sample3 spreadsheet

23
Horizontal Retention Tank Sample 3 Pressure Vessel Calculations September 5, 2008 PVE Sample Vessels Alex Turvey B.A. Tech. Laurence Brundrett P. Eng. Pressure Vessel Engineering Ltd. Sample 3 1 of 23

Upload: saxa-man-g

Post on 06-Mar-2015

212 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Sample3 Spreadsheet

Horizontal Retention TankSample 3

Pressure Vessel Calculations

September 5, 2008

PVE Sample Vessels

Alex Turvey B.A. Tech.Laurence Brundrett P. Eng.

Pressure Vessel Engineering Ltd.Sample 3

1 of 23

Page 2: Sample3 Spreadsheet

Table of Contents 27-Oct-08 Page 2 of 23

Contents PageCover 1Table of Contents 2Summary 3Material Properties 4Shell 5Heads 6Nozzle A 7Nozzle B 8Nozzle C 9 - 10Flange N1 & N2 11Nozzle D,E,F Major 12Nozzle D,E,F Minor 13Nozzle G 14Vessel Weight & Volume 15Lifting Lugs 16Zick 17 - 18Flexible Saddle Stress 19Hor. Vessel Forces 20Flexible Saddle 21 - 23

1 REVISED 10/21/2008 ART0 RELEASE 5/23/2002 LB

REV DESCRIPTION DATE INITIALS

Page 3: Sample3 Spreadsheet

Pressure Vessel Design Summary 27-Oct-08 Page 3 of 23

CustomerVesselPart NumberDrawingJob

96 Outside Diameter [inch]120 straight Shell (not including straight flange on heads)640 Volume [cuft]

Water Fluid (value from Material Properties)6600 Weight Empty [lbs.]47000 Weight Full 47000 Weight Under Test

Maximum Internal pressure, psi Maximum External Pressure, psi At Temperature, ºF

75 0 150Maximum Temperature, ºF Minimum Temperature, ºF At Pressure, psi

150 -20 75Test Pressure, psi At a Minimum Temperature of: ºF For a Minimum Duration of:

98 55°F 1/2 hr

SA-516-70 Primary Material of Construction20,000 Allowable Stress0.09375 Minimum allowed thickness per UG-16(b)

No Material NormalizedNo Material Impact Tested (not required per UG-20(f))

None Radiography required0 Corrosion Allowance

ASME VIII-1 Code2007 Edition

- AddendaIID Materials

Code Cases Required

UG-22 Loadings ConsideredYes (a) Internal pressure

(a) External pressure(b) Vessel weight full, empty and at hydro test(c) Weight of attached equipment and piping(d)(1) Attachment of internals(d)(2) Attachment of vessel supports(d) Cyclic or dynamic reactions(f) Wind(f) Snow(f) Seismic(g) Fluid impact shock reactions(h) Temperature gradients(h) Differential thermal expansion(i) Abnormal pressures like deflagration

Hydrostatic Test

Maximum Allowed Working Pressure

PVE Sample Vessels

Sample 3Sample 3Sample 3

Horizontal Retention Tank

Maximum Design Metal Temperature

Page 4: Sample3 Spreadsheet

1 Material Properties ver 2.01 www.pveng.com 27-Oct-08 Page 4 of 232

3 <- Vessel4

5 Design Pressure UG-22(a)6 75.0 <- P, internal operating pressure at top of vessel (psig)7 0.0 <- mPa, external operation pressure8 Water. fresh <- Operating Fluid9 8.000 <- h, fluid height (ft) 10 1.000 <- rho, fluid density (1.0 for water) 11 Design Pressure = P + 0.4331*rho*h = 75 + 0.4331 * 1 * 8 mDp = 78.4612

13 Hydro Test (UG-99(b)) pressure measured at top of vessel, rounded up14 Test Press = P * 1.3 * MR = 75 * 1.3 * 1 mTp = 9815

16 Material Properties (ASME IID)17 150 <- mTemp, design temp ºF Test at ambient temp

18

Where Used Ambient Strength

Design Strength

Strength Ratio

Max ºF Ext Graph

19 Shell & Heads 20000 20000 1.000 1000 CS-220 Couplings 20000 20000 1.000 1000 CS-221 Nozzles 17100 17100 1.000 1000 CS-222 Saddles 16600 16600 1.000 650 CS-223

24

25

26

27

28

29

30

31

32

33 34 35 36 37 38 39 40 41 42 43 44 Min Ratio (MR) = 1.00045

46

47

48

SA-105 Forging

Material

SA-516 70 Plate

Horizontal Retention Tank

SA-106 B Seamless PipeSA-36 Plate

Page 5: Sample3 Spreadsheet

1 Pipe and Shell ver 4.08 Page 5 of 232 Description

3 Options:4 Interior ip? - Calculate interior pressure5 No Exterior ep? - Calculate exterior pressure6 Rolled Plate pr? - Pipe or rolled plate7 Non-Threaded pt? - Type of pipe8 No relief? - Stress Relief Calculations Required

9 Dimensions:10 96.000 Do [in] - outside diameter11 0.3125 t [in] - nominal wall thickness12 0.094 tminUG16b [in] - minimum wall per UG-16(b)13 120.000 L [in] - length for volume and weight14 0.000 Corr [in] - corrosion allowance

15 Material and Conditions:16 SA-516 70 Material17 20,000 S [psi] - allowable stress level18 0.70 El - longitudinal efficiency (circ. stress)19 0.70 Ec - circ. connecting efficiency (longitudinal stress)20 0.000% UTP [%] - undertolerance allowance21 0.000 UTI [in] - undertolerance allowance22 78.46 P [psi] - interior pressure

23 Stress Classification:24 NOTE: Both validity checks need to be "Acceptable" in order to use this sheet25 If not, refer to sheet "Thick Cylindrical Shell"26 ckValidity1 = tmin < 0.5*(Do/2) 0.268 < 0.5*(96/2) = Acceptable27 ckValidity2 = P< 0.385*S*El 78.46< 0.385*20000*0.7 = Acceptable

28 Variables:29 Td = 0.000 0 = 0.00030 UT [in] = t*UTP+UTI 0.3125*0+0 = 0.00031 nt [in] = t-Corr-UT-Td 0.3125-0-0-0 = 0.31332 Ri [in] = Do/2-nt 96/2-0.313 = 47.68833 Volume [cuft] = ((Do/2-t)^2)*π*L/1728 ((96/2-0.3125)^2)*3.1416*120/1728 = 496.131

34Weight [lb] = (Do-t)*π*L*t*40.84/144

(96-0.3125)*3.1416*120*0.3125*40.84/144 = 3197.12

35 Interior Pressure: VIII-1 UG-27(c)(1,2)36 ta [in] = P*Ri/(S*El-0.6*P) 78.46*47.688/(20000*0.7-0.6*78.46) = 0.26837 tb [in] = P*Ri/(2*S*Ec+0.4*P) 78.46*47.688/(2*20000*0.7+0.4*78.46) = 0.13338 tmin [in] = MAX(ta,tb,tminUG16b) MAX(0.268,0.133,0.094) = 0.26839 tr1 [in] = P*Ri/(S*1-0.6*P) 78.46*47.688/(20000*1-0.6*78.46) = 0.18840 Checkt = tmin <= nt 0.268 <= 0.313 = Acceptable

41 PMaxA [psi] = (20000*0.7*0.313)/(47.688+0.6*0.313) = 9142 PMaxB [psi] = (2*S*Ec*nt)/(Ri-0.4*nt) (2*20000*0.7*0.313)/(47.688-0.4*0.313) = 18443 PMax [psi] = Min(PMaxA,PMaxB) MIN(91,184) = 9144 CheckP = PMax >= P 91 >= 78.46 = Acceptable

Rolled Shell

(S*El*nt)/(Ri+0.6*nt)

t

Do

Leng

th

Long

Sea

m

Page 6: Sample3 Spreadsheet

39 Heads ver 4.15 Ellipsoidal www.pveng.com 27-Oct-08 Page 6 of 2340 NO Appendix 1-4(f)22 <- Vessel42 <- Desc43

44 Dimensions:45 96.000 <- Do, outside diameter50 23.859 <- h 24.14 <- ho51 0.3125 <- tb, thickness before forming53 0.282 <- tf, thickness after forming54 0.094 <- tminUG16(b) - Min.t. Per UG-16(b)55 0.000 <- Corr, corrosion allowance56 1.500 <- Skirt, straight skirt length57

58 Material and Conditions:59 SA-516 70 <- material60 20,000 <- S, allowable stress level (psi)61 0.85 <- E, efficiency65 78.5 <- P, interior pressure66 0.0 <- Pa, exterior pressure67 5,951 <- Ba, from exterior pressure curve 0.000410 <- Aa value to lookup Ba69

70 Calculated Properties:71 116.440 <- Approximate blank diameter 72.06 <- Volume (cuft, includes skirt)72 943.8 <- Approximate weight for steel, (lbs) 76.35 <- Spherical Limit (0.8 * D)78

115 Variables:116 D = Do-2*t = 96-2*0.282 D = 95.44117 ho = h+t = 23.859+0.282 ho = 24.14118 D/2h = D/(2*h) UG-37 & Ap 1-4(c) = 95.436/(2*23.859) D/2h = 2.000119 Do/2ho = Do/(2*ho) UG-37 & Ap 1-4(c) = 96/(2*24.141) Do/2ho = 1.988120 K = Interpolated value from table 1-4.1 D/2h interior K = 1.000121 Kone = Interpolated value from table UG-37 D/2h spherical Kone = 0.900122 Kzero = Interpolated value from table UG-33.1 Do/2ho exterior Kzero = 0.895123 t = tf-corr = 0.282-0 t = 0.282127 Ro = Ko*Do UG-33(d) = 0.895*96 Ro = 85.895131

