research : urban ecology networks

79
Nathalie Waelbroeck: Urban Ecology Networks A collection of reports on general research, site visits, and literary reviews. ARCH 496: National Networks of the Netherlands Ute Poerschke Fall 2014

Upload: nathalie-waelbroeck

Post on 22-Jul-2016

227 views

Category:

Documents


6 download

DESCRIPTION

Research done for an independent study class at Pennsylvania State University. Nominated for the Undergraduate Research Award on Sustainability and the Environment.

TRANSCRIPT

Page 1: Research : Urban Ecology Networks

 

 

 

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks  A   collection   of   reports   on   general   research,   site  visits,  and  literary  reviews.    

 

ARCH  496:  National  Networks  of  the  Netherlands  Ute  Poerschke  Fall  2014  

 

Page 2: Research : Urban Ecology Networks

Nathalie  Waelbroeck:  Urban  Ecology  Networks   ii    

Table  of  Contents  

Nathalie  Waelbroeck:  Urban  Ecology  Networks  ...............................................................................................  1  

Introduction.  ...............................................................................................................................  1  

Article  Reports.  ..........................................................................................................................  2  

Website:  The  Hague  University.  www.thehagueuniversity.com  .....................................................................  2  

Website:  The  Government  of  the  Netherlands.  www.government.nl  ............................................................  2  

Website:  The  Landscape  Management  of  the  Netherlands.  www.landschapsbeheer.nl/  ............................  13  

Website:  Climate  and  Energy  Packet  Speech  by  Minister  Timmermans.  www.government.nl  ....................  13  

Website:  Plan  of  Action  Energy  Saving  in  Built  Environment  Report.  www.government.nl  ........................  14  

Website:  Water  Management  in  the  Netherlands.  www.rijkswaterstaat.nl  .................................................  16  

Website:  25  Million  Euros  for  Research  into  Energy  from  Plants  and  Algae.  www.news.leiden.edu  ...........  21  

Website:  Renewable  Energy  in  the  Netherlands.  www.government.nl  ........................................................  22  

Website:  National  Geographic:  Wind  Energy.  education.nationalgeographic.com  ......................................  22  

Website:  Wind  Energy  Foundation.  www.windenergyfoundation.org  .........................................................  23  

Website:  Exploiting  Wind  Power  in  Holland.  news.bbc.co.uk  ........................................................................  24  

Website:  Dutch  Fall  out  of  Love  with  Windmills.  www.reuters.com  .............................................................  25  

Website:  Wind  Power  is  Dying.  www.frontpagemag.com  .............................................................................  26  

Site  Visits.  .................................................................................................................................  27  

Site  Visit:  Hoorn.  ...............................................................................................................................................  27  

Site  Visit:  Zaanse  Schans.  ..................................................................................................................................  29  

Site  Visit:  Rotterdam.  ........................................................................................................................................  32  

Site  Visit:  Zuid  Kennemerland.  .........................................................................................................................  35  

Site  Visit:  Leiden.  ...............................................................................................................................................  38  

Site  Visit:  The  Hague.  ........................................................................................................................................  41  

Site  Visit:  Delft.  ..................................................................................................................................................  44  

Site  Visit:  History  of  Amsterdam.  .....................................................................................................................  47  

Site  Visit:  Amsterdam:  Northwest.  ...................................................................................................................  48  

Site  Visit:  Amsterdam:  Southwest.  ..................................................................................................................  49  

Site  Visit:  Amsterdam  Central.  ...........................................................................................................................  51  

Page 3: Research : Urban Ecology Networks

Nathalie  Waelbroeck:  Urban  Ecology  Networks   iii    

Site  Visit:  Travel  in  Between.  ............................................................................................................................  54  

Book  Reports.  ..........................................................................................................................  56  

Book  Report:  EcoEdge  Charlesworth:  Urgent  Design  Challenges  in  Building  Sustainable  Cities.  ................  56  

Book  Report:  Resilience  in  Ecology  and  Urban  Design:  3  (Future  City).  ........................................................  62  

Book  Report:  Delta  Urbanism:  The  Netherlands.  ............................................................................................  67  

Conclusion  ...............................................................................................................................  73  

 

 

Page 4: Research : Urban Ecology Networks

nathalie  waelbroeck  

ARCH  496:  National  Networks  of  the  Netherlands  Ute  Poerschke  

Fall  2014  

 

Nathalie  Waelbroeck:  Urban  Ecology  Networks   1    

 

Nathalie  Waelbroeck:  Urban  Ecology  Networks  Introduction.  

Human  beings   have  been   living  with   and   at   odds  with   nature   for   the   last   200,000   years.  As  humanity  has  claimed  lands,  they  have  molded  and  intertwined  their  fate  with  that  of  nature.  While  human  intelligence  has  been  deemed  to  be  superior,  it  has  also  failed  to  understand  the  cooperative   necessity   between   humans   and   ecology.   In   some   cases,   lands   have   been  tampered   with   so   much   and   for   so   long   that   there   is   no   real   saying   what   the   “pristine”  condition  would  resemble.  Yet  many  environmental  movements  have  focused  on  the  return  of  nature  to  a  historically  pristine  condition.  Why  should  humans  pretend  to  leave  no  footprint  on  the  Earth  when  even  the  smallest  organism  has  played  a  historical  role  in  the  development  of  the  Earth,  as  we  know  it  to  exist  today?    

The   Netherlands   is   one   of   these   lands   that   have   been   modified   since   the   prehistoric   age.  Throughout  time,  the   low-­‐lying   lands  have  been  controlled,  manipulated  and  morphed  into  a  system  that   is  admired  by  the  world  at   large.  However,  how  has  the  Netherlands  succeeded,  and  how  have  they  failed?  How  can  their  experiences  enlighten  the  future  development  and  a  rising  global  tide?    

While   there   is  much   to   learn   from   the  Netherlands,   it   is   important   to   acknowledge   that   the  historical   context   is   just   as   unique   as   the   physical   conception.   Lessons   taken   from   the  Netherlands   need   to   be   re-­‐evaluated,   re-­‐contextualized   and   re-­‐designed   to   match   the   new  social  and  physical  conditions.  

The  purpose  of  this  report   is  to  study  the  present,  past  and  future  environmental  trends  and  how  they  impact  ecology  and  human  society.  This  has  been  done  in  three  sections.  First  I  have  read  informational  articles  providing  background  on  the  Netherlands  and  important  ecological  strategies.  Second,  I  have  visited  sites   in  the  Netherlands   in  order  to  acquire  personal   insight  on  the  physical  construct  and  how  it  affects  ecological  and  social  aspects.  Finally,  I  have  read  three  books  that  provide  background  on  ecological  architecture  and  its  impacts.  These  books  have  provided   extra   insight   on  how   in-­‐tune   the  Netherlands   is   on   the   concept   of   ecological  architecture  and  master  planning.    

Page 5: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  2    

 

Article  Reports.  

Website:  The  Hague  University.  www.thehagueuniversity.com  The  Netherlands  is  hugely   impacted  by  its  geography.  Not  only   is  the  Netherlands  one  of  the  most  densely  populated  countries   in  the  world  (16.5  million   in  41,785  square  kilometers),  but  also   about   60%   of   the   population   lives   below   sea   level.   Due   to   this,   the  Netherlands   has   an  intricately  planned  and  organized  system  of  dikes,  dams,  channels,  and  canals  to  protect  the  

low-­‐lying   land   (figure   1).   While   historically  windmills   helped   regulate   water   levels,  electric  pumping  stations  have  taken  priority.  In   addition   to   canals   and   channels,   the  Netherlands   includes   three   rivers,   which  empty  out  into  the  North  Sea  (Rijn,  Maas  and  Schelde).   These   rivers   have   provided   a  profitable   farming   industry,   utilizing   over   a  quarter   of   Dutch   land.   The   southeast  marshlands   grow   fruit;   the   north   maintains  the   livestock,   cheese   and   butter;   the   west  grows   potatoes,  wheat,   barley,   sugar,   beets,  tomatoes,  onions,  flowers,  and  vegetables.    

Figure  1  :http://voices.nationalgeographic.com/2014/05/05/geography-­‐in-­‐the-­‐news-­‐polder-­‐salvation/  

Conclusion:  While   each   area   of   the  Netherlands   is   distinctive   in   local   cultures,   products   and  geography,   it   is   important   to   note   that   they   all   share   one   thing   in   common,   water.   The  windmills   and   houseboats   are   two   architectural   solutions   to   water   management   in   the  Netherlands,   but   since   then,   there   has   been   no   innovative   architectural   advancement   in  connecting  the  architecture  of  the  Netherlands  with  the  water.    

Website:  The  Government  of  the  Netherlands.  www.government.nl  

Environment:    The   central   government   bases   80%   of   their   environment   protection   legislation   based   on   EU  legislation.  This   includes   the  20-­‐20-­‐20  challenge   (figure  2),  which  aims   to   reduce  greenhouse  gas  emissions  by  20%,  decrease  energy  consumption  by  20%  and  increase  renewable  energy  by  20%  from  1990  levels.  The  Dutch  government  is  responsible  for  setting  guidelines  for  national  waste   management,   emissions   and   discharges   of   harmful   substances   and   construction   of  major   infrastructure  (ex:  oil  refineries,  nuclear  power  plants,  chemical  plants,  roads,  railways,  oil  and  gas  pipelines,  etc).    

Page 6: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  3    

 

 

Figure  2:  http://www.daikinme.com/vrv-­‐iv/variable_refrigerant_termperature/light_seasonal.jsp  

The  Ministry  of  Infrastructure  and  the  Environment  is  responsible  for  developing  policy  in  the  national   context,   while   the   provincial   government   sets   up   changes   in   zoning   guidelines,  regulates   emissions   from   road   transport,   grants   environmental   permits,   and   regulates  wind  energy   parks.   The   Municipal   governments   then   prepare   local   regulations   and   enforce   all  policies.  On  the  other  hand,  the  Water  Boards  runs  separately  from  the  national  government  and   is   responsible   for  maintaining  the  quality  of  water  and  safeguarding  the  country  against  flooding.    

NATIONAL   PROVINCIAL   MUNICIPAL   WATERBOARD  1. Developing  policy  in  the  national  context  

1. zoning  guidelines,  2. regulates  emissions  from  road  transport,  

3. grants  environmental  permits,    

4. regulates  wind  energy  parks  

1. prepare  local  regulations  

2. enforce  all  policies  

1. maintaining  the  quality  of  water  

2. safeguarding  the  country  against  flooding  

 

The  Netherlands   has   decided   to   reduce   emissions   in   the   transport,   housing,   agriculture   and  waste   sectors   by   16%   and   increase   renewable   energy   to   14%.   This   will   be   done   by   reducing  energy  consumption,  using  more  renewable  energy,  and  emissions  trading.    

There  is  a  predicted  9  billion  people  by  2050,  creating  an  increase  in  demand  for  raw  materials  by  4  times  in  the  next  40  years.  In  order  to  prevent  shortage,  the  Flagship  resource  Efficiency  and  EU  Raw  Materials   Initiative  (20-­‐20-­‐20)  are  calling   for  a  more   intelligent  use  of   resources,  use  of  low-­‐carbon  economy  products,  and  the  promotion  of  recycling.    

Nature  and  Biodiversity:    The  central  government  sets   the   framework  and  goals,  while   the  provincial  authorities   fill   in  the  details  and   implement  the  policy.  The  National  Ecological  Network  (NEN)  and  the  Natura  2000  are  designed  to  protect  nature  areas.  These   include  the  Waddenzee,  the  Southwestern  

Page 7: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  4    

 

Delta  region,  the  Ijsselmeer  region,  the  North  Sea,  the  coast  and  the  major  rivers.  In  addition,  the   government   provides   financial   encouragement   for   individuals   and   companies   to   adopt  green   practices.   For   example,   farmers  who   utilize   sustainable   farming  methods   can   receive  remuneration  from  the  government  under  the  SNL  grant  scheme.  Whereas,   the  government  offers  tax  breaks  to  private  estate  owners  who  open  their  property  to  the  public.  The  savings  are  intended  to  help  pay  for  maintenance.    

There   are   20   nationally   protected   landscapes,   covering   some   1,000   hectares   with   rare   or  protected  plants  and  animals  (figure  3).  The  government  is  planning  to  simplify  legislation  by  combining  several  acts  into  one.  This  will  ensure  that  any  activities  or  projects  that  could  cause  damage   to   protected   areas   be   reviewed   and   approved   via   permit.   This   single   act   will   also  protect  “flora  and  fauna”,  “forestry”  and  protect  against  invasive  species.    

 

Figure  3:  http://maps.eea.europa.eu/EEABasicViewer/v3/index.html?appid=07661dc8a5bc446fafcfe918c91a1b1b&webmap=bf553d7ea5a246708c834e029699f900&embed=false  

The  government  is  also  providing  1.5  million  euros  a  year  for  the  next  4  years  with  the  plans  of  designing   more   urban   green   roofs,   increasing   ecological   noise   barriers   along   motorways,  setting   up   community   gardens   and   local   nature   areas,   and   expanding   green   space   besides  rivers  to  protect  against  flooding.    

Energy:      The   Dutch   energy   industry   is   responsible   for   6%   of   the   Dutch   GDP   amounting   to   26   billion  euros/year  and  100,000  jobs/year.  The  Netherlands  is  the  largest   importer  and  exporter  of  oil  and  oil  products   in  the  world  and  has  a  highly  developed  gas   industry  (figure  4).  The  EU  as  a  whole  has  aimed  to  reduce  CO2  emissions  by  20%  by  2020,  the  Netherlands  has  already  made  a  target  to  cut  80-­‐95%  of  CO2  emissions  by  2050.  They  will  do  this  by  pursuing  renewable  energy,  mixing  green  and  grey  (nuclear  energy)  energy,  and  constructing  energy  neutral  buildings  by  2020.    

Page 8: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  5    

 

By  2025  the  Netherlands  wants  to  become  the  middleman   for   oil   and   gas   in   Europe.   This  requires   “intensifying   energy   relations”   with  Russia,  China,  Brazil  and  the  USA.  In  addition,  a  well-­‐designed  system  of  international  pipelines  and   storage   center   at   the   port   of   Rotterdam  need  to  be  strengthened.  A  similar  principal   is  to  be  applied  to  electricity,  where  high  voltage  lines  link  to  Norway,  Britain  and  soon  Denmark.  

Figure  4:  http://www.iea.org/publications/freepublications/publication/Oil&GasSecurityNL2012.pdf  

Currently  sustainable  energy,  defined  as  green  and  gray  energy,  only  partakes   in  4%  of  Dutch  demand   (figure   5),   but   the   government   is  hoping  to  increase  that  number  to  14%  by  2020.  This   will   be   accomplished   through   the  promotion   of   electric   cars,   biofuels,   wind,  geothermal,   and   solar   (figure   6).   Bio-­‐energy  

currently   accounts   for   62%   of   sustainable   energy.   In   addition,   the   percentage   of   bio-­‐fuel   in  petrol  is  to  increase  to  10%  by  2020.    

 

Figure  5:  http://www.eia.gov/countries/country-­‐data.cfm?fips=NL  

Page 9: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  6    

 

 

Figure  6:  http://www.eia.gov/countries/country-­‐data.cfm?fips=NL  

Wind   energy   is   highly   encouraged   in   the   Netherlands.   The   government   has   a   goal   of   6000  megawatts   capacity   by   2020.   There   are   2000   onshore   turbines   (figure   7)   providing   4%   of  electricity  demands.  The  largest  wind  farms  are  located  at  Flevoland  and  Noordoostpolder,  the  last   of   which   supplies   electricity   for   400,000   households   (1   million   people).   Off   shore   wind  energy  is  still  too  expensive  to  be  properly  exploited,  but  some  100+  turbines  exist  at  Egmond  aan  Zee  and  Prinses  Amalia  Windfarm.    

 

Figure  7:  https://deepresource.wordpress.com/category/wind/  

Page 10: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  7    

 

There   is  only  one  operational  Nuclear  Power  Plant   in   the  Netherlands,  and   it  expected  to  be  replaced   by   another   before   2033.   There   is   surprisingly   no   permanent   underground   storage  facility  for  radioactive  waste  in  Europe.    

The  Government  tries  to  encourage  green  energy  through  the  Green  Deal,  where  people  can  get  funding  for  local  sustainable  projects.  59+  Green  Deal  projects  have  been  approved.    

Spatial  Planning  and  Infrastructure:    Spatial  Planning  and  Infrastructure  in  the  Netherlands  includes   residential,   industrial,   commercial,  agricultural,   transport,   and   infrastructure  development.   Several   Acts   help   manage   national  planning,   including   the   Spatial   Planning   Act   (WRO)  and   the   Environmental   and   Planning   Act  (Omgevingswet).   The   first   uses   land-­‐use   plans   to  dictate  where,  what,   why   and   how   big   construction  works   can   be.   In   this   act,   municipalities   are  responsible   for   the   spatial   planning   policy   and   its  implementation,  while  the  government  is  responsible  for  elements  that  affect  the  nation  as  a  whole.  Finally  Provinces   are   responsible   for   landscape  management,  urbanization  and  preservation  of  green  

space.   On   the   other   hand,   the   Environment   and  Planning  Act  merges  15  environmental  laws,  making  it  simpler   for   citizens   and   companies   to   fill   out   digital  permit   applications.   The   Act   also   improves   the   links  between   different   projects   and   activities,   making   it  possible   for   companies   to   conduct   fewer   studies,   as  reports   can   be  made   available   online   for   longer   and  certain  research  criteria  will  be  removed  entirely.    

The   government   has   decided   to   “improve   the  standard   of   mobility”   in   certain   hubs   around   the  cities.   For   both   railway   (figure   8)   and   waterway  (figure   9)   networks   there   will   be   longer   opening  times   for   rush-­‐hour   lanes,   the   use   of   intelligent  transport   systems,   more   trains,   more   reliability,   and  

expansion  of  bicycle   storage  at   stations.   In   addition,  the   government   hopes   to   create   more   flexible  

Figure  8:  http://de.academic.ru/dic.nsf/dewiki/869842  

Figure  9:  http://www.hausboot-­‐boeckl.de/holland/hausbootcharter_holland_2012.gif  

Page 11: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  8    

 

working   hours   so   that   rush   hour   is   more   widespread   throughout   the   day.   This   applies   to  national  and  international  networks.    

The   Netherlands   hopes   to   maintain   a   competitive   standard   of   living,   which   will   attract  international   companies,   entrepreneurs   and   international   knowledge   workers.   This   includes  the   transportation   networks,   space   to   work   and   live,   education,   culture   green   space  recreational   facilities,   energy   supply,   natural   resources,   underground   (tunnels   and  pipelines)  infrastructure,  soil  decontamination,  and  groundwater  protection.    

Water  Management:    The  “Top  Team”,  a  group  consisting  of  a   scientist,   a   top  official,   an   innovative  entrepreneur  from   the   SME   sector,   and   a   standard   bearer   from   the   sector,   directs   Water   Management.  Together,   they  make   recommendations   to   the   cabinet  on  measures   for   companies,   scientist  and   the   government.   The  High  Water   Protection   Program  works   to   improve  weak   points   in  dams,  dikes,  and  coastline  along  the  Netherlands.  

