revisit cmos power dissipation

22
© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips Revisit CMOS Power Dissipation Digital inverter: Active (dynamic) power Leakage power Short-circuit power (ignored) 1 C L N P V DD 2 L DD leak DD SC P CV f I V P Roy & Prasad (2000)

Upload: dinh

Post on 22-Mar-2016

63 views

Category:

Documents


2 download

DESCRIPTION

Revisit CMOS Power Dissipation. Digital inverter: Active (dynamic) power Leakage power Short-circuit power (ignored). Roy & Prasad (2000). Leakage vs. Active Power Trends. W. Haensch , IBM J. Res. Dev. 50, 339 (2006). Some Observations with Leakage. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 1

Revisit CMOS Power Dissipation

• Digital inverter:– Active (dynamic) power

– Leakage power

– Short-circuit power (ignored)

CLN

PVDD

2L DD leak DD SCP C V f I V P

Roy & Prasad (2000)

Page 2: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 2

Leakage vs. Active Power Trends

21 exp 1 expGS th DSleak eff OX T

eff T T

V V VWI C m VL mV V

W. Haensch, IBM J. Res. Dev. 50, 339 (2006)

Page 3: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 3

Some Observations with Leakage

• This is the “usual” (BSIM, Spice) leakage model

• The thermal voltage VT = kBT/q

• This model was derived for 3-dimensional carrier motion, impinging on a small energy barrier (what about 1-D or 2-D transistors?)

• This model assumes some average “junction temperature” T but T itself is unsteady during digital operation! (what about hot phonons?!)

21 exp 1 expGS th DSleak eff OX T

eff T T

V V VWI C m VL mV V

Page 4: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 4

What About Energy?

• Energy is a better metric when worried about battery life• So look at energy, not power minimization:

• Critical difference: leakage energy depends on circuit delay, tp

1.3

1Delay( )

L DD DD

Dsat DD th

C V Vf I V V

?

2 2Power EnergyDD DDfV V

Page 5: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 5

Effects of Lowering VDD

• Easy observation: lowering VDD lowers power and energy… the latter up to a point!

• How low VDD?

• It is theoretically possible to operate circuits near VDD ~ 50 mV, deep into the subthreshold regime!

• So… why not do it?

B. Zhai, IEEE Trans. VLSI Sys. 13, 1239 (2005)

Page 6: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 6

Energy-Voltage Trade-Off

• Remember, delay:

• At high VDD ION = ID,sat

• At low VDD delay too high, so leakage energy goes up as well

t L DDp

ON

C VI

2L DD leak DDP C V f I V

2L DD leak DD pE C V I V t

B. Zhai, IEEE Trans. VLSI Sys. 13, 1239 (2005)

OptimumVDD!

Page 7: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 7

Principles of Low-Power Design

• Use the lowest possible supply voltage (VDD)

• Use the smallest geometry, highest frequency devices BUT operate them at the lowest possible frequency (f)

• Use parallelism and pipelining to lower required frequency of operation

• Manage power by disconnecting power source when system is idle (sleep states)

• Design systems to have lowest requirements of performance for the given user functionality

Roy & Prasad (2000)

Page 8: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 8

Leakage Model: Closer Look

• Strongly (exponentially!) temperature dependent!

• Typically people use ΔT = PRTH where– ΔT is an average “junction temperature”

– P is a time-averaged power dissipation (active + leakage)

• How do we calculate RTH?

• And when is it OK to use it?

21 exp 1 expGS th DSleak eff OX T

eff T T

V V VWI C m VL mV V

Page 9: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 9

0.1

1

10

100

1000

10000

100000

0.01 0.1 1 10L (m)

R TH

(K/m

W)

Device Thermal Resistance Data

Cu

GST

SiO2

Si

Silicon-on-Insulator FET

Bulk FET

Cu Via

Phase-change Memory (PCM)

Single-wall nanotube SWNT

Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996), Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006).

