reu training solar irradiance/radiometry jerry harder [email protected] 303 492 1891

37
REU Training Solar Irradiance/Radiometry Jerry Harder [email protected] 303 492 1891

Upload: balin

Post on 30-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

REU Training Solar Irradiance/Radiometry Jerry Harder [email protected] 303 492 1891. Things to remember about the Sun. Radius 695,510 km (109  radii) Mass 1.989 x 10 30 kg (332,946 ’s) Volume 1.412 x 10 27 m 3 (1.3 million  ‘s) Density 151,300 kg/m 3 (center) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

REU TrainingSolar Irradiance/Radiometry

Jerry [email protected]

303 492 1891

Page 2: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Things to remember about the Sun

Radius 695,510 km (109 radii)Mass 1.989 x 1030 kg (332,946 ’s) Volume 1.412 x 1027 m3 (1.3 million ‘s)Density 151,300 kg/m3 (center)

1,409 kg/m3 (mean)Temperature 15,557,000° K (center)

5,780° K (photosphere) 2 - 3×106 ° K (corona)

1 AU 1.49495×108 kmTSI (@1 AU) 1,361 W/m2 Composition 92.1% hydrogen

7.8% helium 0.1% argon

Page 3: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Wavelength Dependence of Sun Images

Yohkoh Soft X-rayTelescope (SXT)

Extreme UltravioletImaging Telescope(EIT)Fe XII 195 Å

Ca II KspectroheliogramsNSOSacramento Peak

He I 10830 Åspectroheliograms NSO Kitt Peak

Page 4: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Radiometric Terminology

Name Symbol Description Units Radiant Energy U J Radiant Power (flux) P Rate of transfer of energy W (or J s-1) Radiant Intensity J Power per solid angle from source W ster-1

Radiance N Power per solid angle per unit area from a source

W ster-1cm-2

Irradiance H Power per unit area incident on a surface

W m-2

Physical Constants Symbol Value Units Planck’s Constant h 0.66262×10-33 J sec Boltzman’s Constant k 1.3806×10-23 J deg-1

Speed of Light c 2.997925×108 m sec-1

Solid angle subtended by the Sun at 1 AU

6.79994×10-5 steradians

Advice: PAY ATTENTION TO YOUR UNITS!!!

Page 5: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Definition of Solid Angle ( )

Solid angle subtended by sphere (from an ‘interior’point):

=4• For an area seen from a point of observation:

• Approximation for a distant point ( small):

2

dA

s

2 1 cos

Page 6: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

The inverse square law: Intensity

• Consider a point source of energy radiating isotropically– If the emission rate is P watts, it will have a radiant

intensity (J) of:

– If a surface is S cm from the source and of area x cm2, the surface subtends x2/S2 steradians.

– The irradiance (H) on this surface is the incident radiant power per unit area:

-1(W ster )4

PJ

2-2

2 2 (W cm )

4

x PH J

S S

Page 7: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Point source illuminating a plane

23

2

coscos

cos

o

xH J H

S

2

2o

xH J

S

Page 8: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Extended sources must be treated differently than point sources

• Radiance (N): power per unit solid angle per unit area

• Has units of W m-2 ster-1

• Lambert’s Law: J = Jo cos

• Surface that obeys Lambert’s is known as a Lambertian surface

Page 9: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Brightness independent of angle for a Lambertian surface

Page 10: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Lambertian source radiating into a hemisphere

-1 -2

-10

Source has radiance (W ster cm ) and area

At some angle , the intensity is :

cos cos (W ster )

The incremental ring area on the hemisphere :

2 sin

and subtends a solid angle :

2 sin

N A

J J NA

da R d

R dd

2

0

/ 22/ 2

00

2 sin

The radiation intercepted by this ring is then :

2 sin 2 sin cos

Integrate over hemisphere :

sin2 sin cos 2 (watts)

2

dR

dP J d NA d

P NA d NA NA

{P/A is ½ of what you would expect from a point source}

Page 11: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

History of Absolute Radiometry

• Ferdinand Kurlbaum (1857-1927)– Radiometric developments for the

measurement and verification of the Stefan-Boltzmann radiation law.

• Knut Ångström (1857-1910)– Observations of the ‘Solar

Constant’ and atmospheric absorption

Page 12: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Absolute Radiometry

Page 13: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Basic process for electrical substitution radiometry

Remember:Joule Heating:P = I2R = V2/R

Page 14: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Implementation for SORCE (SIM)

Page 15: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Total Irradiance Monitor (TIM)

Major Advances• Phase sensitive detection at the shutter fundamental

frequency eliminates DC calibrations• Nickel-Phosphide (NiP) black absorber provides

high absorptivity and radiation stability

Goals• Measure TSI for >5 yrs

• Report 4 TSI measurements per day

• Absolute accuracy <100 ppm (1 s)

• Relative accuracy 10 ppm/yr (1 s)

• Sensitivity 1 ppm (1 s)

