sako report
Embed Size (px)
TRANSCRIPT
-
8/15/2019 Sako Report
1/90
NKB Committee and Work Reports
1999:01 E
S A K O; Joint Committee of NKB and INSTA-B
Nordic Committee on Building Regulations, NKB
Nordic Standardization in the Construction Field, INSTA-B
BASIS OF DESIGN OF STRUCTURES
Proposals for Modification of Partial Safety Factors
in Eurocodes
-
8/15/2019 Sako Report
2/90
-
8/15/2019 Sako Report
3/90
-
8/15/2019 Sako Report
4/90
(blank page)
-
8/15/2019 Sako Report
5/90
mailto:%[email protected]:%[email protected]
-
8/15/2019 Sako Report
6/90
-
8/15/2019 Sako Report
7/90
-
8/15/2019 Sako Report
8/90
-
8/15/2019 Sako Report
9/90
-
8/15/2019 Sako Report
10/90
-
8/15/2019 Sako Report
11/90
-
8/15/2019 Sako Report
12/90
Figure 2.1-1 Section of a) concrete, b) welded steel and c) gluelam timber
beam
Figure 2.1-2 Section of a) concrete, b) welded steel and c) gluelam timber
column
b c
-
8/15/2019 Sako Report
13/90
-
8/15/2019 Sako Report
14/90
-
8/15/2019 Sako Report
15/90
Table 2.3-1 Statistical distributions and coefficients of variation used for the
Base Case
Table 2.3-2 Statistical distributions and coefficients of variation used for sensi-
tivity studies
-
8/15/2019 Sako Report
16/90
(blank page)
-
8/15/2019 Sako Report
17/90
-
8/15/2019 Sako Report
18/90
-
8/15/2019 Sako Report
19/90
Table 3.2-1 Average reliability indices for
,
and calibrated
partial safety factors
for environmental load with V = 40 % for
the variable action
-
8/15/2019 Sako Report
20/90
Figure 3.2-1 Variation of the reliability indices around the target index
for
,
and calibrated partial safety factors
E[ ] = 4,57, D[ ] = 0,25, V[ ] = 5,5 %
Figure 3.2-2 Reliability indices as a function of
for target
reliability = 4,7, = 1,35, = 1,5 and calibrated partial safety
factors
-
8/15/2019 Sako Report
21/90
Table 3.2-2 Calibrated partial safety factors
for = 4,7 based on
= 1,35 and = 1,50 using one design equation
-
8/15/2019 Sako Report
22/90
-
8/15/2019 Sako Report
23/90
Table 3.3-2 Dominating action: permanent (P) or variable (V) for load combina-
tions with imposed action as variable action
-
8/15/2019 Sako Report
24/90
Table 3.3-3 Partial safety factors calibrated to a target reliability index
= 4,7.
The partial factor used as a starting premise is indicated by boxing
the fixed values
-
8/15/2019 Sako Report
25/90
Figure 3.3-1 Variation of the reliability indices,
E[ ] = 4,69, D[ ] = 0,05, i.e. V[ ] = 1,1 %.
The graph applies to all three cases in Table 3.3-3 and includes
both imposed and environmental actions
Figure 3.3-2 Reliability indices as a function of
for cali-
brated
and
. Environmental action is used as variable action.
The graph applies to all three cases in Table 3.3-3
E[ ] = 4,69, D[ ] = 0,05, i.e. V[ ] = 1,1 %
-
8/15/2019 Sako Report
26/90
Figure 3.3-3 Reliability indices as a function of
for cali-
brated
and
. Imposed action is used as variable action
E[ ] = 4,69, D[ ] = 0,05, i.e. V[ ] = 1,1 %.
The graph applies to all three cases in Table 3.3-3
-
8/15/2019 Sako Report
27/90
Table 3.3-4 Results of sensitivity study for load and material parameters
-
8/15/2019 Sako Report
28/90
Table 3.4-1 Partial safety factors
calibrated to a target reliability level
= 4,7. The boxed values are prescribed partial factors
-
8/15/2019 Sako Report
29/90
Environmental action as variable action.
Imposed action as variable action.
Figure 3.4-1 Reliability indices as a function of
for op-
tion 1 in Table 3.4-1, = 4,7.
E[ ] = 4,68, D[ ] = 0,06, i.e. V[ ] = 1,3 %
-
8/15/2019 Sako Report
30/90
Environmental action as variable action.
Imposed action as variable action.
