a n g e n t v e c t o r t o c u r v e C w h o s e e q u a t i o n i s x P = x ' ( s ) w h e r e s i s t h e a r c l e n g t h .

( a ) S h o w t h a t g , g T P T q - 1 . ( b ) P r o v e t h a t g i g T O T

q

= 0 a n d t h u s s h o w t h a t N q =

K & s q

i s a u n i t

n o r m a l t o C f o r s u i t a b l e K . ( c ) P r o v e t h a t

N q

i s o r t h o g o n a l t o N q

a s

1 6 4 . W i t h t h e n o t a t i o n o f t h e p r e v i o u s p r o b l e m , p r o v e :

( a ) g i g

T ' N q

= 0

( b ) g i g

T O S N q

= - K o r g p q T

( S N q

+ K T q ) = 0 .

r

H e n c e s h o w t h a t B r =

I ( 6 N

+ K T r ) i s a u n i t v e c t o r f o r s u i t a b l e T o r t h o g o n a l t o b o t h

a n d N q .

Page 220: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 220/234

T E N S O R A N A L Y S I S

2 1 3

1 6 5 . P r o v e t h e F r e n e t - S e r r e t f o r m u l a s

$ s

K

N p ,

S =

T B 1 ' -

K T 1 ' ,

s B

= -

T N 1 '

w h e r e T N 1 ' a n d B P a r e t h e u n i t t a n g e n t , u n i t n o r m a l a n d u n i t b i n o r m a l v e c t o r s t o C , a n d K a n d T a r e

t h e c u r v a t u r e a n d t o r s i o n o f C .

1 6 6 . S h o w t h a t d s 2 = c 2 ( d x 4 ) 2 - d x k d x k ( N = 3 ) i s i n v a r i a n t u n d e r t h e l i n e a r ( a f f i n e ) t r a n s f o r m a t i o n

x 1 = y ( x 1 - v x 4 )

,

x 2

= x 2 ,

x 3

= x 3 ,

z 4

= y ( x 4 - -

1 8

x 1 )

2

w h e r e ' y , , 8 , c a n d v a r e c o n s t a n t s , 8 = v / c a n d y = ( 1 - , 8 ) 7 1 / 2

T h i s i s t h e L o r e n t z t r a n s f o r m a t i o n

o f s p e c i a l r e l a t i v i t y .

P h y s i c a l l y , a n o b s e r v e r a t t h e o r i g i n o f t h e x i s y s t e m s e e s a n e v e n t o c c u r r i n g a t

p o s i t i o n x 1 , x 2 , x 3 a t t i m e x 4 w h i l e a n o b s e r v e r a t t h e o r i g i n o f t h e ' x i s y s t e m s e e s t h e s a m e e v e n t o c c u r -

r i n g a t p o s i t i o n 3 F 1 , ` x 2 , ` x 3 a t t i m e z 4 .

I t i s a s s u m e d t h a t ( 1 ) t h e t w o s y s t e m s h a v e t h e x 1 a n d Z 1 a x e s

c o i n c i d e n t , ( 2 ) t h e p o s i t i v e x 2 a n d x 3 a x e s a r e p a r a l l e l r e s p e c t i v e l y t o t h e p o s i t i v e x 2 a n d x 3 a x e s ,

( 3 ) t h e x i s y s t e m m o v e s w i t h v e l o c i t y v r e l a t i v e t o t h e x i s y s t e m , a n d ( 4 ) t h e v e l o c i t y o f l i g h t c i s a

c o n s t a n t .

1 6 7 . S h o w t h a t t o a n o b s e r v e r f i x e d i n t h e x i ( ( i ) s y s t e m , a r o d f i x e d i n t h e x i ( x i ) s y s t e m l y i n g p a r a l l e l t o

t h e x 1 ( x i ) a x i s a n d o f l e n g t h L i n t h i s s y s t e m a p p e a r s t o h a v e t h e r e d u c e d l e n g t h L A -

T h i s

p h e n o m e n a i s c a l l e d t h e L o r e n t z - F i t z g e r a l d c o n t r a c t i o n .

A N S W E R S T O S U P P L E M E N T A R Y P R O B L E M S .

7 7 .

( a ) a k x k x 3

( b ) A 2 3 B

( c ) A k B k

( d ) g 2 q g q 1 , N = 4

( e )

B a r , N =

2

7 8 . ( a ) 2

1

( v g A 1 )

+

a x 2 ( v g A 2 ) +

2 x 3 ( V - g A 3 )

( c )

a z j a x 1

+

a x i a x e

+

. . .

+

A

a x a x

( b ) A l l B P C ,

+

A 2 '

B 1 ' C 2

+ A 1 2

B 2 C ,

+ A 2 2

B 2 C 2

a x i

a x - ' I R

a x 2 a z m

- a x l - a - - n

7 9 . E l l i p s e f o r N = 2 , e l l i p s o i d f o r N j = 3 , h y p e r e l l i p s o i d f o r N = 4 .

8 0 .

x

8 1 .

( a ) A -

A

r

a x i - a x , a v r

k

( b ) B - 1 ' g r =

a x p a z q a x a x ' s B i j k

S

a x i a x i a x k a T s

a x x a x n

( c ) C

q

a x 1 ' a x q

( d ) A

=

a x i

A l l

a x i

C x n

8 2 . ( a ) B ( / , k , m ) i s a t e n s o r o f r a n k t h r e e a n d i s c o v a r i a n t o f o r d e r t w o a n d c o n t r a v a r i a n t o f o r d e r o n e .

I t c a n

b e w r i t t e n

( b ) C ( j , k , m , n ) i s n o t a t e n s o r .

8 3 . 4 5 = 1 0 2 4

a 1 1 x 1 + a 1 2 x 2

=

b 1

a 2 1 x 1 + a 2 2 x 2

=

b 2

k

i j

p q

a

- p a x q a

8 7 . ( a ) 2 p c o s 2 c -

z c o s 0 + p 3 s i n 2 0 c o s 2 o ,

2

- - 2 p s i n 0 c o s 0 + p z s i n 0 + p 4 s i n 0 c o s 3

p z s i n 0 .

Page 221: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 221/234

2 1 4

T E N S O R A N A L Y S I S

( b ) 2 r s i n 2 6 c o s 2 0 - r s i n 6 c o s 6 c o s ( p

+

r 3 s i n 4 6 s i n 2 0 c o s 2 0 +

r 2 s i n 6 c o s 2 6 s i n k ,

2 r 2 s i n 6 c o s 6 c o s 2 0 - r 2 c o s 2 6 c o s 4 +

r 4 s i n 3 6 c o s ( 9 s i n 2 O c o s 2 O

- r 3 s i n 2 6 c o s 6 s i n k ,

- 2 r

2 s i n 2 6 s i n

c o s ) +

r 2 s i n e c o s 6 s i n

+ r 4 s i n 4 6 s i n o c o s 3 o

s

P

8 8 . u 2 v z + 3 v ,

3 u - u v 2 z ,

u 2 + u v - v 2 8 9 .

( a ) B q

r ,

( b )

( c ) b s ,

( d ) N

9 4 .

I t i s n o t a t e n s o r .

9 5 . R a n k 3 a n d r a n k 1 r e s p e c t i v e l y .

9 8 . Y e s .

1 0 0 .

( a ) 1 0 ,

( b ) 2 1 ,

( c ) N ( N + 1 ) / 2 1 0 1 . N ( N - 1 ) ( N - 2 ) / 6

7

2

- 1 - 4

1 4

1 0 1 8

8

1 0 7 . ( a ) S

0

3 '

D

4

5

P

0 2

Q

- 8 - 2

3

- 1

3 1 1 - 1

1 - 4

6

1

8 - 3

( b ) S =

2 0 - 2 ,

D =

- 4 - 4 6

,

p =

- 9 - 7

1 0

, Q = 8 - 1 6 1 1

- 2

1

1

0

5 - 3

9

9 - 1 6

- 2

1 0 - 7

1 0 8 . ( a )

3 - 1 6

2 0

5 2

)

0 4

- 8 6

( b )

9

1 6 3 - 1 3 6

1 1 0 . - 4

- 6 1 - 1 3 5

1 0 4

1 3 2

1 1 1 . x = - 1 , y = 3 , z = 2

( b )

A 3 1 A 3 2 A 3 3

( c )

3 3

3

A l A 2

A 3

a x 1 a x 2

a x a x

a x 1

a x 1

a x 1

a x 2

a x

a x 2

a x 1

a x 2

a x 3 a x

a x 1

a x 2

5 3

1 7 - 2

1

2

1

1 1 2 .

( a )

5 / 2 3 / 2

1 1 6 . \ . = 4 , - 1

1 1 9 . ( a )

x 1

a x 3

- a x '

A 1 2 A 1 3

1 / 3

1 / 3 0

( b )

5 / 3 1 / 3 1 . Y e s

- 1

0

1

a x 1 a x 1

a x 1

a x 1

a a G 2

a z 3

A

A

a x 2

a x 2 a x 2

2 2

2 3

1

-

-

A A

a x

a x 3

a x 2

a x 3

a z 3

' 3 X 3

3 2

3 3

a x 1 a x 2

a x 3

2

2

v

0 0

 

2 + v 2

'2

0 0

0

2

  +

\

0

0

1

v

1

,

2

2

u + v

0

0 1 0

0

1

Page 222: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 222/234

T E N S O R A N A L Y S I S

2 1 5

a 2 ( s i n h 2 u + s i n 2 v )

0

0

1

0

0

( a 2 ( s i n h 2 u + s i n 2 v )

( b )

0

a 2 ( s i n h 2 u + s i n 2 v ) 0

0

1

0

a 2 ( s i n h 2 u + s i n 2 v )

0

0

1

0

0

1

4 / 3

0

1

1 2 1 . g = 6 , 0

1 / 2 0

1

0

1

1 2 3 . ( a )

A p 9

_ g P i A 9 ,

( b ) A .

r

A

A

1 2 8 . o r

A Y ,

g i g

A P A q

0 .

