removal kinetics of low concentration ammonia by immobilized … · 2001-03-05 · 93 hwahak...

7
93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (2001 2 21 , 2001 11 7 ) Removal Kinetics of Low Concentration Ammonia by Immobilized Nitrifier Consortium Byong-Jin Kim, Jung-Hoon Lee and Kuen-Hack Suh Department of Chemical Engineering, Pukyong National University, Busan 608-739, Korea (Received 21 February 2001; accepted 7 November 2001) polyvinyl alcohol (total ammonia nitrogen, TAN) . TAN 5 g/m 3 , 25 o C 0.05-1.0 hr . TAN Monod TAN , R max , K S 640 g/m 3 · day, 1.667 g/m 3 . 0.6-4.8 g/m 3 1/2 TAN . 6 g/m 3 TAN 0.9 hr . . Abstract - The kinetics parameters for total ammonia nitrogen(TAN) removal in a airlift bioreactor using nitrifier consor- tium entrapped in polyvinyl alcohol(PVA) were evaluated by using a synthetic wastewater at 25 o C. Influent TAN concentration were 5.0 g/m 3 with hydraulic residence time(HRT) ranging from 0.05 to 1.0 hr. TAN removal rate followed Monod kinetics in overall concentration range and maximum TAN removal rate and half saturation constant were 640 g/m 3 · day and 1.667 g/m 3 , respectively. For TAN concentration ranging from 0.6 to 4.8 g/m 3 , the TAN removal rate can be described by half order kinetics. If this process applied to the water treatment process(influent TAN concentration: 6 g/m 3 ), 0.9 hr of HRT was required for drink- ing water quality of TAN. To get high TAN removal rate, a low HRT was favorable. Key words: Ammonia Removal, Immobilized Nitrifier Consortium, PVA, Kinetics, HRT 1. , , , 40% 60% [1]. [2]. (NH 3 ) (NH 4 + ) . pH 99% pH 9 . 1 g/m 3 [3] [4]. . EPA[1] 0.02 g/m 3 . pH 7-7.8 0.6-2.45% 0.02 g/m 3 (TAN, total ammonia nitrogen) 2-5 g/m 3 . 0.5 g/m 3 2-5 g/m 3 . [5] [6, 7]. To whom correspondence should be addressed. E-mail: [email protected]

Upload: others

Post on 23-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Removal Kinetics of Low Concentration Ammonia by Immobilized … · 2001-03-05 · 93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (Journal of the Korean Institute of

HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99(Journal of the Korean Institute of Chemical Engineers)

��� ����� �� � ���

���������†

����� �����(2001 2 21� � , 2001 11 7� ��)

Removal Kinetics of Low Concentration Ammonia by Immobilized Nitrifier Consortium

Byong-Jin Kim, Jung-Hoon Lee and Kuen-Hack Suh†

Department of Chemical Engineering, Pukyong National University, Busan 608-739, Korea(Received 21 February 2001; accepted 7 November 2001)

� �

� ��� polyvinyl alcohol� ��� ��� � ���� �� ��� ������ � ��� ! "(total ammonia

nitrogen, TAN) #$%&�� &'��( �)*. +, -!./ 0� TAN 1&� 5 g/m3, 2&� 25oC3 +4�5 0.05-1.0

hr� /678 9:;<�= >?�)*. TAN#$%&�@ Monod �A B CD�)EF GHI JK TAN#$%&, Rmax

L �M��/, KS� NN 640 g/m3 · day, 1.667 g/m3�O*. 0.6-4.8 g/m3� 1& PQ�=� 1/2R %&�& TAN#$%&�

ES 8-�)*. � ��� �/TU ��� 8�;V WX 6 g/m3� 1&3 Y4� Z/3 TAN� [�/ TU�\ ��

S +4�� Q]= 0.9 hr� /678 9:;<� ^_` aES b�cO*. d@ #$%&3 ^_S �� ��� 8�;

V WX /678 9:;<� e";V/f d@ #$%&3 G� / g� aES hij*.