Figure 3.4-2 Reliability indices as a function of
for
option 2 in Table 3.4-1, = 4,7.
E[ ] = 4,71, D[ ] = 0,07, i.e. V[ ] = 1,5 %
-
8/15/2019 Sako Report
31/90
Environmental action as variable action.
Imposed action as variable action.
Figure 3.4-3 Reliability indices as a function of
for op-
tion 3 in Table 4.4-1, = 4,7.
E[ ] = 4,64, D[ ] = 0,12, i.e. V[ ] = 2,6 %
-
8/15/2019 Sako Report
32/90
Table 3.4-2 Partial safety factors
calibrated to a target reliability level
= 3,7. The boxed values are prescribed partial factors
-
8/15/2019 Sako Report
33/90
Environmental action as variable action.
Imposed action as variable action.
Figure 3.4-4 Reliability indices as a function of
, for op-
tion 1 in Table 3.4-2, = 3,7.
E[ ] = 3,79, D[ ] = 0,15, i.e. V[ ] = 4,0 %
-
8/15/2019 Sako Report
34/90
Environmental action as variable action.
Imposed action as variable action.
Figure 3.4-5 Reliability indices as a function of
, for op-
tion 2 in Table 4.4-2, = 3,7.
E[ ] = 3,77, D[ ] = 0,10, i.e. V[ ] = 2,7 %
-
8/15/2019 Sako Report
35/90
Environmental action as variable action.
Imposed action as variable action.
Figure 3.4-6 Reliability indices as a function of
for op-
tion 3 in Table 3.4-2, = 3,7.
E[ ] = 3,72, D[ ] = 0,08, i.e. V[ ] = 2,2 %
-
8/15/2019 Sako Report
36/90
-
8/15/2019 Sako Report
37/90
-
8/15/2019 Sako Report
38/90
T a b l e 4
. 1 - 1
S u m m a r y o f t h e r e s u l t s . P
r e s c r i b e d
F - a n d
M
- v a l u e s a r e
w r i t t e n i n b o l d t y p e s
C o l .
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
R o w
S e c -
t i o n
t
T a r -
g e t
) ( E M
e a n
) (
) (
E D %
m i n
P G
P E
P I
VG
V E
V I
M
R e i n f .
M
C o n c .
M S t e e l
M
G l u e -
l a m
N o . o f
e q . 1
)
C o m m e n t s
1
3 . 1
-
4 , 7 7
9 , 9
3 , 7
1 ,
3 5
1 ,
5
1 ,
5
1 ,
3 5
1 ,
5
1 ,
5
1 ,
1 5
1
, 5
1 ,
1
1 ,
3
1
D
e s i g n a c c o r d i n g t o
E N V - E u r o c o d e s
2
3 . 2
4 , 7
4 , 5 7
5 , 5
3 , 9
1 ,
3 5
1 ,
5
1 ,
5
1 ,
3 5
1 ,
5
1 ,
5
1 , 0 5
1 , 2 7
1 , 1 3
1 , 3 0
1
3
3 . 3
4 , 7
4 , 6 9
1 , 1
4 , 2
1 , 0 7
1 ,
3 5
1 , 2 6
0 4 0
0 , 5 1
0 , 4 7
0 , 6 2
0 , 7 8
0 , 7 2
0 , 8 5
1 , 0 8
1 ,
0
1 ,
5 0
1 , 9 0
1 , 7 6
1 , 2 4
1 , 5 7
1 , 4 6
1 , 3 7
1 , 0 8
1 , 1 7
1 , 6 5
1 , 3 0
1 , 4 0
1 , 4 2
1 , 1 3
1 , 2 1
1 , 6 3
1 , 2 9
1 , 3 9
2
C a s e I
C a s e I I
C a s e I I I
4
3 . 4
4 , 7
4 , 6 8
1 , 3
4 , 2
1 ,
2
1 ,
0
1 ,
0
1 ,
0
1 ,
7
1 ,
4
1 , 1 9
1 , 4 3
1 , 2 4
1 , 4 2
2
O
p t i o n 1
5
3 . 4
4 , 7
4 , 7 1
1 , 5
4 , 2
1 ,
3
1 ,
0
1 ,
0
1 ,
1
1 ,
9
1 ,
6
1 , 0 9
1 , 3 1
1 , 1 3
1 , 2 9
2
O
p t i o n 2
6
3 . 4
4 , 7
4 , 6 4
2 , 6
4 , 0
1 ,
3 5
0
0
1 ,
0
1 ,
7
1 ,
4
1 , 1 4
1 , 3 9
1 , 2 1
1 , 3 9
2
O
p t i o n 3
7
3 . 4
3 , 7
3 , 7 9
4 , 0
2 , 9
1 ,
1
1 ,
0
1 ,
0
1 ,
0
1 ,
5
1 ,
3
1 , 1 4
1 , 3 1
1 , 1 3
1 , 2 2
2
O
p t i o n 1
8
3 . 4
3 , 7
3 , 7 7
2 , 7
3 , 1
1 ,
2
1 ,
0
1 ,
0
1 ,
0
1 ,
6
1 ,
4
1 , 0 7
1 , 2 3
1 , 0 6
1 , 1 5
2
O
p t i o n 2
9
3 . 4
3 , 7
3 , 7 2
2 , 2
2 , 9
1 ,
3
0
0
1 ,
0
1 ,
5
1 ,
3
1 , 0 7
1 , 2 5
1 , 0 8
1 , 1 7
2
O
p t i o n 3
1 ) O n e e
q u a t i o n r e p r e s e n t s a f o r m a t a c c o r d i n g t o e q . ( 9 . 1 0 ) a n d t w o e q u a t i o n s a f o r m a t a c c