133 Interior Pressure App 1-4(a), App 1-4(c), UG-37(a)(1):135 App. 1-4(a) check: 0.0005 <= tf/(Kone*D) < 0.002 tf/(Kone*D) = 0.0033136 = 0.0005<=0.282/(0.9*95.436)<0.002 App. 1-4(f) calculation not needed139 TMinI = (P*D*K)/(2*S*E-0.2*P) <= t TMinI (min thickness) = 0.220140 = (78.465*95.436*1)/(2*20000*0.85-0.2*78.465) <= 0.282146 TMin = Max(Tminl,tminUG16(b))<=tf-corr Acceptable TMin = 0.220147 PMax = (2*S*E*t)/(K*D+0.2*t) >= P Acceptable PMax = 100.4148 = (2*20000*0.85*0.282)/(1*95.436+0.2*0.282) >= 78153

160 Interior Pressure for Nozzles App 1-4(a), App 1-4(c), UG-37(a)(1):161 TMinE1 = (P*D*K)/(2*S*1-0.2*P) <= t (Nozzle in Knuckle) TMinE1 = 0.187162 = (78.465*95.436*1)/(2*20000*1-0.2*78.465) <= 0.282163 TSpI = (P*D*Kone)/(2*S*E-0.2*P) (Nozzle in Crown) TSpI = 0.169164 = (78.465*95.436*0.9)/(2*20000*1-0.2*78.465)167

169 Exterior Pressure UG-33(d), UG-28(d):171 Aa = 0.125/(Ro/t) = 0.125/(85.895/0.282) Aa = 0.000410172 PaMax = Ba/(Ro/t) >= Pa = 5950.554/(85.895/0.282) >= 0 Acceptable PaMax = 19.5174 TMinE = (Ro*Pa)/Bb = (85.895*0)/1450 TMinE = 0.000175 TMinEC = TMinE + corr = 0 + 0 Acceptable TMinEC = 0.000176

177 Head stress relief UCS-79(d), UNF-79(d), UHA-44(d)182 % elong = ((75*t)/h)*(1-0) = ((75*0.282)/23.859)*(1-0) % elong = 1.0184 5.0% <- Max Elongation185 Yes <- Cold Formed 1.0% <- Elongation Required no186 no <- Vessel carries lethal substances(Yes/no) no no187 no <- Impact testing is required (Yes/no) no no188 no <- Formed between 250 and 900 Degrees F no no189 no <- Greater than 10% reduction in thickness no no190 no <- Head is greater than 5/8" thick before forming no no191 Stress Relieve ? no

Horizontal Retention Tank5/16" Semi Elliptical Head

Page 7: Sample3 Spreadsheet

15 Coupling ver 2.11 UW16.1Z1M 27-Oct-08 Page 7 of 2316 www.pveng.com22 <- Vessel18 <- Description19

20 Shell:23 0.3125 <- t, Shell Wall Thick (inch)24 0.188 <- tMin, Min Required Wall at E=1 (inch)26 1.500 <- D, Shell Opening Diameter (inch)28 78.5 <- P,design Pressure (psi)29

30 Coupling:31 3/4 inch 3000# <- Coupling32 SA-105 <- Coupling Material33 20,000 <- Sn, Allowable Stress Level (Sn)35 0.2500 <- F1, Weld Size37 0.094 <- tmin16b, Min allowed wall per UG-16(b) 38 0.000 <- Corrc, Coupling Corrosion Allowance (inch)39 1.380 <- COD - Coupling OD40 1.050 <- POD - Pipe OD42 14.000 <- n, Threads Per Inch44 0.219 <- pt, Corresponding sch160 Wall Thickness (inch)46 12.5% <- UT, Under Tolerence (%)47

49 Geometry Restrictions Fig. UW-16.150 tcp = (COD-POD)/2-CORRC = (1.38-1.05)/2-0 Tcp = 0.16551 Tmin = Min(0.75,tcp,t) = Min(0.75,0.165,0.313) Tmin = 0.16553 tcmin = Min(0.25,0.7*Tmin) = Min(0.25,0.7*0.165) tcmin = 0.11656 t1 = 0.7*F1 = 0.7*0.25 t1 = 0.17564 t1 > = tcMin = 0.175 >= 0.116 Acceptable74

75 Required Coupling Wall Thickness UG-44(c), B16.11 - 2.1.1 and UG-31(c)(2)76 Ro = POD/2-0.8/n = 1.05/2-0.8/14 Ro = 0.46877 tp = (1-UT)*pt-Corrc-0.8/n = (1-0.125)*0.219-0-0.8/14 tp = 0.13478 Min Thick = P*Ro/(Sn*1+0.4*P) = 78*0.468/(20000*1+0.4*78.465)Acceptable trn = 0.00279

80 Pressure Weld Stress UW-18(d) - Pressure Load only UW-16(f)(3)(a)(3)(b)81 Load = COD^2*(PI()/4)*P = 1.38^2*(PI()/4)*78.465 Load = 11782 Weld Area = pi()*((COD+F1)^2-COD^2)/4 Weld Area = 0.59183 = pi()*((1.38+0.25)^2-1.38^2)/488 Max Stress = Min(Sn,Sv) * 0.55 = Min(20000,0) * 0.55 Max Stress = 1100089 Weld Stress = Load / Area = 117 / 0.591 Weld Stress = 19990 Acceptable95 UG-4596 Tstd = Standard pipe wall thickness from chart Tstd = 0.11397 Nact = Pt * (1-UT) Actual Wall Thick. Nact = 0.19298 Tt = 0.8/n Ug-31(c)(2) threads Tt = 0.05799 UG45 = Max(UG45a, UG45b) <= Nact UG45 = 0.099100 = Max(0.059, 0.099) <= 0.192 Acceptable101 UG45a = trn + corrc + Tt UG45a = 0.059102 0.002 + 0 + 0.057103 UB45b = Min(UG45b1, UG45b4) UB45b = 0.099104 = Min(0.188, 0.099)105 UG45b1 = Max(tmin+ CORRC, Tmin16b + CORRC) UG45b1 = 0.188106 = Max(0.188 + 0, 0.094 + 0)107 UG45b4 = Tstd*0.875 + corrc = 0.113*0.875 + 0 UG45b4 = 0.099108

109

Nozzle A - 3/4" CouplingHorizontal Retention Tank

D

COD

POD

UW-16.1 (Z-1) (Modified)

t1

F1

Inside Vessel

Outside

t

t

FULLPEN.

Page 8: Sample3 Spreadsheet

30 Nozzle Reinforcement ver 3.90 UW16(c)mod <- SavedDesign 27-Oct-08 Page 8 of 2331 Manual dh for hillside nozzles22 <- Vessel Automatic Limit Diameter33 <- Description Curved Shell or Head Section34 Shell:35 SA-516 70 <- Shell Material36 20,000 <- Sv, shell allowable stress level, PSI37 1.00 <- E1, efficiency of shell at nozzle39 0.282 <- Vt, shell wall thick, uncorroded, UT removed40 0.187 <- tr, required shell wall thickness int. press.(E=1)41 0.000 <- trE, required shell wall thickness ext. press.(E=1)43 0.094 <- tmin16b, Min allowed wall per UG-16(b) 44 Nozzle:45 SA-106B <- Nozzle Material46 17,100 <- Sn, allowable stress level (Sn)47 17,600 <- B, from A = 0.0959048 1.00 <- E, nozzle efficiency 49 78.46 <- P, internal design pressure50 0.0 <- Pa, external design pressure51 6.625 <- Do, outside diameter52 6.500 <- dh, id of hillside nozzle54 0.432 <- Nt, wall thick, uncorroded55 12.5% <- UTp, undertolerance (%)58 4.000 <- L, exterior Projection59 1.000 <- Ip, interior projection61 Reinforcing:71 0.3125 <- Leg41, size of weld fillet73 0.3125 <- Leg43, size of weld fillet74 1.000 <- F87 Variables:88 UT = Nt*UTp = 0.432 * 0.125 Undertolerance UT = 0.05490 Rn = Do/2 - (Nt-nca) + UT = 6.625/2 - (0.432-0) + 0.054 Effective Radius Rn = 2.93595 t = Vt-sca = 0.282 - 0 Effective Shell Thickness t = 0.28296 ti = Nt-2*nca = 0.432 - 2 * 0 Nom Thick of Int. Proj. ti = 0.432101 tn = Nt-nca = 0.432-0 Avail. Nozzle Thick. No UT tn = 0.432106 d = dh = 6.5 Finished Opening Dia. d = 6.500108 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855111 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855126 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(1-0,2.5*0.282,2.5*0.432) h = 0.705127 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.432,0.282)) tc41 = 0.197131 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.282,0.432)) tc43 = 0.197133 F = Min(Fenterered, 1) F = 1.000141 Pipe Required Wall Thickness - trn from internal, trnE from external pressure142 LDo = L/Do LDo = 0.604 Dot = Do/trnE Dot = 0.000143 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT = (78.5*2.935)/(17100*1 - 0.6*78.5) trn = 0.014 Acceptable145 trnR = (P*Rn)/(Sn*1 - 0.6*P) = (78.5*2.935)/(17100*1 - 0.6*78.5) E=1 trnR = 0.014146 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable148 Geometry Constraints:150 0.7*Leg41 >= tc41 0.7*0.313 >= 0.197 0.219 >= 0.197 Acceptable158 0.7*Leg43-nca >= tc43 0.7*0.313-0 >= 0.197 0.219 >= 0.197 Acceptable171