Water  quality  in  the  Netherlands  has  been  improving  throughout  the  years,  but  there  are  still  problems   in   cadmium   concentrations,   sewage   overflows,   run-­‐off,   and   old   soil   pollution  leakage.  Clean  water  is  an  issue  in  the  Netherlands  as  the  average  consumer  uses  126  litres  of  water/capita/day   (figure   10).   Both   the   Drinking   Water   Act   and   the   Drinking   Water   Decree  ensure  that  there  is  enough  supply  for  demand,  the  quality  remains  good,  and  affordable.    

 

Figure  10:  http://www.ethicalconsumer.org/ethicalreports/softdrinkssectorreport/waterfootprint.aspx  

Page 12: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  9    

 

Technology  is  a  big  part  of  the  program,  which  includes:  

Delta   Technology   (figure   11),   which   encourages   eco-­‐engineering   works,   specifically   in   risk  based   protection   from   high  water   through   prevention,   spatial   planning,   and   sound   disaster  management.   The   Netherlands   has   an   intensive   knowledge   on   technical   requirements   for  urban  delta  areas,  which  can  be  applied  internationally.    

 

Figure  11:  http://vulgaire.com/delta-­‐works/  

Figure   12:   http://dutcharbitrationassociation.nl/arbitration-­‐in-­‐the-­‐netherlands/the-­‐netherlands-­‐as-­‐reowned-­‐seat-­‐of-­‐arbitration/rotterdam-­‐world-­‐class-­‐port  

Marine  Technology  (figure  12)  is  important  as  the  Netherlands  has  a  diverse  fleet  of  sea-­‐going  vessels,   the   largest   inland   navigation   fleet   and   the   highest   port   capacity   in   Europe.   The  Netherlands  invests  in  technology  for  sea  renewable  energy  and  offshore  mining.  In  addition,  they  work  to  maintain  environmentally  friendly  fleets.  This   involves   increasing  fuel  efficiency,  reducing   emissions   and  materials,   reducing   noise   reduction   (above   and   below  water).   Ports  are  also  being  changed,  as  they  are  now  being  constructed  offshore  for  safety  purposes.    

Water  technology  is  based  around  the  purification  of  industrial  and  drinking  water,  as  well  as  water  re-­‐use.  The   purification   industry   is   worth   50-­‐60   billion  euros/year.   This   means   that   efficiency   is   key,  especially   in   crop   irrigation   and   water   energy  production.    

The   Delta   Program   (figure   13)   aims   to   prevent  flooding,  supply  adequate  freshwater,  and  anticipate  potential   disasters.   There   are   five   Delta   decisions  that   declare   Netherlands’   priority.   This   includes  water   safety,   freshwater   strategy   (to   prevent  shortage),   spatial   adaptation   (new   water-­‐robust  spatial   development),   Ijsselmeer   region   discharge  into   the  Wadden   Sea,   and  Rhine-­‐Meuse  Delta   flood  

Figure  13:  http://www.futureofthegulfcoast.org/galveston2011/DrWilliamMerrellBRRCGalveston.pdf

Page 13: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  10    

 

defense.    

There  are   five  main  water   innovation   technologies   that   the  Netherlands   is  currently  working  on.   The   Sewage   Treatment   granular   sludge   (figure   14),   which   is   a   Nereda   technology   that  utilizes  a  group  of  micro-­‐organisms  that  form  compact  sludge  granules,  which  quickly  sink  to  the   bottom.   This   results   in   an   energy   savings   of   20%,   is   four   times   faster   than   traditional  technology  and   requires   less   space.   The  Sand  Motor   (figure   15)   covers   a   surface  area  of   128  hectares,  which  is  a  mass  of  sand  that  has  been  sprayed  off  the  coast  of  South  Holland  and  Ter  Jeijde   in  2011.  The  wind,  waves  and  sea  gradually  shifts  this  sand  towards  the  shore,  creating  new   beaches   and   dunes,   that   naturally   defend   the   coast   line   against   flooding   and   creates  some  100  hectares  of  wildlife,  and  recreation  space.  This  will  allow  the  Randstad  to  maintain  their   natural   landscape   and   farmland   economy,   which   is   currently   being   threatened   by   a  growing   industrial   and   business   economy.   This   method   not   only   saves   money   (no   more  importation  of  sand),  but  it  also  minimizes  ocean  floor  biodiversity  disturbance.  Scheveningen  has   also   combined   the   dyke   and   boulevard   so   that   they   could   both   enlarge   the   beach   and  protect   against   flooding.   On   the   other   hand,   water   distribution   technologies   at  Hondsbroeksche   Pleij   at   Westervoort,   near   Arnhem   (figure   16)   are   changing   the   riverside  landscape.  The  river  has  been  widened   in  order  to  tolerate   larger  discharges;  a   flood  control  barrier   divides   the   water   between   the   Rhine   and   the   Ijssel   evenly.   Finally,   A   ‘rubber   dam’  located  in  the  Balgstuw  Ramspol  (figure  17)  protects  the  hinterland  of  the  Ijssel  from  flooding.  This   rubber   dam,   when   inflated,   blocks   water   from   crossing   into   lower-­‐lying   lands   without  visually  impairing  the  landscape.    

 

Figure  14:  http://www.dutchwatersector.com/news-­‐events/news/5282-­‐nereda-­‐s-­‐revolutionary-­‐aerobic-­‐granular-­‐biomass-­‐exceeds-­‐expectations-­‐at-­‐first-­‐full-­‐scale-­‐wwtp-­‐epe.html  

Page 14: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  11    

 

 Figure  15:  http://www.seacityresearchnet.com/archives/tag/sand-­‐engine  

 Figure  16:  http://www.ruimtevoorderivier.nl/projecten/gelderland/dijkverlegging-­‐hondsbroeksche-­‐pleij/  

Page 15: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  12    

 

 Figure   17:   http://www.telegraph.co.uk/news/picturegalleries/picturesoftheday/8997144/Pictures-­‐of-­‐the-­‐day-­‐6-­‐January-­‐2012.html?image=12  

Conclusion:  This  source   indicates  that  the  Netherlands  has  a  strong  existing   infrastructure.  They  not  only  consider   local   planning   needs,   but   national   and   even   international   planning   needs.   They  understand  that  a  system  that  affects  one  town  just  as  easily  affects  the  system  of  connected  towns.   This   interconnected  way   of   thinking   is   due,   in   part,   to   the   complex   and   threatening  natural  system  of  the  Netherlands.  The  Dutch  made  strong  attempts  to  control  nature  in  a  way  that  maintains   and   amplifies   the  beauty  of   their   ecological   and   social   sustainability.   There   is  something   gratifying   about   living   among   water.   Residential   areas   are   cozy   and   community  oriented,  providing  parks  and  canals  filled  with  boats  for  strolls  around  the  neighborhood.  On  the   other   hand,   the   cities   are   accessible,   diverse   and   pleasant   to   walk   around.   However,  modern   society   has   caused   trouble   for   the   ecosystem.   The   Netherlands   is   still   facing   the  consequences  of  past  pollution,  let  alone  working  to  halt  and  reverse  unsustainable  behavior.  The  government  has  made  some  bold  statements  and  goals,  and  as  their  deadlines  approach,  the  clearer  it  becomes  that  their  ambition  will  not  be  rewarded.  They  have  postponed  many  of  their  international  and  national  goals  and  money  is  beginning  to  run  out.    

 

 

 

Page 16: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  13    

 

Website:  The  Landscape  Management  of  the  Netherlands.  www.landschapsbeheer.nl/  This   article   is   about   the   Landscape   Management   of  the  Netherlands,  which   is   an   alliance  of   12   provincial  landscape  management  organizations  (figure  18)  who  work  with   individuals,   organizations,   companies   and  the   government   in   order   to   support   projects   and  lobbying   by   supporting   volunteers,   providing   tools,  advising   on   small-­‐scale   landscape   design   and  management   planning,   encouraging   and   supporting  landowners   and   regional   governing   bodies,  implementing   provincial   projects   and   providing  knowledge.    

 

Figure  18:  http://en.wikipedia.org/wiki/Netherlands  

Conclusion:   This   group   impacts   area   development   plans   and   links   landscape   and   energy  sectors   with   wellbeing   and   health   sectors.   This   group   links   the   architecture   and   master  planning  benefits  and  shows  how  the  Netherlands  has  a  strong  planning  system  that  improves  the  sustainability  of  the  environment  and  society.  

Website:  Climate  and  Energy  Packet  Speech  by  Minister  Timmermans.  www.government.nl  This  is  a  speech  given  by  minister  Timmermans  at  the  EU  policy  seminar  in  2008  at  Clingendael.  At   the   seminar,   minister   Timmermans   is   encouraging   the   EU   to   begin   taking   the   climate  change  battle  seriously.  He  attempts  to  make  the  EU  the  standard  for  future  climate  change  policy   and   action.  While   the   general   population  would   complain   about   a   lot   of   the   financial  consequences   of   climate   change   regulations,   Timmermans   tells   policy   makers   to   ignore  backlash  because   the   long-­‐term  economic   result  would  be   for   the  best.  While   the  European  commission  has  set  some  “extremely  ambitious”  goals,  each  country  has  the  obligation  to  at  least   try.   The   Netherlands   for   example   has   been   interested   in   exploiting   wind   energy,   but  onshore  is  intrusive  and  offshore  is  too  expensive.  These  challenges  will  force  the  Netherlands  to  consider  and  research  a  lot  of  alternative  options.    

Conclusion:   It   is   important   for   the  Netherlands   to  not  only   look  at   alternative  water  energy,  but  also  incorporate  some  of  these  technologies  in  smaller  scale  architectural  manners.  There  is   a   tendency   to   think   of   big   and   large-­‐scale,   intrusive   developments,   when   the   technology  could  also  be  integrated  in  smaller,  but  equally  impactful  ways.  Wind  turbines  and  solar  panels  on  building   facades  will   not  be  enough   to  offset   all   energy  demands,  but   it  would  allow   for  smaller  spending  in  large  scale  developments  like  offshore  wind  farms.  In  addition,  it  would  tie  

Page 17: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  14    

 

back  to  the  vernacular  Dutch  architecture.  For  example,  people  used  to   live   in  the  windmills,  why   not   apply   a   similar   concept   now?   Homes   could   utilize   the   canals   for   small-­‐scale   water  energy   technologies   and   consider   alternative  wind   and   even   solar   powered   technologies   as  well.   A   new   architectural   standard   should   be   developed   to   allow   homes   to   become   more  energy  independent  and  therefore  decrease  demand  on  the  grid  for  experimentation  on  green  and  grey  energy.  

Website:  Plan  of  Action  Energy  Saving  in  Built  Environment  Report.  www.government.nl  This  article  focuses  on  residential  energy  consumption  and  the  Netherlands’  work  in  reducing  this   consumption.   Overall,   the   built   environment   contributes   to   30%   of   the   total   energy  consumption  of  the  Netherlands.  As  of  the  2000s,  energy  prices  have  more  than  doubled  and  living  conditions  have  barely  improved  (figure  19).  This  means  that  people  are  spending  more  on  living  expenses  with  0  benefits.  The  government  hopes  to  offset  these  negative  factors  by  

changing   heating   behavior   (1  degree=   50   euros)   and  increasing   insulating  properties   of   homes   (20-­‐30%  savings).    

Figure  19:  http://www.rwsleefomgeving.nl/onderwerpen/lokaal_klimaatbeleid/nieuws/content/energiearmoede/  

A   budget   of   120  million   euros  was   released   for   the   Ministry  of   Housing,   Spatial   planning  and   the   Environment.   This  

allowed  50,000+  property  owners  to  receive  subsidies  for  customized  energy  savings  advice,  7,000   houses   earned  More  with   Less   credit,   and   100,000   houses   received   subsidies   on   new  insulated   glass.   Schools   received   a   similar   budget,   165   million   euros,   for   the   Scheme   for  improvement  of  Interior  Climate  of  Primary  Education  Buildings,  2009.  This  has  largely  affected  housing   corporations,   as   they   are   receiving   incentives   for   providing   more   energy   efficient  homes   (figure   20).   The   Innovation   Program   Energiesprong   is   looking   for   a   50%   reduction   in  energy  consumption  by  2030  through  the  techniques  mentioned  below.  Overall,   these  funds  have  created  an  economic  boost  for  the  construction  industry.    

Figure  20:  http://www.megahome.nl/nieuws/brief-­‐winter-­‐nieuwsbrief-­‐2011.html  

Page 18: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  15    

 

Behavioral   changes   can   significantly   reduce   cooling  and  heating  costs;  this  will  be  measured  and  analyzed  with   the   implementation   of   the   smart   meter.   By  providing  a  report  6  times  a  year,  users  can  see  how  they   can   continuously   reduce   energy   costs   in   their  homes   rather   easily.   In   addition,   energy   saving  products  will  need  to  make  their  products  more  user  friendly,   making   it   easier   and   faster   for   users   to  implement  energy  saving  systems.    

However,  buildings  themselves  must  also  become  more  energy  efficient.  Block  by  block  takes  advantage  of  a  large-­‐scale  approach,  allowing  the  government  to  look  for  funding  from  larger  institutional   investors.   In   addition,   the   Government   Building   Agency   is   working   to   fit   all  buildings  over  500  m2   in  size  with  a  2013  energy   label.  From  2015  all  buildings  over  250m2   in  size  will  be  asked  to  fit  the  2013  energy  label.  The  intention  is  that  by  2018,  the  Netherlands  will  realize   net   0   buildings   (figure   21).   The   Environmental   Management   Act   obliges   housing  companies   to   implement   energy   saving   devices   whose   costs   can   be   recuperated   within   5  years,  including  the  rental  sector.  This  amounts  to  some  2.3  million  homes.  As  of  2011,  the  EPC  (Energy  Performance  Certificate)  for  newly  constructed  properties  have  been  sharpened  from  

.8   to   .6.   The   Lente-­‐akkoord   asks   for   a   25%  energy  improvement  by  2011  and  a  50%  energy  improvement   by   2015   (according   to   2007  data).  

Figure   21:   http://www.megahome.nl/nieuws/brief-­‐winter-­‐nieuwsbrief-­‐2011.html  

To   encourage   progress   in   the   private   sectors,   the   government   is   applying   several   money  saving  techniques  and  subsidies.  The  maximum  rental  price  for  properties  will  be  linked  to  the  energy   label   of   the   property.   Companies   and   private   renters   that   look   into   energy  conservation   strategies   are   eligible   for   an   investment   tax  deduction   from   the  EIA,   assuming  that  the  property  improves  by  at  least  two  label  steps  or  to  energy  label  B.    

Conclusion:  The  Netherlands  has  taken  an  active  stance  in  minimizing  the  energy  consumption  in   the   housing   sector.   However,   many   of   the   subsidies   and   incentive   acts   have   since   been  terminated  due  to   financial  concerns.  Slowly  the  government   is   trying  to  minimize  subsidies,  while  continuing   to  encourage   the  private  and   innovation  sector.   It   seems   like   the  goal   is   to  create   a   behavioral   change   that   then   increases   the   demand   for   energy   efficient   housing,  further   encouraging   innovation   and   progress   for   private   companies   regardless   of   dwindling  funds  and  subsidies.  

Page 19: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  16    

 

Website:  Water  Management  in  the  Netherlands.  www.rijkswaterstaat.nl  The  Netherlands  has  been  manipulating  their  landscape  since  before  the  Common  Era.  People  in  the  North  would  erect  artificial  dwelling  mounds  called  terps  to  protect  against  the  water.  Then,   in   the  Middle   Ages,   dikes   and   mills   were   used   to   drain   peat   bogs   (figure   22).   In   the  southwest,  peat  bogs  were  excavated  for   their  salt  deposits.  Unfortunately   this  caused  peat  bogs  to  oxidize  and  fill  with  seawater  during  floods  like  the  St.  Elisabeth  Flood  of  1421.  In  the  early   17th   century,   the  Netherlands   started  draining   the   salt-­‐water   lakes.  By   then,  90%  of   the  Rhine’s  water  was  being  discharged  through  the  Waal  to  the  sea.  In  order  to  redistribute  the  water  flow,  the  Pannerdensch  Kanaal  was  dug   in  1707.  Starting   in  the  19th  and  20th  centuries,  the   Netherlands   took   it   a   step   further   by   taking   an   active   role   in   the   redistribution   of   river  water   and   water   management.   Although   the   canals   constructed   during   this   time   where  impressive,   it  wasn’t   until   the   Zuiderzee   Project   and   the   Delta   Project   that   the  Netherlands  acquired  international  acclaim  for  their  water  management  tactics.  In  these  projects,  massive  amounts  of   land  were   re-­‐claimed   in   the  Flevoland   region  and  highly  efficient  and   impressive  technology  was  developed  for  flood  prevention  in  the  Southwest.  Overall  water  boards  were  set   up   as   early   as   1232,   making   it   the   oldest   form   of   democratic   government   in   the  Netherlands.    

 

Figure   22:   http://www.geocaching.com/geocache/GC2YJ7C_amsterdam-­‐trads-­‐dikes-­‐and-­‐polders?guid=1b46e515-­‐77b8-­‐4cde-­‐9d10-­‐133ead2ab7ef  

The   Netherlands   has   manipulated   natural   and   manmade   water   management   tools   such   as  dunes,  dams,  dikes,  and  the  Delta  Project  (figure  23).  Unfortunately,  these  systems,  even  when  all  of  the  gates  and  weirs  are   left  open,  create  barriers  that   impede  the  natural  system  from  moving  freely  as   it  normally  would.  For  this  reason,  there  are  safety  and  flood  concerns.  The  Netherlands  protects   each   town  and   region   to   a   certain   standard,   depending  on  population  and  damage  costs.  Slowly  the  Netherlands  is  focusing  its  energy  on  flood  procedures  instead  of  flood  prevention.  

Page 20: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  17    

 

 

Figure   23:   http://www.geocaching.com/geocache/GC2YJ7C_amsterdam-­‐trads-­‐dikes-­‐and-­‐polders?guid=1b46e515-­‐77b8-­‐4cde-­‐9d10-­‐133ead2ab7ef:  

The   Netherlands   is   concerned   of  flooding   caused   by   rain   and  waterlogging.  Polder  zones  are   in  particular   danger   of   flooding   and  waterlogging.   The   Netherlands  rescues  priority  zones  by  allowing  floods   to   happen   in   other   lower-­‐priority   zones.   For   example  grasslands   can   be   flooded   once  every   10   years,   while   built-­‐up  areas   cannot   be   flooded   more  than  once  every   100  years   (figure  24).  On   the  other  hand,  droughts  affect   the   Netherlands   in   the  usual   way.   Plants   wither,   ships  

cannot   be   properly   loaded,   power   stations   have   limited   cooling   water,   and   salinization  becomes   a   threat.   In   cases   of   drought,   priorities   lie   as   so   (1)   safety   and   the   prevention   of  irreversible  damage,  stability  of  flood  defense  structures,  settling  of  peat  bogs  and  moorland,  nature   (2)   utilities,   drinking   and   power   supply   (3)   small-­‐scale   high   quality   use,   irrigation,  process  water  (4)  shipping,  agriculture,  nature,  industry,  water  recreation,  lake  fishing.  