o r d i n g t o ( 9 . 1 0 a ) a n d ( 9 . 1 0 b ) i n E N V 1 9 9 1 - 1 .
-
8/15/2019 Sako Report
39/90
-
8/15/2019 Sako Report
40/90
-
8/15/2019 Sako Report
41/90
Figure 4.3-1 Reliability level as a function of
for con-
crete beams designed according to ENV-Eurocodes (Figure 3.1-2)
and the best choice of partial safety factors for
= 4,7
(Figures 3.3-2 and 3.3-3)
Figure 4.3-2 Reliability level as a function of
for con-
crete columns designed according to ENV-Eurocodes
(Figure 3.1-2) and the best choice of partial safety factors for
= 4,7 (Figures 3.3-2 and 3.3-3)
Concrete Beams, ENV-Eurocode
Concrete Beams, imposed action
Concrete Beams, environmental action
7,0
6,5
6,0
5,5
5,0
4,5
4,0
3,5
3,0
0,0
R e l i a b i l i t y l e v e l ,
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Concrete Columns, ENV-Eurocode
Concrete Columns, imposed action
Concrete Columns, environmental action
7,0
6,5
6,0
5,5
5,0
4,5
4,0
3,5
3,0
0,0
R e l i a b i l i t y l e v e l ,
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
-
8/15/2019 Sako Report
42/90
Figure 4.3-3 Reliability level as a function of
for steel
beams designed according to ENV-Eurocodes (Figure 3.1-2) and
the best choice of partial safety factors for
= 4,7 (Figures 3.3-2
and 3.3-3)
Figure 4.3-4 Reliability level as a function of
for steel
columns designed according to ENV-Eurocodes (Figure 3.1-2) and
the best choice of partial safety factors for
= 4,7 (Figures 3.3-2
and 3.3-3)
3,0
3,5
4,0
4,5
5,0
5,5
6,0
6,5
7,0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Steel Beams, environmental action
Steel Beams, imposed action
Steel Beams, ENV-Eurocode
R e l i a b i l i t y l e v e l ,
3,0
3,5
4,0
4,5
5,0
5,5
6,0
6,5
7,0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Steel Columns, ENV-Eurocode
Steel Columns, imposed action
Steel Columns, environmental action
R e l i a b i l i t y l e v e l ,
-
8/15/2019 Sako Report
43/90
Figure 4.3-5 Reliability level as a function of
for gluelam
timber beams designed according to ENV-Eurocodes (Figure 3.1-2)
and the best choice of partial safety factors for
= 4,7 (Figures
3.3-2 and 3.3-3)
Figure 4.3-6 Reliability level as a function of
for gluelam
timber columns designed according to ENV-Eurocodes (Figure 3.1-
2) and the best choice of partial safety factors for
= 4,7 (Figures
3.3-2 and 3.3-3)
3,0
3,5
4,0
4,5
5,0
5,5
6,0
6,5
7,0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Gluelam Beams, environmental action
Gluelam Beams, imposed action
Gluelam Beams, ENV-Eurocode
R e l i a b i l i t y l e v e l ,
3,0
3,5
4,0
4,5
5,0
5,5
6,0
6,5
7,0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Gluelam Columns, ENV-Eurocode
Gluelam Columns, imposed action
Gluelam Columns, environmental action
R e l i a b i l i t y l e v e l ,
-
8/15/2019 Sako Report
44/90
(blank page)
-
8/15/2019 Sako Report
45/90
Table A.1-1 Material parameters for concrete and reinforcement
Table A.1-2 Material parameters for structural steel
-
8/15/2019 Sako Report
46/90
Table A.1-3 Material parameters for gluelam timber
-
8/15/2019 Sako Report
47/90
-
8/15/2019 Sako Report
48/90
Table A.2-1 Concrete beam,
= 25 MPa,
= 1,5, steel B500B,
= 500 MPa,
= 1,15 and = 1,0.