207 Area Replacement: Fig UG-37.1 Pressure From: Internal External208 A = 1.0*d*tr*F + 2*tn*tr*F*(1-fr1) A Required (internal) = 1.241209 = 1.0*6.5*0.187*1 + 2*0.432*0.187*1*(1-0.855)212 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-fr1)) = 0.5*(6.5*0*1 + 2*0.432*0*1*(1-0.855)) A Required (external) = 0.000215 A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 0.604216 = 219 A1e = max(d, 2*(t+tn)) * (E1*t-F*trE)-2*tn*(E1*t-F*trE)*(1-fr1) A1e = 1.798220 = 225 A2 = min((tn-trnR)*fr2*Min(5*t,2*L) , (tn-trnR)*fr2*Min(5*tn,2*L)) A2 = 0.505226 = 230 A2e = min((tn-trnE)*fr2*Min(5*t,2*L) , (tn-trnE)*fr2*Min(5*tn,2*L)) A2e = 0.521231 = 233 A3 = Min(5*t*ti*fr2, 5*ti*ti*fr2, 2*h*ti*fr2) A3 = 0.521 0.521234 = Min(5*0.282*0.432*0.855, 5*0.432*0.432*0.855, 2*0.705*0.432*0.855)240 A41 = Leg41^2*fr2 = 0.3125^2*0.855 A41 = 0.083 0.083247 A43 = (Leg43-nca)^2*fr2 = (0.313-0)^2*0.855 A43 = 0.083 0.083249 Actual Area = 1.796 3.006250 Acceptable Actual-Required = 0.555 3.006330

331 Tstd = Standard pipe wall thickness from chart Tstd = 0.280332 Swre = tr * Pa / P = 0.187 * 0 / 78.465 Req. Exterior pressure Swre = 0.000333 Nact = Nt * (1-UTp) = 0.432 * (1-0.125) Actual Wall Thick. Nact = 0.378334 Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = 0.000335 UG-45 Acceptable336 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.014, 0.187) <= 0.378 UG45 = 0.187337 UG45a = Max(trn,trnE) + Nca + Tt = Max(0.014,0) + 0 + 0 UG45a = 0.014338 UG45b = Min(UG45b3,UG45b4) 0.187283 UG45b = 0.187339 UG45b1 = Max(tr + Sca, tmin16b + Sca) = Max(0.187 + 0, 0.094 + 0) UG45b1 = 0.187340 UG45b2 = Max(Swre + Sca,tmin16b + Sca) = Max(0 + 0,0.094 + 0) UG45b2 = 341 UG45b3 = Max(UG45b1,UG45b2) = Max(0.187,) UG45b3 = 0.187342 UG45b4 = Tstd*0.875 + Nca = 0.28*0.875 + 0 UG45b4 = 0.245

= Min(0.187, 0.245)

min((0.432-0)*0.855*Min(5*0.282,2*4) , (0.432-0)*0.855*Min(5*0.432,2*4))

max(6.5,2*(0.282+0.432))* (1*0.282-1*0.187)-2*0.432*(1*0.282-1*0.187)*(1-0.855)

max(6.5,2*(0.282+0.432))* (1*0.282-1*0)-2*0.432*(1*0.282-1*0)*(1-0.855)

min((0.432-0.014)*0.855*Min(5*0.282,2*4) , (0.432-0.014)*0.855*Min(5*0.432,2*4))

Horizontal Retention TankNozzle B - 6" SCH 80

= (3*6.625*0)/(4*17600)

www.pveng.com

UW-16.1 (c) modified

Leg41

OD Nozzle

Nt

Leg41

Leg43

Leg43

Proj

Vt

Noz

zle

Shell

FullPenn.t

Page 9: Sample3 Spreadsheet

30 Nozzle Reinforcement ver 3.90 UW16(h) <- SavedDesign 27-Oct-08 Page 9 of 2331 Manual dh for hillside nozzles22 <- Vessel Manually enter Limit Diameter33 <- Description Curved Shell or Head Section34 Shell:35 SA-516 70 <- Shell Material36 20,000 <- Sv, shell allowable stress level, PSI37 1.00 <- E1, efficiency of shell at nozzle39 0.282 <- Vt, shell wall thick, uncorroded, UT removed40 0.187 <- tr, required shell wall thickness int. press.(E=1)41 0.000 <- trE, required shell wall thickness ext. press.(E=1)43 0.094 <- tmin16b, Min allowed wall per UG-16(b) 44 Nozzle:45 SA-106B <- Nozzle Material46 17,100 <- Sn, allowable stress level (Sn)47 17,600 <- B, from A = 0.0959048 1.00 <- E, nozzle efficiency 49 78.46 <- P, internal design pressure50 0.0 <- Pa, external design pressure51 6.625 <- Do, outside diameter52 6.800 <- dh, id of hillside nozzle53 5.000 <- dLr, Limit radius <= d54 0.432 <- Nt, wall thick, uncorroded55 12.5% <- UTp, undertolerance (%)58 4.000 <- L, exterior Projection59 0.000 <- Ip, interior projection61 Reinforcing:63 SA-516 70 <- Reinforcing plate material "At least one telltale hole (max. size NPS 1/4 tap) in repad required","")65 20,000 <- Sp, allowable stress level66 12.000 <- Dp, outside diameter69 0.3125 <- te, reinforcement thick71 0.3125 <- Leg41, size of weld fillet72 0.250 <- Leg42, size of weld fillet73 0.000 <- Leg43, size of weld fillet75 0.282 <- LegG, depth of groove87 Variables:88 UT = Nt*UTp = 0.432 * 0.125 Undertolerance UT = 0.05490 Rn = Do/2 - (Nt-nca) + UT = 6.625/2 - (0.432-0) + 0.054 Effective Radius Rn = 2.93591 Dp = Min(2*d,DpEntered) = Min(2*6.8,12) Effective Reinforcing Dp = 12.00095 t = Vt-sca = 0.282 - 0 Effective Shell Thickness t = 0.28296 ti = Nt-2*nca = 0.432 - 2 * 0 Nom Thick of Int. Proj. ti = 0.43297 te = teEntered Effective Reinf. Thick. te = 0.313101 tn = Nt-nca = 0.432-0 Avail. Nozzle Thick. No UT tn = 0.432106 d = dh = 6.8 Finished Opening Dia. d = 6.800108 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855111 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855114 fr3 = MIN(Sn/Sv,Sp/Sv,1) = MIN(17100/20000, 20000/20000,1) fr3 = 0.855115 fr4 = MIN(Sp/Sv,1) = MIN(20000/20000,1) fr4 = 1.000126 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(0-0,2.5*0.282,2.5*0.432) h = 0.000131 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.282,0.432)) tc43 = 0.197132 F = 1.000 F = 1.000141 Pipe Required Wall Thickness - trn from internal, trnE from external pressure143 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT = (78.5*2.935)/(17100*1 - 0.6*78.5) trn = 0.014 Acceptable145 trnR = (P*Rn)/(Sn*1 - 0.6*P) = (78.5*2.935)/(17100*1 - 0.6*78.5) E=1 trnR = 0.014146 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable148 Geometry Constraints:151 0.7*Leg41 >= 0.7*min(0.75,te,tn) 0.7*0.313 >= 0.219 >= 0.219 Acceptable155 0.7*Leg42 >= 0.5*Min(0.75,te,t) 0.7*0.25 >= 0.175 >= 0.141 Acceptable171

www.pveng.comHorizontal Retention Tank

Nozzle C - 6" SCH 80

= (3*6.625*0)/(4*17600)

0.7*Min(0.75,0.313,0.432)0.5*Min(0.75,0.313,0.282)

Dp

te

Shell

Noz

zle

Ring

g

UW-16.1 (h)

Leg41

Leg42

tWeld to connectto reinforcing pad

Do

Proj

Leg43

Vt

Nt

Page 10: Sample3 Spreadsheet

175 Horizontal Retention Tank Nozzle C - 6" SCH 80 27-Oct-08 Page 10 of 23207 Area Replacement: Fig UG-37.1 Pressure From: Internal External208 A = 1.0*d*tr*F + 2*tn*tr*F*(1-fr1) A Required (internal) = 1.297209 = 1.0*6.8*0.187*1 + 2*0.432*0.187*1*(1-0.855)212 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-fr1)) = 0.5*(6.8*0*1 + 2*0.432*0*1*(1-0.855)) A Required (external) = 0.000215 A1 = (2*dLr-d) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 0.291216 = 219 A1e = (2*dLr-d) * (E1*t-F*trE)-2*tn*(E1*t-F*trE)*(1-fr1) A1e = 0.867220 = 223 A2 = min((tn-trnR)*fr2*min(5*t,2*L) , (tn-trnR)*(Min(2.5*tn+te,L)*fr2*2) A2 = 0.505224 = 228 A2e = min((tn-trnE)*fr2*Min(5*t,2*L) , 2*(tn-trnE)*Min(2.5*tn+te,L)*fr2) A2e = 0.521229 = 233 A3 = Min(5*t*ti*fr2, 5*ti*ti*fr2, 2*h*ti*fr2) A3 = 0.000 0.000234 = Min(5*0.282*0.432*0.855, 5*0.432*0.432*0.855, 2*0*0.432*0.855)236 A5 = (Dp - d - 2tn)te*fr4 =(12 - 6.8 - 2*0.432)*0.3125*1 A5 = 1.355 1.355241 A41 = Leg41^2*fr3 A41 = 0.3125^2*0.855 A41 = 0.083 0.083244 A42 = Leg42^2*fr4 A42 = 0.25^2*1 A42 = 0.063 0.063247 A43 = (Leg43-nca)^2*fr2 = (0-0)^2*0.855 A43 = 0.000 0.000249 Actual Area = 2.297 2.889250 Acceptable Actual-Required = 1.000 2.889256 Internal Weld Load: (UG-41)257 WmaxI = (A - A1 + 2*Tn*Fr1*(E1*t-F*tr))*Sv, min0 = (1.297 - 0.291 + 2*0.432*0.855*(1*0.282-1*0.187))*20000 WmaxI = 21,514260

261 W1-1 = MIN((A2 + A5 + A41 + A42)*Sv,WmaxI) = MIN((0.505 + 1.355 + 0.083 + 0.063)*20000,21514) W1-1 = 21,514262 W2-2 = Min((A2 + A3 + A41 + A43 + 2*Tn*t*frone)*Sv,WmaxI) = Min((0.505 + 0 + 0.083 + 0 + 2*0.432*0.282*0.855)*20000,21514)W2-2 = 15,927266 W3-3 = Min((A2 + A3 + A5 + A41 + A42 + A43 + 2*Tn*t*fr1)*Sv,WmaxI) Weld load W3-3 = 21,514267 = Min((0.505 + 0 + 1.355 + 0.083 + 0.063 + 0 + 2*0.432*0.282*0.855)*20000,21514)271