In  addition  to  flooding,  the  Netherlands  has  an  internal  salinization  problem  caused  by  the  land  reclamation.  As   soils   are  drained  of   their  water,  brackish  groundwater   from  deep   in   the   soil  has  begun   to   rise   (figure  25).   In   some  points   this   salt  water  even  penetrates   through   to   the  surface   and   continues   to   contaminate   freshwater.   This   damage   is   irreversible   and   affects  agriculture,   shellfish   fishing,   drinking   water   companies,   energy   companies   and   industry.  Cooling  systems  can  be  modified  to  use  salt  water,  but  it  is  an  expensive  system  that  includes  water  treatment.    

Figure  24:  http://0.static.wix.com/media/67b584_fcbe6daa1cf3a23c9ab7765c574475b6.jpg_1024

Page 21: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  18    

 

 

International   water   pollution   problems   are   also   on   the   radar.   From   agricultural   run-­‐off,  wastewater   overflow,   antibiotics,   medicines,   hormones,   heavy   metals,   PCBs,   PAHs,   and  eutrophication   are   all   concerns.   Bio-­‐accumulation   has   severely   impacted   organisms   and   the  food  chain.    

Water  in  the  Netherlands  is  stored  in  the  Ijsselmeer  Lake  so  that  it  can  be  used  as  needed  for  drinking   water,   irrigation,   shipping,   and   prevention   of   saline   intrusion   of   ground   and   fresh  water.   The   Netherlands   addresses   its   water   management   in   9   sections.   (1)   The   rivers   and  accompanying   canals   (2)   Ijsselmeer   area   (3)   Southwestern   Delta   (4)   smaller   regional  waterways  on  high  and   low   lying  areas   (5)  absorption  vs.  precipitation   run  down  (6)  narrow  summer  dikes  and  apposed  to  wide  winter  dikes  (7)  polders  (8)  streams  between  components  (9)  interconnectedness.    

The  rivers  and  canals  are  controlled  by  the  weir  at  Driel,  which  controls  how  much  water  the  Rhine  discharges   into  the  Ijssel;  the  sluice  gates  at  Aflsuitdijk  regulates  the  water   level   in  the  Ijsselmeer;  the  Haringvilet  and  Volkerak  sluice  gates  control  discharge  into  the  sea.  The  Meuse  water  level  is  controlled  by  seven  weirs  at  the  Borgharen,  Linne,  Roermond,  Belfeld,  Sambeek,  Grave  and  Lith.  Shipping   is   important  along  the  Meuse  and  the  Julianakanaal,  which  requires  coordination   of  water   level   on   both   sides   to   ensure   the  water   level   and   flow   remains   at   an  acceptable   level.   The   Netherlands   is   obligated   to   discharge   a   minimum   of   10m3/s   through  Maastricht,  in  return  Belgium  has  to  redirect  2  m3/s  +  the  excess  water  flow  from  Maastricht.  The   Rhine   splits   several   times,   allowing   for   control   of   water   flow   on   the   Rhine.   The   first  bifurcation   point   is   at   Pannerdensche   Kop,   where   the   river   splits   into   the   Waal   and   the  Pannendersch   Kanaal.   Next   the   Ijssel   branches   off   from   the   Neder   Rijn   near   Arnhem.   The  Amsterdam  Rijnkanaal  and  the  Noordzeekanaal  are   important  shipping  connections  between  IJmond,  Amstedam  and  Germany.  These  systems  drain   into  the  North  Sea  at  Ijmuiden.  When  the  sea  level  is  low,  water  flows  through  the  discharge  sluices,  and  when  the  sea  level  is  high,  

Figure  25:  https://publicwiki.deltares.nl/display/FRESHSALT/Home

Page 22: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  19    

 

the  Ijmuiden  pumping  station,  the  largest  in  Europe,  is  turned  on.  The  Ijsselmeer  functions  as  a  buffer  absorbing  or  discharging  water  as  needed.  Excess  water  is  discharges  into  the  Wadden  Sea  through  sluice  gates  at  Den  Oever  and  Kornwerderzand.  Water  from  the  lake  are  passed  through   Muiden   and   Zeeburg,   which   flushes   the   Vecht   and   Amsterdam   canals.   The  Southwestern  Delta  is  a  complex  system  of  fresh  and  saltwater  waterways  that  are  regulated  by  the  Harngvliet  sluice  gates  (figure  26).  The  Niewe  Waterweg  can  discharge  as  much  as  1,500  m3/s   for   as   long   as   possible.   The   goal   is   to   counteract   saltwater   intrusion   and   prevent  salinization  by  maintaining  a  minimum  water   level  on   the   inner  part  of   the  Haringvliet   sluice  gates.  Unfortunately,  these  gates  when  closed  block  migratory  species,  and  therefore  must  be  left   open   occasionally   to  maintain   a  more   natural   system.   There   is   an   expansive   amount   of  smaller   regional   systems   that   allow   the   Netherlands   to   expand   during   seasons   of   high  discharge.   The   regional   systems   fill   with   water   during   high   discharge   seasons,   and   during  drought  seasons,  the  main  systems  can  flood  into  the  regional  systems  for  support.    

 

Figure  26:  http://www.mare-­‐project.eu/news-­‐and-­‐events  

Climate  change   is  of   concern   in   the  Netherlands,   as  winters  will   become  wetter   (5-­‐10%  extra  river  discharge)  with  heavier  periods  of  rainfall.  While  the  number  of  rainy  days  in  the  summer  is   expected   to   decrease,   rainstorms   are   expected   to   be   much   more   intense   (still   a   20%  decrease   in   river   discharge)   (figure   27).   Sea   level   will   also   continue   to   rise.   Salinization   is   a  serious   concern   in   Groningen   and   settling   in   Flevoland   due   to   extraction   of   natural   gas.  Tectonic  tilting  will  cause  a  rise  in  the  South  East.    

Page 23: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  20    

 

 

Figure  27:  http://www.pbl.nl/en/publications/the-­‐effects-­‐of-­‐climate-­‐change-­‐in-­‐the-­‐netherlands-­‐2012  

The  Netherlands  expects  to  counteract  to  these  future  problems  by  continuing  to  expand  on  the   waterway   system.   As   demand   for   electricity   will   increase,   more   power   stations   will   be  built.  There  is  general  concern  that  flooding  and  waterlogging  will  become  a  problem  if  water  storage  solutions  are  not  created.  In  addition,  there  is  a  reasonable  chance  that  the  Rhine  will  exceed  the  allowable  discharge  rate  of  18,000  m3/s  between  2040  and  2045.    

Conclusion:   Transportation   infrastructure   along   waterways   can   provide   interesting  architectural   solutions   to   environmental   and   social   problems.   The   windmills   have   always  created   a   picturesque   landscape,   but   do   water-­‐pumping   stations   add   or   subtract   to   the  aesthetic  value  of   the   landscape?  What  about   the  offices   that  measure  and  control   the   river  flow,  are  they  also  designed  to  be  functional,  or  are  they  designed  to  minimize  visual   impact  

Page 24: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  21    

 

on   the   surrounding  nature.   In  addition,  with   increasing   transportation  along   the  water  ways  and   increasing   regional   infrastructure,   built   structures   will   continue   to   be   impacted   by  approaching  water.  How  can  the  architecture  not  only  be  pleasing,  but   include  systems  that  help  water  management  and  energy  collection.    

Website:  25  Million  Euros  for  Research  into  Energy  from  Plants  and  Algae.  www.news.leiden.edu  In   2009   the  Netherlands  provided   25  million  euros   for   the  program  called   ‘Towards  Biosolar  Cells’.   The   program   has   three   main   goals   (1)   “to   increase   the   photosynthetic   efficiency   of  plants...”  allowing  for  increased  biomass  production.  (2)  Research  the  use  of  algae  as  a  direct  source   for  butanol   (biofuel).   (3)   Create   an   artificial   leaf,   or   solar   collector,   that   supplies   fuel  instead  of  electricity.  As  the  sun  supplies  as  much  energy  in  one  hour  as  the  world  consumes  in  one  year,  the  Netherlands  hopes  that  this  system  can  yield  large  gains  in  the  future  (figure  28).  In  total  there  are  6  universities  and  30  private  companies  involved  in  the  research.    

 

Figure  28:  http://www.designboom.com/technology/bio-­‐solar-­‐power-­‐from-­‐grass-­‐clippings/  

Conclusion:   Although   the   Netherlands   has   plenty   of   open   land   available   for   this   kind   of  research   and   integration,   the   architectural   solution   is   ignored.   How   could   this   artificial   leaf  product  be  applied  to  building  facades?    What  are  its  qualities  as  an  architectural  tool  and  how  can  it  be  applied  to  modify  behavioral  changes  in  society?  

Page 25: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  22    

 

Website:  Renewable  Energy  in  the  Netherlands.  www.government.nl  By  2011  the  Netherlands  was  refocusing  its  power  on  reaching  the  14%  renewable  energy  goal  for  2020.  Instead  of  relying  on  government  funding,  the  SDE+  (the  new  subsidy  system  of  the  Netherlands)  relies  on  promoting  competition  within  the  private  sector.  Companies  must  meet  or   exceed   standards   for   certain   requirements   depending   on   what   kind   of   energy   they   are  producing.  For  example  waste  incineration  plants  had  to  satisfy  6.2  ct/kWh  in  order  to  qualify  for   financial  benefits.  On  the  other  hand  onshore  wind  had  to  satisfy  9.2  ct/kWh.  Renewable  energy   projects   that   cannot   meet   these   expectations   can   also   compete   under   the   free  category,   where   renewable   energy   technologies   must   compete   in   order   to   increase   their  chances  for  funding.  

Conclusion:  This  is  a  great  method  of  improving  the  cause.  The  government  does  not  have  to  spend  as  much  money  promoting  green  energy,  while  still  increasing  the  incentive  to  privately  fund  the  green  energy  projects.  However,  this   incentive  will  not   influence  architecture   in  the  Netherlands.    

Website:  National  Geographic:  Wind  Energy.  education.nationalgeographic.com  This  article  is  a  good  introduction  to  wind  energy.  Modern  wind  turbines  function  the  same  as  the  14th  century  Dutch  wind  turbines  that  were  used  to  pump  water  out  of  low-­‐lying  land.  The  only  difference  is  that  modern  wind  turbines  generate  electricity  (figure  29),  while  old,  Dutch  wind  turbines  are  utilized  directly  into  grinding  grain  or  pumping  water  (figure  30).  The  other  difference  is  the  scale  and  efficiency.  Modern  wind  turbines  stand  200-­‐300  ft  tall  and  spin  at  10-­‐20   rotations   per  minute.   Turbines   are   also   limited   to   the   speed   of   the  wind   (between   8-­‐55  miles/hour)  and  the  blades  turn  to  face  the  wind  automatically  (as  opposed  to  manually  in  the  past).  Although  wind  energy   itself   is  cheap,  wind   is  not  always  reliable   in  speed  or  direction.  While  offshore  wind  is  the  most  predictable,  it  is  also  the  most  expensive  to  start  up.    

 

Figure  29:  http://education.nationalgeographic.com/education/encyclopedia/wind-­‐energy/?ar_a=1  

Figure  30:  http://education.nationalgeographic.com/education/encyclopedia/wind-­‐energy/?ar_a=1  

Page 26: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  23    

 

Vertical   Axis  Wind   Turbines   (VAWTs)   can   be   installed   on   the   roof   of   buildings   and   have   the  main  rotor  and  generator  located  near  the  ground,  making  maintenance  easier  and  cheaper.  

Conclusion:  While   there   is  a   certain  beauty   to  horizontal  wind   turbines,   this   typology  can  be  used   architecturally   in   a   more   rural   setting.   The   horizontal   wind   turbines   have   lost   their  vernacular  appeal  to  the  Dutch  people,  despite  the  technical  similarities.  They  are  seen  as  an  engineering  tool,  not  as  an  architectural  and  social   tool,  as  they  used  to  be  seen   in  the  past.  Although  modern  wind  turbines  don’t  need  an   in-­‐house  technician,  perhaps  the  windmill  can  be  repurposed  to  fit  some  functional  purpose.  In  addition,  dense  urban  settings  call  for  the  use  of   Vertical   Axis   Wind   Turbines.   Even   if   these   turbines   only   power   a   fraction   of   the   energy  needs   for   the   building,   people   can   more   directly   see   the   impact   of   wind   turbines   on   their  society.  Altogether,  these  wind  turbines  would  accumulate  a  significant  energy  production.    

Website:  Wind  Energy  Foundation.  www.windenergyfoundation.org  This  article  focuses  on  the  variety  of  scales  in  wind  energy.  Many  people  feel  dissociated  from  the  wind  turbine  due  to  its  massive  scale  and  height;  however,  wind  turbines  only  make  sense  at   a   great   height.  As  wind   speed  doubles,   energy  production   increases   eightfold   (figure   31).  Another   concern   is   areas   with   great   wind   energy   capacity   tend   to   be   too   isolated   from  “demand   centers”   to   be   efficiently   or   economically   used.   Wind   turbines   can   be   used   at   a  variety  of  scales,  from  a  small  1-­‐100  kilowatt  net-­‐metered  system  to  a  large  wind  farm  operated  by  an  energy  company.  However,  small  wind  energy  systems  can  be  connected  to  the  grid  and  function  the  community  as  a  whole.    

 

Figure  31:  http://www.macalester.edu/maccares/turbine.htm  

Page 27: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  24    

 

Conclusion:   One   of   the   reasons   that   wind   energy   has   lost   its   vernacular   appeal   is   that   the  modern  wind  turbine   looks   like  a  culturally  dead   instrument  designed  by  a   large  corporation  with  no  national  ties  that  then  take  over  the  landscape  in  the  form  of  a  wind  farm.  There  is  no  human  scale  to  them  anymore,  at  least  when  utilized  in  such  large  wind  farms.  However,  it   is  inefficient  for  a  company  to  buy  some  land  or  pay  rent  to  a  farmer  in  order  to  place  a  quantity  of  wind  turbines  on  farms.  Wind  turbines  should  be  independently  owned.  If  every  home  had  a  VAWT   on   their   roof,   owners   would   feel   a   different   psychological   relationship   to   the   wind  turbine  than  if  there  were  1,000  towering  wind  turbines  a  block  away.  In  addition,  cities  in  the  Netherlands  used  to  have  a  handful  of  windmills  around  the  perimeter,  which  functioned  as  a  city  marker   and   location   for   food   and   services   that   affected   the   people   directly.   Scale   is   an  interesting   subject.   Instead   of   quantity   and   size   of   the   wind   turbines   as   a   form   of   scale,  ownership   and   land   typology   should   be   used   as   a   form   of   scale.   You   have   residential   wind  turbines,   city   turbines   (for   schools,   public   buildings,   restaurants,   etc),   rural   turbines   (for  pumping  of  water  and  farms),  all  of  which  connected  to  the  grid,  so  that  no  energy  was  ever  wasted.  What   percentage   of   a   city’s   energy   needs  would   be  met   by   this   standard   and   how  would  the  community’s  perspective  on  the  subject  change?    

Website:  Exploiting  Wind  Power  in  Holland.  news.bbc.co.uk  This  article  raises  some  of  the  Netherland’s  concerns  about   investing   in  wind  energy,   leading  to   a  decrease   in  wind  energy   investment   (figure   32).   100   years   ago   there  were   10,000  mills.  Today  only   1,000  exist   and  of   those  only   2/3   are   still   in   use.   The  Head  of  Renewable   Energy  Division  at  Nuon  is  frustrated  by  the  lack  of  initiative  and  energy,  “we  have  plans  to  build  more  than  500  megawatts  of  wind  farms,  but  we  have  had  the  plans  for  more  than  10  years.”  Some  suggest  that  the  Netherlands  doesn’t  have  enough  space  to  fit  wind  turbines.  Not  only  is  the  Netherlands   a   small   country,   but   it   is   also   densely   populated   with   empty   land   utilized   for  industrial  and  agricultural  uses.  

 

Figure  32:  http://www.thewindpower.net/country-­‐datasheet-­‐10-­‐netherlands.php  

Page 28: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  25    

 

Conclusion:   The  Netherlands   cannot  dedicate  plots  of   land   to  wind   farms,  but   it   can   include  them  in  existing  structures.  There  is  no  reason  why  wind  turbines  cannot  share  the  land  with  industrial   or   agricultural   sites.   Even   cities   can   incorporate   the   wind   turbines   into   their  structure.  While  there  have  been  some  architects  who  have  taken  the  initiative  to  incorporate  wind   technology   in   their   designs.   Wind   turbines   have   lost   their   architectural   qualities   and  presently   stand-­‐alone   as   tall   hollow   towers.   Architects   should   be   challenged   to   change   this  view  and  to  turn  wind  turbines  into  an  architectural  tool,  instead  of  an  engineering  tool.  

Website:  Dutch  Fall  out  of  Love  with  Windmills.  www.reuters.com  This   article   discusses   the   Dutch   history   with   modern   wind   turbines   and   in   particular   the  relationship  between  onshore  and  offshore  wind  farms.  The  first  offshore  wind  turbines  were  built   in   2006.   These   36   turbines   provided   enough   energy   for   100,000   households.   However  since  then,  news  have  not  been  good.  The  Dutch  government  has  stated  that  offshore  wind  energy  has  too  high  of  an  initial  cost  for  the  government  to  guarantee  funding  and  subsidies  for   all   start   ups.   In   one   year,   the   government  provided   subsidies  worth   4.5   billion   euros   for  wind   energy.   The   new   budget   plans   on   spending   1.5   billion   euros   in   aid/year   for   renewable  energy   in   general.   Instead   of   supporting   all   renewable   energy   sources,   technologies   and  companies   have   to   fight   and   compete   for   funding.   This   shows   and   creates   a   decreasing  interest  in  wind  energy  in  the  Netherlands.  It  has  now  become  almost  impossible  to  fund  new  wind  energy  projects,  as  the  initial  cost  is  too  high  for  just  one  or  even  a  few  investors  to  fund  (figure  33).  Even  those  projects  that  do  find  funding  such  as   in  Urk,  entrepreneurial   farmers,  are  having  issues  making  the  plans  come  to  life  due  to  local  backlash.  These  farmers  want  to  build  the  country’s  largest  onshore  wind  farm  in  Urk,  capable  of  supplying  energy  for  900,000  people  with  86  turbines.  However,  after  20  years  of  local  lawsuit  proceedings,  the  completion  date  has  been  predicted  for  2014,  with  potential  delays  still  possible.  