Page 16: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Radiometer Cones

Glory Prototype Cone Interior

Glory Prototype Cone

Post-Soldered Cone

Page 17: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

TIM Baffle DesignGlint FOV46.6 degrees

Vacuum DoorBase Plate

Shutter

PrecisionAperture

ShutterHousing

Baffle 1,2,3 FOV Baffle

ConeHousing

Rear Housing

Cone

Page 18: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

TSI Record

Page 19: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Planck’s equation

2

2

5

Planck's distribution law for the density of radiation

in a cavity :

First radiation const = 2 = 3.7418e-016 (mks)2 1

hcexp 1 Second radiation const = 0.014388 (k

hchc

WhckT

2

5

4

mks)

(radiation emitted into a hemisphere)

Two important limits :

Wein's approximation

2When 5 then exp

Rayleigh - Jeans approximation

2When 1 then

hc hc hcW

kT kT

hc c kTW

kT

?

=

Page 20: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Properties of the Planck distribution

max

max

max

15 5

On differentiation of the Planck equation and setting = 0

an equation for the peak wavelength can be found :

2897.8 (micron - degree)4.965

Peak power at :

1.288 10

The equation

hcT

k

W T

4 -2Total 0

5 48

2 3

of Stefan - Boltzmann relates the total thermal

radiation density with temperature

W (W m )

25.6697 10 {the Stefan - Boltzmann Constant mks}

15

W d T

k

c h

Page 21: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Spectral Irradiance Monitor SIM

• Measure 2 absolute solar irradiance spectra per day

• Broad spectral coverage

– 200-2400 nm

• High measurement accuracy

– Goal of 0.1% (1)• High measurement precision

– SNR 500 @ 300 nm

– SNR 20000 @ 800 nm

• High wavelength precision

– 1.3 m knowledge in the focal plane

– (or < 150 ppm)

• In-flight re-calibration

– Prism transmission calibration

– Duty cycling 2 independent spectrometers

Page 22: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

SORCE SIM: ESR-based spectral radiometry

Page 23: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

SIM Measures the Full Solar Spectrum

Page 24: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Solar Stellar Irradiance Comparison Experiment (SOLSTICE)

Science Objectives:

• Measure solar irradiance from 115 to 320 nm with 0.1 nm spectral resolution and 5% or better accuracy.

• Monitor solar irradiance variation with 0.5% per year accuracy during the SORCE mission.

• Establish the ratio of solar irradiance to the average flux from an ensemble of bright early-type stars with 0.5% accuracy for future studies of long-term solar variability.

Page 25: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

•The optical configuration matches illumination areas on the detector•Interchanging entrance slits and exit slits provides ~ 2x105 dynamic range•Different stellar/solar integration times provide ~ 103 dynamic range•A optical attenuator (neutral density filter), which can be measured in flight, provides additional ~ 102 dynamic range in the MUV wavelength range for >220 nm

SOLSTICE: Experiment Concept

Photomultiplier Detector

Interference Filter Out DiffractionGrating

Photomultiplier Detector

Interference Filter In DiffractionGrating

Camera Mirror

Camera Mirror

Stellar Observation: Objective Grating Spectrometer

Solar Observation: Modified Monk-Gilleison Spectrometer

Solar Exit Slit

Stellar Exit Slit

Entrance Aperture

Entrance Slit

Page 26: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

SORCE SOLSTICE FUV & MUV Spectra

Page 27: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

The Sun as a blackbody

Page 28: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Brightness Temperature

4

21

1

2 1ln 1

brightness

au

hT

k hc I

Page 29: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Sources of opacity in the solar atmosphere

Page 30: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Solar Emissions (VAL, 1992)

Page 31: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

SIM Time Series at Fixed Wavelengths

Page 32: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Model Solar Atmosphere (FAL99)

-500 0 500 1000 1500 2000 2500Height (km)

4000

6000

8000

10000

27 Day Variability Depends on the Formation Region

Page 33: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Wavelength Dependence of Sun Images #2

Page 34: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Identification of solar active regions

Solar Radiation Physical Model (SRPM) employs solar images from HAO's PSPT (left panel) to identify and locate 7 solar activity features (R=sunspot penumbra; S=sunspot umbra; P,H=facula and plage; F=active network; E,C=quiet sun) to produce a mask image of the solar features (center panel). The SRPM combines solar feature information with physics-based solar atmospheric spectral models at high spectral resolution to compute the emergent intensity spectrum.

Page 35: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Recent quiet and active solar scenes

11 Feb 2006 27 Oct 200415 Jan 2005

Page 36: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

Instantaneous Heating Rates

Page 37: REU Training Solar Irradiance/Radiometry Jerry Harder jerry.harder@lasp.colorado 303 492 1891

References

• “Modern Optical Engineering”, Warren J. Smith, McGraw Hill, 1990.

• ‘Quantitative Molecular Spectroscopy and Gas Emissivities”, S. S. Penner, Addison-Wesley, 1959.

• “Statistical Mechanics”, J. E. Mayer and M. G. Mayer, Wiley & Sons, 1940.

• “Absolute Radiometry”, F. Hengstberger, Academic Press, 1989.