272 External Weld Load: (UG-41)273 WmaxE = (Ae - A1e + 2*Tn*Fr1*(E1*t-F*tr))*Sv, min0 = (0 - 0.867 + 2*0.432*0.855*(1*0.282-1*0.187))*20000 WmaxE = 0276

277 W1-1 = MIN((A2e + A5 + A41 + A42)*Sv,WmaxE) Weld load W1-1e = 0278 = MIN((0.521 + 1.355 + 0.083 + 0.063)*20000,0)279 W2-2 = Min((A2e + A3 + A41 + A43 + 2*Tn*t*frone)*Sv,WmaxE) = Min((0.521 + 0 + 0.083 + 0 + 2*0.432*0.282*0.855)*20000,0)W2-2e = 0283 W3-3 = Min((A2e + A3 + A5 + A41 + A42 + A43 + 2*Tn*t*fr1)*Sv,WmaxE) Weld load W3-3e = 0284 = Min((0.521 + 0 + 1.355 + 0.083 + 0.063 + 0 + 2*0.432*0.282*0.855)*20000,0)288

294 Component Strength (UG-45(c), UW-15(c))295 A2 shear = PI()/2*(Do-tn)*tn*Sn*0.7 A2s = 50,304296 g tension = PI()/2*Do*LegG*Min(Sv,Sn)*0.74 gt = 37,135297 A41 shear = PI()/2*Do*Leg41*Min(Sn,Sp)*0.49 A41s = 27,249301 A42 shear = PI()/2*DP*Leg42*Min(Sv,Sp)*0.49 A42s = 46,181308

309 Failure mode along strength path (Greater than Weld Load, see App L-7) 312 S1-1 = A42s + A2s >= W1-1 Acceptable S1-1 = 96,485313 = 46181 + 50304 >= 21514320 S2-2 = A41s + gt >= W2-2 Acceptable S2-2 = 64,384321 = 27249 + 37135 >= 15927326 S3-3 = gt + A42s >= W3-3 Acceptable S3-3 = 83,316327 = 37135 + 46181 >= 21514331 Tstd = Standard pipe wall thickness from chart Tstd = 0.280332 Swre = tr * Pa / P = 0.187 * 0 / 78.465 Req. Exterior pressure Swre = 0.000333 Nact = Nt * (1-UTp) = 0.432 * (1-0.125) Actual Wall Thick. Nact = 0.378334 Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = 0.000335 UG-45 Acceptable336 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.014, 0.187) <= 0.378 UG45 = 0.187337 UG45a = Max(trn,trnE) + Nca + Tt = Max(0.014,0) + 0 + 0 UG45a = 0.014338 UG45b = Min(UG45b3,UG45b4) 0.187283 UG45b = 0.187339 UG45b1 = Max(tr + Sca, tmin16b + Sca) = Max(0.187 + 0, 0.094 + 0) UG45b1 = 0.187340 UG45b2 = Max(Swre + Sca,tmin16b + Sca) = Max(0 + 0,0.094 + 0) UG45b2 = 341 UG45b3 = Max(UG45b1,UG45b2) = Max(0.187,) UG45b3 = 0.187342 UG45b4 = Tstd*0.875 + Nca = 0.28*0.875 + 0 UG45b4 = 0.245

3.2* (1*0.282-1*0.187)-2*0.432*(1*0.282-1*0.187)*(1-0.855)

3.2* (1*0.282-1*0)-2*0.432*(1*0.282-1*0)*(1-0.855)

min((0.432-0.014)*0.855*min(5*0.282,2*4) , (0.432-0.014)*(Min(2.5*0.432+0.313,2*4)*0.855*2)

min((0.432-0)*0.855*Min(5*0.282,2*4) , 2*(0.432-0)*Min(2.5*0.432+0.313,4)*0.855)

= PI()/2*(6.625-0.432)*0.432*17100*0.7= PI()/2*6.625*0.282*Min(20000,17100)*0.74

= Min(0.187, 0.245)

= PI()/2*12*0.25*Min(20000,20000)*0.49= PI()/2*6.625*0.313*Min(17100,20000)*0.49

Page 11: Sample3 Spreadsheet

18 B16.5/16.47 Flange Ver 2.61 SlipOn 27-Oct-08 Page 11 of 2319 #VALUE!20

21 <- Vessel22 <- Description23

24 Select Flange25 SA <- Category26 Forged <- Material Type27 SA 105 <- Material28 150 <- Pressure Class29 6.00 <- Nominal Size31

32 Nominal - C-Si33 Table - 2-1.134 Max Temp ºF - 100035 Pod, pipe OD - 6.62536 Nozzle37 0.432 <- tn, Nozzle Wall Thickness (inch)38 0.014 <- tnr, Required Nozzle Wall Thickness (inch)39

40 Operating Conditions Acceptable41 150 <- T, temperature ºF Max press @100ºF [p1] 28542 78.5 <- P, pressure, psig Max press @150ºF [p2] 27343 0.000 <- Corr, corrosion allowance44

45 Flange Welds: 47 0.432 <- F1, pipe fillet size48 0.432 <- F2, flange fillet size F249 17100 <- Sp, allowable stress, pipe 50 20000 <- Sf, allowable stress, flange53

54 Geometry constraint: VIII UW-21 (b)61 wtmin = 0.7*tn = 0.7*0.432 Req. weld throat wtmin = 0.30263 wt = 0.7*MIN(F1,F2) Actual weld throat wt = 0.30264 = 0.7*MIN(0.432,0.432) Acceptable67

68 Weld Strength:69 Min Sa = MIN(Sp,Sf) = MIN(17100,20000) Min Sa = 17,10070 Max Weld Stress = Sa * 0.49 = 17100 * 0.49 Max S = 8,37972 Weld Load = POD^2*pi*P/4 = 6.625^2*pi*78.465/4 Load = 2,70574 Weld Area = Pod*pi*(F1-corr + F2) Area = 17.98275 = 6.625*pi*(0.432-0 + 0.432)78 Weld Stress = Load/Area = 2704.808/17.982 Stress = 15079 Acceptable81

82

83

Horizontal Retention Tank6" Class 150 RFSO Flange B & C

Page 12: Sample3 Spreadsheet

30 Nozzle Reinforcement ver 3.90 UW16(c)mod <- SavedDesign 27-Oct-08 Page 12 of 2331 Automatic dh - not hillside22 <- Vessel Automatic Limit Diameter33 <- Description Curved Shell or Head Section34 Shell:35 SA-516 70 <- Shell Material36 20,000 <- Sv, shell allowable stress level, PSI37 1.00 <- E1, efficiency of shell at nozzle39 0.282 <- Vt, shell wall thick, uncorroded, UT removed40 0.169 <- tr, required shell wall thickness int. press.(E=1)41 0.000 <- trE, required shell wall thickness ext. press.(E=1)43 0.094 <- tmin16b, Min allowed wall per UG-16(b) 44 Nozzle:45 SA-106B <- Nozzle Material46 17,100 <- Sn, allowable stress level (Sn)48 1.00 <- E, nozzle efficiency 49 78.46 <- P, internal design pressure50 0.0 <- Pa, external design pressure51 17.500 <- Do, outside diameter54 0.750 <- Nt, wall thick, uncorroded55 12.5% <- UTp, undertolerance (%)58 2.000 <- L, exterior Projection59 1.000 <- Ip, interior projection61 Reinforcing:71 0.3125 <- Leg41, size of weld fillet73 0.3125 <- Leg43, size of weld fillet74 1.000 <- F87 Variables:88 UT = Nt*UTp = 0.75 * 0.125 Undertolerance UT = 0.09490 Rn = Do/2 - (Nt-nca) + UT = 17.5/2 - (0.75-0) + 0.094 Effective Radius Rn = 8.09495 t = Vt-sca = 0.282 - 0 Effective Shell Thickness t = 0.28296 ti = Nt-2*nca = 0.75 - 2 * 0 Nom Thick of Int. Proj. ti = 0.750101 tn = Nt-nca = 0.75-0 Avail. Nozzle Thick. No UT tn = 0.750102 d = Do-2*tn = 17.5 - 2*0.75 Opening Dia. d = 16.000108 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855111 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855126 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(1-0,2.5*0.282,2.5*0.75) h = 0.705127 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.75,0.282)) tc41 = 0.197131 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.282,0.75)) tc43 = 0.197133 F = Min(Fenterered, 1) F = 1.000141 Pipe Required Wall Thickness - trn from internal, trnE from external pressure142 LDo = L/Do LDo = 0.114 Dot = Do/trnE Dot = 0.000143 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT = (78.5*8.094)/(17100*1 - 0.6*78.5) trn = 0.037 Acceptable145 trnR = (P*Rn)/(Sn*1 - 0.6*P) = (78.5*8.094)/(17100*1 - 0.6*78.5) E=1 trnR = 0.037146 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable148 Geometry Constraints:150 0.7*Leg41 >= tc41 0.7*0.313 >= 0.197 0.219 >= 0.197 Acceptable158 0.7*Leg43-nca >= tc43 0.7*0.313-0 >= 0.197 0.219 >= 0.197 Acceptable171