Abstract − The kinetics parameters for total ammonia nitrogen(TAN) removal in a airlift bioreactor using nitrifier consor-

tium entrapped in polyvinyl alcohol(PVA) were evaluated by using a synthetic wastewater at 25oC. Influent TAN concentration

were 5.0 g/m3 with hydraulic residence time(HRT) ranging from 0.05 to 1.0 hr. TAN removal rate followed Monod kinetics in

overall concentration range and maximum TAN removal rate and half saturation constant were 640 g/m3 · day and 1.667 g/m3,

respectively. For TAN concentration ranging from 0.6 to 4.8 g/m3, the TAN removal rate can be described by half order kinetics. If

this process applied to the water treatment process(influent TAN concentration: 6 g/m3), 0.9 hr of HRT was required for drink-

ing water quality of TAN. To get high TAN removal rate, a low HRT was favorable.

Key words: Ammonia Removal, Immobilized Nitrifier Consortium, PVA, Kinetics, HRT

1. � �

��� �� ��� ��, �� �� ��, ���� ��, �

�� �� �� � �� ��� ����� ��� ���� � ��

! ��" �� �� ���# $ 40%� ��%& 60%! �

� �� ��%'[1]. ��! �� ()� * +�" ,-./ 0

& 123 �4 �� �� ��� �4 '[2]. �� �! ��3#

5%6� �� �(NH3)" %6� �� �(NH4+)7 �� ��� ��

8'. ��� pH3# �� �� 99%! %6� �� �� ���9

pH 9%:3#! 5%6� �� �� ;<� =�8'. 1 g/m3%:�

�� �! >� ?%@A BCDE9[3] 5%6� �� �! FG�

1HIJ KL�M N;<3#< /O3P QRST U4A �P '

[4]. �� �� �V� WX.Y ZG[S �\3 �4 ��� ��]

���� ��� �\.Y# ��� ^���A &_DE`� ��

�� ��A abc de�! �� fg% h+�'.

EPA[1]3#! /OA ij�! �V� 5%6� �� � ;<A 0.02

g/m3 %�� ��<k lm�& 0'. 5%6� �� �� ��3

���! 5n� pH 7-7.8T op 0.6-2.45%%`� ��� 5%6� �

� �A 0.02 g/m3%�� �� q4#! r �� �� ��(TAN,

total ammonia nitrogen)A 2-5 g/m3 %�� ��Ms 8'. t8 u^�

� r �� �� ��� ��� 0.5 g/m3 %�%`� 2-5 g/m3� ;<A

��! N;< �� �� &<�� v% +> '.

��� �� �A de�! Wwx�! �ZGJ %^�! ZG[

S ��w% �� i^.& 0x9[5] �\12� 5 =Cb<! yz

�ZG3 54 {p |x9 %� T4 �ZGJ ��}3 B~D� i

^�! fg% �� %^.] �� ��[S B�3 �4#! �ZG

� ��� �Z�M fg� �n% N�.! (�% 0'[6, 7]. H� &

g\ �ZGJ %^�Y ��[S B�� �3 :��% z� �

� �ZGJ &;<� �� � 0/ %3 �8 �>� �% ��.&†To whom correspondence should be addressed. E-mail: [email protected]

93

Page 2: Removal Kinetics of Low Concentration Ammonia by Immobilized … · 2001-03-05 · 93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (Journal of the Korean Institute of

94 ���������

0'[8-10].

ZG[S �� � ��fg� �nST �VA q4#! ZGz�

� �� � deb<CJ >�M ��D��� �S ^�J >�M

s 8'. ��] ���� �� &g\ �ZGJ %^8 �� � d

efg3 �8 �>! &g\ ��� ��%] mQ� ���n3 �

8 �x� b<C3 �8 �>! B��'.