 

Figure  33:  http://www.duurzaamvastgoed.com/windenergie-­‐goedkoper-­‐dan-­‐energie-­‐uit-­‐kolen-­‐en-­‐uranium  

Page 29: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  26    

 

Conclusion:   Conflicting   sources   state   that   this   wind   park   in   Urk   called   Windpark  Noordoostpolder  has  not  yet  been  completed  or  is  completed,  but  online  information  has  not  been  updated  yet.  On   the  other  hand,   it   is   interesting   to   see  what   the   reaction   to   this  wind  farm  will  be  and  how  a  farm  this  large  impacts  the  land  at  the  ground  plane.  Is  it  a  pretty  park  landscape  where   people   can  walk   around   and   enjoy   a   day   outside?   Is   it   an   isolated   private  property   that   socially   kills   valuable  waterfront   property?   Is   there   interest   in   developing   that  land,  or  will  it  maintain  its  status  as  a  wasteland?  

Website:  Wind  Power  is  Dying.  www.frontpagemag.com  This  article  talks  about  the  discouraging  facts  of  wind  energy  in  particular  the  economic  myths  of  wind  energy.  Although  many  renewable  energies  claim  that  the  initial  cost  will  be  offset  by  long-­‐term   savings   and   increasing   job   opportunities,   this   article   claims   that   wind   energy   is  deceitful  in  this  claim.  Because  wind  not  stable  or  predictable  enough  to  guarantee  a  constant  stream  of   energy,  many   nations  would   have   to   build   back   up   gas   plants   for  when   the  wind  fails.   That   means   that   when   a   country   backs   wind   energy,   they   must   also   construct   gas-­‐powered  plants  for  back  up.    

The  Center  for  Political  Studies  has  found  that  a  wind  farm  in  Texas  will  cost  $400  million  in  the  next   2   years.   This   farm  will   create   one   job   for   every   $1.6  million   of   capital   investment   (250  jobs).  Of  those  jobs,  90%  will  be  transferred  from  other  technology  industries,  leaving  only  10%  empty  positions  (25   jobs).   In  addition,   the  study  claims  that  Denmark  has  a  GDP  $270  million  lower  than  it  would  have  if  it  weren’t  for  wind  subsidies.  

All  in  all,  the  article  claims  that  wind  energy  does  not  offset  enough  energy  demand,  cannot  be  constructed  without  subsidies,  does  not  create  significant  job  increase,  and  actually  damages  the  finances  of  countries.  The  Netherlands,  who  depended  on  wind  energy,  became  the  first  country  to  abandon  their  20-­‐20-­‐20  goal  for  domestic  power  by  renewables.    

Conclusion:   This   article   most   definitely   does   not   paint   a   pretty   picture   for   wind   energy   in  general.  But  if  not  wind,  then  what?  Are  wind  farms  financially  unsuitable,  or  are  smaller  scale  projects  more  realistic?  Perhaps  wind  farms  focus  on  an  extreme  dependence  on  wind  energy,  when   society   should   be   searching   for   a  mixed   and   integrated   renewable   energy   system.   To  think  that  one  energy  technology  would  replace  all  others  is  a  bit  naïve.  It  creates  competition  between   renewable   energy   sources   instead   of   creating   competition   between   renewable  energy  and  non-­‐renewable  energy.  

 

 

 

Page 30: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  27    

 

 

Site  Visits.  

Site  Visit:  Hoorn.    

 

Figure  1:  http://freebeemap.nl/haalPlaat.php?cat=plattegrond&id=17&w=900  

Hoorn  is  a  rural  town  in  North  Holland  that  lies  on  the  shore  of  the  Ijsselmeer.  As  one  of  the  six  bases  of  the  Dutch  East  India  Company,  Hoorn  was  very  wealthy  and  powerful  at  the  height  of  the  Golden  Age.  After   the  Dutch  East   India  Company   left,  Hoorn   turned  to   fishing.  Presently  the  harbor  has  seen  an  increase  in  interest  for  water  sports  and  also  serves  as  a  stop  for  many  old   sailing   ships   hoping   to   attract   clients.   Hoorn   now  has   71,000   inhabitants   of   80   different  nationalities.    

Page 31: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  28    

 

 

Figure  2:  Personal  photograph.  

Upon  arrival  at  Hoorn,  I  wanted  to  see  the  coast.  I  wanted  to  see  the  condition  between  the  town  and  the  water,  and  I  wanted  to  see  how  the  Ijsselmeer  was  used,  and  what  was  on  the  other  side  (figure  2).  Knowing  that  there  was  a  large  wind  farm  on  the  other  side,  I  wanted  to  see  just  how  intrusive  the  wind  turbines  were  on  the  horizon.  Although  they  were  a  bit  more  visible  than  in  figure  2,  I  still  found  the  experience  similar.  Unless  I  was  trying  to  look  at  them,  they  were   relatively  discrete.  What   I   found   to  be  more   intrusive  were   the   rods  popping  out  from   the   water.   There   were   many   and   they   covered   a   huge   zone   of   the   Ijsselmeer   at   this  particular  location.  I  assume  they  belong  to  the  fishing  industry  of  Hoorn.    

 

Figure  3:  Personal  photograph.  

Figure  4:  Personal  photograph.  

Riding  my  bike  along  the  coast,  I  found  it  interesting  to  see  how  the  boating  industry  affected  my  journey  up  Hoorn.  The  hundreds  of  sail  masts  seemed  both  charming  and  frightening  at  the  same  time  (figure  3).  Never  had  I  seen  so  many  sailboats  parked  so  close  together.  While  some  spaces   succeeded,  others   failed   to   impress.   In   the   successful   situation,   a  memorial   lined   the  water  and  provided  plenty  of  sitting  space  and  objects  for  interaction  (figure  5).  One  could  sit  alone  and  read,  or  play  with  the  kids  as  they  explored  the  items.  In  the  failing  situation,  there  was   no  more   than   one   or   two   benches   for   sitting   (figure   3).   In   addition,   the   sidewalk   was  narrow,  forcing  people  to  squeeze  by  each  other  as  they  passed.  In  addition,  the  topography  sloped  down  on  both  sides  of  the  sidewalk  forcing  you  to  walk  through  quickly.  In  this  case,  I  felt  like  the  attention  was  drawn  to  the  boats  and  I  was  an  afterthought  in  the  design.    

Page 32: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  29    

 

 

Figure  5:  Personal  photograph.  

Figure  6:  Personal  photograph.  

I  finally  hit  the  first  sign  of  the  town  after  the  coast  turned  in  and  transformed  into  a  canal.  I  saw   a   row   of   canal   houses   facing   the   water,   but   they   didn’t   seem   any   different   than   the  houses  just  a  street  or  so  back  from  the  water  edge.  They  had  more  open  space  on  the  street  and   sidewalks,   which   attracted   a   higher   pedestrian   traffic,   but   apart   that   it’s   charm   was  irrefutably  beautiful   (figure  4).  After   looping  around,   I   bumped   into   a  park   that   very  quickly  separated  me  from  the  actual  town  of  Hoorn.  While  the  park  seemed  very  charming  at  first,  I  was   immediately   turned   onto   another   long,   narrow   stretch   of   bike   lane,  which   inspired  my  return   back   into   the   town   of   Hoorn.   On   the   return,   I   was   able   to   capture   an   image   that  properly  displayed  the  division  between  the  nature  of  the  park  and  the  civilization  of  the  town  (figure  6).    

Site  Visit:  Zaanse  Schans.    

 

Figure  7:  http://europaenfotos.com/amsterdam/thumb-­‐plano-­‐zaanse-­‐schans.jpg  

Although  Zaanse  Schans  is  now  mostly  a  museum  town  with  a  series  of  picturesque  windmills,  in  its  history  it  contained  not  only  600  active  windmills,  but  was  also  Europe’s  oldest  industrial  area.   However,   these   windmills   were   not   used   just   for   pumping   water.   The   creative   local  entrepreneurs   of   the   Dutch   Golden   Age   designed   their   windmills   to   produce   a   varied  assortment   of   goods,   which   could   then   be   sent   off   for   international   trade.   As   an   industrial  community   involved   in   international  trade,  this  town  became  very  prosperous   in  the  18th  and  

Page 33: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  30    

 

19th   centuries.   However,   the   people   of   this   town   were   not   cold-­‐hearted   competitors,   but  community   friendly.   They   shared   technology   and   even   created   a   “fire   contract”,   which  protected  windmills  and  their  owners  from  fire  damage.  Products  and  services  included  wood  sawing,  paper,  ground  spices,  oil  for  food,  oil  for  paint,  dye,  fabric,  flower,  cocoa  powder,  etc.  In   addition,   the   proximity   to   Amsterdam,   the   materials   produced,   and   its   location   close   to  water  allowed  this  community  to  play  a  major  role   in  shipbuilding  and  whaling.  In  total  there  were  26  shipyards,  which  constructed  100-­‐150  ships  per  year.    

 

Figure  8:  Personal  photograph.  

The  main   point   of   this   visit  was   to   understand   how  windmills   interacted  with   their   physical  environment  in  a  more  historical  setting.  Zaanse  Schans  contains  the  best-­‐preserved  windmills  and  town  in  the  Netherlands  and  they  attract  millions  of  tourists  every  year.  As  seen  in  figure  8,  windmills  were  always   in  series,  something  that   is  no  longer  seen  in  the  present  day.  Each  windmill   served   a   different   industrial   function,   which   demonstrates   the   differing   windmill  technology.  These  windmills  are  not  meant   to  hide   in   the  background,   the  bright  colors  and  larger  size  stand  out  in  the  landscape.  Yet  they  are  not  considered  ugly  like  modern  day  wind  turbines.  

Page 34: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  31    

 

 

Figure  9:  Personal  photograph.  

Figure  10:  Personal  photograph.  

The  farmland  behind  the  remaining  windmills  is  significantly  lower  than  the  water  level  of  the  Zaan   and   brilliantly   demonstrates   the   irrigation   and   flood   control   system.   As   seen   in   the  figures   above,   small   channels   of   water   scatter   the   farmland,   all   connected   eventually   to   a  windmill   (or   in   the   present   day   a   pumping   station).   As   specified   in   the  water  management  packet   in   the   Research   Report,   this   farmland   has   a   lower   risk   consequence   in   times   of  flooding,  and  is  therefore  allowed  to  flood  from  time  to  time.  This  is  seen  a  little  bit  in  figure  10  and  11,  one  can  see  shimmers  of  reflection  throughout.    

 

Figure  11:  Personal  photograph.  

Figure  12:  Personal  photograph.  

Another  great  example  of  water  management  techniques   in  the  Netherlands   is  the  terracing  separating  low-­‐lying  areas  from  higher  areas.  At  the  windmills,  the  land  closest  to  the  water  is  highest,  and  the   land  to  the  right  (away  from  the  water)   is   lower  (figure  12).  The  higher   land  creates  a  barrier  that  keeps  water  out.  The  windmills  pump  water  from  the  low-­‐lying  region  up  into  the  Zaan  river  at  the  higher   level.  This   is  also  seen  further  out   in  the  farmlands  north  of  Zaanse  Schans  (figure  11),  where  the  land  is  higher  on  the  right  than  on  the  left  of  the  road.    

Page 35: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  32    

 

Site  Visit:  Rotterdam.    

 

Figure  13:  http://www.orangesmile.com/destinations/img/rotterdam-­‐map-­‐big.jpg  

Rotterdam   first   became   a  major   port   after   the   construction   of   the   canal   connecting   to   the  Schie   in  1340.    During  the  17th  century  Indian  trade  boosted  the  Dutch’s   international  trading,  Rotterdam  expanded  its  harbors  and  improved  it  connection  to  the  Meuse.  This  move  allowed  Rotterdam   to   take   second   place   as   the   second   merchant   city   of   the   Netherlands.  Unfortunately,   Napoleon’s   French   occupation   of   the   city,   between   1795   and   1815,   crippled  Rotterdam’s  trade  industry.  Rotterdam  quickly  recovered  and  built  the  current  New  Waterway  canal,  which  granted  larger  ships  access  to  the  port.  Between  1892  and  1898,  the  construction  of   a   traffic   bridge   across   the  Meuse   only   opened   the   river’s   south   bank   and   allowed   for   an  expansion  of  harbor  facilities  westward.  Soon  after,  between  1906  and  1930,  the  Waal  Harbor  

Page 36: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  33    

 

was  constructed,   the   largest  dredged  harbor   in   the  world.  Overall,  Rotterdam’s  various   rises  and  falls  proves  its  longevity  as  a  major  trading  HUB  of  Europe.    

Rotterdam   is   not   only   the   home   for   one   of   Europe’s  major   ports,   but   it   is   also   the   second  largest   city   of   the   Netherlands.   Rotterdam   is   connected   to   the   North   Sea   via   the   New  Waterway  canal,  and  is  also  along  the  New  Meuse,  a  tributary  of  the  Rhine  River.  The  port   is  “at  the  heart”  of  to  London,  Paris,  German  Ruhr  districts,  allowing  it  to  be  the  middle  man  of  north   eastern   Europe.   Because   of   its   ideal   geographical   and   urban-­‐industrial   location,  Rotterdam   and   Europoort   (the   outpour   of   Rotterdam)   are   responsible   for   the   largest  quantities   and   varieties   of   products   in   the   world.   Tens   of   thousands   of   river   barges   help  transport   goods   from   Rotterdam   into   inland   Europe.   However,   one   of   the   most   important  imports   and   exports   are   crude   oil   and   petroleum   products.   Rotterdam   has   several   large   oil  refineries   and   pipelines   transport   crude   oil,   refinery   products,   ethylene   natural   gas,   and  naphtha  to  Amsterdam,  Limburg,  Zeeland,  Antwerp  and  Germany.    

 

Figure  14:  Personal  photograph.  

Figure  15:  Personal  photograph.  

Rotterdam   is   known   as   one  of   the  most  modern  Dutch   cities   in   the  Netherlands.  Due   to   its  heavy  industrial  function  as  well  as  the  significant  reconstruction  post  World  War  II,  Rotterdam  is   the   trade   and   architectural   capital   of   the   Netherlands.   As   seen   in   the   figures   above   and  below,  the  storage  and  shipping  capacity  of  Rotterdam  is  monumental   is  scale.  From  a  small  cruise  boat  tourists  are  awed  by  the  mere  scale  of  all  of  the  storage  facilities,  warehouses  and  machinery.  And  yet,  as  explained  by  the  tour  guide,  Rotterdam  is  still  just  the  third  largest  port  in   the  world.  On   the  other  hand,  Rotterdam  also  has  one  of   the  most   intricate  Vessel   traffic  services,  where  staff  members  can  track  all  incoming  and  outgoing  boats,  regardless  of  scale,  on   a   satellite   map   from   Rotterdam   to   the   ocean.   These   workers   ensure   that   all   ships   are  properly  monitored  for  unloading,  loading  and  service  needs.  Note  that  in  figure  15,  a  windmill  is  spotted  alone  amongst  the  warehouses.  

Page 37: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  34    

 

 

Figure  16:  Personal  photograph.  

Figure  17:  Personal  photograph.  

 

Figure  18  demonstrates  the  architectural  side  of   Rotterdam,   where   architects   felt   free   to  

design   modern   buildings,   rare   in   the   Netherlands.   While   these   buildings   and   bridges   might  seem   interesting   at   first   glance,   contextually   they   ignore   their   surroundings.   The   top   right  

Figure  18:  Personal  photographs.  

Page 38: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  35    

 

image  shows  the  ideal  view,  but  looking  at  the  bottom  right  and  left  image,  the  negative  space  is   very   poorly   planned   and   not   people   friendly.   As   prime   waterside   property,   these   spaces  should  be  properly  designed  for  users  to  enjoy.  Unfortunately  due  to  the  industrial  effects  on  the  city,  the  water  front  property  is  reserved  for  industrial  uses  and  less  so  human  related.    

Site  Visit:  Zuid  Kennemerland.    

 

Figure  19:  http://www.mappery.com/maps/Nationaal-­‐Park-­‐Zuid-­‐Kennemerland-­‐Map.mediumthumb.gif  

Page 39: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  36    

 

Zuid  Kennemerland   is  a  3,8000  acre  National  Park   in   the  Netherlands  containing  a  variety  of  habitats   from   forests   to   sand   dunes   and   beaches.   The   park   stretches   from   Ijmuiden   to  Zandvoort  and  Haarlem  and  contains  over  100  species  of  birds,  stags,  deer,  rabbits,  butterflies,  Dutch   wild   horses   (koniks),   Dutch   bison,   and   European   bison.   The   many   viewpoints,   bird  watching   points,   and   picnic   tables   make   this   a   great   place   for   short,   long   hikes   or   biking.  Historically   one   can   see   traces   of   the   Great   Olmen,   the   zeedorpenlandschap,   estates,   and  World  War   II   bunkers,   roads   and   tanks.   This   site   also   shows   traces   of  water   extraction   and  Dutch  water  management  techniques.    

 

Figure  20:  Personal  photograph.  

Zuid  Kennemerland  has  maintained  the  most  natural  form  of  the  Dutch  coastline,  allowing  me  to   get   the   most   authentic   glimpse   of   the   natural   Dutch   water   management   system.   Upon  entering  the  park,  I  hit  a  narrow  strip  of  European  style  forest  filled  with  trees  and  pinecones.  Not   soon   later   I   began   to   observe   a   higher   quantity   of   hills   and   clearings   until   I   hit   a   wide  spread  of  land  (figure  20).  This  new  landscape  contained  sporadic  clusters  of  tall  trees  located  mostly   at   the   tops   of   hills.   The   sandy   soil   seemed   sandy   and   depending   on   its   location   and  closeness  to  hills  and  shade  went  from  very  dry  to  very  wet.  

 

Figure  21:  Personal  photograph.  

Figure  22:  Personal  photograph.  

Page 40: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  37    

 

The  figuress  above  show  scattered  low  hills,  which  is  deceptive  of  the  actual  conditions,  more  clearly   seen   from   the   image  below,   taken   from   the   top  of   a   sand  dune   right   at   the   beach’s  edge.  The  hilly  terrain  seems  to  go  as  far  as  the  eye  can  see,  with  the  occasional  pool  of  water.    

 

Figure  23:  Personal  photograph.  

 

Figure  24:  Personal  photograph.  

Figure  25:  Personal  photograph.  

These  three  figures  show  how  quickly  the  terrain  goes  from  below  sea  level,  hilly  and  grassy,  to  sandy  and  flat.  The  beach  is  separated  from  the  rest  of  the  park  by  large  sand  dunes.  Figure  24  shows  more  clearly  a  pool  of  water  trapped  by  the  hills  around  it.    

Page 41: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  38    

 

Site  Visit:  Leiden.    