207 Area Replacement: Fig UG-37.1 Pressure From: Internal External208 A = 1.0*d*tr*F + 2*tn*tr*F*(1-fr1) A Required (internal) = 2.734209 = 1.0*16*0.169*1 + 2*0.75*0.169*1*(1-0.855)212 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-fr1)) = 0.5*(16*0*1 + 2*0.75*0*1*(1-0.855)) A Required (external) = 0.000215 A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 1.790216 = 219 A1e = max(d, 2*(t+tn)) * (E1*t-F*trE)-2*tn*(E1*t-F*trE)*(1-fr1) A1e = 4.451220 = 225 A2 = min((tn-trnR)*fr2*Min(5*t,2*L) , (tn-trnR)*fr2*Min(5*tn,2*L)) A2 = 0.859226 = 230 A2e = min((tn-trnE)*fr2*Min(5*t,2*L) , (tn-trnE)*fr2*Min(5*tn,2*L)) A2e = 0.904231 = 233 A3 = Min(5*t*ti*fr2, 5*ti*ti*fr2, 2*h*ti*fr2) A3 = 0.904 0.904234 = Min(5*0.282*0.75*0.855, 5*0.75*0.75*0.855, 2*0.705*0.75*0.855)240 A41 = Leg41^2*fr2 = 0.3125^2*0.855 A41 = 0.083 0.083247 A43 = (Leg43-nca)^2*fr2 = (0.313-0)^2*0.855 A43 = 0.083 0.083249 Actual Area = 3.721 6.426250 Acceptable Actual-Required = 0.987 6.426330

331 Tstd = Standard pipe wall thickness from chart Tstd = 0.375332 Swre = tr * Pa / P = 0.169 * 0 / 78.465 Req. Exterior pressure Swre = 0.000333 Nact = Nt * (1-UTp) = 0.75 * (1-0.125) Actual Wall Thick. Nact = 0.656334 Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = 0.000335 UG-45 Acceptable336 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.037, 0.169) <= 0.656 UG45 = 0.169337 UG45a = Max(trn,trnE) + Nca + Tt = Max(0.037,0) + 0 + 0 UG45a = 0.037338 UG45b = Min(UG45b3,UG45b4) 0.168554 UG45b = 0.169339 UG45b1 = Max(tr + Sca, tmin16b + Sca) = Max(0.169 + 0, 0.094 + 0) UG45b1 = 0.169340 UG45b2 = Max(Swre + Sca,tmin16b + Sca) = Max(0 + 0,0.094 + 0) UG45b2 = 341 UG45b3 = Max(UG45b1,UG45b2) = Max(0.169,) UG45b3 = 0.169342 UG45b4 = Tstd*0.875 + Nca = 0.375*0.875 + 0 UG45b4 = 0.328

www.pveng.comHorizontal Retention Tank

12" x 16" Manway D & E with 3/4" x 4" Ring

= (3*17.5*0)/(4*17600)

max(16,2*(0.282+0.75))* (1*0.282-1*0.169)-2*0.75*(1*0.282-1*0.169)*(1-0.855)

max(16,2*(0.282+0.75))* (1*0.282-1*0)-2*0.75*(1*0.282-1*0)*(1-0.855)

min((0.75-0.037)*0.855*Min(5*0.282,2*2) , (0.75-0.037)*0.855*Min(5*0.75,2*2))

min((0.75-0)*0.855*Min(5*0.282,2*2) , (0.75-0)*0.855*Min(5*0.75,2*2))

= Min(0.169, 0.328)

UW-16.1 (c) modified

Leg41

OD Nozzle

Nt

Leg41

Leg43

Leg43

Proj

Vt

Noz

zle

Shell

FullPenn.t

Page 13: Sample3 Spreadsheet

30 Nozzle Reinforcement ver 3.90 UW16(c)mod <- SavedDesign 27-Oct-08 Page 13 of 2331 Automatic dh - not hillside22 <- Vessel Automatic Limit Diameter33 <- Description Curved Shell or Head Section34 Shell:35 SA-516 70 <- Shell Material36 20,000 <- Sv, shell allowable stress level, PSI37 1.00 <- E1, efficiency of shell at nozzle39 0.313 <- Vt, shell wall thick, uncorroded, UT removed40 0.188 <- tr, required shell wall thickness int. press.(E=1)41 0.000 <- trE, required shell wall thickness ext. press.(E=1)43 0.094 <- tmin16b, Min allowed wall per UG-16(b) 44 Nozzle:45 SA-106B <- Nozzle Material46 17,100 <- Sn, allowable stress level (Sn)48 1.00 <- E, nozzle efficiency 49 78.46 <- P, internal design pressure50 0.0 <- Pa, external design pressure51 17.500 <- Do, outside diameter54 0.750 <- Nt, wall thick, uncorroded55 12.5% <- UTp, undertolerance (%)58 2.000 <- L, exterior Projection59 1.000 <- Ip, interior projection61 Reinforcing:71 0.3125 <- Leg41, size of weld fillet73 0.3125 <- Leg43, size of weld fillet74 1.000 <- F87 Variables:88 UT = Nt*UTp = 0.75 * 0.125 Undertolerance UT = 0.09490 Rn = Do/2 - (Nt-nca) + UT = 17.5/2 - (0.75-0) + 0.094 Effective Radius Rn = 8.09495 t = Vt-sca = 0.3125 - 0 Effective Shell Thickness t = 0.31396 ti = Nt-2*nca = 0.75 - 2 * 0 Nom Thick of Int. Proj. ti = 0.750101 tn = Nt-nca = 0.75-0 Avail. Nozzle Thick. No UT tn = 0.750102 d = Do-2*tn = 17.5 - 2*0.75 Opening Dia. d = 16.000108 fr1 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr1 = 0.855111 fr2 = MIN(Sn/Sv,1) = MIN(17100/20000, 1) fr2 = 0.855126 h = MIN(Ip-sca,2.5*t,2.5*ti) = MIN(1-0,2.5*0.313,2.5*0.75) h = 0.781127 tcLeg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.75,0.313)) tc41 = 0.219131 tcLeg43 = Min(0.25,0.7*Min(0.75,t,tn)) = Min(0.25,0.7*Min(0.75,0.313,0.75)) tc43 = 0.219133 F = Min(Fenterered, 1) F = 1.000141 Pipe Required Wall Thickness - trn from internal, trnE from external pressure142 LDo = L/Do LDo = 0.114 Dot = Do/trnE Dot = 0.000143 trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-UT = (78.5*8.094)/(17100*1 - 0.6*78.5) trn = 0.037 Acceptable145 trnR = (P*Rn)/(Sn*1 - 0.6*P) = (78.5*8.094)/(17100*1 - 0.6*78.5) E=1 trnR = 0.037146 trnE = (3*Do*Pa)/(4*B) <= tn-ut trnE = 0.000 Acceptable148 Geometry Constraints:150 0.7*Leg41 >= tc41 0.7*0.313 >= 0.219 0.219 >= 0.219 Acceptable158 0.7*Leg43-nca >= tc43 0.7*0.313-0 >= 0.219 0.219 >= 0.219 Acceptable171

207 Area Replacement: Fig UG-37.1 Pressure From: Internal External208 A = 1.0*d*tr*F + 2*tn*tr*F*(1-fr1) A Required (internal) = 3.041209 = 1.0*16*0.188*1 + 2*0.75*0.188*1*(1-0.855)212 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-fr1)) = 0.5*(16*0*1 + 2*0.75*0*1*(1-0.855)) A Required (external) = 0.000215 A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = 1.972216 = 219 A1e = max(d, 2*(t+tn)) * (E1*t-F*trE)-2*tn*(E1*t-F*trE)*(1-fr1) A1e = 4.932220 = 225 A2 = min((tn-trnR)*fr2*Min(5*t,2*L) , (tn-trnR)*fr2*Min(5*tn,2*L)) A2 = 0.952226 = 230 A2e = min((tn-trnE)*fr2*Min(5*t,2*L) , (tn-trnE)*fr2*Min(5*tn,2*L)) A2e = 1.002231 = 233 A3 = Min(5*t*ti*fr2, 5*ti*ti*fr2, 2*h*ti*fr2) A3 = 1.002 1.002234 = Min(5*0.313*0.75*0.855, 5*0.75*0.75*0.855, 2*0.781*0.75*0.855)240 A41 = Leg41^2*fr2 = 0.3125^2*0.855 A41 = 0.083 0.083247 A43 = (Leg43-nca)^2*fr2 = (0.313-0)^2*0.855 A43 = 0.083 0.083249 Actual Area = 4.093 7.103250 Acceptable Actual-Required = 1.052 7.103330

331 Tstd = Standard pipe wall thickness from chart Tstd = 0.375332 Swre = tr * Pa / P = 0.188 * 0 / 78.465 Req. Exterior pressure Swre = 0.000333 Nact = Nt * (1-UTp) = 0.75 * (1-0.125) Actual Wall Thick. Nact = 0.656334 Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = 0.000335 UG-45 Acceptable336 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.037, 0.188) <= 0.656 UG45 = 0.188337 UG45a = Max(trn,trnE) + Nca + Tt = Max(0.037,0) + 0 + 0 UG45a = 0.037338 UG45b = Min(UG45b3,UG45b4) 0.187531 UG45b = 0.188339 UG45b1 = Max(tr + Sca, tmin16b + Sca) = Max(0.188 + 0, 0.094 + 0) UG45b1 = 0.188340 UG45b2 = Max(Swre + Sca,tmin16b + Sca) = Max(0 + 0,0.094 + 0) UG45b2 = 341 UG45b3 = Max(UG45b1,UG45b2) = Max(0.188,) UG45b3 = 0.188342 UG45b4 = Tstd*0.875 + Nca = 0.375*0.875 + 0 UG45b4 = 0.328

= Min(0.188, 0.328)

min((0.75-0)*0.855*Min(5*0.313,2*2) , (0.75-0)*0.855*Min(5*0.75,2*2))

max(16,2*(0.313+0.75))* (1*0.313-1*0.188)-2*0.75*(1*0.313-1*0.188)*(1-0.855)

max(16,2*(0.313+0.75))* (1*0.313-1*0)-2*0.75*(1*0.313-1*0)*(1-0.855)

min((0.75-0.037)*0.855*Min(5*0.313,2*2) , (0.75-0.037)*0.855*Min(5*0.75,2*2))