High thermal resistances:• SWNT due to small thermal

conductance (very small d ~ 2 nm)

• Others due to low thermal conductivity, decreasing dimensions, increased role of interfaces

Power input also matters:• SWNT ~ 0.01-0.1 mW• Others ~ 0.1-1 mW

Page 10: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 10

Modeling Device Thermal Response

• Steady-state models– Lumped: Mautry (1990), Goodson-Su

(1994-5), Pop (2004), Darwish (2005)– Finite-Element

1/ 21

2BOX

THBOX Si Si

tR

W k k t

1 12 4TH

Si Si

Rk D k LW

L W

D

tBOX

tSi

Bulk Si FET SOI FET

0.1

1

10

100

1000

10000

100000

0.01 0.1 1 10L (m)

R TH

(K/m

W)

SOI FET

Bulk FET

Page 11: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 11

Modeling Device Thermal Response

• Transient Models– Lumped: Tenbroek (1997), Rinaldi

(2001), Lin (2004)– Introduce CTH usually with approximate

Green’s functions; heated volume is a function of time (Joy, 1970)

– Finite-Element

( , ) erfc2 2Si

P rT r tk r t

Temperature evolution of a step-heated point source into silicon half-plane (Mautry 1990)

Simplest (~ bulk Si FET)

Instantaneous T rise

E P tTC cV

Due to very sharp heating pulse t ‹‹ V2/3/

2

3/ 2 3/ 20

1 ( ')( , ) exp ' '8 ( ) ( ') 4 ( ')

t P t rT r t dV dtcV t t t t

More general

Temperature evolution anywhere (r,t) due to arbitrary heating function P(0<t’<t) inside volume V (dV’ V) (Joy 1970)

Page 12: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 12

Approaches for Thermal Resistance• Time scale:

– Transient

– Steady-State

• Geometric complexity:– Lumped element (shape factors)

– Analytic

– Finite element (Fourier law)

L W

D

tBOX

tSi

Bulk Si FET SOI FET

Via

Interconnect

+ Interconnect

Page 13: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 13

Shape Factors

• Heat flux: q = Sk(T1-T0)

• Equivalent thermal resistance RTH = 1/Sk

Sunderland, ASHRAE (1964), many others

Page 14: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 14

Ex: Heat Loss from Via + Interconnect

Estimating heat loss (thermal resistance) “looking into” one Cu line:

Typical values

w

Si

zBOT

,1( )

ViaTh eff

Cu Cu Cu eff

AA k A hp

2r

2ViaA r CuA wd

SiO2

d

0.66 0.1

101.86 log 1eff oxz whp kw d

Chen, 2000

zTOP

Cu

, 25 32Th eff K/mW (bot – top)

Chen, Li, Rosenbaum, Kang, IEEE TCAD ICS 19, 197 (2000)

Page 15: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 15

Many Shape Factors (Compact Models)

Page 16: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 16

Thermal-Electrical Cheat Sheet

Page 17: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 17

Obtaining the Temperature Distribution

• Now we want temperature distribution T(x) in 1-D

• Consider power in/out of a 1-D element

• Simplest case: Si layer on SiO2/Si substrate (SOI)

• Or interconnect on thermally insulating SiO2

Page 18: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 18

1-D Interconnect with Heat Generation

Si

toxSiO2

d

T0

L

W

x x+dx

Energy balance equation for 1-D element “dx”: pick units of

J/cm3 or W/cm3 (W = J/s)

Energy In (here, Joule heat) = Energy Out (left, right, bottom) + Change in Internal Energy

Heat: dTQ Akdx

Electrical: dVI AJ A F Adx

Page 19: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 19

Ex: 1D Rectangular Nanowire

Page 20: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 20

1-Dimensional Heat Equation

( ) ''' VTk T Q Ct

SiO2

kT

g

T

SiO2

0( ) ''' ( ) 0hpk T Q T TA

unsteady (transient)

steady, with convection

Page 21: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 21

Interconnect Heat Loss and Crosstalk

Page 22: Revisit CMOS Power Dissipation

© 2010 Eric Pop, UIUC ECE 598EP: Hot Chips 22

Carbon Nanotube (Cylinder)

SiO2g

L

PttOX

d

tSISi(a) (b)

T

-1 0 1 2300

500

700

900

X (m)

T (K

)

Tmax

ΔTC

0)(')( 0 TTgpTkA

)2/cosh()/cosh(1')( 0

H

H

LLLx

gpTxT

HkALg

8ln

oxox

ox

kgtd

2 22

1'4 eff

dR hp I Idx q

,

C

C C Th

TdTkAdx

R

Role of thermalcontact resistance

Role of cylindrical heatspreading (shape factor!)

E. Pop et al.J. Appl. Phys. 101, 093710 (2007)