1 3 0 .

( a ) T h e y a r e a l l z e r o .

( b )

[ 2 2 , 1 ] = - p ,

[ 1 2 , 2 ] _ [ 2 1 , 2 ] = p .

A l l o t h e r s a r e z e r o .

( c )

[ 2 2 , 1 ] _ - r ,

[ 3 3 . 1 ]

r s i n 2 8 ,

[ 3 3 , 2 ] _

- r 2 s i n 8 c o s 8

[ 2 1 , 2 ] [ 1 2 , 2 ] = r ,

[ 3 1 , 3 ] = [ 1 3 , 3 ] = r s i n 2 8

[ 3 2 , 3 1 _ [ 2 3 , 3 ] = r 2 s i n 8 c o s e .

A l l o t h e r s a r e z e r o .

1 3 1 .

( a )

[ i i , 1 ] = u , [ 2 2 , 2 ] = v , [ 1 1 , 2 ] _

- v ,

[ 2 2 , 1 ]

- u ,

[ 1 2 , 1 ] = [ 2 1 , 1 ] = v , [ 2 1 , 2 ] = [ 1 2 , 2 ] = u .

1

_ u

2

v

1 - u

2

- v

1 1 u 2 + v 2 '

2 2 u 2 + v 2 '

2 2

u 2 + v 2

1 1

u 2 + v 2

1 _

1

v

2

1 2

u

A l l o t h e r s a r e z e r o .

2 1

1 2

u 2 + v 2

2 1

1 2

u 2 + v 2

( b )

[ 1 1 , 1 ] = 2 a 2 s i n h u C o s h u

,

[ 2 2 , 2 ] = 2 a 2 s i n e c o s v

,

[ 1 1 , 2 ] _ - 2 a 2 s i n v c o s v

[ 2 2 . 1 ] = - 2 a 2 s i n h u c o s h u , [ 1 2 , 1 ] _ [ 2 1 , 1 ] = 2 a 2 s i n v c o s v ,

[ 2 1 , 2 ] = [ 1 2 , 2 ] = 2 a 2 s i n h u c o s h u

5 1

s i n h u c o s h u

2 _ s i n v c o s v

1 - s i n h u c o s h u

1 1

s i n h 2 u + s i n 2 v '

2 2

s i n h 2 u + s i n 2 v '

1 2 2 5 - s i n h 2 u + s i n 2 v

5 2

- s i n v c o s v

1

1

s i n v c o s v

1 1 1

s i n h 2 u + s i n 2 v

2 1

1 2

s i n h 2 u + s i n 2 v '

j 2

=

2 s i n h u c o s h u

.

A l l o t h e r s a r e z e r o .

2 1

1 2

y s i n h 2 u + s i n 2 v

1 3 2 .

( a )

d d s P

- p (

d 2

d 2 0

+ 2

d o d q

d s 2 p d s d s

. . r

r l

J k

( c )

A p

q

= g p j g q k g

A . . 1

d 2

0 ,

d s 2 z

= 0

d ' r d < p

{ b )

s 2

_

r ( d 8 ) 2

r s i n g

0 (

d

) 2

=

0

d 2 B

2 d r

  L 6

d s 2

r d s d s

d 2 4 ) + 2 d r d 0 +

d s 2

r d s

d s

s i n 6 c o s 8 ( d O ) 2

= 0

d s

2 c o t 8 d 8 d ( k =

0

d s

d s

Page 223: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 223/234

2 1 6

1

_

1 2 2

1 3 5 .

J

x

1 2

2 1

2

d 2 x 1

+ x (

d x 2

} 2

= 0 ' d 2 x 2

d s 2 d s

d s 2

1 3 6 .

( a ) A

( b )

j k

a A l

l , q

a x q

j k

A l n , q

) Ac

k l n c , q

a A

j k

i m

a x q

a A

i

j k

T E N S O R A N A L Y S I S

x 1

( x 1 ) 2 - ( x 2 ) 2

+

x 2

( x 2 ) 2 - ( x

1 ) 2

2

1 2 2

2 x 1

d x 1 d x 2

+

x 2 d x 2

)

2

=

0

( X I ) 2 _ ( X 2 ) 2

d s

d s

( x 2 ) 2

- ( x 1 ) 2

d s

s

l q

s

l q

( s

k q

k l m .

A s k

+

j k

A s p

A j

s

m q

j k l

( d )

A , n , q

-

j k

( e ) A l

n , q

a x q

j k

a A l m n

a x q

j k l

A s

+

k A j s

{ q s

l

+

A l l o t h e r s a r e z e r o .

s

j k

{ / } s k

k

j s

m q

A i s

+ q s

A l i n

+ q s

A l i

s

A j

-

s

A j

+ j A s

l q

k s m

m q

k 1 s

q s

k l m

q s

j k

s

j k

A s m n -

m q

A l s n -

1 3 7 . ( a ) g j k A q ,

( b )

A 1 q

B k + A l B k

0

( C )

k j

A

, 9

j , q

1 4 1 . ( a )

u 2 + v 2

a u

A u )

+

a

(

u 2 + v 2 A v )

a v

j s l

l

j k s

q s

s i

n q f

( b )

u v ( u 2 + v 2 )

a u

( u v

u 2 + v 2 A U ) + a v a ( u v

u 2 + v 2 A V )

+

1

a

1

a

a ( 1 )

( a )

4 2 .

( b )

1 4 3 .

0

u V

2 + v 2 a u

w

s

l q

+

e v

+

u 2 + v 2

a v

e z

a z

j k

A

+

I n s

j A s k +

q s

I n n

k

q s

1

a 2 A z

u v

a z 2

{

1

( a ( p

e u +

a i

e v )

+

a

e 2

a s i n h 2 u + s i n 2 v

a u

a v

a z

w h e r e e u , e v a n d e z a r e u n i t v e c t o r s i n t h e d i r e c t i o n s o f i n c r e a s i n g u , v a n d z r e s p e c t i v e i y .

1

a 2 T

+

a

+

( u 2 + v 2 )

u 2 + v 2

a u 2

a v 2

1 4 5 .

( a )

8 A k

A

d x q

=

a A k

_

s

A

d x q

d A k

-

s

A

d x q

=

) -

8 t

k , q

d t

a x q

k q

A S

d t d t k q

A s

d t

( b )

a A j k

d A j k +

j } A S k d X q

+

A

S t

d t

q s

d t q s

d t

k

( c )

8

( A . B k )

= S A C B k

+ A

b B

b t

S t

b t

i s

A l n n n

d A j -

s

B k

+

+

k

B s d x q

{ . } ' 4 s

d t

d t

q s

}

d t

Page 224: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 224/234

T E N S O R A N A L Y S I S

( d )

b t

A k )

8 A k

d A k

+

k

A S

d x q

g j k

8 t

-

g j k

d t q s

d t

( d A k

+

1

A S

d x q

-

d t

q s k

d t

1 4 6 . ( a )

g j k

d '

d t

k

b

j

6 A j -

8

j ( d A j

-

s

A

d x q _

d A k

-

s

A

d x q

( )

8

k 8 i

k

d t

{ j q

S d t

d t k q

S

d t

( C )

j 6 A

8 r

8 t

1 5 3 .

( a ) r , r e , r s i n e 0

L A

+ 6 ( t

A I

8 t 8 t

k

r

d A p

s

r

d x q

  _ I

g r k d t

p q

A S

d t

{

S

A i d x q

k q

S d t

+ r

A S

d x q

q s

P d t

1 5 6 .

a

_

a x

2 g

a x

a t

1 5 7 .

( a ) a ( 6 - 0 ) )

+

P

( b ) a r ( c r v l )

+

0

w h e r e v 4 a r e t h e c o n t r a v a r i a n t c o m p o n e n t s o f t h e v e l o c i t y .

1

( o v 2 )

+ a ( c r v 3 )

+ P

a =

0

( O " v 2 )

+

a

( 0 - v 3 )

a a o

+

0 -

( Z v 1

r

-

+ v 2 c o t e )

+

a 0 -

' a t

w h e r e v 1 , V 2 a n d v s a r e t h e c o n t r a v a r i a n t c o m p o n e n t s o f t h e v e l o c i t y .

d

1 5 8 .

f

A P d s P d s

C

0

2 1 7

E p g r A d S

w h e r e

d x q

i s t h e u n i t t a n g e n t v e c t o r t o t h e c l o s e d c u r v e C

a n d

v 1 , i s t h e p o s i t i v e u n i t n o r m a l t o t h e s u r f a c e S w h i c h h a s C a s b o u n d a r y .