Horizontal Retention Tank12" x 16" Manway F with 3/4" x 4" Ring

= (3*17.5*0)/(4*17600)

www.pveng.com

UW-16.1 (c) modified

Leg41

OD Nozzle

Nt

Leg41

Leg43

Leg43

Proj

Vt

Noz

zle

Shell

FullPenn.t

Page 14: Sample3 Spreadsheet

15 Coupling ver 2.11 UW16.1Z1M 27-Oct-08 Page 14 of 2316 www.pveng.com22 <- Vessel18 <- Description19

20 Shell:23 0.3125 <- t, Shell Wall Thick (inch)24 0.188 <- tMin, Min Required Wall at E=1 (inch)26 2.625 <- D, Shell Opening Diameter (inch)28 78.5 <- P,design Pressure (psi)29

30 Coupling:31 1 1/2 inch 3000# <- Coupling32 SA-105 <- Coupling Material33 20,000 <- Sn, Allowable Stress Level (Sn)35 0.3125 <- F1, Weld Size37 0.094 <- tmin16b, Min allowed wall per UG-16(b) 38 0.000 <- Corrc, Coupling Corrosion Allowance (inch)39 2.500 <- COD - Coupling OD40 1.900 <- POD - Pipe OD42 11.500 <- n, Threads Per Inch44 0.281 <- pt, Corresponding sch160 Wall Thickness (inch)46 12.5% <- UT, Under Tolerence (%)47

49 Geometry Restrictions Fig. UW-16.150 tcp = (COD-POD)/2-CORRC = (2.5-1.9)/2-0 Tcp = 0.30051 Tmin = Min(0.75,tcp,t) = Min(0.75,0.3,0.313) Tmin = 0.30053 tcmin = Min(0.25,0.7*Tmin) = Min(0.25,0.7*0.3) tcmin = 0.21056 t1 = 0.7*F1 = 0.7*0.313 t1 = 0.21964 t1 > = tcMin = 0.219 >= 0.21 Acceptable74

75 Required Coupling Wall Thickness UG-44(c), B16.11 - 2.1.1 and UG-31(c)(2)76 Ro = POD/2-0.8/n = 1.9/2-0.8/11.5 Ro = 0.88077 tp = (1-UT)*pt-Corrc-0.8/n = (1-0.125)*0.281-0-0.8/11.5 tp = 0.17678 Min Thick = P*Ro/(Sn*1+0.4*P) = 78*0.88/(20000*1+0.4*78.465)Acceptable trn = 0.00379

80 Pressure Weld Stress UW-18(d) - Pressure Load only UW-16(f)(3)(a)(3)(b)81 Load = COD^2*(PI()/4)*P = 2.5^2*(PI()/4)*78.465 Load = 38582 Weld Area = pi()*((COD+F1)^2-COD^2)/4 Weld Area = 1.30483 = pi()*((2.5+0.313)^2-2.5^2)/488 Max Stress = Min(Sn,Sv) * 0.55 = Min(20000,0) * 0.55 Max Stress = 1100089 Weld Stress = Load / Area = 385 / 1.304 Weld Stress = 29590 Acceptable95 UG-4596 Tstd = Standard pipe wall thickness from chart Tstd = 0.14597 Nact = Pt * (1-UT) Actual Wall Thick. Nact = 0.24698 Tt = 0.8/n Ug-31(c)(2) threads Tt = 0.07099 UG45 = Max(UG45a, UG45b) <= Nact UG45 = 0.127100 = Max(0.073, 0.127) <= 0.246 Acceptable101 UG45a = trn + corrc + Tt UG45a = 0.073102 0.003 + 0 + 0.07103 UB45b = Min(UG45b1, UG45b4) UB45b = 0.127104 = Min(0.188, 0.127)105 UG45b1 = Max(tmin+ CORRC, Tmin16b + CORRC) UG45b1 = 0.188106 = Max(0.188 + 0, 0.094 + 0)107 UG45b4 = Tstd*0.875 + corrc = 0.145*0.875 + 0 UG45b4 = 0.127108

109

Horizontal Retention TankNozzle G - 1 1/2" Coupling

D

COD

POD

UW-16.1 (Z-1) (Modified)

t1

F1

Inside Vessel

Outside

t

t

FULLPEN.

Page 15: Sample3 Spreadsheet

1 Vessel Weight and Volume ver 4.03 Page 15 of 232 Description

3 Volume:4 2 nhead - Number of heads?5 1.00 SG - Fluid Specific Gravity6 72.06 VE [ft3] - Volume of Each Head7 496.13 VS [ft3] - Volume of Shell

8 Construction:9 944 Wh [lb] - Weight of Each Head10 3197 Ws [lb] - Weight of Shell11 1300 Wm [lb] - Misc Weight

12 Calculations:13 V [ft3] = VE*nhead + VS total volume 72.06*2 + 496.13 = 640.2514 V2 [Imp. Gallons] = V*6.229 640.25*6.229 = 3,988.1215 V3 [US Gallons] = V*7.4805 640.25*7.4805 = 4,789.4016 Wf [lb] = 62.37*SG*V fluid weight 62.37*1*640.25 = 39,932.4517 WC [lb] = Wh*nhead + Ws + Wm construction weight 944*2 + 3197 + 1300 = 6,384.6718 WT [lb] = WC + Wf total weight 6384.67 + 39932.45 = 46,317.13

Horizontal Retention Tank

Page 16: Sample3 Spreadsheet

1 Lifting Lugs ver 4.01 Page 16 of 232 Description

3 Dimensions:4 6,600 Load [lb] - vessel weight empty5 8.000 W [in] - width6 0.750 Thick [in] - lug thickness7 2.500 H [in] - hole height8 1.500 Dia [in] - hole diameter9 2.500 OR [in] - outside radius10 0.250 Weld [in] - leg size

11 SA-516 70 Material12 20,000 SA [psi] - allowed stress in tension13 All of load assumed carried by one lug14 All load cases analyzed independently15 Never load lug perpendicular to face16 Contour lug to fit vessel17 Do not move or support vessel with this lug when full or pressurized18 SB = UG-34(b) Max Bending Stress, SS = IID Tbl 1A(d) Max Shear Stress, SSw = UW-15(c) UW-15 Max Weld Shear

19 SB [psi] = SA * 1.5 20000 * 1.5 = 30,00020 SS [psi] = SA * 0.8 20000 * 0.8 = 16,00021 SSw [psi] = SA * 0.49 20000 * 0.49 = 9,800

22 Tensile Stress (case 1):23 A1 [in2] = Thick*(OR-Dia/2) 0.75*(2.5-1.5/2) = 1.31324 A [in2] = A1 * 2 1.313 * 2 = 2.62525 Stress [psi] = Load / A 6600 / 2.625 = 2,51426 CheckTenStr = Stress <= SA 2514 <= 20000 = Acceptable

27 Pin Bearing Stress (case 1 and 2):28 Area [in2] = Dia * Thick 1.5 * 0.75 = 1.12529 PinStress [psi] = Load / Area 6600 / 1.125 = 5,86730 CheckPinStr = PinStress <= (1.6 * SA) 5867 <= (1.6 * 20000) = Acceptable

31 Bending Stress (case 2):32 Moment [in-lb] = Load * H 6600 * 2.5 = 16,50033 I [in4] = Thick * W^3 / 12 0.75 * 8^3 / 12 = 32.00034 c [in] = W/2 8/2 = 4.00035 BendStress [psi] = Moment*c/I 16500*4/32 = 2,06336 CheckBendStr = BendStress <= SB 2063 <= 30000 = Acceptable

37 Shear Stress (case 2):38 ShrArea [in2] = W*Thick 8*0.75 = 6.00039 ShrStress [psi] = Load/ShrArea 6600/6 = 1,10040 CheckShStr = ShrStress <= SS 1100 <= 16000 = Acceptable

41 Weld Stress (case 1):42 Circ [in] = W*2+Thick*2+Weld*4 8*2+0.75*2+0.25*4 = 18.50043 WeldArea [in2] = Circ * Weld 18.5 * 0.25 = 4.62544 WeldStress [psi] = Load / WeldArea 6600 / 4.625 = 1,42745 CheckWldStr = WeldStress <= SSw 1427 <= 9800 = Acceptable

46 Weld Stress (case 2):47 Moment2 [in-lb] = Load * H 6600 * 2.5 = 16,500

48I2 [in4] = (Thick +2*Weld)* (W+2*Weld)^3 / 12 - I

(0.75 +2*0.25)* (8+2*0.25)^3 / 12 - 32 = 31.97149 c2 [in] = W/2 + Weld 8/2 + 0.25 = 4.25050 WldStress2 [psi] = Moment2*c2/I2 16500*4.25/31.971 = 2,19351 CheckWldStr2 = WldStress2 <= SSw 2193 <= 9800 = Acceptable

3/4" Thk. Lifting Lugs

H

Load Case 1

Load Case 2

OR

Dia

WeldW

Page 17: Sample3 Spreadsheet

1 Zick Analysis - Unstiffened Vessel ver 4.02 Page 17 of 232 L. P. Zick - 1951 as presented in 'Pressure Vessel Handbook' 11th Edition, Eugene F. Megyesy, Page 86 to 933 Description

4 Dimensions:5 120.000 L [in] - Length 6 48.000 R [in] - Radius of Shell 7 26.000 H [in] - depth of Head8 150 Theta [degrees] - Saddle Contact Angle9 12.000 b [in] - Saddle Width 10 13.500 A [in] - Overhang 11 0.313 ts [in] - Corroded Shell Thickness 12 0.313 th [in] - Corroded Head Thickness

13 Conditions:14 23,500 Q [lb] - Load on one saddle15 78 P [psi] - Design Pressure16 150 Temp [ºF] - operating temperature17 0.70 E - Circ Joint Efficiency

18 Materials:19 SA-516 70 Shell Material20 CS2 Chart - external chart for shell material21 20,000 Sa [psi] - Allowable Shell Stress22 38,000 Sy [psi] - Yield Point