is the self weight of the beam and
represents other per-
manent actions.
Table A.2-2 Welded steel beam, S235,
= 235 MPa,
= 1,1.
is the self weight of the beam and
represents other per-
manent actions.
-
8/15/2019 Sako Report
49/90
Table A.2-3 Gluelam timber beam, GL32,
= 32 MPa,
= 1,0,
= 1,0 and
= 1,3.
is the self weight of the beam and
represents
other permanent actions.
-
8/15/2019 Sako Report
50/90
-
8/15/2019 Sako Report
51/90
L 12 G k1 3.6 Q k 6 k 3 n 1.431 γ s 1.1 [ 5.1.1(1)]
t f b( ) b
20t w b( )
b
20 nh b( ) k b
D b( ) h b( ) 2 t f b( ) Physical web height
d b( ) h b( ) 2 t f b( ) Web height when calculating web slenderness.The same in this case
A w b( ) D b( ) t w b( )A f b( ) b t f b( )
W pl b( ) b t f b( ) h b( ) t f b( )t w b( ) D b( )
2.
4A b( ) A w b( ) 2 A f b( )
f sk 235 f yk for steel S235 f sdf sk
γ s
b .3 Start value
b root f sd W pl b( )1.35 G k1 A b( ) 76.5 1.5 Q k L
2. 10 3.
8 b,
root( ) solves the equation (the part within the brackets left of ",b" =0)and returns the web width b.
Gk2 = Self-weight of the beam based on the density 76,5 kN/m
3
.
-
8/15/2019 Sako Report
52/90
b 0.17688= d b( ) 0.5129= h b( ) 0.53063= c b
2c 0.0884=
tf b( ) 8.843875 10 3
= t w b( ) 6.1802 10 3
=
c
tf b( )10=
-
8/15/2019 Sako Report
53/90
G k1 3.6 Q k 6 L 12 k 5 h b( ) k b
γ 1.3 [ 2.3.3.2]
Gluelam class: GL32, according to prEN 1194:1995
f k 32 prEN 1194:1995 k h b( ) 1.0 h b( ) . 6if
.6
h b( )
.2
otherwise k h b( ) 1.15
W b( ) b h b( )( )
2.
6
k m 1 kmod was chosen to 1,0. A b( ) b h b( ) b 0.2 Start value
b root W b( )k m f k
γ
k h b( )..
1.35 G k1 A b( ) 4.2 1.5 Q k L2. 10( )
3.
8
b,
b 0.1362= h b( ) 0.681= k h b( ) 1=
root( ) solves the equation (the part within the brackets left of ",b" =0)and returns the width b.
Gk2
= Self-weight of the beam based on the density 4.2 kN/m3 .
G k2 b h b( ) 4.2 G k2 0.3896= G k G k1 G k2 G k 3.9896=
νQ k
G k Q k
ν 0.6006= I b( ) b h b( )3.
12
SLS, check of deformation, Total load Pd. P d G k Q k P d G k Q k
P d 9.9896= E d 13300 δ5 P d L
4.
384 E d I b( )δ 56.5761= mm
δ
L 1000
4.7147 10 3
= 1000 L
δ
212.1037=
-
8/15/2019 Sako Report
54/90
-
8/15/2019 Sako Report
55/90
-
8/15/2019 Sako Report
56/90
-
8/15/2019 Sako Report
57/90
Figure A.3.2.1-1 Assumed section
Table A.3.2.1-1 Actions and corresponding sectional area for concrete columns
-
8/15/2019 Sako Report
58/90
Figure A.3.2.2-1 Assumed section
Table A.3.2.2-1 Actions and corresponding sectional area for steel columns
a
a
t
t t
t
-
8/15/2019 Sako Report
59/90
Figure A.3.2.3-1 Assumed section
Table A.3.2.3-1 Actions and corresponding sectional area for timber columns
-
8/15/2019 Sako Report
60/90
(blank page)
-
8/15/2019 Sako Report
61/90
-
8/15/2019 Sako Report
62/90
Table B.1.2-1 Imposed actions in apartment, hotel, hospital, office and schoolbuildings. Action from persons - if included - is the temporally
arbitrary live load, i.e. the measured or calculated load from per-
sons during the investigation. From [10].