I I

S

Page 225: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 225/234

I n d e x

A b s o l u t e d e r i v a t i v e , 1 7 4

A b s o l u t e m o t i o n , 5 3

A b s o l u t e t e n s o r , 1 7 5

A c c e l e r a t i o n , a l o n g a s p a c e c u r v e , 3 5 , 3 9 , 4 0 , 5 0 , 5 6

c e n t r i p e t a l , 4 3 , 5 0 , 5 3

C o r i o l i s , 5 3

i n c y l i n d r i c a l c o o r d i n a t e s , 1 4 3 , 2 0 4

i n g e n e r a l c o o r d i n a t e s , 2 0 4 , 2 0 5

i n p o l a r c o o r d i n a t e s , 5 6

i n s p h e r i c a l c o o r d i n a t e s , 1 6 0 , 2 1 2

o f a p a r t i c l e , 3 8 , 4 2 , 4 3 , 5 0 , 5 2 , 8 4 , 2 0 3 , 2 0 5

r e l a t i v e t o f i x e d a n d m o v i n g o b s e r v e r s , 5 2 , 5 3

A d d i t i o n , o f m a t r i c e s , 1 7 0

o f t e n s o r s , 1 6 9

A d d i t i o n , o f v e c t o r s , 2 , 4 , 5

a s s o c i a t i v e l a w f o r , 2 , 5

c o m m u t a t i v e l a w f o r , 2 , 5

p a r a l l e l o g r a m l a w f o r , 2 , 4

t r i a n g l e l a w f o r , 4

A e r o d y n a m i c s , 8 2

A f f i n e t r a n s f o r m a t i o n , 5 9 , 2 1 0 , 2 1 3

A l g e b r a , o f m a t r i c e s , 1 7 0

o f v e c t o r s , 1 , 2

A n g l e , b e t w e e n t w o s u r f a c e s , 6 3

b e t w e e n t w o v e c t o r s , 1 9 , 1 7 2 , 1 9 0

s o l i d , 1 2 4 , 1 2 5

A n g u l a r m o m e n t u m , 5 0 , 5 1 , 5 6

A n g u l a r s p e e d a n d v e l o c i t y , 2 6 , 4 3 , 5 2

A r b i t r a r y c o n s t a n t v e c t o r , 8 2

A r c l e n g t h , 3 7 , 5 6 , 1 3 6 , 1 4 8

i n c u r v i l i n e a r c o o r d i n a t e s , 5 6 , 1 4 8

i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s , 1 3 6

o n a s u r f a c e , 5 6

A r e a l v e l o c i t y , 8 5 , 8 6

A r e a , b o u n d e d b y a s i m p l e c l o s e d c u r v e , 1 1 1

o f e l l i p s e , 1 1 2

o f p a r a l l e l o g r a m , 1 7 , 2 4

o f s u r f a c e , 1 0 4 , 1 0 5 , 1 6 2

o f t r i a n g l e , 2 4 , 2 5

v e c t o r , 2 5 , 8 3

A s s o c i a t e d t e n s o r s , 1 7 1 , 1 9 0 , 1 9 1 , 2 1 0

A s s o c i a t i v e l a w , 2 , 5 , 1 7

B a s e v e c t o r s , 7 , 8 , 1 3 6

u n i t a r y , 1 3 6

B i n o r m a l , 3 8 , 4 5 , 4 7 , 4 8

B i p o l a r c o o r d i n a t e s , 1 4 0 , 1 6 0

B o x p r o d u c t , 1 7

B r a h e , T y c h o , 8 6

C a l c u l u s o f v a r i a t i o n s , 1 7 3

C a r t e s i a n t e n s o r s , 2 1 0

C e n t r a l f o r c e , 5 6 , 8 5

C e n t r i p e t a l a c c e l e r a t i o n , 4 3 , 5 0 , 5 3

C e n t r o i d , 1 5

C h a i n r u l e , 7 7 , 1 7 7 , 1 7 9

C h a r a c t e r i s t i c e q u a t i o n , 2 1 0

C h a r a c t e r i s t i c v a l u e s , 2 1 0

C h a r g e d e n s i t y , 1 2 6

C h r i s t o f f e l ' s s y m b o l s , 1 7 2 , 1 9 2 - 1 9 5 , 2 1 1

t r a n s f o r m a t i o n l a w s o f , 1 7 2 , 1 9 3 , 1 9 4

C i r c u l a t i o n , 8 2 , 1 3 1

C i r c u m c e n t e r , 3 3

C l o c k w i s e d i r e c t i o n , 8 9

C o f a c t o r , 1 7 1 , 1 8 7 , 1 8 8

C o l l i n e a r v e c t o r s , 8 , 9

n o n - , 7 , 8

C o l u m n m a t r i x o r v e c t o r , 1 6 9

C o m m u t a t i v e l a w , 2 , 5 , 1 6 , 1 7

C o m p o n e n t v e c t o r s , 3 , 7 , 8

r e c t a n g u l a r , 3

C o m p o n e n t s , c o n t r a v a r i a n t , 1 3 6 , 1 5 6 , 1 5 7 , 1 6 7 , 1 6 8

c o v a r i a n t , 1 3 6

o f a d y a d , 7 3

o f a t e n s o r , 1 5 7 , 1 6 7 , 1 6 8

o f a v e c t o r , 3 , 1 3 6 , 1 5 6 , 1 5 7 , 1 5 8 , 1 6 7

p h y s i c a l , ( s e e P h y s i c a l c o m p o n e n t s )

C o n d u c t i v i t y , t h e r m a l , 1 2 6

C o n f o r m a b l e m a t r i c e s , 1 7 0

C o n i c s e c t i o n , 8 7

C o n j u g a t e m e t r i c t e n s o r , 1 7 1 , 1 8 8 , 1 8 9

C o n j u g a t e t e n s o r s , 1 7 1

C o n s e r v a t i o n o f e n e r g y , 9 4

C o n s e r v a t i v e f i e l d , 7 3 , 8 3 , 9 0 , 9 1 , 9 3

m o t i o n o f p a r t i c l e i n , 9 3 , 9 4

n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n f o r , 9 0 , 9 1

C o n t i n u i t y , 3 6 , 3 7

e q u a t i o n o f , 6 7 , 1 2 6 , 2 1 2

C o n t r a c t i o n , 1 6 9 , 1 8 1 , 1 8 2

C o n t r a v a r i a n t c o m p o n e n t s , 1 3 6 , 1 5 6 , 1 5 7 , 1 6 7 , 1 6 8

o f a t e n s o r , 1 5 7 , 1 6 7 , 1 6 8

o f a v e c t o r , 1 3 6 , 1 5 6 , 1 5 7 , 1 6 7

C o n t r a v a r i a n t t e n s o r , o f f i r s t r a n k , 1 5 7 , 1 6 7

o f s e c o n d a n d h i g h e r r a n k , 1 6 8

2 1 8

Page 226: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 226/234

I N D E X

C o n t r a v a r i a n t v e c t o r , ( s e e C o n t r a v a r i a n t c o m p o -

n e n t s o f a v e c t o r )

C o o r d i n a t e c u r v e s o r l i n e s , 1 3 5

C o o r d i n a t e s , c u r v i l i n e a r , ( s e e C u r v i l i n e a r c o o r d i -

n a t e s )

C o o r d i n a t e s u r f a c e s , 1 3 5

C o o r d i n a t e t r a n s f o r m a t i o n s , 5 8 , 5 9 , 7 6 , 1 3 5 , 1 6 6

C o p l a n a r v e c t o r s , 3

n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n f o r , 2 7

n o n - , 7 , 8

C o r i o l i s a c c e l e r a t i o n , 5 3

C o s i n e s , d i r e c t i o n , 1 1 , 5 8

l a w o f , f o r p l a n e t r i a n g l e s , 2 0

l a w o f , f o r s p h e r i c a l t r i a n g l e s , 3 3

C o u n t e r c l o c k w i s e d i r e c t i o n , 8 9

C o v a r i a n t c o m p o n e n t s , 1 3 6 , 1 5 7 , 1 5 8 , 1 6 7

o f a t e n s o r , 1 6 7 , 1 6 8

o f a v e c t o r , 1 3 6 , 1 5 7 , 1 5 8 , 1 6 7

C o v a r i a n t c u r v a t u r e t e n s o r , 2 0 7

C o v a r i a n t d e r i v a t i v e , 1 7 3 , 1 9 7 - 1 9 9 , 2 1 1

C o v a r i a n t t e n s o r , o f f i r s t r a n k , 1 5 8

C o v a r i a n t v e c t o r , ( s e e C o v a r i a n t c o m p o n e n t s o f a

v e c t o r )

C r o s s - c u t , 1 1 3

C r o s s p r o d u c t , 1 6 , 1 7 , 2 2 - 2 6

c o m m u t a t i v e l a w f a i l u r e f o r , 1 6

d e t e r m i n a n t f o r m f o r , 1 7 , 2 3

d i s t r i b u t i v e l a w f o r , 1 6 , 2 2 , 2 3

C u b i c , t w i s t e d , 5 5

C u r l , 5 7 , 5 8 , 6 7 - 7 2

i n c y l i n d r i c a l c o o r d i n a t e s , 1 5 3 , 1 5 4

i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s , 1 3 7 , 1 5 0

i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s , 1 6 1

i n s p h e r i c a l c o o r d i n a t e s , 1 5 4

i n t e g r a l d e f i n i t i o n o f , 1 2 3 , 1 5 2 , 1 5 3

i n v a r i a n c e o f , 8 1

o f t h e g r a d i e n t , 5 8 , 6 9 , 2 1 1

p h y s i c a l s i g n i f i c a n c e o f , 7 2 , 1 3 1

t e n s o r f o r m o f , 1 7 4 , 2 0 0

C u r r e n t d e n s i t y , 1 2 6

C u r v a t u r e , 3 8 , 4 5 , 4 7 , 1 1 3

r a d i u s o f , 3 8 , 4 5 , 4 6 , 5 0

R i e m a n n - C h r i s t o f f e l , 2 0 6

t e n s o r , 2 0 7

C u r v e , s p a c e , ( s e e S p a c e c u r v e s )