23 K Factors: Digitized from graphs24 K1 = PVELookup("FactorsK1_K8","Int1DLin","K1",Theta) 0.50525 K2 = PVELookup("FactorsK1_K8","Int1DLin","K2",Theta) 0.79926 K3 = PVELookup("FactorsK1_K8","Int1DLin","K3",Theta) 0.31927 K4 = PVELookup("FactorsK1_K8","Int1DLin","K4",Theta) 0.48528 K5 = PVELookup("FactorsK1_K8","Int1DLin","K5",Theta) 0.29529 K6 = PVELookup("FactorK6","Int2DLin",Theta,A/R) 0.00830 K7 = PVELookup("FactorsK1_K8","Int1DLin","K7",Theta) 0.67331 K8 = PVELookup("FactorsK1_K8","Int1DLin","K8",Theta) 0.876

32 Stress Limits:33 Aa = 0.125/(R/ts) ~~compression stress geometry factor 0.125/(48/0.313) = 0.00081434 ShLimit [psi] = PVELookup("ExtChart","ExtLookup",Chart,Temp,Aa) ~~ compression limit 11,45735 S1Limit [psi] = Sa * E ~~longitudinal stress 20000 * 0.7 = 14,00036 S2Limit [psi] = 0.8*Sa ~~shear stress limit 0.8*20000 = 16,00037 S3Limit [psi] = 1.25*Sa ~~tangential shear limit 1.25*20000 = 25,00038 S4Limit [psi] = 1.5*Sa ~~saddle horn bending 1.5*20000 = 30,00039 S5Limit [psi] = 0.5*Sy ~~circumferential bending limit 0.5*38000 = 19,000

40 Stress - Longitudinal Bending: Tension stresses41 S1p = P*R/(2*ts) ~~longitudinal pressure stress 78*48/(2*0.313) = 6,02642 S1a = 43 -6844 S1b = 45 -3946 S1c = 47 22648 S1max = Max(S1a, S1b, S1c) MAX(-68, -39, 226) = 22649 S1Total = S1max + S1p 226 + 6026 = 6,25250 CheckS1 = abs(S1Total) <= S1Limit ABS(6252) <= 14000 = Acceptable

51 Stress - Longitudinal Bending: Compression stresses52 MaxComp = Max(S1b, S1c) MAX(-39, 226) = 22653 CheckComp = abs(MaxComp) <= ShLimit ABS(226) <= 11457 = Acceptable

((23500*13.5)/(0.876*48^2*0.313))*(1-(1-13.5/120+(48^2-26^2)/(2*13.5*120))/(1+(4*26)/(3*120))) = ((Q*L/4)/(PI()*R^2*ts))*(1+(2*(R^2-H^2)/L^2/(1+(4*H)/(3*L))-(4*A/L))) ~~ midspan

((23500*120/4)/(PI()*48^2*0.313))*(1+(2*(48^2-26^2)/120^2/(1+(4*26)/(3*120))-(4*13.5/120))) =

Verification Zicks Analysis

((Q*A)/(K1*R^2*ts))*(1-(1-A/L+(R^2-H^2)/(2*A*L))/(1+(4*H)/(3*L))) ~~ top saddle((23500*13.5)/(0.505*48^2*0.313))*(1-(1-13.5/120+(48^2-26^2)/(2*13.5*120))/(1+(4*26)/(3*120))) =

((Q*A)/(K8*R^2*ts))*(1-(1-A/L+(R^2-H^2)/(2*A*L))/(1+(4*H)/(3*L))) ~~ bottom saddle

b

Page 18: Sample3 Spreadsheet

Zick Analysis - Unstiffened Vessel ver 4.02 Page 18 of 23

1 Stress - Tangential Shear: Shell2 S2a = 3 7534 S2b = 5 3016 S2c = (K4*Q)/(R*ts) (0.485*23500)/(48*0.313) = 7607 S2d = (K4*Q)/(R*th) (0.485*23500)/(48*0.313) = 7608 S2e = max(S2a, S2b) MAX(753, 301) = 7539 S2f = max(S2c, S2d) MAX(760, 760) = 76010 S2 = IF(A>R/2,S2e,S2f) IF(13.5>48/2,753,760) = 76011 CheckS2 = abs(S2) <= S2Limit ABS(760) <= 16000 = Acceptable

12 Stress - Tangential Shear: Head13 S3 = (K5*Q)/(R*th) (0.295*23500)/(48*0.313) = 46214 S3Head = P*R/(2*ts) ~~head circ stress 78*48/(2*0.313) = 6,02615 HeadStress = S3 + S3Head ~~ total head tangential shear stress 462 + 6026 = 6,48816 CheckS3 = abs(HeadStress) <= S3Limit ABS(6488) <= 25000 = Acceptable

17 Stress - Circumferential Bending: Saddle Horn18 S4a = 19 -1,85820 S4b = 21 -3,59922 S4 = IF(L>=8*R,S4a,S4b) IF(120>=8*48,-1858,-3599) = -3,59923 CheckS4 = abs(S4) <= S4Limit ABS(-3599) <= 30000 = Acceptable

24 Stress - Circumferential Bending: Bottom of Shell25 S5 = Q*K7/(ts*(b+1.56*sqrt(R*ts)))23500*0.673/(0.313*(12+1.56*SQRT(48*0.313))) = 2,80526 CheckS5 = abs(S5) <= S5Limit ABS(2805) <= 19000 = Acceptable

(23500/(4*0.313*(12+1.56*SQRT(48*0.313))))-((3*0.008*23500)/(2*0.313^2)) = (Q/(4*ts*(b+1.56*sqrt(R*ts))))-((12*K6*Q*R)/(2*L*ts^2))

(23500/(4*0.313*(12+1.56*SQRT(48*0.313))))-((12*0.008*23500*48)/(2*120*0.313^2)) =

((0.799*23500)/(48*0.313))*((120-2*13.5)/(120+4/3*26)) = ((K3*Q)/(R*ts))*((L-2*A)/(L+4/3*H))

((0.319*23500)/(48*0.313))*((120-2*13.5)/(120+4/3*26)) =

(Q/(4*ts*(b+1.56*sqrt(R*ts))))-((3*K6*Q)/(2*ts^2))

((K2*Q)/(R*ts))*((L-2*A)/(L+4/3*H))

Page 19: Sample3 Spreadsheet

1 Flexible Saddle Peak Stress 1.1 27-Oct-08 Page 19 of 232 L.S. Ong - Journal PVT Nov 1995 www.pveng.com3

4 <- Vessel <- Description5

6

7

8

9

10

11

12

13

14

15

16 See program "Flexible Saddle" for the proper design of this saddle17

18 Dimensions19 96.000 <- OD - Outside Diameter (inch) 2Beta = 120º Fixed20 0.3125 <- tc - Nominal Wall Thickness (inch) Alpha = 12º Fixed21 0.375 <- tp - Wear Plate Thickness (inch)22 96.000 <- Saddle Spacing - C (inch)23 13.500 <- Overhang - A (inch)24 12.000 <- Width - Bp (inch)25 23,500 <- Weight on one saddle, Q (lbs)26

27 Length = C + 2*A = 96 + 2*13.5 Length = 123.0028 R = (OD-tc)/2 = (96 - 0.3125)/2 R = 47.8429

30 Graph Factors31 AlphaA = (A/R)*Sqrt(tc/r) = (13.5/47.84375)*Sqrt(0.3125/47.84375) AlphaA = 0.02332 AlphaB = (Bp/R)*Sqrt(tc/r) = (12/47.84375)*Sqrt(0.3125/47.84375) AlphaB = 0.02033 AlphaC = (C/R)*Sqrt(tc/r) = (96/47.84375)*Sqrt(0.3125/47.84375) AlphaC = 0.16234 AlphaS = AlphaB^0.33*(tp/tc) = 0.02^0.33*(0.375/0.3125) AlphaS = 0.32735

36 Lookup Factors (interpolated)37 Ka = From graph "Fig. 1 - Support location factor" Ka = 0.33938 Kb = From graph "Fig. 2 - Support width factor" Kb = 1.78739 Kc = From graph "Fig. 3 - Support spacing factor" Kc = 0.88540 Ks1 = From graph "Fig. 4 - Stress reduction factor at wear plate" Ks1 = 0.21141 Ks2 = From graph "Fig. 4 - Stress reduction factor at wear plate" Ks2 = 0.54842 Ks = Max(Ks1,Ks2) = Max(0.211 , 0.548) Ks = 0.54843

44 Stress45 Basic Stress = (Q/t^2) * sqrt(tc/r) = 19448

= (23500 / 0.3125^2) * sqrt(0.3125 / 47.844)47

48 Stress = Basic Stress * Ka * Kb * Kc * Ks Stress = 570149 = 19448 * 0.339 * 1.787 * 0.885 * 0.548 Max circ stress in the saddle region50

51

52

Horizontal Retention Tank Saddle Peak Stress

174º150º

tp90ºtp

tc

ODBpC A A

Page 20: Sample3 Spreadsheet

1 Horizontal Vessel Loads ver 1.1 27-Oct-08 Page 20 of 232 Moss - Pressure Vessel Design Manual www.pveng.com3

4 <- Vessel5 <- Description6

7 Vessel:8 48.0 <- R, Radius (inch) 96.0 <- D9 123.0 <- L, Length (inch)10 47,000 <- W, Largest Weight (lbs)11

12 Environment:13 0 <- Exposure Factor (E)14 0 <- Wind velocity (mph)15 1.0 <- Wind Importance factor (I)16 10 <- Highest height above ground, ft (Hmax)17 0 <- Seismic Zone 0 <- Coefficient18 1.00 <- Slide Pad Coeficient of Friction (Cf)19