�ZG3 �8 �� � de3 �8 b<C� yzSx� Monod C

3 �4  � '[5, 11]. Jung �[12]� �¡A ��}� i^8 F¢

3 �8 �� � de3 �4# 1£ b<CJ i^� � 0'& �¤x

9 Nijoh[13]! ¥� M: fg3 �4 1/2£ b<CJ S^� � 0'

& �¤'. van Ginkel �[14]� H� &g\ �ZG3 �4#< Monod

C3 �4 deb<CJ  �� � 0'& �¤'.

¦ �>3#! polyvinyl alcohol(PVA)J %^�M &g\ �\12§J

d¨�& %A fB:C ZGz�3 S^�M N;< �� � de

©ªJ ���¤'. &g\ �\12§3 �8 N;< �� � de3

0/ S-8 �� � deb<CJ <X�& %A %^�M �S� �

� � de fgJ �V� q8 ¨«J dD�&¬ �¤'.

2. � �

2-1. ��� �����

¦ �>3# i^8 &g\ �\12§� �\12§J PVA3 H�

&g\ �M i^�¤x9 &g\ �\12§� d¨3 i^8 �\1

2§� ­�®��A ¯°�M i^�¤x9 � Ww� Suh �[10]�

�>" Fy�P ���¤'.

&g\ �\12§� PVA-boric acidw[15]J %^�M d¨�¤'.

3,000 rpm3# 10�± ²³��D� ´� ;µ �\12§J 4.5%(D.W./

V)� ¶·�&, 30%(W/V) PVA-HC(saponification: 100%; degree of

polymerization: 2000) ̂ ¸L F�� BU� H� Z� ¹<k º

ºc »-�M PVA 15%-�\12§ 2.25%T »-^¸J �¼½'. %

»-^¸J g�¾@A %^�M yg8 b<� 8oC� ¿À8 H\

boric acid ̂ ¸3 Á/Âà >�� &g\ �\12§J d¨�¤'. %

Ä d¨ &g\ �\12§� Åo� 4 mm%½'.

2-2. ��

¦ �>3# i^8 ©ªmQ� �C<! Fig. 1L Æx9 &g\ �

\12J %^�! ZGz�� split-cylinder��� fB:C ZG

z�A dÇ�M i^�¤'.

fB:C ZGz�! z� �B� fA ÅÈ �É� ÄÊ

3 &g:3 5�M ËÌ�:% �& »-��% Í� m�J ��&

0x9 Îzz�3 5�M >¨� ±(�&, ��\� ^%�9 2y

8 »-�L |� �(�, �� G��Ïb< �� m�J ��& 0'.

Split-cylinder fB:C ZGz�! z� �B3 W4ÐJ �Q�

M :ÑB" �ÒBA ��8 ���# ²K� f B:C z�Ó

' Ô �� F�J ´J � 0! ��%'[16].

¦ �>3# dÇ�M i^8 fB:C ZGz�! �o 6 cm, �

% 20 cm� ��Õ �J %^�M dÇ�¤x9 X>� �%! 18 cm

�# z�� ¸} }S� 500 mL%½'.

W4Ð� :ÑB3 fÖ.! f� }SJ &Ã�M z� �B�

} ×Øb<A yg�P ��<k :ÑB" �ÒB� (YS� 5

� 6 : 4� .<k �Q�¤'. :ÑB� �B3! �·J %^8 f

��A �Q�M &g\ �\12§� FL ��\3 h+8 �

� fÖ3 %^�¤'. -� �� É>! :ÑB� f �� ÙY

3 �Q�M ��� ÉÚL FD3 z� � ¯Û¸L »-./ &

g\ �\12§L Ü�c ÈÝ Þ z� ßx� àX.<k �¤'.