C u r v i l i n e a r c o o r d i n a t e s , 1 3 5 - 1 6 5

a c c e l e r a t i o n i n , 1 4 3 , 2 0 4 , 2 0 5 , 2 1 2

a r c l e n g t h i n , 5 6 , 1 3 6 , 1 4 8

d e f i n i t i o n o f , 1 3 5

g e n e r a l , 1 4 8 , 1 5 6 - 1 5 9

o r t h o g o n a l , 4 9 , 1 3 5

s u r f a c e , 4 8 , 4 9 , 5 6 , 1 5 5

v o l u m e e l e m e n t s i n , 1 3 6 , 1 3 7 , 1 5 9

C y c l o i d , 1 3 2

C y l i n d r i c a l c o o r d i n a t e s , 1 3 7 , 1 3 8 , 1 4 1 , 1 4 2 , 1 6 0 , 1 6 1

a r c l e n g t h i n , 1 4 3

C h r i s t o f f e l ' s s y m b o l s i n , 1 9 5 , 2 1 1

c o n j u g a t e m e t r i c t e n s o r i n , 1 8 9

2 1 9

C y l i n d r i c a l c o o r d i n a t e s ,

c o n t i n u i t y e q u a t i o n i n , 2 1 2

c u r l i n , 1 5 3 , 1 5 4

d i v e r g e n c e i n , 1 5 3 , 2 0 0 , 2 0 1

e l l i p t i c , ( s e e E l l i p t i c c y l i n d r i c a l c o o r d i n a t e s .

g e o d e s i c s i n , 2 1 1

g r a d i e n t i n , 1 5 3 , 1 5 4

J a c o b i a n i n , 1 6 1

L a p l a c i a n i n , 1 5 3 , 1 5 4 , 2 0 1

m e t r i c t e n s o r i n , 1 8 7

p a r a b o l i c , ( s e e P a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s )

v e l o c i t y a n d a c c e l e r a t i o n i n , 1 4 3 , 2 0 4 , 2 0 5

v o l u m e e l e m e n t i n , 1 4 4 , 1 4 5

V , ( s e e D e l )

V 2 , ( s e e L a p l a c i a n o p e r a t o r )

D e l ( p ) , 5 7 , 5 8 , ( s e e a l s o G r a d i e n t , D i v e r g e n c e a n d

C u r l )

f o r m u l a s i n v o l v i n g , 5 8

i n t e g r a l o p e r a t o r f o r m f o r , 1 0 7 , 1 2 3

i n v a r i a n c e o f , 8 1

D e l t a , K r o n e c k e r , 1 6 8 , 1 7 9 , 1 8 0 , ( s e e a l s o K r o n -

e c k e r ' s s y m b o l )

D e n s i t y , 1 2 6

c h a r g e , 1 2 6

c u r r e n t , 1 2 6

t e n s o r , 1 7 5 , 2 0 3

D e p e n d e n c e , l i n e a r , 1 0 , 1 5

D e r i v a t i v e , a b s o l u t e , 1 7 4

c o v a r i a n t , 1 7 3 , 1 9 7 - 1 9 9 , 2 1 1

d i r e c t i o n a l , 5 7 , 6 1 - 6 3

i n t r i n s i c , 1 7 4 , 2 0 2 , 2 1 1

D e r i v a t i v e s , o f v e c t o r s , 3 5 - 5 6

o r d i n a r y , 3 5 , 3 6 , 3 9 - 4 3

p a r t i a l , 3 6 , 3 7 , 4 4 , 4 5

D e s c a r t e s , f o l i u m o f , 1 3 2

D e t e r m i n a n t , c o f a c t o r o f , 1 7 1 , 1 8 7 , 1 8 8

c r o s s p r o d u c t e x p r e s s e d a s , 1 7 , 2 3

c u r l e x p r e s s e d a s , 5 7 , 5 8

d i f f e r e n t i a t i o n o f , 4 1

J a c o b i a n , ( s e e J a c o b i a n )

o f a m a t r i x , 1 7 0 , 2 0 9

s c a l a r t r i p l e p r o d u c t e x p r e s s e d a s , 1 7 , 2 6 , 2 7

D e t e r m i n a n t s , m u l t i p l i c a t i o n o f , 1 5 9

D e x t r a l s y s t e m , 3

D i a g o n a l o f a s q u a r e m a t r i x , 1 6 9

D i f f e r e n c e , o f m a t r i c e s , 1 7 0

o f t e n s o r s , 1 6 9

o f v e c t o r s , 2

D i f f e r e n t i a b l e , s c a l a r f i e l d , 5 7

v e c t o r f i e l d , 5 7

D i f f e r e n t i a b i l i t y , 3 6 , 3 7

D i f f e r e n t i a l e q u a t i o n s , 5 4 , 1 0 4

D i f f e r e n t i a l g e o m e t r y , 3 7 , 3 8 , 4 5 - 5 0 , 5 4 - 5 6 , 1 6 6 , 2 1 2 - 1 3

D i f f e r e n t i a l s , 3 7

e x a c t , ( s e e E x a c t d i f f e r e n t i a l s )

D i f f e r e n t i a t i o n o f v e c t o r s , 3 5 - 5 6

f o r m u l a s f o r , 3 6 , 3 7 , 4 0 , 4 1

Page 227: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 227/234

2 2 0

D i f f e r e n t i a t i o n o f v e c t o r s ,

o r d e r o f , 3 7 , 6 9

o r d i n a r y , 3 5 , 3 6

p a r t i a l , 3 6 , 3 7

D i f f u s i v i t y , 1 2 7

D i r e c t i o n a l d e r i v a t i v e , 5 7 , 6 1 - 6 3

D i r e c t i o n c o s i n e s , 1 1 , 5 8

D i s t a n c e b e t w e e n t w o p o i n t s , 1 1

D i s t r i b u t i v e l a w , 2

f o r c r o s s p r o d u c t s , 1 6 , 2 2 , 2 3

f o r d o t p r o d u c t s , 1 6 , 1 8

f o r d y a d i c s , 7 4

f o r m a t r i c e s , 1 7 0

D i v , ( s e e D i v e r g e n c e )

D i v e r g e n c e , 5 7 , 6 4 - 6 7

i n c u r v i l i n e a r c o o r d i n a t e s , 1 3 7 , 1 5 0

i n c y l i n d r i c a l c o o r d i n a t e s , 1 5 3 , 2 0 0 , 2 0 1

i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s , 1 6 1

i n s p h e r i c a l c o o r d i n a t e s , 1 6 1 , 2 0 0 , 2 0 1

i n v a r i a n c e o f , 8 1

o f t h e c u r l , 5 8 , 6 9 , 7 0 , 2 1 1

o f t h e g r a d i e n t , 5 8 , 6 4

p h y s i c a l s i g n i f i c a n c e o f , 6 6 , 6 7 , 1 1 9 , 1 2 0

t e n s o r f o r m o f , 1 7 4 , 2 0 0 , 2 0 1

t h e o r e m , ( s e e D i v e r g e n c e t h e o r e m )

D i v e r g e n c e t h e o r e m , 1 0 6 , 1 1 0 , 1 1 1 , 1 1 5 - 1 2 7

e x p r e s s e d i n w o r d s , 1 1 5

G r e e n ' s t h e o r e m a s a s p e c i a l c a s e o f , 1 0 6 , 1 1 0 , 1 1 1

p h y s i c a l s i g n i f i c a n c e o f , 1 1 6 , 1 1 7

p r o o f o f , 1 1 7 , 1 1 8

r e c t a n g u l a r f o r m o f , 1 1 6

t e n s o r f o r m o f , 2 0 6

D o t p r o d u c t , 1 6 , 1 8 - 2 1

c o m m u t a t i v e l a w f o r , 1 6 , 1 8

d i s t r i b u t i v e l a w f o r , 1 6 , 1 8

D u m m y i n d e x , 1 6 7

D y a d , 7 3

D y a d i c , 7 3 - 7 5 , 8 1

D y n a m i c s , 3 8 , ( s e e a l s o M e c h a n i c s )

L a g r a n g e ' s e q u a t i o n s i n , 1 9 6 , 2 0 5

N e w t o n ' s l a w i n , ( s e e N e w t o n ' s l a w )

E c c e n t r i c i t y , 8 7

E i g e n v a l u e s , 2 1 0

E i n s t e i n , t h e o r y o f r e l a t i v i t y o f , 1 4 8 , 2 0 7 , 2 1 3

E l e c t r o m a g n e t i c t h e o r y , 5 4 , 7 2 , 2 0 6

E l e m e n t , l i n e , 1 7 0 , 1 8 7 - 1 8 9

v o l u m e , 1 3 6 , 1 3 7 , 1 5 9

E l e m e n t s , o f a m a t r i x , 1 6 9

E l l i p s e , 6 3 , 1 3 9

a r e a o f , 1 1 2

m o t i o n o f p l a n e t i n , 8 6 , 8 7

E l l i p s o i d a l c o o r d i n a t e s , 1 4 0 , 1 6 0

E l l i p t i c c y l i n d r i c a l c o o r d i n a t e s , 1 3 9 , 1 5 5 , 1 6 0 , 1 6 1 ,