-
8/15/2019 Sako Report
63/90
-
8/15/2019 Sako Report
64/90
Table B.1.3-1 Some statistical values of snow load on the ground in Sweden
-
8/15/2019 Sako Report
65/90
Table B.1.3-1 Coefficient of variation for different threshold values in Göteborg.
The characteristic value – given with two significant numbers –
is the same, 1,1 kN/m2
-
8/15/2019 Sako Report
66/90
-
8/15/2019 Sako Report
67/90
-
8/15/2019 Sako Report
68/90
Figure B.1.4-1 Sketch showing the statistical wind load distribution as well as
the statistical distribution off the individual parameters
q, q
q
C e C, e
C e C pe
C pe C, pe J w J, w
J w
W , W
W q C C J = e pe w
W
-
8/15/2019 Sako Report
69/90
-
8/15/2019 Sako Report
70/90
-
8/15/2019 Sako Report
71/90
-
8/15/2019 Sako Report
72/90
-
8/15/2019 Sako Report
73/90
-
8/15/2019 Sako Report
74/90
Figure B.2.2.1-1 Experimental and fitted probability distribution function (Lognor-
mal) of material strength. Tests carried out in August
Figure B.2.2.1-2 Experimental and fitted probability distribution function (Weibull)
of material strength. Tests carried out in August
-
8/15/2019 Sako Report
75/90
Figure B.2.2.1-3 Experimental and fitted probability distribution function (Lognor-
mal) of material strength. Tests carried out in November
Figure B.2.2.1-4 Experimental and fitted probability distribution function (Weibull)
of material strength. Tests carried out in November
-
8/15/2019 Sako Report
76/90
Figure B.2.2.1-5 Experimental and fitted probability distribution function (Lognor-
mal) of material strength. All data
Figure B.2.2.1-5 Experimental and fitted probability distribution function (Weibull)
of material strength. All data
-
8/15/2019 Sako Report
77/90
Figure B.2.2.2-1 Tensile test results of EN 10025+A1–S235,
= 914 test
pieces
0
50
100
150
200
265 275 285 295 305 315 325 335 345 355 365 375 385 395 (MPa)
R eH
-
8/15/2019 Sako Report
78/90
Figure B.2.2.2-2 Empirical, normal and log normal distribution functions
0
0,1
0,2
0,3
0,4
0,5
0,7
0,6
0,8
0,9
1,0
260 270 280 290 300 310 320 330 340 350 360 370 380 390
-
8/15/2019 Sako Report
79/90
Table B.2.2.3 Mean values and coefficients of variation for conversion factor
result from Swedish investigations [16]
-
8/15/2019 Sako Report
80/90
Table B.2.2.4.1-1 Yield strength values from the production of producer (I) (1994)
-
8/15/2019 Sako Report
81/90
Table B.2.2.4.1-2 Yield strength values from the production of producer (II) ( 1995)
-
8/15/2019 Sako Report
82/90
The figures represent the number of specimens
Figure B.2.2.4.3-1 Upper yield strength,
, for reinforcing steel with a
characteristic value
equal to 500
6
-
8/15/2019 Sako Report
83/90
Table B.2.3.2-1 Tolerances on thickness according to EN 10 029
-
8/15/2019 Sako Report
84/90
Table B.2.3.2-2 Tolerances on thickness according to EN 10 029, continued
-
8/15/2019 Sako Report
85/90
Figure B.2.3.2-1 Permitted deviations for welded I-sections and box-sections according to ENV 1090-1
Table B.2.3.2-3 Coefficients of variation for welded I- and box-sections
-
8/15/2019 Sako Report
86/90
Table B.2.3.3-1 Tolerances – requirements versus measured values
Table B.2.3.3-2 Tolerances – requirements versus measured values
-
8/15/2019 Sako Report
87/90
-
8/15/2019 Sako Report
88/90
(blank page)
-
8/15/2019 Sako Report
89/90
-
8/15/2019 Sako Report
90/90