 

Figure  26:  http://upload.wikimedia.org/wikipedia/commons/4/4e/Blaeu_1652_-­‐_Leiden.jpg  

Leiden   is   an   important   intersection  between   the  waterways  and   roads  of  Holland.   Since   the  Golden  Age,   this   town  has   attracted   scientists,   artists   and   industry.  Due   to   the   international  textile   industry,   Leiden   was   the   largest   city   in   Holland   by   the   end   of   the   15th   century.  Unfortunately   the   16th   century   led   to   the   persecution  of   Protestants   in   the   city   and   Spanish  conquest,  where  the  people  suffered  of  disease  and  starvation.  The  new  Golden  age  led  to  a  mass   migration   to   Leiden   in   1577.   The   Calvinist   migrants   were   experienced   in   textiles   and  business.  These  two  combinations  allowed  Leiden  to  recover  with  new  products,  techniques,  capital  and  labor.  Through  continuous  expansion,  Leiden  constructed  a  new  network  of  canals  in   1659   and   by   1670   the   city   has   some   60,000   inhabitants.   Unfortunately,   Leiden   slowly  crashed  again  creating  unemployment  and  migration  out  of  the  city.  Tension  only  increased  as  Napoleon  arrived  and  in  1807  the  explosion  of  a  ship  (who  was  carrying  gunpowder)  destroyed  homes   and   killed   160  people.   The   city   didn’t   begin   to   recover   until   1815,  where   the   industry  expanded  to   include  metal,  printing  and  canning.  After  one  more,  short,  decline  now  Leiden  can  claim  a  low  unemployment  rate,  a  highly  educated  population  and  multiple  museums  and  monuments.    

Page 42: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  39    

 

 

Figure  27:  Personal  photograph.  

Figure  28:  Personal  photograph.  

Leiden   was   a   great   place   to   start   looking   at   how   old   city   master   planning   incorporated  windmills  canals  and  services  for  the  population.  I  had  already  begun  to  observe  how  windmills  surrounded  the  cities  of  the  Netherlands.  In  all  cases,  a  canal  and  various  windmills  surrounded  the  older  section  of  the  city.  As  seen  in  figure  27,  Leiden  followed  the  same  pattern.  The  canal  then   led  branched  off   into   the   city   to   facilitate   transportation  within   the   city.   The  windmills  circling  Leiden  were  not  used  for  water  pumping,  but  for  grain  production  for  the  population.  In  response,  Leiden  built  a   large  hilltop,  where  the  people  could  evacuate  to  during  flooding  (figure  28).    

 

Figure  29:  Personal  photograph.  

Page 43: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  40    

 

In  Figures  29-­‐31  one  can  see  how  the  intersecting  canals  affected  the  atmosphere  of  the  town.  The   streets   seem  wider,  more   open   and   fresh.   Air   is   brought   into   the   city   and   it   allows   for  higher  traffic  flows  and  serves  as  a  gathering  space.  People  are  more  likely  to  stop  and  sit  or  stroll  with  friends.  In  figure  29,  the  intersection  of  several  canals  at  the  city  center  is  used  as  a  main   gathering   space,   where   numerous   cafes,   restaurants   and   bars   are   filled   with   clients  enjoying  a  day  out.  The  other  branches,  as  seen  below,  are  not  as  crowded,  but  nonetheless  attract  restaurants  and  pedestrians.    

 

Figure  30:  Personal  photograph.  

Figure  31:  Personal  photograph.  

One   thing   to   note   is   that   the   canals  sometimes  blocked  access  to  desirable  areas.  For   example,   figure   32,   the   canal   limits   the  city   from   access   to   a   beautiful   park   on   the  other  side.  Although  one  can  cross  a  bridge,  it  is   still   not   easily   accessible.   Another   thing   to  note   is   the   risk   of   algal   bloom   in   non-­‐circulating   bodies   of   water.   In   figure   33   one  can   see   the   effects   of   a   closed   pond   at   the  Leiden   University   greenhouse,   whereas   the  canal  on  the  right  is  free  of  algal  bloom.    Figure  32:  Personal  

photograph.  Figure  33:  Personal  photograph.  

Page 44: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  41    

 

Site  Visit:  The  Hague.    

 

Figure  34:  http://euro-­‐map.com/karty-­‐niderlandov/gaaga/podrobnaya-­‐karta-­‐gaagi-­‐s-­‐dostoprimechatelnostyami.jpg  

The  Hague  was  founded  in  the  13th  century  and  is  known  as  the  seat  for  the  Dutch  government  and  the  home  of  the  Dutch  royals.  Following  suit,  the  Hague  is  UN’s  fourth  city  after  New  York,  Geneva  and  Vienna  with  115  embassies  and  consulates  and  160  international  organizations.  This  has  led  to  international  immigration  causing  the  demand  for  6  international  schools,  64  hotels,  850  restaurants,  pubs  and  cafes,  45  museums,  and  3,000  companies.  The  500,000  people  of  the  Hague  are  supported  by  5  train  stations,  11  kilometers  of  coastline,  3  kilometers  of  wharf  frontage   and   Scheveningen   Harbor,   400   hectares   of   forest,   111,000   trees   alongside   roads.  Overall  one  third  of  the  city  is  green  space.    

Page 45: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  42    

 

 

Figure  35:  Personal  photograph.  

Figure  36:  Personal  photograph.  

Once   again   The   Hague   is   surrounded   by   a   main   canal   (figure   35)   and   intersected   by   other  branches  of  the  canal  to  ease  transportation  of  goods  into  the  city.  Compared  to  Leiden,  The  Hague   is  much   larger  and   therefore  has  more  branches  of   canals   that   lead   into   the  city,  but  don’t  loop  entirely  through.  Unlike  Leiden,  gathering  spaces  are  not  all  focused  around  water,  but   nonetheless   the   main,   central   gathering   space   is   still   water   based.   A   lake   next   to   the  Ministry  of  General  Affairs  (figure  36)  indicates  the  center  of  The  Hague.  On  the  other  side,  a  park  with  benches  and  sculptures  serve  as  the  gathering  space.    

Page 46: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  43    

 

 

Figure  37:  Personal  photograph.  

Figure  38:  Personal  photograph.  

While  The  Hague  has  an  urban  appeal,  the  closer  to  the  coast  you  get,  the  more  green  space  there  is.  Figure  37  shows  the  west  canal  boundary  signifying  this  change  the  hardscape  on  the  left  side  becomes  grass  on  the  right  side.  Before  accessing  the  beach  and  Scheveningen,  one  must  cross  the  Scheveningse  Bosjes  via  tram,  bike,  or  even  foot.  At  the  boardwalk,  the  severe  drop  from  the  urban  level  to  the  sandy  beach  helps  protect  the  beach  width  and  the  city  from  flooding.  

 

Figure  39:  Personal  photographs.  

Page 47: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  44    

 

 

Figure  40:  Personal  photograph.  

Figure  41:  Personal  photographs.  

The   boardwalk   provides   a   flood-­‐control   and   social   service   as   hundreds   of   restaurants,   bars,  museums,  playgrounds  and  even  fairs  line  both  sides  of  the  boardwalk  for  as  far  as  the  eye  can  see.   I   find   this   form   of   architecture   to   be   more   engaging   than   canal   houses   as   they   allow  people   to  sit  and   look  at   the  water.   In  some  cases  even  mini  aquariums  educate  kids  on  the  ocean.  Although  there  is  no  physical  interaction  with  the  water,  there  is  still  a  response  to  the  presence  of  the  ocean.  However,  I  do  not  like  the  form  of  the  architecture.    

Site  Visit:  Delft.    

 

Figure  42:  http://www.orangesmile.com/destinations/img/delft-­‐map-­‐big.jpg  

Page 48: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  45    

 

 

Earl  Willem  II  founded  Delft  in  1246.  Fortunately,  Delft  has  not  had  many  expansions  or  declines  since  its  foundation,  except   for   a   fire   in   1536,   which   destroyed   some   200  homes.   By   1602,  Delft   had  become   a   center   for   arts   and  sciences   as   the   Dutch   East   India   Company   established   a  branch   in  Delft.   Products   such   as   spices,   coffee,   tea   and  Chinese   porcelain   passed   through   Delft,   which   inspired  Delftware  porcelain  products.  In  1842  the  Netherlands  fell  behind   in  the   industrial  race  and  cause  the  foundation  of  the   Royal   Academy   of   Civil   Engineers.   To   this   day,  companies   and   institutions   like   DSM   Gist,   the   Dutch  Normalization   Institute,   the   Dutch   Measuring   Institute,  Exact  Software,  and  Delft  Instruments  have  come  to  Delft  to   collaborate   with   the   university   and   students.   The  university   is   now   famous   for   its   hydraulic   engineering  attracting  international  students  and  UNESCO  IHE.    

 

The  historical  part  of  Delft  is  smaller  than  both  Leiden  and  The   Hague.   Unfortunately   a   large   street   has   since  replaced   the   southwest   canal,   so   I   was   unable   to  experience   the   original   entry   condition.   Despite   the   narrow   street   conditions,   cobblestones  and  stone  construction  indicating  a  boundary  cross  has  taken  place,  psychologically  I  felt  less  pleased.  The  big  road  was  disruptive  and  chaotic  instead  of  peaceful  and  protective.  It  was  not  until   I   hit   the   second   canal   that   I   felt   like   I   had   truly   hit   the  historic  Delft.   The   lateral   canals  acted  as  major  thoroughfare  and  defined  the  lateral  circulation  pattern.  As  a  pedestrian  I  was  able  to  determine  my   location  and  distance  from  the  main  square  by  measuring  my  distance  from  the  canals  and  monuments.  The  main  square  formed  a  public  gathering  space  away  from  the  canals,  taking  a  more  political  or  formal  turn.  On  the  other  hand,  the  restaurants  around  the  canals  casual  public  gathering  spaces   for   the  average  user   to  enjoy.  However,  as  seen   in  figure  46,  an  algal  bloom  problem  exists  among  the  more  separated  canals,  with  poorer  water  circulation  flow.    

Figure  43:  http://www.gnesta.se/download/18.6cc22741439b1fb1633f0e/1394027600029/GNESTA+CENTRUM+140225_arkitektförslag+A.pdf  

Figure  44:  http://www.b92.net/putovanja/destinacije/evropa.php?yyyy=2009&mm=12&dd=29&nav_category=807&nav_id=400918  

Page 49: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  46    

 

 

Figure  45:  Personal  photograph.  

Figure  46:  Personal  photograph.  

Page 50: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  47    

 

Site  Visit:  History  of  Amsterdam.  

 

Figure   47:   http://www.mapaplan.com/travel-­‐map/amsterdam-­‐netherlands-­‐top-­‐tourist-­‐attractions-­‐printable-­‐street-­‐plan/high-­‐resolution/amsterdam-­‐top-­‐tourist-­‐attractions-­‐map-­‐20-­‐Accommodation-­‐main-­‐concert-­‐venues-­‐must-­‐do-­‐hot-­‐spots-­‐geographical-­‐map-­‐high-­‐resolution.jpg  

Although  Amsterdam  was  not  officially  founded  until  1300,  it  had  been  developed  by  a  handful  of   “Amstelledammers”  who   saw   the   opportunity   to   charge   toll   for   the   passing   of   beer   and  herring  traders  along  the  Eastern  Sea  Trade  of  the  Baltics.  These  individuals  eventually  became  shipbuilders  and  brewers.  In  1323  Amsteldam  (Amsterdam)  became  the  sole  importers  of  beer  from  Hamburg.  Amsteldam  earned  its   income  not  just  through  beer  trade,  but  herring.  Many  wealthy  merchant  Jews  fled  to  Amsterdam  after  the  conquest  of  Antwerp  by  the  Spaniards  at  the   end   of   the   15th   century.   This   influx   of   money   helped   fund   trips   to   India,   which   set   the  foundations   for   the   start   of   the  Dutch   East   India   Company   in   1602.   Amsterdam  was   heavily  involved  with   the  Dutch  East   India  Company  boosting   the  economy  and   starting   the  Golden  Age.   This   brought   on   two   large   expansions   where   architecture   and   urban   master   planning  were  deliberated  for  the  first  time.  This  brought  about  the  ring  canals  and  the  Jordaan  district.    

At  the  start  of  the  17th  century,  Amsterdam  hit  another  evolution  as  the  number  of  artists  and  art  dealers  exploded,   leading  Amsterdam  into  a  cultural  realm.  Unfortunately,  the  end  of  the  17th  century  was  not  as  kind  and  a  brief  moment  of  decline  and  poverty  hit  the  city.  After  the  

Page 51: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  48    

 

construction   of   the  North   Sea   Canal   in   1876,   Amsterdam  was   linked   to   the   sea,   opening   up  trade  with  the  Dutch  East   Indies.  Trade  products  such  as  spices  and  South  African  diamonds  brought   Amsterdam   a   new   era   of   wealth,   which   led   to   the   construction   of   “monumental,  architectural  masterpieces.”    Despite  holding  a  neutral  World  War  I  stance,  Amsterdam  was  hit  with  violence  as  the  population  revolted  against  a  shortage  of  food  and  inflow  of  potatoes  for  soldiers.   This   continued   into   the   depression   of   1934   when   violent   protests   criticized   the  government’s  decrease  in  unemployment  benefits.  Starvation  returned  to  Amsterdam  during  World   War   II,   which   led   to   the   persecution   of   the   Jews   and   the   removal   of   10%   of   its  inhabitants.    

After   the   war,   Amsterdam’s   population   faced   serious   change.   Original   Dutch   living   in  Amsterdam  left   for  Purmerend,  Hoorn  and  Almere,  while  Surinamese,  Turkish  and  Moroccan  immigrants  moved  in.  This  new  international  Amsterdam  can  boast  780,000  residents  from  180  different  countries.    

Site  Visit:  Amsterdam:  Northwest.    My  expeditions  to  northwest  Amsterdam  was  mostly  due  to  commute  in  and  out  of  work  from  Zaandam.  Instead  of  taking  the  train,  I  biked  a  total  of  22  km  both  ways  and  traversed  through  the  banks  of  the  IJ  to  the  ferry.  All  along  my  journey  I  could  see  wind  turbines.  

 

Figure  48:  Personal  photograph.  

Figure  49:  Personal  photograph.  

Figure  50:  Personal  photograph.  

The   three   figures   above   depict   some   of   the   different   conditions   I   experienced   crossing   the  ferry.   In  all   cases,   the   first   two   figures,   the   river   is  unblocked.  While  one  could  argue   that   in  figure  48,   the  wind  turbines  are  ugly  and   intrusive,   the  reality   is   that   the  weather  conditions  play  a  larger  role.  When  compared  to  figure  49,  the  wind  turbines  are  nearly  invisible  next  to  the  sunset.  On  the  other  hand,  figure  50  shows  how  other  larger  and  more  intrusive  elements  compare.  While  in  figure  51,  the  sailboats  are  indistinguishable  from  the  wind  turbines  and  the  wind  turbine  in  figure  52  is  picturesque,  at  least  in  my  eyes.    

Page 52: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  49    

 

 

Figure  51:  Personal  photograph.  

Figure  52:  Personal  photograph.  

Site  Visit:  Amsterdam:  Southwest.    My  expedition  to  Amsterdam  southwest  was  designed  to  visit  the  remaining  windmill  open  to  the   public   for   viewing.   The   bike   ride   there   was   dominated   by   the   typical,   yet   successful  modern   street   typology   of   the   Netherlands.   The   canal   is   flanked   by   some   grass   space,   a  pedestrian   sidewalk,   a   bike   path,   and   a   vehicular   road   all   flanked   by   trees   (figure   53).   This  allowed  for  a  pleasant  bike  ride  to  the  windmill.    

 

Figure  53:  Personal  photograph.  

Figure  54:  Personal  photograph.  

Page 53: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  50    

 

Figure  56  shows  what   the   land  below  the  wind   tower   resembled.  With   the  water   leading   to  the   water   pumping   windmill,   and   a   level   change   between   the   left   and   right   side.   The   mill  pumps  water  from  the  left  side,  up  to  a  strip  of  land  (not  seen  in  image)  at  the  same  level  as  the  right  side.    

 

Figure  55:  Personal  photograph.  

Figure  56:  Personal  photograph.  

 

Figure  57:  Personal  photograph.  

Figure  58:  Personal  photograph.  

Page 54: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  51    

 

The   windmills   functioned   as   both   water   pumping   stations   and   homes   for   the   staff   that  performed  the  maintenance  and  labor  for  the  windmill.  Although  this  man  was  poorly  paid,  he  was   a   highly   respected   member   of   the   community.   He   not   only   prevented   the   town   from  flooding,  but  he  also  served  as  a  messenger.  The  windmills  wings,  when  not  in  function,  were  oriented  and  covered  in  such  as  way  as  to  indicate  a  message.  For  example,  weddings,  deaths,  and  even  war  messages  were  made  visible  for  the  community  to  read  openly.  In  addition,  the  windmill   supplied   flour   for   locals.   These  uses   are  no   longer   visible  or  direct   functions  of   the  modern  wind  turbine.  Perhaps  the  modern  response  to  the  wind  turbine  would  change  if  the  benefits  were  made  more  visible  and  direct.    

 

Figure  59:  Personal  photograph.  

Figure  60:  Personal  photograph.  

Site  Visit:  Amsterdam  Central.    On   one   of   my   first   days   in   Amsterdam   I   was   lucky   enough   to   share   a   boat   cruise   with  my  father.  On  that  night  I  experienced  one  of  the  first  charms  of  the  city.  The  water  emanates  a  serene  and  beautiful  quality.  The   lit  buildings  and  bridges  reflect  and  glow  along  the  water’s  surface.   Another   thing   I   remarked   was   how   the   older   interior   section   of   Amsterdam   was  darker,   the   buildings   were   closer   together,   the   general   scale   much   smaller,   and   rather  separate   from  the  water.  On  the  outer  part,  more  modern  part  of   the  city  was  brighter,   the  buildings  more  scattered,  larger  in  scale  and  more  interactive  with  the  water;  even  appearing  to  float  on  top  of  the  surface  of  the  water.    

Page 55: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  52    

 

 

Figure  61:  Personal  photographs.  

Generally  the  canals  in  Amsterdam  are  a  crucial  element  in  the  social  element  of  the  city.  Many  restaurants  and  bars  line  the  canals,  opening  tables  outside  where  people  can  sit  and  enjoy  the  good  weather  and  atmosphere.  During  events,   the  water’s  edge   is   crowded  with  millions  of  people  waiting  for  floats,   in  the  shape  of  boats,  to  pass  by.  This  chaos  could  only  be  possible  with  the  existence  of  canals,  where  people  could  crowd  on  the  sidewalks,  bridges,  and  even  boats  and  houseboats.    

Page 56: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  53    

 

 

 Figure  62:  Personal  photographs  

 

Page 57: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  54    

 

Site  Visit:  Travel  in  Between.  

 

Figure  63:  Personal  photographs.  

Page 58: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  55    

 

 

Figure  64:  Personal  photograph.  

Figure  65:  Personal  photograph.  