2 1 1

E n e r g y , 9 4

c o n s e r v a t i o n o f , 9 4

k i n e t i c , 9 4 , 2 0 4

I N D E X

E n e r g y ,

p o t e n t i a l , 9 4

E q u a l i t y , o f m a t r i c e s , 1 7 0

o f v e c t o r s , 1

E q u i l i b r a n t , 6

E u c l i d e a n s p a c e s , 1 7 0

N d i m e n s i o n a l , 1 7 1

E u l e r ' s e q u a t i o n s , 1 9 6

E x a c t d i f f e r e n t i a l s , 8 3 , 9 3 , 1 1 1

n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n f o r , 9 3

E x t r e m u m , 1 9 6

F i c t i t i o u s f o r c e s , 5 3

F i e l d , ( s e e S c a l a r a n d V e c t o r f i e l d )

c o n s e r v a t i v e , ( s e e C o n s e r v a t i v e f i e l d )

i r r o t a t i o n a l , 7 2 , 7 3 , 9 0

s i n k , 1 3 , ( s e e a l s o S i n k )

s o l e n o i d a l , 6 7 , 7 3 , 1 2 0 , 1 2 6

s o u r c e , 1 3 , ( s e e a l s o S o u r c e )

t e n s o r s , 1 6 8

v o r t e x , 7 2

F i x e d a n d m o v i n g s y s t e m s , o b s e r v e r s i n , 5 1 - 5 3

F l u i d m e c h a n i c s , 8 2

F l u i d m o t i o n , 6 6 , 6 7 , 7 2 , 1 1 6 , 1 1 7 , 1 2 5 , 1 2 6

i n c o m p r e s s i b l e , 6 7 , 1 2 6

F l u x , 8 3 , 1 2 0

F o r c e , c e n t r a l , 5 6 , 8 5

C o r i o l i s , 5 3

m o m e n t o f , 2 5 , 2 6 , 5 0

o n a p a r t i c l e , 2 0 3 , 2 0 5

r e p u l s i v e , 8 5

u n i v e r s a l g r a v i t a t i o n a l , 8 6

F o r c e s , f i c t i t i o u s , 5 3

r e a l , 5 3

r e s u l t a n t o f , 1 1

F r a m e s o f r e f e r e n c e , 5 8 , 1 6 6

F r e e i n d e x , 1 6 7

F r e n e t - S e r r e t f o r m u l a s , 3 8 , 4 5 , 2 1 3

F u n d a m e n t a l q u a d r a t i c f o r m , 1 4 8

F u n d a m e n t a l t e n s o r , 1 7 1

G a u s s ' d i v e r g e n c e t h e o r e m , ( s e e D i v e r g e n c e t h e o r e m )

G a u s s ' l a w , 1 3 4

G a u s s ' t h e o r e m , 1 2 4 , 1 2 5

G e o d e s i c s , 1 7 2 , 1 7 3 , 1 9 6 , 1 9 7 , 2 1 1

G e o m e t r y , d i f f e r e n t i a l , ( s e e D i f f e r e n t i a l g e o m e t r y )

G r a d , ( s e e G r a d i e n t )

G r a d i e n t , 5 7 , 5 8 , 5 9 - 6 3 , 1 7 7

i n c y l i n d r i c a l c o o r d i n a t e s , 1 5 3 , 1 5 4

i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s , 1 3 7 , 1 4 8 , 1 4 9

i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s , 1 6 1 , 2 1 1

i n s p h e r i c a l c o o r d i n a t e s , 1 6 1

i n t e g r a l d e f i n i t i o n o f , 1 2 2 , 1 2 3

i n v a r i a n c e o f , 7 7

o f a v e c t o r , 7 3

t e n s o r f o r m o f , 1 7 4 , 2 0 0

G r a p h i c a l , a d d i t i o n o f v e c t o r s , 4

r e p r e s e n t a t i o n o f a v e c t o r , 1

Page 228: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 228/234

I N D E X

G r a v i t a t i o n , N e w t o n ' s u n i v e r s a l l a w o f , 8 6

G r e e n ' s , f i r s t i d e n t i t y o r t h e o r e m , 1 0 7 , 1 2 1

s e c o n d i d e n t i t y o r s y m m e t r i c a l t h e o r e m , 1 0 7 , 1 2 1

t h e o r e m i n s p a c e , ( s e e D i v e r g e n c e t h e o r e m )

G r e e n ' s t h e o r e m i n t h e p l a n e , 1 0 6 , 1 0 8 - 1 1 5

a s s p e c i a l c a s e o f S t o k e s ' t h e o r e m , 1 0 6 , 1 1 0

a s s p e c i a l c a s e o f t h e d i v e r g e n c e t h e o r e m , 1 0 6 ,

1 1 0 , 1 1 1

f o r m u l t i p l y - c o n n e c t e d r e g i o n s , 1 1 2 - 1 1 4

f o r s i m p l y - c o n n e c t e d r e g i o n s , 1 0 8 - 1 1 0

H a m i l t o n - C a y l e y t h e o r e m , 2 1 0

H a m i l t o n ' s p r i n c i p l e , 2 0 5

H e a t , 1 2 6 , 1 2 7

s p e c i f i c , 1 2 6

H e a t e q u a t i o n , 1 2 6 , 1 2 7 , 1 6 1

i n e l l i p t i c c y l i n d r i c a l c o o r d i n a t e s , 1 5 5

i n s p h e r i c a l c o o r d i n a t e s , 1 6 1

H e a t f l o w , s t e a d y - s t a t e , 1 2 7

H e l i x , c i r c u l a r , 4 5

H y p e r b o l a , 8 7

H y p e r p l a n e , 1 7 6

H y p e r s p h e r e , 1 7 6

H y p e r s u r f a c e , 1 7 6

H y p o c y c l o i d , 1 3 2

I n d e p e n d e n c e , o f o r i g i n , 9

o f p a t h o f i n t e g r a t i o n , 8 3 , 8 9 , 9 0 , 1 1 1 , 1 1 4 , 1 2 9 , 1 3 0

I n d e p e n d e n t , l i n e a r l y , 1 0 , 1 5

I n d e x , d u m m y o r u m b r a l , 1 6 7

f r e e , 1 6 7

I n e r t i a l s y s t e m s , 5 3

I n i t i a l p o i n t o f a v e c t o r , 1

I n n e r m u l t i p l i c a t i o n , 1 6 9 , 1 8 2

I n n e r p r o d u c t , 1 6 9 , 1 8 2

I n t e g r a l o p e r a t o r f o r m f o r V , 1 0 7 , 1 2 3

I n t e g r a l s , o f v e c t o r s , 8 2 - 1 0 5

d e f i n i t e , 8 2

i n d e f i n i t e , 8 2

l i n e , ( s e e L i n e i n t e g r a l s )

o r d i n a r y , 8 2

s u r f a c e , ( s e e S u r f a c e i n t e g r a l s )

t h e o r e m s o n , ( s e e I n t e g r a l t h e o r e m s )

v o l u m e , ( s e e V o l u m e i n t e g r a l s )

I n t e g r a l t h e o r e m s , 1 0 7 , 1 2 0 , 1 2 1 , 1 2 4 , 1 2 5 , 1 3 0 ,

( s e e a l s o S t o k e s ' t h e o r e m a n d D i v e r g e n c e t h e o r e m )

I n t e g r a t i o n , ( s e e I n t e g r a l s , o f v e c t o r s )

I n t r i n s i c d e r i v a t i v e , 1 7 4 , 2 0 2 , 2 1 1

I n v a r i a n c e , 5 8 , 5 9 , 7 6 , 7 7 , 8 1 , ( s e e a l s o I n v a r i a n t )

I n v a r i a n t , 5 9 , 1 6 8 , 1 9 0 , ( s e e a l s o I n v a r i a n c e )

I n v e r s e o f a m a t r i x , 1 7 0

I r r o t a t i o n a l f i e l d , 7 2 , 7 3 , 9 0

J a c o b i a n , 7 9 , 1 3 3 , 1 4 6 , 1 4 7 , 1 4 8 , 1 5 9 , 1 6 1 , 1 6 2 , 1 7 5 , 2 0 2 - 3

K e p l e r ' s l a w s , 8 6 , 8 7 , 1 0 2

K i n e m a t i c s , 3 8 , ( s e e a l s o D y n a m i c s a n d M e c h a n i c s )