20 Gravity21 Q = W/2 = 47000 / 2 Q = 23,50022

23 Wind24 Kz = 0.00 ANSI A58.1 1982

25 Gh = 0.00 ANSI A58.1 1982

26 Area L = pi*R^2/144 = 3.14 * 48 ^ 2 / 144 Area L = 5027 Area T = AreaL + D*L/144 = 50 + 96 * 123 / 144 Area T = 13228 Qz = 0.00256*Kz*(I*V)^2 = 0.00256 * 0 * (1 * 0)^2 Qz = 0.029 WL = AreaL*0.6*Gh*Qz = 50 * 0.6 * 0 * 0 WL = 030 WT = AreaT*0.6*Gh*Qz = 132 * 0.6 * pi*R^2/144 * 0 WT = 031

32 Seismic33 SL = C*W = 0 * 47000 SL = 034 ST = C*Q = 0 * 23500 ST = 035

36 Thermal Expansion37 ET = 038 EL = Cf*Q = 0 * 23500 EL = 23,50039

40 Combined Forces41 Q = Fg Q = 23,50042 Ft = Max(WT,ST) = Max(0 , 0) Ft = 043 Fl = Max(WL+EL,SL) = Max(0 + 23500 , 0) Fl = 23,50044

45

46

Horizontal Retention TankVessel Loads

QFl

Q

FixedHmax

Mov ing

Weight

L

Ft

R

Page 21: Sample3 Spreadsheet

1 Flexible Saddle ver 4.00 27-Oct-08 Page 21 of 232 Moss / Ong3 Description4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 Vessel Dimensions:19 96.000 OD [in] - Vessel OD20 0.313 tc [in] - Shell Thickness21 66.000 Hc [in] - Height

22 Vessel Loads:23 23,500 Fg [lb]

24 0 Ft [lb]

25 23,500 Fl [lb]

26 Saddle Dimensions:27 0.375 Tp [in] - Wear plate thickness28 12.000 Bp [in] - Wear plate width29 0.500 Ts [in] - Support Thickness30 0.750 Tb [in] - Base Thickness31 70.000 BpL [in] - Base Plate Length (A)32 5 n - Number of Ribs33 16,600 Sa [psi] - IID Allowable Stress34 0.505 K1 [] - Coefficient

35 Calculated Dimensions:36 R [in] = OD/2 96/2 = 48.00037 Rk [in] = R + 2*Tp 48 + 2*0.375 = 48.75038 B [in] = 2 * Rk*Cos(15*pi()/180) 2 * 48.75*COS(15*PI()/180) = 94.17839 Hb [in] = Hc - Rk*Sin(15*pi()/180) - Tb 66 - 48.75*SIN(15*PI()/180) - 0.75 = 52.63340 Hx [in] = B-2*Hb*Tan(15*pi()/180) 94.178-2*52.633*TAN(15*PI()/180) = 65.97241 Xb [in] = Bp/2 - 2*Tp - Ts/2 12/2 - 2*0.375 - 0.5/2 = 5.00042 h [in] = Hc - R + tc Saddle height inside shell 66 - 48 + 0.313 = 18.31343 Es [in]= (BpL-4*Tb-Ts)/(n-1) (70-4*0.75-0.5)/(5-1) = 16.62544 Wp [in] = 0.7*Min(Ts,Tp) 0.7*MIN(0.5,0.375) = 0.26

45 Constraints:46 MaxEs [in] = 24* Ts 24* 0.5 = 1247 Fbmax [psi] = Sa*1.5 Bending Stress Limit 16600*1.5 = 2490048 Fsmax [psi] = Sa*0.8 Shear Stress Limit 16600*0.8 = 1328049 Gt [in] = Bp - 2*Tp 12 - 2*0.375 = 11

50

Gtmin [in] = Sqrt( (5.012*Fl/(Ts*(n-1)*Fbmax)*(h + BpL*0.255)))SQRT( (5.012*23500/(0.5*(5-1)*24900)*(18.313 + 70*0.255))) = 9.2

Moss Saddle Calculation

Fl

Ft

Fg

tc

tb

R

BpTs

2 x tpXb

Ts / 2

Ts / 2Ts / 2

Wp

typ

typ

Hc

174º150º

tp

tb

90ºtp

EsA

tb

Page 22: Sample3 Spreadsheet

Flexible Saddle ver 4.00 Page 22 of 23

1 Foundation Load:2 Ba [sq. in] = BpL * Bp Base Area 70 * 12 = 8403 Bs [psi] = Fg / Ba Foundation Stress 23500 / 840 = 284 CheckBs = Bs <= 500 28 <= 500 = Acceptable

5 Moment of Inertia: Saddle Splitting

6 Width [in] = Bp + 1.56*SQRT(R*Ts) 12 + 1.56*SQRT(48*0.5) = 19.67 Width Height Area Y A*Y A*Y2 Io8 Shell 19.64 0.31 6.14 18.16 111 2023 0.09 Wear Plate 12.00 0.38 4.50 17.81 80 1428 0.110 Saddle 0.50 16.88 8.44 9.19 78 712 200.211 Base 12.00 0.75 9.00 0.38 3 1 0.412 Sum 18.3 28.08 272 4165 200.8

13 AShell [sq. in] = 6.14 5.82 = 5.8214 C1 [in] = SUM(ColAY)/SUM(ColArea1) SUM(ColAY)/SUM(ColArea1) = 9.705828123

15

I [in4] = SUM(ColAY2) + SUM(ColLo) - C1*SUM(ColAY)SUM(ColAY2) + SUM(ColLo) - 10*SUM(ColAY) = 1720.658346

16 A5 [sq. in] = SUM(ColArea1) - AShell SUM(ColArea1) - 6 = 22.3

17 Tension Stress: Saddle Splitting18 Fh [lb] = K1*Fg Saddle Splitting force 0.505*23500 = 11867.519 Tension [lb] = 2*Fh/A5 2*11867.5/22.3 = 1066

20 Bending Stress: Saddle Splitting21 d [in] = Hc - 0.827*R 66 - 0.827*48 = 26.322 M [in-lb] = 2*Fh*d 2*11867.5*26.3 = 62432523 fb [psi] = M*C1/I 624325*10/1721 = 3522

24 Base plate thickness:25 M2 [in-lb] = Fg*Bp/8 23500*12/8 = 35250.026 Z [in3] = BpL*Tb^2/6 70*0.75^2/6 = 6.56327 fb2 [psi] = M2/Z 35250/6.563 = 5371

28 Moment of Inertia: Longitudinal Direction29 Width Thick Area Y A*Y A*Y2 Io30 Saddle 69.3 0.5 34.6 5.3 181.8 954.4 0.731 Half Ribs 0.5 5.0 12.5 2.5 31.3 78.1 5.232 Half Ribs 0.5 5.0 12.5 8.0 100.0 800.0 5.233 Sum 10.5 59.6 313.0 1832.5 11.1

34 Am [sq. in] = 59.6 45.0 = 4535 C2 [in] = SUM(ColAY3)/SUM(ColArea2) SUM(ColAY3)/SUM(ColArea2) = 5.3

36

I2 [in4] = SUM(ColAY22) + SUM(ColLo2) - C2*SUM(ColAY3)SUM(ColAY22) + SUM(ColLo2) - 5.3*SUM(ColAY3) = 200.2

37 Support Shear: Longitudinal Load38 ShearL [psi] = Fl / Am 23500 / 45 = 522

39 Bending Stress: Longitudinal Load40 Lr [in] = h+0.29*R-Tb-Ts Longest Rib 18.313+0.29*48-0.75-0.5 = 31.041 Ls [in] = Hc-R-Tb-Ts-Tp Shortest Rib 66-48-0.75-0.5-0.375 = 16.37542 Lave [in] = (Lr + Ls)/2 (31 + 16.375)/2 = 23.743 M3 [in-lb] = Fl*Lave 23500*23.7 = 55645144 fb3 [psi] = M3*C2/I2 556451*5.3/200.2 = 14592

Page 23: Sample3 Spreadsheet

Flexible Saddle ver 4.00 Page 23 of 23

1 Moment of Inertia: Transverse Direction2 Width Thick Area Y A*Y A*Y2 Io3 Saddle 0.5 65.972 33.0 32.986 1088.1 35891.4 11963.84 Ribs 1 10.0 0.500 5.0 33.250 166.3 5527.8 0.15 Ribs 2 10.0 0.500 5.0 16.625 83.1 1382.0 0.16 Ribs 3 10.0 0.500 5.0 0.000 0.0 0.0 0.17 Ribs 4 10.0 0.500 5.0 -16.625 -83.1 1382.0 0.18 Ribs 5 10.0 0.500 5.0 -33.250 -166.3 5527.8 0.19

10

11

12

13

14

15

16 Sum 58.0 1088.1 49710.9 11964.3

17 C4 = SUM(ColAY4)/SUM(ColArea3) SUM(ColAY4)/SUM(ColArea3) = 18.8

18

I4 = SUM(ColAY23) + SUM(ColLo3) - C4*SUM(ColAY4)SUM(ColAY23) + SUM(ColLo3) - 18.8*SUM(ColAY4) = 41258.0

19 Support Shear: Transverse Load20 ShearT [psi] = Ft / Area2Tot 0 / Area2Tot = 0

21 Bending Stress: Traverse Load22 M4 [in-lb] = Ft*Lave 0*23.7 = 023 fb4 [psi] = M4*C4/I4 0*18.8/41258 = 0

24 Gravity Load:25 Lg [psi] = Fg / Area2Tot 23500 / Area2Tot = 405

26 Combined Loading:27 Stress Value Limit Limit Ratio28 Baseplate Stress fb2 5371 Fbmax 24900 0.2229 fb 3522 Fbmax 24900 0.1430 Acceptable sum 0.3631

32 Stress Value Limit Limit Ratio33 Saddle and Rib Stress Tension 1066 Sa 16600 0.0634 fb 3522 fbmax 24900 0.1435 Shear L 522 FsMax 13280 0.0436 fb3 14592 fbmax 24900 0.5937 Shear T 0 FsMax 13280 0.0038 fb4 0 fbmax 24900 0.0039 Lg 405 Sa 16600 0.0240 Acceptable sum 0.86