My  travel  in  between  was  just  as  enriching  as  the  individual  cities  I  visited.  The  transformation  of  the  Netherlands  itself  at  a  national  scale  is  fascinating.  The  country  seems  to  be  laid  out  in  dense  nodes  of  human  presence.  Cars  and  bikes  use  the  roads  and  of  the  two  I  have  a  more  memorable   interaction  with  other  bikers.  From  time  to  time  a  farmhouse  would  pop  up,  but  they  seemed  miniscule   in  significance  when  compared  to  the  beautiful  green  vastness  ahead  of  me.   I   continued   to   see   the   terraced   landscape  of   the  Netherlands,  houseboats   located   in  seemingly  random  locations.  The  small  scale  resembling  a  miniature  American  Suburban  Street  just   more   green   and   overgrown.   The   smaller   water   channels   truly   put   in   perspective   the  amount  of  surface  water  in  the  Netherlands.  It  is  hard  to  imagine  the  impact  on  the  landscape  with   their   removal.   On   the   other   hand,   this   explains   the   salinization   problem   of   the  Netherlands.  Normally  water  saturated  soil,   is  now  dry,  sucking  up  saline  ground  water  deep  below.  Overall   I   found  a   lot  of   smaller,  but  dense,   towns  along   the   road.  Each  one  distinctly  separated   from   the  environment  by   a  bridge,   canal  or   general   density.   It   began   to   feel   as   if  each   stop  was  a  new  stop   in  my   journey.   I  developed  a  view  of  a  nodal  Netherlands,  where  splotches   of   society   pop   up   among   the   landscape.   I   also   bumped   into   several   modern  buildings,  most  very  green  and   low   impact  on  the   landscape.   In  one   image  above,  one  could  almost  bike  or  drive  by  without  seeing  a  thing.  The  green  roof  sloped  down  to  connect  to  the  ground  on  all  sides,  except  where  the  entry  existed.  Besides  the  carved  entry  and  tall  sculpture  announcing  the  building  on  the  street,  the  building  was  perfectly   integrated.  This   low  impact  construction   emphasizes   the   nodal   theory,   where   buildings   outside   these   gated   human  densities  were  expected  to  be  invisible.    

 

 

Page 59: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  56    

 

Book  Reports.    

Book  Report:  EcoEdge  Charlesworth:  Urgent  Design  Challenges  in  Building  Sustainable  Cities.  

Part  I:  Urban  Design  and  a  Sustainable  City.  This   section  of   the   book   focuses   on   how  urban  design   strategies   should   change,  what   they  should   study,   and  how   they   should  be  applied.  Generally,  urban  centers  will  become  hotter,  dryer,  they  will  be  threatened  by  stronger  storms,  cyclones  and  flooding,  coastal  centers  will  be   affected   the  most   as   rising   sea   levels  will   force   population   displacement.   Unfortunately,  politicians  who  have  the  power  to   implement  sustainable  strategies  chose  not  to  because  of  its  difficulty  and  instead  prioritize  other  social  problems.      

Urban  design  faces  some  challenges,  for  one,   it   is  difficult  to  design  an  urban  center,  as  that  means  understanding  the  unpredictable,  human  factor  and  how  that  relates  to  their  physical  spaces.   While   historically,   cities   had   a   “symbiotic   relationship”   with   the   population   and   its  growth,   twentieth   century   urban   designers   focused   on   strict   inflexible   designs.   After   this  failure,   urban  designers   are   focusing  on  designing   a   city   as   a   “complex   ‘ecosystem’”.  Urban  designers  question  how  they  can  change  behavioral  norms  and  habits,  how  they  can  convince  people  to  live  in  a  denser  condition.    

It   is   important   to  value   the  city  as  an  evolving  system,  urban  design   is  about  “managing  the  chaos”.  In  order  to  make  cities  sustainable,  the  very  foundations  and  infrastructures  will  have  to   be   re-­‐evaluated.   The   problems   are   not   just   technological,   but   typological.   One   major  problem   is   the   material   palette   of   the   city.   For   example,   concrete,   bitumen   and   stone   are  needed  for  pedestrian  and  wheeled  accessibility,  but  they  cause  water-­‐run  off  and  urban  heat  island  problems.    

Water   became   an   important   hygienic   element   of   urban   life,   but   now   individuals   use   several  hundred   liters  of  water  a  day   for  benefits   like  hydrotherapy,  gardening,  which   impact  health  and   air   quality.   The   re-­‐use  of   grey  water   and  black  water   in   addition   to   rainwater   collection  strategies   are   critical.   They   need   to   be   financially   encouraged   by   the   government   for   the  watering  of  gardens,  parks,  etc.    

Modern   cities   consume   up   to   100   times   more   energy   than   the   basic   rate   for   metabolism.  Buildings  themselves  account  for  40%  of  the  energy  use  of  a  city.  Energy  intensive  systems  like  artificial   air   treatment   systems  have   increased,  but  a  more  organic   system  with  breezes  and  warm  patches  provide  psychological  breaks  for  users.    

Page 60: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  57    

 

Modern   action   programs   rely   on   creating   a   “climate   proof”   design,   with   sustainable   water  systems,   public   green   spaces,   pedestrian   and   bicycle   friendly   infrastructure,   and   public  transportation  systems.  However,  many  sustainability  plans  are  failing  due  to  failing  economic  conditions  of  cities.  Including  high  unemployment,  high  poverty,  high  crime,  high  immigration,  and  high  discrimination.  In  these  cases,  money  is  focused  on  improving  safety,  reducing  crime,  improving   language   education,   reducing   school   drop-­‐outs,   increasing   civic   participation,   and  decreasing  poverty  and  unemployment.  Urban  design  needs  to  tackle  these  issues  by  “shaping  interactions  between”   residents,   teachers,   employers,   housing   corporations,   youth  workers,  and  police.    

The  Dutch  Factor:    

The  population  of  the  Netherlands  began  to  feel  intense  dissatisfaction  as  early  as  the  1990s,  regardless  of  record-­‐low  unemployment  levels.  Part  of  this  is  attributed  to  the  sudden  spike  of  refugee   immigration   from   Somalia,   Sierra   Leone,   Afghanistan   and   Yugoslavia.   The   issues  pointed   out   earlier   became   a   problem   in   the   Netherlands   as   communication   and   dialogue  between   all   members   of   society   was   nonexistent.   The   primary   focus   switched   from   urban  renovation  to  shaping  social  interactions.    

This   led  to  the  Ajax  soccer  grounds  in  Amsterdam,  which  created  a  sense  of   identity  through  soccer  history  and  the  community,  while  implementing  sustainability  strategies  like  rainwater  harvesting,   vegetation,   pedestrian   and   bike   friendly   infrastructure,   off   street   parking,   and  cogeneration  heating  for  the  community.  

 The   traffic  artery   tunnel  project   in  Maastricht   rectified   the  problems  caused  by   the  dividing,  noisy   and   polluting   freeway.   The   final   project   had   to   meet   certain   criteria,   including  environmental   conditions,   walkability,   cyclabiliy,   traffic   safety,   public   space,   urban   space,  architecture.    

The   restoration  of   the  Dapperbuurt   in  Amsterdam   focuses  on  modernizing   the   sustainability  needs   of   the   region.   This   historical   zone   has   architectural   structures   with   small,   culturally  irrelevant,   poorly   insulated   qualities.   The   restoration   aims   to   properly   insulate,   expand   and  open  up  public  space  for  the  community.  By  increasing  the  quantity  of  cultural  centers,  youth  hostels,   neighborhood   cinemas   and   restaurants,   economic   conditions   can   be   improved.  Unfortunately,   the   results   were   not   as   successful   as   hoped,   showing   that   “neighborhood  renovation  is  no  ‘cure  all’  for  a  multicultural  society”.  

Successful  urban  sustainability  strategies:  

1. Must  be  drafted  with  the  involvement  of  all  members  of  the  community  2. All  concerns  brought  up  must  be  addressed.    

Page 61: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  58    

 

3. Energy,   climate  and  air   pollution  need   to  be   linked  with   safety,   education,  work   and  income  elements.  

4. Identify  the  primary  design  challenge  and  address  it.    5. Build  from  local,  historical  identities.  

Urban  Density:    

Urban  infrastructures  are  expected  to  accommodate  70%  of  the  world’s  population  by  2050.  In  certain  places  like  Australia,  cities  already  accommodate  80%  of  the  population.  Melbourne  has  adapted   to   this  population  density  by   concentrating  housing  near   free  public   transportation  services.  Sprawl   is  an  expensive  way  to  solve  the  problem.  Building  1000  houses  outside  the  boundaries  of  Australian  cities  will  cost  AU$300  million  more  than  building  housing  on  top  of  existing  infrastructures  within  the  city  limits.  Because  people  live  further  away  from  their  work  place,   transportation  has  become  a  problem.  Public   transportation  has   increased  60%  of   the  last  fiver  years  and  the  government  has  to  financially  encourage  off-­‐peak  travel.    

Sustainability  practices  can  be  improved  through  (1)  designing  at  the  neighborhood  scale;  (2)  use  the  governments  examples  to  reduce  property  needs,  improve  business  performance  and  reduce   energy   usage;   (3)   encourage   holistic,   interdisciplinary   planning;   (4)   get   expert  consultants   input.   It   is   important  to  (1)  build  a  sense  of  community;   (2)   locate  developments  that   can   benefit   from   high   connectivity;   (3)   tackle   climate   change;   (4)   create   places   of  character.    

The  province  of  Gauteng   in  South  Africa  only  covers  1.7%  of  the  country’s  surface  area,  yet   it  houses  20%  of  the  country’s  population.  Although  it  does  not  lie  on  a  major  water  source,  this  region  instead  focuses  on  “weaving”  the  urban  forests  and  nature  conservancies.  This  region  is  known  for  a  competitive  fast  pace  and  dangerous  environment,  which  keep  people  on  edge  and  alert.    The  key  to  designing  in  this  context  is  to  accept  the  complexity  and  unpredictable  nature;  even  by  designing  in  context,  the  results  may  not  turn  out  as  expected.  This  is  a  socio-­‐ecological  design  intervention.  The  goal  is  to  design  a  system  of  niches  that  fit  diverse  patterns  and   can   therefore   counteract   various   external   shocks   through   adaptive   responses   and  interactions.   The   continuous   interaction   and   responses   allow   for   a   flexible   feedback   system  that   can   help   increase   the   resilience   of   the   city.   This   accepts   that   change   is   inevitable   and  provides  a  system  that  allows  for  re-­‐equilibration  after  change.    This  design  concept  relies  on  the  interconnectedness  of  systems,  the  strength  of  feedback  and  diversity.    

Part  II:  Infrastructure  and  a  Sustainable  City.  There   are   three   dimensions   of   city   infrastructures   including   (1)   the   hidden   service  infrastructure   (2)   the   recycled   and   renovated   infrastructure   (3)   the   planned   socio-­‐technical  and   political-­‐economic   infrastructure.   The   hidden   service   infrastructure   incorporates   the  

Page 62: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  59    

 

sewage,   plumbing,   electrical,   etc.   systems.   The   recycled   and   renovated   infrastructure  eliminates   the   energy   consumption   of   new   architectural   constructions,   maintains   the   city  skylines,  character  and  urban  heritage,  while  increasing  material  life.    

Ironically,  climate  change  problems  have  arisen  from  the  urban  lifestyle  and  the  constructs  of  the   human   physical   environment,   but   the   urban   environment   is   also   the   answer   to   the  problem.  This  has  to  do  with  the  limits  and  efficiency  of  the  mass-­‐transit  system.  There  are  five  main  problems  in  urban  design.  (1)  Cities  are  dynamic  and  static;  the  population  and  programs  of   cities   change   quickly,   but   the   physical   and   institutional   arrangements   do   not.   (2)   It   is  important   to   plan   with   future   problems   in   mind,   even   if   it   is   impossible   to   predict   if   the  problem   and   proposed   solution   are   appropriate   in   the   future.   (3)   Stability   is   not   static   in  nature;   stability   requires   flexibility   and   ability   to   change   back   to   a   stable,   and   potentially  different,  condition.  (4)  While  there  is  a  sense  of  urgency  to  develop  and  apply  strategies,  the  process   takes   time   and   care.   (5)   Social   and   cultural   infrastructures   must   evolve   with   the  physical  infrastructure.    

The  concept  of   ‘ecopolis’   is  based  around  designing  an  ecological  system  before  designing  a  city.  In  this  way  a  designer  can  create  a  functioning  ecological  system  that  can  better  support  the   human   population.   This   involves   abiotic   elements,   producers,   consumers,   and   micro  consumers.    

 

Page 63: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  60    

 

In   this   perspective,   “urbanization   is   the   effective   replacement   of   natural   ecosystems   by   an  artificial  system”.  In  fact,  cities  already  qualify  as  a   living  system.  The  book  suggests  that  the  city  is  metaphorically  representative  of  an  organism,  where  people  represent  the  living  mater  responsible  for  the  chemical  processes.    

People  have  increased  the  speed  at  which  climate  change  occurs.  The  environment  and  other  species   cannot   keep   up   with   this   timeframe.   The   human   influence   in   nature   is   currently  destructive,   however,   urban   designers   believe   that   the   built   environment   can   become  constructive.  In  the  end,  cities  are  a  “new  ecological  reality”.    

It   is   important   to   keep   in   mind   that   architecture   is   just   one   step   of   the   process.   A   city   of  sustainable  buildings  can  still  lead  to  an  unsustainable  city.    

In   China,   suburbs   are   seen   as   an   efficient   replacement   of   low-­‐density   housing   communities.  The  suburbs  must  be   located  properly  as  efficiency  and   the   reaches  of  public   transportation  limit   success.    While   China’s   fast   building   development   has   allowed   for   spacious   and   green  design   strategies   to   be   implemented,   the   large   quantities   of   urban   spaces   and   building  setbacks  decrease  overall  density  while  ignoring  pedestrian  needs.    

Part  III:  Architecture  and  a  Sustainable  City.  Architects  are  responsible  for  3%  of  customhouses,  8%  of  housing  and  9%  other  forms  of  direct  influence   on   housing   developments.   Urban   designers   are   interested   in   the   boundary  conditions  of  cities  and  how  the  buildings  individually  form  either  a  stark  or  blurred  boundary  line.    

Zoning  is  also  a  major  problem,  where  segregated  zoning  layouts  create  public  transportation  problems.   Instead,   by   creating  banded   zones,   in   a   horizontal   and   vertical   direction,   one   can  create   the   flexibility   and   mixed   use   system   that   is   efficient.   In   this   way,   residences   can   be  located   close   to   office,   leisure,   green   and   commercial   spaces,   while   still   maintaining   the  benefits  of  an  organized  zoning  plan.  This  system  also  allows  for  the  local  treatment  of  organic  waste  and  water,  which  can  be  easily  reincorporated  into  the  system.    In  addition,  the  zoning  bands   will   provide   a   natural   density   gradient,   increasing   the   diversity   and   sustainable  components  of  the  city.    

Page 64: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  61    

 

 

“Successful,  liveable  cities  consist  mostly  of  apparently  homogenous  fabric  with  no  identified  author-­‐buildings   that   accommodate   all   forms   of   activity,   from   living   quarters   to   local  businesses,  bars  and  cafes,  linked  by  the  network  of  streets  and  open  spaces  that  make  up  the  public  realm.  In  this  kind  of  city  it  is  impossible  to  view  buildings  as  isolated  objects,  only  as  a  set   of   unfolding   spaces”.   In   spirit   with   this   idea,   simple   structures   allow   for   buildings   to  become  adaptable,   and   adaptable  building   are   sustainable   as   they  become  easier   to   recycle  and  expand  on  as  the  city  context  evolves.    

In  the  end,  it  is  important  to  include:  

“  

• Planning   systems   that   encourage   developers   to   avoid   demographic   and   economic  forecasting  and,  instead,  create  flexible  urban  fabrics;  

• Economic  models  that  balance  commercial  interests  with  social  benefits;  • Enhanced  and  interlinked  public  realms;  • Permeable  city  fabrics  of  converted  buildings  and  new  pattern-­‐book  architecture  that  

can  be  easily  colonized  and  adapted  by  their  users.    

”    

One  thing  to  consider  is  the  prefab  construction  technique  as  it  allows  for  fast,  cheap  and  high  quality  construction.    

Page 65: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  62    

 

Book  Report:  Resilience  in  Ecology  and  Urban  Design:  3  (Future  City).  

Part  I:  Ecology,  Design,  and  Social  Contexts:  Disciplinary  Voices  and  History.  Ecology  Of  The  City  As  A  Bridge  To  Urban  Design    

This  chapter  discusses  the  important  strategy  differentiation  within  generations.  While   in  the  past,   cities  were   constructed   using   strict   and   rigid   design   techniques;  modern   urban   design  looks  at  the  city  as  an  organic  function.    The  ecology  within  cities  look  at  natural  systems  that  can  be   implemented   in  forested  parks  and  vacant   lots.  While  the  organisms  of  an  ecosystem  are   important,  urban  ecosystems  highlight   landscape   function  as  a   critical   factor  and   initiate  the  direct  relationship  between  the  landscapes  and  its  various  organisms.    

Similar   to   the  study  of  natural  ecology,  one  needs  to  determine  of  scale  of  study,  which  can  vary   in   gradation   from  microscopic,   human,   and   regional.   Others   define   the   study   of   urban  ecology   based   on   the   spatial   heterogeneity   or   homogeneity   and   how   they   impact   the  ecological  systems.  Once  a  city  or  region  is  broken  down  into  patches,  one  can  look  at  how  the  land’s   characteristics   impact   the   individual   patch,   or   the   network   of   patches.   These  characteristics  might  include  the  open  or  closed  nature  of  the  patch  and  its  ability  to  foster  or  inhibit  colonization  by  different  species,  in  the  process  revealing  the  biological  stresses.    

As   in  natural  ecology,  urban  ecosystems  have   layered   levels  of   complexity  and  components.  These  include,  organisms,  physical  conditions  and  entities,  and  the  interactions  between  them.  In  another,  the  biological,  social,  physical,  and  built  components  are  studied.  The  relationship  between   (1)   species   and   their   products,   (2)   social   institutions   and   norms,   (3)   soils,   waters,  topography,  and  air,  and  (4)  buildings  and  infrastructure,  respectively.    

“Cities   and   other   urban   ecosystems   are   jointly  biological,  social,  built,  and  geomorphic.”  

In  the   initial  site  analysis  stage,  urban   landscapes  are   studied   according   to   “influences   and  interaction  of  policies,  designs,   lifestyles,  and  the  locational   distribution   of   households,   firms,   and  social  groups”  in  addition  to  “biological  diversity,  environmental   justice,   safety   and   vulnerability,  zoning,   and   legacies   of   past   infrastructure   or  social   structure”.   After   which,   the   data   is  represented   in   various   descriptive   models   like,  maps  and  GIS   layers   in   relation   to  space  or   time.  

The   image   above   shows   some   more   characteristics   taken   into   consideration   and   the  classifications  they  fall  under.    

Page 66: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  63    

 

Organisms   are   heterogeneously   distributed   in  time   and   space.   Organisms   interact   with   each  other  at  various  scales.  Organisms,  even  within  a  given  species,  differ  from  one  another.  Ecological  systems  are  contingent,   that   is   they  are  sensitive  to   their   initial   conditions   and   to   randomness.  Environmental   conditions   are   heterogeneous.  Resources   are   finite   and   heterogeneous.   All  organisms   are   subject   to   mortality   factors.  Ecological  processes  have  evolutionary  causes.    

It   is  always  important  to  keep  in  mind  that  scales  within  and  outside  of  the  ecosystem  vary,  always  

connect  to  each  other  in  a  critical  way.  That  is  why  it  is  important  to  look  at  the  impact  of  the  building  on  its  neighborhood,  the  neighborhood  on  the  region,  the  region  on  the  city,  the  city  on  the  watershed,  etc.    