K i n e t i c e n e r g y , 9 4 , 2 0 4

K r o n e c k e r d e l t a , 1 6 8 , 1 7 9 , 1 8 0

K r o n e c k e r ' s s y m b o l , 7 7 , 2 0 8

2 2 1

L a g r a n g e a n , 2 0 5

L a g r a n g e ' s e q u a t i o n s , 1 9 6 , 2 0 5

L a p l a c e ' s e q u a t i o n , 6 5 , 1 2 7 , 1 3 4

i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s , 1 5 4 , 1 5 5

L a p l a c e t r a n s f o r m s , 1 6 2

L a p l a c i a n o p e r a t o r ( V 2 ) , 5 8 , 6 4 , 8 1 , 2 0 0

i n c u r v i l i n e a r c o o r d i n a t e s , 1 3 7 , 1 5 0 , 1 5 1

i n c y l i n d r i c a l c o o r d i n a t e s , 1 5 3 , 1 5 4 , 2 0 1

i n p a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s , 1 5 4 , 1 5 5 , 2 1 1

i n s p h e r i c a l c o o r d i n a t e s , 1 5 4 , 2 0 1

i n v a r i a n c e o f , 8 1

t e n s o r f o r m o f , 1 7 4 , 2 0 0

L a w s o f v e c t o r a l g e b r a , 2 , 1 8

L e m n i s c a t e , 1 3 2

L e n g t h , o f a v e c t o r , 1 7 1 , 1 7 2 , 1 9 0

L i g h t r a y s , 6 3

L i g h t , v e l o c i t y o f , 8 1

L i n e a r l y d e p e n d e n t v e c t o r s , 1 0 , 1 5

L i n e e l e m e n t , 1 7 0 , 1 8 7 - 1 8 9

L i n e , e q u a t i o n o f , 9 , 1 2

p a r a m e t r i c e q u a t i o n s o f , 1 2

s i n k , 1 3

s o u r c e , 1 3

s y m m e t r i c f o r m f o r e q u a t i o n o f , 9

L i n e i n t e g r a l s , 8 2 , 8 7 - 9 4 , 1 1 1

c i r c u l a t i o n i n t e r m s o f , 8 2 , 1 3 1

e v a l u a t i o n o f , 8 7 - 8 9 , 1 1 1

G r e e n ' s t h e o r e m a n d e v a l u a t i o n o f , 1 1 2

i n d e p e n d e n c e o f p a t h , 8 3 , 8 9 , 9 0 , 1 1 1 , 1 1 4 , 1 2 9 , 1 3 0

w o r k e x p r e s s e d i n t e r m s o f , 8 2 , 8 8

L o r e n t z - F i t z g e r a l d c o n t r a c t i o n , 2 1 3

L o r e n t z t r a n s f o r m a t i o n , 2 1 3

M a g n i t u d e , o f a v e c t o r , 1

M a i n d i a g o n a l , 1 6 9

M a p p i n g , 1 6 2

M a t r i c e s , 1 6 9 , 1 7 0 , 1 8 5 , 1 8 6 , ( s e e a l s o M a t r i x )

a d d i t i o n o f , 1 7 0

c o n f o r m a b l e , 1 7 0

e q u a l i t y o f , 1 7 0

o p e r a t i o n s w i t h , 1 7 0

M a t r i x , 7 3 , 1 6 9 , ( s e e a l s o M a t r i c e s )

a l g e b r a , 1 7 0

c o l u m n , 1 6 9

d e t e r m i n a n t o f , 1 7 0 , 2 0 9

e l e m e n t s o f , 1 6 9

i n v e r s e o f , 1 7 0 , 2 0 9 , 2 1 0

m a i n o r p r i n c i p a l d i a g o n a l o f , 1 6 9

n u l l , 1 6 9

o r d e r o f , 1 6 9

p r i n c i p a l d i a g o n a l o f , 1 6 9

r o w , 1 6 9

s i n g u l a r , 1 7 0

s q u a r e , 1 6 9

t r a n s p o s e o f , 1 7 0 , 2 1 0

Page 229: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 229/234

2 2 2

M a x w e l l ' s e q u a t i o n s , 7 2 , 8 1

i n t e n s o r f o r m , 2 0 6

M e c h a n i c s , 3 8 , 5 6 , ( s e e a l s o D y n a m i c s )

f l u i d , 8 2

M e t r i c c o e f f i c i e n t s , 1 4 8

M e t r i c f o r m , 1 4 8

M e t r i c t e n s o r , 1 7 0 , 1 7 1 , 1 8 7 - 1 8 9

M i x e d t e n s o r , 1 6 7 , 1 6 8

M o e b i u s s t r i p , 9 9

M o m e n t o f f o r c e , 2 5 , 2 6 , . 5 0

M o m e n t u m , 3 8

a n g u l a r , 5 0 , 5 1 , 5 6

M o t i o n , a b s o l u t e , 5 3

M o t i o n , o f f l u i d , ( s e e F l u i d m o t i o n )

o f p l a n e t s , 8 5 - 8 7

M o v i n g a n d f i x e d s y s t e m s , o b s e r v e r s i n , 5 1 - 5 3

M o v i n g t r i h e d r a l , 3 8

M u l t i p l i c a t i o n , ( s e e P r o d u c t )

M u l t i p l y - c o n n e c t e d r e g i o n , 1 1 0 , 1 1 2 - 1 1 4

N a b l a , ( s e e D e l )

N e g a t i v e d i r e c t i o n , 8 9

N e w t o n ' s l a w , 3 8 , 5 0 , 5 3

i n t e n s o r f o r m , 2 0 3

o f u n i v e r s a l g r a v i t a t i o n , 8 6

N o r m a l p l a n e , 3 8 , 4 8

N o r m a l , p r i n c i p a l , 3 8 , 4 5 , 4 7 , 4 8 , 5 0

b i - , 3 8 , 4 5 , 4 7 , 4 8

N o r m a l , t o a s u r f a c e , 4 9 , 5 0 , 5 6 , 6 1

p o s i t i v e o r o u t w a r d d r a w n , 4 9 , 8 3

N u l l m a t r i x , 1 6 9

N u l l v e c t o r , 2

I N D E X

O b l a t e s p h e r o i d a l c o o r d i n a t e s , 1 4 0 , 1 4 5 , 1 6 0 , 1 6 1

O p e r a t i o n s , w i t h t e n s o r s , 1 6 9 , 1 7 9 - 1 8 4

O p e r a t o r , d e l , 5 7 , ( s e e a l s o D e l )

L a p l a c i a n , ( s e e L a p l a c i a n o p e r a t o r )

t i m e d e r i v a t i v e , i n f i x e d a n d m o v i n g s y s t e m s ,

5 1 , 5 2

O r d e r , o f a m a t r i x , 1 6 9

o f a t e n s o r , 1 6 7

O r i e n t a b l e s u r f a c e , 9 9

O r i g i n , o f a v e c t o r , 1

i n d e p e n d e n c e o f v e c t o r e q u a t i o n o n , 9

O r t h o c e n t e r , 3 3

O r t h o g o n a l c o o r d i n a t e s , s p e c i a l , 1 3 7 - 1 4 1

b i p o l a r , 1 4 0 , 1 6 0

c y l i n d r i c a l , 1 3 7 , 1 3 8 , ( s e e C y l i n d r i c a l c o o r d i n a t e s )

e l l i p s o i d a l , 1 4 0 , 1 6 0

e l l i p t i c c y l i n d r i c a l , 1 3 9 , 1 5 5 , 1 6 0 , 1 6 1 , 2 1 1

o b l a t e s p h e r o i d a l , 1 4 0 , 1 4 5 , 1 6 0 , 1 6 1

p a r a b o l i c c y l i n d r i c a l , 1 3 8 , ( s e e a l s o P a r a b o l i c

c y l i n d r i c a l c o o r d i n a t e s )

p a r a b o l o i d a l , 1 3 9 , 1 6 0 , 1 6 1 , 2 1 1

p r o l a t e s p h e r o i d a l , 1 3 9 , 1 6 0 , 1 6 1

s p h e r i c a l , 1 3 7 , 1 3 8 , ( s e e S p h e r i c a l c o o r d i n a t e s )

t o r o i d a l , 1 4 1

O r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s y s t e m s , 4 9 , 1 3 5 ,

1 9 1

s p e c i a l , 1 3 7 - 1 4 1

O r t h o g o n a l t r a n s f o r m a t i o n , 5 9

O s c u l a t i n g p l a n e , 3 8 , 4 8

O u t e r m u l t i p l i c a t i o n , 1 6 9

O u t e r p r o d u c t , 1 6 9

O u t w a r d d r a w n n o r m a l , 4 9 , 8 3

P a r a b o l a , 8 7 , 1 3 8

P a r a b o l i c c y l i n d r i c a l c o o r d i n a t e s , 1 3 8 , 1 4 4 , 1 4 5 , 1 5 4

1 5 5 , 1 6 0 , 1 6 1 , 2 1 1

a r e l e n g t h i n , 1 4 4

C h r i s t o f f e l ' s s y m b o l s i n , 2 1 1

c u r l i n , 1 6 1

d i v e r g e n c e i n , 1 6 1

g r a d i e n t i n , 1 6 1 , 2 1 1

J a c o b i a n i n , 1 6 1

L a p l a c i a n i n , 1 5 4 , 1 5 5 , 2 1 1

S c h r o e d i n g e r ' s e q u a t i o n i n , 1 6 1

v o l u m e e l e m e n t i n , 1 4 5

P a r a b o l o i d a l c o o r d i n a t e s , 1 3 9 , 1 6 0 , 1 6 1 , 2 1 1

P a r a l l e l o g r a m , a r e a o f , 1 7 , 2 4

P a r a l l e l o g r a m l a w o f v e c t o r a d d i t i o n , 2 , 4

P a r a m e t r i c e q u a t i o n s , o f a c u r v e , 3 9 , 4 0

o f a l i n e , 1 2

o f a s u r f a c e , 4 8 , 4 9

P e r i o d s , o f p l a n e t s , 1 0 2

P e r m u t a t i o n s y m b o l s a n d t e n s o r s , 1 7 3 , 1 7 4 , 2 1 1

P h y s i c a l c o m p o n e n t s , 1 7 2 , 2 0 0 , 2 0 1 , 2 0 5 , 2 1 1

P l a n e , d i s t a n c e f r o m o r i g i n t o , 2 1

e q u a t i o n o f , 1 5 , 2 1 , 2 8

n o r m a l , 3 8 , 4 8

o s c u l a t i n g , 3 8 , 4 8

r e c t i f y i n g , 3 8 , 4 8

t a n g e n t , 4 9 , 5 0 , 6 1

v e c t o r p e r p e n d i c u l a r t o , 2 8

v e c t o r s i n a , ( s e e C o p l a n a r v e c t o r s )

P l a n e t s , m o t i o n o f , 8 5 - 8 7

P o i n t f u n c t i o n , s c a l a r a n d v e c t o r , 3

P o i s s o n ' s e q u a t i o n , 1 3 4

P o l a r c o o r d i n a t e s , 9 8

P o s i t i o n v e c t o r , 3

P o s i t i v e d i r e c t i o n , 8 9 , 1 0 6 , 1 1 3

P o s i t i v e n o r m a l , 8 3

P o t e n t i a l e n e r g y , 9 4

P o t e n t i a l , s c a l a r , 7 3 , 8 1 , 8 3 , 9 1 , 9 2

v e c t o r , 8 1

P r i n c i p a l d i a g o n a l , 1 6 9

P r i n c i p a l n o r m a l , 3 8 , 4 5 , 4 7 , 4 8 , 5 0

P r o d u c t , b o x , 1 7

c r o s s , ( s e e C r o s s p r o d u c t )

d o t , ( s e e D o t p r o d u c t )

i n n e r , 1 6 9 , 1 8 2

o f a v e c t o r b y a s c a l a r , 2

o f d e t e r m i n a n t s , 1 5 9

o f m a t r i c e s , 1 7 0

Page 230: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 230/234

I N D E X

2 2 3

P r o d u c t ,

o f t e n s o r s , 1 6 9

o u t e r , 1 6 9 , 1 8 1

s c a l a r , 1 8 2 , ( s e e a l s o D o t p r o d u c t )

v e c t o r , ( s e e C r o s s p r o d u c t )

P r o j e c t i l e , 1 0 2

P r o j e c t i o n , o f a v e c t o r , 1 8 , 2 0

o f s u r f a c e s , 9 5 , 9 6

P r o l a t e s p h e r o i d a l c o o r d i n a t e s , 1 3 9 , 1 6 0 , 1 6 1

P r o p e r v e c t o r , 2

P y t h a g o r e a n t h e o r e m , 1 0

Q u a d r a t i c f o r m , f u n d a m e n t a l , 1 4 8

Q u a n t u m m e c h a n i c s , 1 6 1

Q u o t i e n t l a w , 1 6 9 , 1 8 4

R a d i u s , o f c u r v a t u r e , 3 8 , 4 5 , 4 6 , 5 0

o f t o r s i o n , 3 8 , 4 5

R a d i u s v e c t o r , 3

R a n k , o f a t e n s o r , 1 6 7

R a n k z e r o t e n s o r , 1 6 8

R e a l f o r c e s , 5 3

R e c i p r o c a l s e t s o r s y s t e m s o f v e c t o r s , 1 7 , 3 0 , 3 1

3 4 , 1 3 6 , 1 4 7

R e c i p r o c a l t e n s o r s , 1 7 1

R e c t a n g u l a r c o m p o n e n t v e c t o r s , 3

R e c t a n g u l a r c o o r d i n a t e s y s t e m s , 2

R e c t i f y i n g p l a n e , 3 8 , 4 8

R e g i o n , m u l t i p l y - c o n n e c t e d , 1 1 0 , 1 1 2 - 1 1 4

s i m p l y - c o n n e c t e d , 1 1 0 , 1 1 3 , 1 1 4

R e l a t i v e a c c e l e r a t i o n , 5 3

R e l a t i v e t e n s o r , 1 7 5 , 2 0 2 , 2 0 3 , 2 1 2

R e l a t i v e v e l o c i t y , 5 2

R e l a t i v i t y , t h e o r y o f , 1 4 8 , 2 0 7 , 2 1 3

R e s u l t a n t o f v e c t o r s , 2 , 4 , 5 , 6 , 1 0

R i e m a n n - C h r i s t o f f e l t e n s o r , 2 0 7 , 2 1 2

R i e m a n n i a n s p a c e , 1 7 1 , 1 7 2

g e o d e s i c s i n , 1 7 2 , 1 9 6 , 1 9 7

R i g h t - h a n d e d c o o r d i n a t e s y s t e m s , 2 , 3

l o c a l i z e d , 3 8

R i g i d b o d y , m o t i o n o f , 5 9

v e l o c i t y o f , 2 6 , 3 3

R o t , ( s e e C u r l )

R o t a t i n g c o o r d i n a t e s y s t e m s , 5 1 , 5 2

R o t a t i o n , i n v a r i a n c e u n d e r , ( s e e I n v a r i a n c e )

o f a x e s , 5 8 , 7 6 , 7 7

p u r e , 5 9

R o w m a t r i x o r v e c t o r , 1 6 9

S c a l a r , 1 , 4 , 1 6 8

f i e l d , 3 , 1 2 , 1 6 8

f u n c t i o n o f p o s i t i o n , 3

p o i n t f u n c t i o n , 3

p o t e n t i a l , 7 3 , 8 1 , 8 3 , 9 1 , 9 2

p r o d u c t , 1 8 2 , ( s e e a l s o D o t p r o d u c t )

t r i p l e p r o d u c t s , ( s e e T r i p l e p r o d u c t s )

v a r i a b l e , 3 5

S c a l e f a c t o r s , 1 3 5

S c h r o e d i n g e r ' s e q u a t i o n , 1 6 1

S i m p l e c l o s e d c u r v e , 8 2 , 1 0 6

a r e a b o u n d e d b y , 1 1 1

S i m p l y - c o n n e c t e d r e g i o n , 1 1 0 , 1 1 3 , 1 1 4

S i n e s , l a w o f , f o r p l a n e t r i a n g l e s , 2 5

f o r s p h e r i c a l t r i a n g l e s , 2 9 , 3 0

S i n g u l a r m a t r i x , 1 7 0

S i n g u l a r p o i n t s , 1 4 1

S i n k , 1 3 , 6 7 , 1 2 0

S i n k f i e l d , 1 3 , ( s e e a l s o S i n k )

S o l e n o i d a l f i e l d , 6 7 , 7 3 , 1 2 0 , 1 2 6

S o l i d a n g l e , 1 2 4 , 1 2 5

S o u n d r a y s , 6 3

S o u r c e , 1 3 , 6 7 , 1 2 0

S o u r c e f i e l d , 1 3 , ( s e e a l s o S o u r c e )

S p a c e c u r v e s , 3 5

a c c e l e r a t i o n a l o n g , 3 5 , 3 9 , 4 0 , 5 0 , 5 6

a r c l e n g t h o f , 3 7 , 5 6 , 1 3 6 , 1 4 8

b i n o r m a l o f , 3 8 , 4 5 , 4 7 , 4 8

c u r v a t u r e o f , 3 8 , 4 5 , 4 7 , 1 1 3

p r i n c i p a l n o r m a l o f , 3 8 , 4 5 , 4 7 , 4 8 , 5 0

r a d i u s o f c u r v a t u r e o f , 3 8 , 4 5 , 4 6 , 5 0

r a d i u s o f t o r s i o n o f , 3 8 , 4 5

t a n g e n t t o , 3 7 , 3 8 , 4 0 , 4 5 , 4 7 , 4 8 , 5 0

S p a c e i n t e g r a l s , ( s e e V o l u m e i n t e g r a l s )

S p a c e s , E u c l i d e a n , 1 7 0

R i e m a n n i a n , 1 7 1

S p a c e , N d i m e n s i o n a l , 1 6 6

S p e c i a l t h e o r y o f r e l a t i v i t y , 2 1 3

S p e e d , 4

a n g u l a r , 2 6 , 4 3 , 5 2

S p h e r i c a l c o o r d i n a t e s , 1 3 7 , 1 3 8 , 1 4 1 , 1 4 7 , 1 6 0 , 1 6 1

a r e l e n g t h i n , 1 4 4

C h r i s t o f f e l ' s s y m b o l s i n , 1 9 5 , 2 1 1

c o n j u g a t e m e t r i c t e n s o r i n , 1 8 9

c o n t i n u i t y e q u a t i o n i n , 2 1 2

c o v a r i a n t c o m p o n e n t s i n , 1 7 7 , 1 7 8

c u r l i n , 1 5 4

d i v e r g e n c e i n , 1 6 1 , 2 0 0 , 2 0 1

g e o d e s i c s i n , 2 1 1

g r a d i e n t i n , 1 6 1

h e a t e q u a t i o n i n , 1 6 1

J a c o b i a n i n , 1 6 1

L a p l a c i a n i n , 1 5 4 , 2 0 1

m e t r i c t e n s o r i n , 1 8 7

v e l o c i t y a n d a c c e l e r a t i o n i n , 1 6 0 , 2 1 2

v o l u m e e l e m e n t i n , 1 4 4 , 1 4 5

S p h e r o i d a l c o o r d i n a t e s , o b l a t e , 1 4 0 , 1 4 5 , 1 6 0 , 1 6 1

p r o l a t e , 1 3 9 , 1 6 0 , 1 6 1

S t a t i o n a r y s c a l a r f i e l d , 3

S t a t i o n a r y - s t a t e , ( s e e S t e a d y - s t a t e )