“Models   are   explanations   of   structures   and   processes   in   the  material   world.   They   identify   the  parts  of  the  system  of   interest,   the   interactions  among  the  parts,  the   limits  of  the   interactions,  the   spatial   and   temporal   boundaries   of   the   system,   and   the   kinds   of   outcomes   that   can   result  from  the  interactions.”  

Urban  ecological  design  emphasized  the  diversity  of  problems  and  solutions  to  any  particular  problem.   The   goal   is   not   to   come   up  with   the   single  most   perfect   solution,   but   to   explore  different   options   and   their   impacts.   Some   problems   on   a   landscape   may   relate   to   the  movement  of  energy,  matter  and   information  and   their   impacts   include   the  distribution   and  abundance  of  organisms,  the  interactions  among  organisms,  and  the  interactions  between.    

However,  ecological  structures  and  processes  are  constantly  changing,  and  providing  a  flexible  landscape  that  can  respond  to  these  changes  is  critical.  Landscapes  are  open  to  changes  from  energy,   material,   information   exchange   and   processes   that   arise   outside   their   boundaries.  These   kinds   of   changes   in   the   ecosystem   are   called   disturbances   and   they   are   important  regulators  of  the  system.  While  an  ecosystem  strives  to  maintain  stability  and  equilibrium,  the  route   that   it   takes   to   achieve   it   is   never   predictable   and   often   times   leads   to   a   different  condition  than  was  originally  present.    

Human   interactions   with   the   ecosystem   have   led   to   extreme   disturbances.   While   humans  understand  that  the  availability  of  resources  is  limited,  some  justify  the  abuse  as  an  important  form  of  natural  selection.  This  perspective  has   justified  the  “unbridled  competition   in  human  society”,  while   the  models   and  data  of  natural   and  urban  ecologists   show  a  different   trend.  Organisms  are   the  key   to  natural  development,  a   linear  process   that  cannot  be  bypassed  by  

Page 67: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  64    

 

human  manipulation.  Just  as  natural  ecosystems  value  diversity,  urban  ecosystem  research  is  looking  at  the  impacts  of  “identity,  spatial  heterogeneity  and  dynamics  of  vegetated  patches  within  an  urban  system,  and  the   interaction  between  biotic  composition,  heterogeneity,  and  fluxes”.  In  the  end,  urban  ecology  studies  the  relationship  between  the  social  and  biophysical  worlds  and  their  effects  and  feedback  loops.    

Kevin   Lynch   (   1981   )   spoke   of   three   urban  models:   (1)   the   cosmological   city,   (2)   the   city   as  machine,  and  (3)  the  organic  city.  The  complex  modern  cities  are  also  classified  as  metropolis,  megalopolis,   hypercity   and   metacity   with   varying   sizes,   densities   and   quantity   of   urban  centers.    

Part   II:     Shared   Conceptual   Understanding:   Four   Themes   for   Bridging   Ecology   and  Urban  Design.  Eco-­‐Engineering  for  Water:  From  Soft  to  Hard  and  Back  

Cities   have   generally   been   constructed   close   to   or   on  water   sources.   These   cities   have   rich  histories  with  many  cycles  of  evolution  and  re-­‐identification.  Many  of  these  cities  had  to  evolve  with  the  rhythm  of  the  water  source,  but  as  climate  change  and  rising  sea  levels  become  more  of  a  problem  many  of  these  cities  are  starting  to  realize  that  they  stopped  looking  at  the  river  as   design   parameter.   The   increase   of   impermeable   surfaces   in   the   city   has   become   a   large  problem,   as   seen   in   road   construction   and   engineered   levees.   In   addition   the   removal   of  mangrove  forests  and  other  habitats  expose  cities  to  stronger  weather  events.  Urban  design  needs  to  adapt  to  potential  risks,   involving  the  reconstruction  of   landscapes  and  settlements  for  flexible  systems.  

The  unnatural  water  run-­‐of  patterns  and  slowing  groundwater  recharge  rates  have  negatively  impacted  the  hydrological  cycle.  In  urban  centers  run-­‐off  water  is  a  problem.  Historically,  urban  centers   would   collect   and   redirect   water   out   of   the   urban   center   as   quickly   as   possible.  However  modern  systems  protect  the   local  ecology  and  water  cycle  by  doing  a  better   job  of  “detention,  retention  and  recharge”.  For  many  cities,  this  has  allowed  for  the  redevelopment  of  harbors  and  river  front  property  into  recreational  and  commercial  spaces.      

Cities   have   historically   been   founded   near,   if   not   on,   water   sources   like   rivers,   oceans   and  lakes.   For   this   reason,   hydrological   engineering   has   always   played   an   important   role   in   the  development   of   urban   centers.   While   some   of   these   tools   are   antiquated,   others   can   help  reshape  the  future  of  waterside  cities.    

Asian  Factor:  

In   one   case,   the   rice   paddy   constructs   of   the  Asias   have  provided   for   the   development   and  growth  of  the  nearby  civilizations.  These  technologies  focused  on  erosion  and  sedimentation  

Page 68: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  65    

 

to  determine  the  location  of  seasonal  watercourses.  The  network  of  roads,  canals,  dams  and  reservoirs  spatially  defined  villages  of  the  region.    

On   the   other   hand,   the   Han   Dynasty   (206   BCE)   was   one   of   the   first   civilizations   to  acknowledge  the  scientific  study  of  “wind  and  waters”.    

Feng   shui   studied   how   water  could   provide   for   cleanliness,  minerals,   food,   transportation,  communication,   and   protection  (from   spirits   and   winds).  However,   feng   shui   did   not  dedicate  its  study  purely  to  water.  It   also   examined   the   relationship  between   these   elements   and  topography,  vegetation,  and  solar  orientation.    

Irrigation   canals   and   dikes   were  constructed   to   support   intensive  agricultural   needs.   Soon  maintenance   requirements   led   to  the   development   of   a   central  government.   This   central  government  not  only  ensured  the  

survival   of   the  water   irrigation   infrastructure,   but   the   progression   of  water   engineering   for  flood  control  and  drinking.    

Three  water  city   typologies  were   identified   including  water-­‐within-­‐city,  city-­‐in-­‐water,  and  yin-­‐yang   city.   Architectural   strategies   within   cities,   like   step-­‐wells   allowed   for   the   maximum  efficiency   in   rainwater   collection.   These   structures   were   not   only   functional,   but   also   later  gained  religious  significance.    

The  Dutch  Factor:  

In   the   Netherlands,   the   extensive   man-­‐made   conditions   have   proven   to   be   potentially  detrimental  to  the  ecological  system.  For  this  reason  Beveren  near  the  bank  of  the  Scheldt  and  the  mudflats  of  Saeftinghe  are  intending  to  return  the  Proper  Polder  and  Doel  Polder  back  to  natural  conditions.  Dykes  have  been  dismantled   in  order  to  allow  the  Scheldt  a  more  natural  flow   and   new   dykes   have   been   built   in   nearby   area   to   protect   human   settlements.   The  resulting   landscapes   will   include   “a   submerged   landscape   of   mudflats   and   salt   marshes,   a  

Page 69: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  66    

 

controlled   tidal   area   and   a   semi-­‐polder   with   reservoirs”.   The  surrounding  neighborhoods  will  focus  on  ecotourism  as  a  source  of  revenue.    

The   embankments   are   atypical   riverfront   typologies   designed   to  protect   the  city   from  floodwaters  as  well  as  mark  a  boundary   line  between   the   villages   and   the   quayside.   The   “quays   as   keys”   can  provide   surplus   water   storage   of   5   meters   high   and   100   meters  wide  and  6.7  kilometers  long.    

   

French  Factor:  

Agence   Ter   has   developed   a   rainwater   collection   system   and   public   park.   By   creating   an  artificial  river  arm,  Agence  Ter  has  created  an  outlet  for  floodwater  and  stormwater  to  go.  In  this  case,  excess  water  can  come  from  three  possible  sources,  including,  “rainwater  from  the  ground   and   roofs   from   privately   owned   plots;   rainwater   from   public   pedestrian   areas;   and  rainwater   from   asphalt   roads.”   The   rainwater   from   roofs   and   pedestrian   areas   are   brought  into   the  park   through  open   channels   and   the   rainwater   from   roads   is  brought   into   the  park  through  closed  drainpipes.    

Page 70: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  67    

 

The   surrounding   neighborhood   is  elevated  1.6  meters  above  the  ground  plane,   allowing   the   park   to   be   visible  from   above   as   a   park   or   pond.   The  park   topography   and   elements   allow  for   various   water   storage   needs   that  transforms  the  physical  condition.  The  park  may  include  ponds  or  marshes.  

 

   

Book  Report:  Delta  Urbanism:  The  Netherlands.  

Part  I:  Understanding  the  Dutch  Delta.  The  Dynamics  of  the  Dutch  Delta.  

The  Delta   lowlands   as  we   know   today  was   formed   through   a   slow  evolution  of   the   general  Dutch   landscape  as  early   as   the  Holocene.   This   involved   the  evolution  of   the   impacts  of   the  sea,   precipitation,   meltwater,   sedimentation,   streams,   channels,   and   the   bog.   The   general  trend  is  that  the  landscape  transformed  from  a  saline  and  nutrient  rich  (eutrophic)  system  to  a  freshwater  and  nutrient  poor  (oligotrophic)  system.    

During  the  Pleistocene  glacial  period  the  sea  level  was  100  m  lower  than  it  was  today,  allowing  modern   day   England   to   be   a   part   of   the   EU   continent.   In   addition   the   Meuse,   Rhine   and  Thames   ran   in   a   reversed   direction.   However,   as   the   glacial   ice   began   to   melt,   the   weight  pressure  on  the  tectonic  plate  released  over  Scandinavia,  causing  the  Netherlands  to  sink,  as  seen  in  the  image  above.  As  channels  and  cracks  emerged  on  the  glacier,  meltwater  brought  and  deposited  sediment  into  the  channels.      

During   the   Weichselian   era,   the   Pleistocene   deposits   began   to   emerge   above   the   surface,  creating  basins.  Four   large  dry  basins  emerged   in   the  North,  called  the  Boorne,  Hunze,  Fivel,  and  Eems-­‐Dollard  (image  below).  There  was  also  the  Ijssel  Vecht  basin,  with  large  deep  valleys,  the   Rhine-­‐  Meuse   delta   and   river   valley,   and   the   Scheldt   basin.   As   the   sea   level   rose,   these  basins  were  filled  with  water  and  marine  and  fluvial  sediments.  Once  the  sea  level  rise  began  to   slow,   beach   walls   appeared   as   waves,   tides,   and   wind   moved   sand   towards   the   coasts.  These  beach  walls  eventually  closed  the  basins  from  the  ocean  and  instead  shallow  freshwater  lagoons   and   rivers   governed   the   territory.   Eventually   fens   and   bogs   formed   and   rivers  breached  the  beachwalls,  allowing  rivers  to  flow  into  the  ocean.    On  the  other  hand,  Northern  Netherlands  maintained  open   to   the   sea,   as   the  ocean   floor  had  more  extreme   topographic  

Page 71: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  68    

 

conditions,  which  were  difficult  to  fill  with  sediment.  In  addition,  the  wind  and  current  did  not  drag  sand  to  the  Northern  coast  so  much  as  the  Western  coast.  Eventually  Young  Dunes  that  were  30-­‐50  meters  tall  replaced  the  old  sand  dunes.    

Meltwater  broadened  the  rivers,  creating  a  broad,  braided  river  system  of  meandering  fluvial  belts,  forming  into  the  Rhine-­‐Meuse  Delta.  The  land  around  these  rivers  became  floodplains  as  high   water   flows   broke   the   natural   levees   and   deposited   sandy   clay   over   the   river   plains  (image   below).   During   these   flooding   events,   sand   from   the   riverbed   was   deposited   over  vegetation  on  the  river  dunes  evolving  the  landscape  ecology  of  the  Netherlands  throughout  the  eras.    

As  time  progressed,  the  climate  became  warmer  and  moister,  causing  more  vegetation  growth  and   the   spread  of   fens  and  bogs  upland.  Drainage  capabilities  decreased  also   increasing   the  spread  of  the  bogs.  Trees  drowned  and  peat  moss  took  over,  eventually  growing  to  4  ft  high.  This   took   place   between   2100   and   1250   BCE.   The   peat  moors   spread   and   blended  with   the  coastal   wetlands   therefore   creating   one   big   bog   called   the   Holland   Peat   Moor.   The   rivers  leading  into  the  ocean  were  the  only  elements  that  could  divide  this  dense  vegetation.  During  the  Early  Roman  Times,  the  Peat  Moor  continued  to  expand,  which  prevented  water  drainage  and   created   impassible   barriers   throughout   the   landscape.   However   this   Peat   Moor   was  sensitive   to  change  and  easily  died  with  sea   transgression.  Between  2000  years  ago  and   the  Middle   Ages,   the   rising   sea   level   caused   more   sea   transgressions,   killing   the   Peat   Moor,  increasing  erosion  and   increasing  sediment  deposits.  As  the  bog   lands  began  to  subside,  sea  transgression   increased   and   formed   a   cycle   that   was   uninterrupted   until   the   newly   formed  basins  were  filled  with  seawater  once  more.    

Human  influences  as  early  as  800  BCE  began  to  modify  the  natural  system.  Canals  and  ditches  allowed  the  sea  to  penetrate  deeper  into  the  land,  causing  the  landscape  to  develop  into  the  mudflats  of  Zeeland,  coastal  Flanders,  northwest  Brabant,  Middelzee  and  Lauwerszee  regions.  Dikes  blocked  seawater  from  penetrating  the  coastline,  increasing  the  stress  in  the  system  and  causing  major  floods  that  would  surpass  the  dikes.  Once  this  water  broke  through,  the  polder  lands   and   peat   bogs  would   subside   and   die   at   an   extremely   fast   rate.   Irrigation   systems   in  these  areas  had  to  be  constantly  modified  to  keep  up  with  the  evolving  landscape.    

Draining,  Dredging,  Reclaiming:  The  Technology  of  Making  a  Dry,  Safe,  and  Sustainable  Delta  Landscape.    

The  Dutch  landscape  can  be  divided  into  three  parts  including  the  tidal  Inlets  and  estuaries  of  the  south,  the  uninterrupted  dunes  of  the  Holland  coast,  and  the  Wadden  Sea  area  and  barrier  islands.  Each  section  has  been  modified  as  needed  to  prevent  flooding  of  over  1/3  of  the  Dutch  territory.   Several   evolutions   of   the   water   management   infrastructures   incorporated  

Page 72: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  69    

 

technology,  environmental,  cultural  and  socio  economic   interests.  Today  the  new  conceptual  strategy  is  to  get  the  system  to  work  with  nature  instead  of  against  it.    

Prehistoric  societies  developed  on  flat  ground,  where   in  500  BCE  they  began  to  build  terpen  (dwelling   mounds)   to   protect   them   from   the   water   (image   below).   In   the   southwest,   the  Netherlands  was  known  for  peat  lands  that  were  drowned  out  then  subsided  due  to  manmade  canal   and   channel   constructions.   These   manmade   constructions   breached   the   water   table,  therefore  drowning  the  peat  lands  and  causing  subsidence.  Other  peat  lands  were  destroyed  by  the  deposition  of  sands  and  sediment  caused  by  river  flooding.  The  remaining  peat  land  was  burned  for  fuel.  The  disappearance  of  the  peat  lands  brought  about  erosion  that  has  molded  the  landscape  in  the  southwest  and  north  to  its  modern  coastal  shape.    

The  southwestern  inlets  have  sea  inlets  give  storm  surges  a  pathway  deeper  into  the  mainland,  causing   more   erosion   and   land   loss.   Human   interaction   is   to   blame   for   this   geographical  change  and  weakness  in  the  Netherlands.  In  the  13th  century,  humans  decided  to  build  dikes  in  order   to   rectify   this   weakness   in   the   coastline   and   protect   further   development   inland.   A  system   of   canals   and   dikes  were   important   for   the   drainage   and  maintenance   of   reclaimed  land.   There   is   a   system  of   responsibilities  divided  among   individual,   community   and   regional  territories.   This   system  ensured   that   the  canals  and  dikes  were  properly  maintained,  did  not  overflow   out   into   neighboring   communities   and   were   constantly   evolved   to   changing  technologies.   From   this   point   on   the   system   became   more   technologically   advanced   and  allowed   for   urban   density   to   increase.   Technologies   such   as   the   outlet   sluices   allowed   for  barriers  that  did  not  restrict  drainage  requirements.  

Between   the   13th   and   17th   centuries,   the   closed   water   management   system   caused   larger  flooding  episodes  caused  by  breaches  in  the  dikes.  This  forced  the  constant  reinforcement  and  modification  of  the  system  that  only  worsened  the  water  tension  in  the  system.  As  water  was  barred  from  re-­‐entering  the  sea,   the  floods  became  more  and  more  tragic  and  dangerous  as  water   levels  reached  further   inland  and  became  deeper.  Dams   in  the  14th  century  caused  the  river   systems   to   redirect,   increasing   problems   in   other   regions   and   causing   waterlogging  problems   (image   below).   In   the   16th   century   windmills   were   introduced   to   help   pump  waterlogged   lands.   Unfortunately   this   caused   the   lands   to   subside   further,   forcing   the  infrastructure   to   continually   expand.  B   the   16th   century   land   loss  was  brought   to   a   stop  and  land  reclamation  projects  began  to  increase  the  surface  area  of  the  Netherlands.  Water  boards  were  incorporated  into  the  government.    

Increased  technology  allowed  them  to  reclaim  more  land.  One  important  example  is  the  use  of  the  steam  engine  to  reclaim  land  out  of  Rotterdam  (1776-­‐1787)  and  Mijdrecht  (1793).  However,  storm  surges  were  still  a  major  problem  and  occurred  every  15  to  75  years.  The  trade  economy  of  the  Netherlands  gave  them  access  to  new  technologies  and  resources  and  as  the  population  

Page 73: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  70    

 

increased  both  urban  and  agricultural  lands  were  in  high  demand.  The  increasing  value  of  land  made   the   economic   investment   in   the   water   management   system   economically   viable.  Allowing  for  research  maintenance  and  evolution  of  the  system.    

The  19th  and  20th  centuries  saw  a  lot  of  impressive  land  reclamation  projects.  These  include  the  Haarlemmermeer  in  1852,  the  Wilheminapolder  in  1809,  the  Noord-­‐Holland  polders  of  Koegras  in  1817,  the  Anna  Paulowna  in  1835.  Between  1833  and  1911  the  Netherlands  reclaimed  350,000  hectares   of   land   for   agriculture.   Although   the   water   management   system   became   more  successful  at  flood  prevention,  surges  were  still  occurring.  Some  people  began  to  believe  that  flood  risk  strategies  had  to  be  implemented.  Regardless  a  system  of  channels  was  created  to  improve   drainage   and   navigation   abilities.   This   included   the   construction   of   the   Nieuwe  Waterweg   in   1868  and   the  Noordzeekanaal   in   1876.  However,   two   storm  surges   in   1916  and  1953  led  to  the  development  of  two  new  projects  that  were  larger  than  anything  that  had  ever  been  attempted  before.    

The  Zuiderzee  Project  led  to  the  closure  of  the  Zuiderzee  lagoon  and  included  the  reclamation  of   220,000   hectares   of   land.   The   Afsluitdijk   dam   closed   the   IJsselmeer   in   1932,   the  Wieringermeerpolder   was   drained   in   1930,   the   Noordoostpolder   was   drained   in   1942,   and  Flevoland   was   reclaimed   after   World   War   II.   The   Markerwaard   polder   is   next   on   the   list;  however,  people  are  reassessing  its  necessity  and  value.    

The  Delta  Project  was  started  after  a  major  flood  in  1953  that  led  to  the  death  of  1835  people.  The   solution  was   to   close   all   sea   inlets   that   proved   to   be   a  weakness   to   the   Dutch   coastal  storm   surge   defense.   This   excluded   the   Nieuwe   Waterweg   and   the   Westerschelde,   which  provided   access   to   the   ports   of   Rotterdam   and  Antwerp.   For   the   first   time   the   project  was  designed  based  on  prediction   systems   for   the   rise   in   sea   level,   severity  of   storms,   and  costs  (construction  and  destruction)  for  each  particular  area.  This  allowed  for  a  very  calculated  and  precise  dike  height  to  be  determined  for  each  area  of  the  Netherlands.    

However  due  to  the  strength  of  the  Dutch  economy  and  the  population’s  interest  in  ecological  preservation,   the  Delta  project  was  modified  to  create  a  more   integrated  approach  to  water  management.   One   where   the   tidal   flats   and   salt   marshes   of   the   Eastern   Scheldt   could   be  preserved.  A  flexible  gateway  allowed  for  the  area  to  be  closed  or  opened  depending  on  the  conditions  of  the  day.  This  became  a  standard  for  future  water  management  projects.    

Overall,   water   management   now   has   a   three   part   strategy   (1)   retention   (2)   buffering   (3)  drainage.  In  addition,  the  three  part  strategy  for  the  coast  is  (1)  unhindered  transport  for  sand  (2)   buffering   sand   with   nourishments   (3)   retention   of   sand   by   hard   structures.   The  Netherlands   is   concerned   with   the   increasing   dangers   for   low-­‐lying   lands   due   to   climate  change.  A  new  panel  has  been  assembled  with  the  top  national  and  international  scientists  to  help  predict  the  sea  rise  and  river  discharge  changes  in  the  coming  future.  The  results  estimate  

Page 74: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  71    

 

that  a  1  meter  increase  in  the  sea  level  will   increase  the  likelihood  of  floods  that  are  4  meters  high  by  40x.  The  sea  level  is  expected  to  rise  by  1  meter  by  2100  and  4  meters  by  2200.  For  this  reason,   all   spatial  planning  processes  are  now   legally   required   to   include  water  managers   in  the  design  team.    

The  Making  of  Dutch  Delta  Landscapes.  

“A  polder   is  a  particular   spatial,   topographic  entity-­‐   that   is   to   say,  a   landscape  with  a   coherent  topographical  pattern,  generally  surrounded  by  dikes  or  embankments,  which  define  the  space.”  This   suggests   that   the   polder   landscape   is   protected   from   external   water   systems,   while  maintaining  an  artificially  controlled  system  itself.  Dutch  polders  developed  through  a  series  of  evolutions   dependent   on   the   surrounding   context.   Various   technologies   advanced   the  development   of   the   polders   including   dams,   gated   culverts,   trenches,   drainage   ditches,   and  ring  dikes.  The  Netherlands  now  contains  more  than  4,000  polders,  mostly  below  sea  level  and  consist  an  urban  fabric.    

Polders   in   the  coastal   landscape  were   first  developed   through   the  damming  of  creeks  along  the  edges.  Erosion  that  occurred   in  the  area  after  the  Roman  era  caused  many  to  move.  The  southwest  region  was  not  repopulated  until   the  seventh  century,  where  people  stuck  to  the  more  elevated  creek  ridges.  Agriculture  was  set  up   in  patches  that  were  oriented  differently  depending  on   the  position  and  orientation  of   the  streams.  The  dikes  were  weakened  by   the  creation  of  holes  for  salt  mining.  Storm  surges  broke  at  these  weak  points  and  destroyed  over  100   villages   and   reclaimed   large   portions   of   land,   whose   square   footage   was   recuperated  through   the   reclamation  of   island  wetlands  elsewhere   (image  below).  Dikes,   creek  patterns,  gully   patterns   and   deposits   of   sediments   have   brought   about   regular   block   structures   that  sometimes  morph  into  long  rectangular  parcels.    

Polders  in  the  river  landscape  were  first  developed  by  settlements  located  on  the  top  ridges  of  river  dunes.  This  Roman  civilization  was  very  successful  and  managed  a  complex  agricultural  system  including  crop  rotation  and  dung  as  fertilizer.  The  settlements  were   long,  but  narrow  and   bridged   the   land   between   agricultural   land   and   meadowland.   The   floodplains   were  parceled,   a  pattern   that   is   visible   in   the  modern  day.  Dikes  were  built   around   these  villages,  transporting  water  westward   (downriver)  via   canals  and  gravity.  Eventually   floodgates  were  developed   in   this   region  and  dams  allowed   for   land   reclamation  projects.   This   infrastructure  caused  the  poldered  areas  to  subside,  while  sediment  built  up  in  the  area  around  it;  this  caused  the  topography  to  reverse.  The  polders  follow  the  shape  of  the  river  and  contain  a  variety  of  pattern   differentiated   by   the   river,   levees,   and   basins.   The   narrowing   of   the   river   bed   have  caused   major   flooding   problems   in   the   area   well   into   the   present   day,   leading   to   the  development  of  higher  dike  walls  and  inundation  polders  around  the  river  (image  below).    

Page 75: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  72    

 

Polders  in  the  peat  landscape  were  more  difficult  to  create  and  manage.  Unlike  other  polders,  these  were   not   seriously   developed   until   the   eighth   century.   At   this   time,   the   polders  were  used  for  agricultural  purposes  by  nearby  river  polder  settlements.  As  the  polders  could  only  be  accessed   through   polder   rivers,   the   landscape   had   to   be   modified   slowly   through   time.  Landscape   at   the   high   points   was   slowly   drained,   instigating   the   death   of   the   peat   and  allowing   for   agricultural   development.   As   the   land   subsided   dikes,   canals   and   gates   were  developed   to   keep   the   water   out.   Unfortunately   the   land   became   swampier   the   more   it  subsided,  and  so  each  plot  was  eventually  converted   for  grazing  purposes.  This  evolution  of  peat  lands  is  occurring  to  this  day.  In  the  westernmost  peat  bogs,  the  evolution  of  the  polder  was  quicker  and  more  organized.  A  series  of  dams,  dikes  and  canals  were  built  around  the  peat  bog  and  windmills  were  then  used  to  pump  the  water  out.  Because  the  system  was  no  longer  dependent   on   gravity   as   a   natural   drainage   technique,   the   land   was   drained   faster.  Unfortunately   this   also   meant   that   land   subsidence   was   more   extreme   and   the   dikes   and  embankments  had  to  be  constructed  to  protect  the  reclaimed  land.  Many  eroded  or  cut  down  areas  of  the  peat  bog  filled  with  water  to  create  lakes.  This  lake  dominated  landscape  became  a   flood   hazard   for   nearby   villages   and  were   eventually   drained.   The   landscape   here   is  more  random  and  disorganized  with  rectangular,  trapezoidal  and  even  parallelogram  parcels.    

Polders   in   the   lakebed   formed  after   seawater   flooded  northern  Holland.  The  seawater  killed  the  peat  bog  in  the  area  and  replaced  it  with  water.  Dikes  and  canals  protected  the  remaining  islands   of   dry   land.   During   the   reclamation   efforts,   windmills   pumped   out   water   from   the  lakes.  Unfortunately  windmills  could  only  pump  water  up  1-­‐1.5  meters.  Instead  of  pumping  the  water  directly  out,  the  landscape  had  to  be  stepped  and  a  series  of  windmills  would  help  pump  the   water   out   in   a   series   of   steps.   Eventually   the   windmills   were   replaced   with   the   steam  engine  pump,  then  the  diesel  engine  pump,  and  then  finally  electric  pumps.  The  development  of   the   landscape   is   generally   orthogonal   and   standardized.   Each   plot   had   a   road   along   the  short  edge  with  a  farm  somewhere  along  that  road,  drainage  ditches  framed  the  long  borders  and  a  canal  closed  the  plot  in  the  back,  sending  water  to  the  windmill  for  pumping.    

After  the  water  is  pumped  out  of  the  polder,  a  system  of  waterways  brings  the  water  out  and  behind  the  dike  walls.  This  system  of  waterways  is  maintained  with  the  same  techniques  as  the  individual  polders,  but  at  a  larger  scale.    

 

 

 

Page 76: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  73    

 

Conclusion  

This  semester  and  process  has  led  to  an  in-­‐depth  understanding  of  not  just  the  Netherlands,  but  the  basic  principles  of  ecological  design.  While  the  first  two  sections  provided  information  on  the  Dutch  environmental  systems,  the  last  section  deviated  a  bit  into  ecological  design.    

The  Netherlands  has  kept  up  with  European  standards  in  environmental  sustainability,  but  like  many  countries  has  struggled  to  maintain  focus  and  persistence.  The  government  first  started  by  pumping  a  lot  of  money  into  the  20-­‐20-­‐20  challenge  and  ensuing  environmental  concerns.  They  were  dedicated  in  the  energy  battle,  but  began  to  lose  faith  in  the  abilities  of  wind  turbines.  As  money  began  to  run  low,  the  government  focused  on  incentivizing  companies  to  personally  invest  in  the  environmental  cause.  While  the  Netherlands  takes  sustainability  seriously  due  to  its  critical  relationship  with  the  rising  sea  level,  expanding  the  gas  and  oil  networks  is  economically  viable,  but  not  environmentally  viable.  Nevertheless,  the  Netherlands  has  the  technical  and  educational  background  to  not  only  help  its  own  country,  but  many  others  around  the  globe.    

Throughout  the  various  site  visits,  the  Netherlands  truly  shined.  While  it  is  arguable  how  much  humanity  has  had  a  role  in  forming  the  countryside  in  the  past,  the  national  master  planning  depicts  a  nodal  condition.  The  boundary  lines  between  urban  construct  and  natural  land  are  quite  defined,  allowing  a  cyclist  to  experience  natural,  rural  and  urban  patches  along  the  way  from  one  city  to  another.  In  addition,  one  can  notice  the  difference  between  the  historical  windmills  and  the  modern  turbines  and  their  relationship  to  the  physical  environment.  It  becomes  clear  how  the  historical  windmills  maintain  their  charismatic  charm  to  this  very  day,  marking  cities  and  topography  changes  throughout  the  land.  They  have  an  ability  to  connect  the  modern  day  journey  to  the  historical  and  geographical  context  of  the  Netherlands.  On  the  other  hand,  the  modern  wind  turbines  appear  aggressive  in  use  and  function.  There  is  no  correlation  to  their  location  with  city  boundaries,  topographical  changes,  or  historical  conditions.  They  appear  dropped  in  space  and  time;  a  blunt  reminder  of  the  necessity  of  sustainability  and  threat  of  impeding  water.    

The  final  book  studies  put  into  perspective  the  work  that  the  Netherlands  was  doing  in  comparison  with  other  theories  and  physical  solutions  scattered  throughout  the  world.  With  this  perspective  in  mind,  it  seems  like  the  Netherlands  is  truly  caught  in  a  difficult  transition.  The  Netherlands  is  calculated,  controlled  and  manipulative  in  its  water  management  strategies.  Although  there  is  a  clear  attempt  to  increase  the  flexibility  of  the  system,  the  Netherlands  has  a  long  time  to  go  before  they  find  a  good  balance  between  control  and  cooperation.  On  the  other  hand,  the  Netherlands  finds  itself  in  a  unique  position,  one  that  cannot  be  resolved  by  simply  following  the  strategies  utilized  in  the  books  above.  The  

Page 77: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  74    

 

Netherlands  is  60%  below  sea  level.  It  is  difficult  to  imagine  a  natural  solution  to  this  unnatural  condition.    

Page 78: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  75    

 

Bibliography  

"25  Million  Euros  for  Research  into  Energy  from  Plants  and  Algae."  Universiteit  Leiden.  Universiteit  Leiden,  15  July  2009.  Web.  28  Sept.  2014.  <www.news.leiden.edu/news/25-­‐million-­‐for-­‐research-­‐into-­‐energy-­‐from-­‐plants-­‐and-­‐algae.html>.  

"About  the  City."  Leiden  Key  To  Discovery.  Leiden  Key  To  Discovery,  n.d.  Web.  29  Sept.  2014.  <http://portal.leiden.nl/en/tourism_leisure/discover/about_the_city>.  

"All  Issues  Ordered  by  Policy  Area  ."  Government.nl.  Ministry  of  General  Affairs,  n.d.  Web.  28  Sept.  2014.  <www.government.nl/issues/>.  

Arnold,  Geo,  Henk  Bos,  Roel  Doef,  Reinier  Goud,  Neeltje  Kielen,  and  Francien  Van  Luijn,  eds.  Water  Management  in  the  Netherlands.  Rep.  Ministry  of  Infrastructure  and  the  Environment,  n.d.  Web.  28  Sept.  2014.  <www.rijkswaterstaat.nl/en/images/Water%20Management%20in%20the%20Netherlands_tcm224-­‐303503.pdf>.  

Blunt,  Elizabeth.  "Exploiting  Wind  Power  in  Holland."  BBC  News.  BBC,  13  Nov.  2000.  Web.  28  Sept.  2014.  <http://news.bbc.co.uk/2/hi/europe/1021714.stm>.  

Charlesworth, Esther. The EcoEdge: Urgent Design Challenges in Building Sustainable Cities. Abingdon: Routledge, 2011.  

"Facts  about  The  Hague."  The  Hague.  The  City  of  The  Hague,  n.d.  Web.  29  Sept.  2014.  <http://www.denhaag.nl/en/residents/to/Facts-­‐about-­‐The-­‐Hague.htm>.  

"Geography."  -­‐  The  Hague  University.  The  Hague  University,  n.d.  Web.  28  Sept.  2014.  <http://www.thehagueuniversity.com/why-­‐study-­‐in-­‐holland/more-­‐about-­‐holland/geography>.  

"Hoorn:  It's  an  Experience!"  Gemeente  Hoorn.  City  of  Hoorn,  n.d.  Web.  29  Sept.  2014.  <http%3A%2F%2Fwww.hoorn.nl%2FInt%2FHome%2FBuitenlands%2FHoorn-­‐its-­‐an-­‐experience!.html>.  

"History  of  Delft."  Delft.  The  City  of  Delft,  n.d.  Web.  29  Sept.  2014.  <http://www.delft.nl/delften/Tourists/History_of_Delft>.  

"History  &  Society."  I  Amsterdam.  I  Amsterdam,  n.d.  Web.  29  Sept.  2014.  <http://www.iamsterdam.com/en-­‐GB/experience/about-­‐amsterdam/history-­‐and-­‐society>.  

 "History  |  Wind  Energy  Foundation."  Wind  Energy  Foundation.  Wind  Energy  Foundation,  n.d.  Web.  27  Sept.  2014.  <http://www.windenergyfoundation.org/about-­‐wind-­‐energy/history>.  

Page 79: Research : Urban Ecology Networks

   

Nathalie  Waelbroeck:  Urban  Ecology  Networks   Fall  2014:  76    

 

"History:  Zaanse  Schans  Brings  Dutch  History  to  Life."  Zaanse  Schans.  Zaanse  Schans,  n.d.  Web.  29  Sept.  2014.  <http://www.dezaanseschans.nl/en/history/>.  

"Landschapsbeheer  Nederland  Samen  Voor  Ons  Landschap."  Landscape  Management  Netherlands.  Landscape  Management  Netherlands,  n.d.  Web.  28  Sept.  2014.  <www.landschapsbeheer.nl/english/landscape-­‐management-­‐netherlands>.  

Meyer, Han. Delta Urbanism: The Netherlands. Chicago, IL: American Planning Association, 2010.  

Morse,  Elizabeth,  and  Andrew  Turgeon.  "Wind  Energy."  National  Geographic.  Ed.  Jeannie  Evers.  Claudia  Malley,  n.d.  Web.  28  Sept.  2014.  <http://education.nationalgeographic.com/education/encyclopedia/wind-­‐energy/?ar_a=1>.  

Pickett, Steward T. Resilience in Ecology and Urban Design Linking Theory and Practice for Sustainable Cities. Dordrecht: Springer, 2013.  

Plan  of  Action  Energy  Saving  in  Built  Environment.  Rep.  Ministry  of  the  Interior  and  Kingdom  Relations,  25  Feb.  2011.  Web.  28  Sept.  2014.  <www.government.nl/documents-­‐and-­‐publications/reports/2011/02/25/plan-­‐of-­‐action-­‐energy-­‐saving-­‐in-­‐built-­‐environment.html>.  

Renewable  Energy  in  the  Netherlands.  Rep.  Ministry  of  Economic  Affairs,  25  Mar.  2011.  Web.  28  Sept.  2014.  <www.government.nl/documents-­‐and-­‐publications/leaflets/2011/03/25/renewable-­‐energy-­‐in-­‐the-­‐netherlands.html>.  

Sekularac,  Ivana.  "Dutch  Fall  out  of  Love  with  Windmills."  Reuters.  Thomson  Reuters,  16  Nov.  2011.  Web.  28  Sept.  2014.  <http://www.reuters.com/article/2011/11/16/us-­‐dutch-­‐wind-­‐idUSTRE7AF1JM20111116>.  

The  Editors  of  Encyclopædia  Britannica.  "Rotterdam  (Netherlands)."  Encyclopedia  Britannica  Online.  Encyclopedia  Britannica,  n.d.  Web.  28  Sept.  2014.  <http://www.britannica.com/EBchecked/topic/510693/Rotterdam>.  

Timmermans.  "Climate  and  Energy  Package."  Government.nl.  Ministry  of  Foreign  Affairs,  12  Feb.  2008.  Web.  28  Sept.  2014.  <www.government.nl/documents-­‐and-­‐publications/speeches/2008/02/12/climate-­‐and-­‐energy-­‐package.html>.  

Trussell,  Tait.  "Wind  Power  Is  Dying."  FrontPage  Magazine.  FrontPage  Magazine,  28  Aug.  2011.  Web.  28  Sept.  2014.  <http://www.frontpagemag.com/2011/tait-­‐trussell/wind-­‐power-­‐is-­‐dying/>.  

"Welcome  to  the  South  Kennemerland  National  Park."  (n.d.):  n.  pag.  Natioaal  Park  Zuid-­‐Kennemerland.  National  Park  South  Kennemerland.  Web.  29  Sept.  2014.  <http://www.np-­‐zuidkennemerland.nl/documents/documents/ab6ad2.pdf>.