S t e a d y - s t a t e , h e a t f l o w , 1 2 7

s c a l a r f i e l d , 3

v e c t o r f i e l d , 3

S t o k e s ' t h e o r e m , 1 0 6 , 1 1 0 , 1 2 7 - 1 3 1

G r e e n ' s t h e o r e m a s s p e c i a l c a s e o f , 1 1 0

p r o o f o f , 1 2 7 - 1 2 9

t e n s o r f o r m o f , 2 1 2

Page 231: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 231/234

2 2 4

I N D E X

S u b t r a c t i o n , o f t e n s o r s , 1 6 9

o f v e c t o r s , 2

S u m m a t i o n c o n v e n t i o n , 1 6 7 , 1 7 5 , 1 7 6 , 2 0 7

S u p e r s c r i p t s , 1 6 6

S u r f a c e , a r e a o f , 1 0 4 , 1 0 5 , 1 6 2

S u r f a c e c u r v i l i n e a r c o o r d i n a t e s , 4 8 , 4 9 , 5 6 , 1 5 5

a r c l e n g t h i n , 5 6 , 1 4 8

S u r f a c e i n t e g r a l s , 8 3 , 9 4 - 9 9

d e f i n e d a s l i m i t o f a s u m , 9 4 , 9 5

e v a l u a t i o n o f , 8 3

S u r f a c e s , 3 7

a n g l e b e t w e e n , 6 3

a r c l e n g t h o n , 5 6

c o o r d i n a t e , 1 3 5

o n e - s i d e d , 9 9

o r i e n t a b l e , 9 9

o u t w a r d d r a w n n o r m a l t o , 8 3

t w o - s i d e d , 8 3

S y m m e t r i c f o r m , o f e q u a t i o n o f a l i n e , 9

T a n g e n t , t o s p a c e c u r v e , 3 7 , 3 8 , 4 0 , 4 5 , 4 7 , 4 8 , 5 0

T a n g e n t p l a n e , 4 9 , 5 0 , 6 1

T e n s o r a n a l y s i s , 7 3 , 1 3 7 , 1 5 8 , 1 6 6 - 2 1 7

T e n s o r , a b s o l u t e , 1 7 5

a s s o c i a t e d , 1 7 1 , 1 9 0 , 1 9 1 , 2 1 0

C a r t e s i a n , 2 1 0

c o n j u g a t e , 1 7 1

c o n t r a v a r i a n t , ( s e e C o n t r a v a r i a n t c o m p o n e n t s )

c o v a r i a n t , ( s e e C o v a r i a n t c o m p o n e n t s )

c u r v a t u r e , 2 0 7

d e n s i t y , 1 7 5 , 2 0 3

f i e l d , 1 6 8

f u n d a m e n t a l , 1 7 1

m e t r i c , 1 7 0

m i x e d , 1 6 7 , 1 6 8

o r d e r o f , 1 6 7

r a n k o f , 1 6 7

r e c i p r o c a l , 1 7 1

r e l a t i v e , 1 7 5 , 2 0 2 , 2 0 3 , 2 1 2

s k e w - s y m m e t r i c , 1 6 8 , 1 6 9

s y m m e t r i c , 1 6 8

T e n s o r s , f u n d a m e n t a l o p e r a t i o n s w i t h , 1 6 9 , 1 7 9 - 1 8 4

T e r m i n a l p o i n t o r T e r m i n u s , 1 , 2 , 5 , 1 1

T h e r m a l c o n d u c t i v i t y , 1 2 6

T o r o i d a l c o o r d i n a t e s , 1 4 1

T o r q u e , 5 0 , 5 1

T o r s i o n , 3 8 , 4 5 , 4 7 , 2 1 3

r a d i u s o f , 3 8 , 4 5

T r a n s f o r m a t i o n , a f f i n e , 5 9 , 2 1 0 , 2 1 3

o f c o o r d i n a t e s , 5 8 , 5 9 , 7 6 , 1 3 5 , 1 6 6

o r t h o g o n a l , 5 9

T r a n s l a t i o n , 5 9

T r a n s p o s e , o f a m a t r i x , 1 7 0 , 2 1 0

T r i a d , 3 8

T r i a d i c , 7 3

T r i a n g l e , a r e a o f , 2 4 , 2 5

T r i a n g l e l a w o f v e c t o r a d d i t i o n , 4

T r i h e d r a l , m o v i n g , 3 8

T r i p l e p r o d u c t s , 1 7 , 2 6 - 3 1

T w i s t e d c u b i c , 5 5

U m b r a l i n d e x , 1 6 7

U n i t d y a d s , 7 3

U n i t m a t r i x , 1 6 9

U n i t v e c t o r s , 2 , 1 1

r e c t a n g u l a r , 2 , 3

V a r i a b l e , 3 5 , 3 6

V e c t o r , a r e a , 2 5 , 8 3

c o l u m n , 1 6 9

e q u a t i o n s , 2 , 9

f i e l d , 3 , 1 2 , 1 3 , 1 6 8

f u n c t i o n o f p o s i t i o n , 3

m a g n i t u d e o f a , 1 , 1 0

n u l l , 2

o p e r a t o r V , ( s e e D e l )

p o i n t f u n c t i o n , 3

p o s i t i o n , 3

p o t e n t i a l , 8 1

p r o d u c t , ( s e e C r o s s p r o d u c t )

r a d i u s , 3

r o w , 1 6 9

t i m e d e r i v a t i v e o f a , 5 1 , 5 2

t r i p l e p r o d u c t , ( s e e T r i p l e p r o d u c t s )

V e c t o r s , 1 , 4

a d d i t i o n o f , 2 , 4

a l g e b r a o f , 1 , 2

a n a l y t i c a l r e p r e s e n t a t i o n o f , 1

a n g l e b e t w e e n , 1 9 , 1 7 2 , 1 9 0

b a s e , 7 , 8 , 1 3 6

c o l l i n e a r , ( s e e C o l l i n e a r v e c t o r s )

c o m p o n e n t , 3 , 7 , 8

c o n t r a v a r i a n t c o m p o n e n t s o f , 1 3 6 , 1 5 6 , 1 5 7 , 1 6 7

c o p l a n a r , ( s e e C o p l a n a r v e c t o r s )

c o v a r i a n t c o m p o n e n t s o f , 1 3 6 , 1 5 7 , 1 5 8 , 1 6 7

d i f f e r e n t i a t i o n o f , 3 5 - 5 6

e q u a l i t y o f , 1

g r a p h i c a l r e p r e s e n t a t i o n o f , 1 , 4

i n i t i a l p o i n t o f , 1

o r i g i n o f , 1

r e c i p r o c a l , 1 7

r e s u l t a n t o f , 2 , 4 , 5 , 6 , 1 0

t e r m i n a l p o i n t o f , 1

t e r m i n u s o f , 1

u n i t , 2

u n i t a r y , 1 3 6

V e l o c i t y , a l o n g a s p a c e c u r v e , 3 5 , 3 9 , 4 0

a n g u l a r , 2 6 , 4 3 , 5 2

a r e a l , 8 5 , 8 6

l i n e a r , 2 6

o f a f l u i d , 1 7 9

o f a p a r t i c l e , 4 2 , 5 2 , 2 0 3 , 2 0 4

o f l i g h t , 8 1

r e l a t i v e t o f i x e d a n d m o v i n g o b s e r v e r s , 5 2 , 5 3

V o l u m e , e l e m e n t s o f , 1 3 6 , 1 3 7 , 1 5 9

i n c u r v i l i n e a r c o o r d i n a t e s , 1 3 6 , 1 3 7

Page 232: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 232/234

I N D E X

2 2 5

V o l u m e ,

W a v e e q u a t i o n , 7 2

i n g e n e r a l c o o r d i n a t e s , 1 5 9

W e i g h t , o f a t e n s o r , 1 7 5

o f p a r a l l e l e p i p e d , 1 7 , 2 6

W o r k , 2 1 , 8 2 , 8 8 , 8 9 , 9 0 , 9 1

V o l u m e i n t e g r a l s , 8 3 , 9 9 - 1 0 1

a s a l i n e i n t e g r a l , 8 8 , 8 9 , 9 0 , 9 1

d e f i n e d a s l i m i t o f a s u m , 9 9 , 1 0 0

V o r t e x f i e l d , 7 2

Z e r o v e c t o r , 2

Page 233: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 233/234

C a t a l o g

I f y o u a r e i n t e r e s t e d i n a l i s t o f S C H A U M ' S

O U T L I N E S E R I E S s e n d y o u r n a m e

a n d a d d r e s s , r e q u e s t i n g y o u r f r e e c a t a l o g , t o

S C H A U M ' S O U T L I N E S E R I E S , D e p t . C

M c G R A W - H I L L B O O K C O M P A N Y

1 2 2 1 A v e n u e o f A m e r i c a s

N e w Y o r k , N . Y . 1 0 0 2 0

Page 234: Schaums Vector Analysis

7/24/2019 Schaums Vector Analysis

http://slidepdf.com/reader/full/schaums-vector-analysis 234/234

a s t e r v e c t o r a n a l y s i s w i t h t h i s "

m p l e - t o - u s e s t u d y g u i d e . I t w i l l

e l p y o u c u t s t u d y t i m e , h o n e

r o b l e m - s o l v i n g s k i l l s , a n d a c h i e v e

u r p e r s o n a l b e s t o n e x a m s

e n t s l o v e S c h a u m ' s O u t l i n e s b e c a u s e t h e y p r o d u c e r s s u M S . E a c h y e a r ,

r e d s o f t h o u s a n d s o f s t u d e n t s i m p r o v e t h e i r l e s t s c o r e s a n d f i n a l g r a d e s

h t h e s e i n d i s p e n s a b l e s t u d y g u i d e s .

t h e e d g e o n y o u r c l a s s m a t e s U s e S c h a u m ' s '

u d o n ' t h a v e a l o t o f U r n s b u t w a n t t o e x c e l i n c l a s s . t h i s b o o k h e l p s

R e l a t e d T i t l e s i n

S c h a u m ' s o u t l i n e s

M a t h e m a t i c s a S t a t i s t i c s