X>! �ÒB :B3 �Q�¤x9, z� :B3! &g\ �\1

2§� XJ Ë q�M X> �¡3 �1áJ �Q�¤'.

yg8 6<A �� � 0<k ZGz�A â6�¨ �3 �Q�

¤x9 &g\ �\12§� FL �\12§� Zm3 h+8 f

! rotameterA �Q�M yg8 �x� fÖ� � 0<k �¤'.

2-3. ��

z�3 ãÉ8 &g\ �\12§� °� 50 mL� z� ¸} ^

S� 10%(V/V)¤'. ©ª3 i^8 �� � ä ��! Liu"

Capdevelle[17]% i^8 �L Fy�P Table 1L � 5n� TAN ;

<A 5±0.2 g/m3x� ¨d�M i^�¤x9 É�� pH! 7.3±0.1¤

'. z��� 6<! 25.4±0.5oC� ��¤x9 ��[S }OD±

� 1.0D±3#Bå 0.05D±�� æ%Y# ��¤'. &g\ �\12

§� mQ� ��� -� ��A �bSx� fÖ�Y# 1y ±çx�

À z� �� ��A èé�M �·�¤'. f fÖ�� 10%� &

g\ �\123 ��M deb<� ê\� �& Ü�8 ̂ ���A f

Ö� � 0! 2.4 vvm(1.2 L/min)[18]x� fÖ�¤'.

2-4. ���

Dë� èé! {y 1ì ���¤x9 ��[S }OD±� ê\3

�4 z� X> �� �� �� ;<� yg�P �.! g::

�3# 3-4ì DëA èé�M �·8 Þ í2îJ ¬ë� i^�¤'.

�� �� �� �·J q�M �� � ïð �ñ(Orion Research

Inc., 9512BN)% B~ ion meter(Orion Research Inc., 720A)A %^

�M %6ïð� �ñw[19]3 �4 �·�¤'. ��� �� * ��

Fig. 1. Schematic diagram of the experimental system using airlift bioreac-tor for ammonia removal.1. Airlift bioreactor 7. Liquid outlet port2. Water bath 8. Air inlet port3. Baffle 9. Feeding tank4. Screen 10. Peristaltic pump5. Air distributor 11. Air pump6. Liquid inlet port 12. Rotameter

Table 1. Composition of substrate nutrient[17]

Ingredient Composition(g/m3)

NH4Cl 19.107NaHCO3 48.570Na2HPO4 12.197KH2PO4 12.211MgSO4 · 7H2O 10.497FeCl3 · 6H2O 10.076

���� �40� �1� 2002� 2�

Page 3: Removal Kinetics of Low Concentration Ammonia by Immobilized … · 2001-03-05 · 93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (Journal of the Korean Institute of

��� ���� ���� ����� 95

�� ��� ;<! ion chromatography(Dionex, DX 120)A i^�M

�·�¤'. ̂ ���! z� :(3 ̂ ���òg(YSI, YSI 55)A

ó� òg�¤x9, pH! pH meter(Orion Research Inc., 290A)A i^

�M Dë èé" FD3 òg�¤'.

3. �� �

3-1. ���� ��� ���� ��

H� &g\ �\12§3 �8 �� � dez�� Nitrosomonas

sp.3 �4 �� �� ��A ���� ���, Nitrobacter sp.� ��

�� ��A ��� ��� ô� �\DE! �õz�%'[2, 11, 20].

Nitrosomonas sp. Nitrobacter sp.TAN−→ NO2

− -N−→ NO3− - N

%" Æ� 5�ö �õ z�3# z�GT TAN� ;<! ��[S

}OD±% ÷/ø3 ùú û��9 �ü Z�GT ��� ��� ;

<! Vb =�8'. ��] �± Z�GT ���� ��� ;<! �

�[S }OD±� =�3 ùú =��'� û��! ��A ��P

'[21].

H� &g\ �\12§� �� � de z�3# ��[S }OD

±� ýþJ ÿ�Ó q�M ��[S }OD±J 1.0D±3# 0.05D

±x� û�DEY# �� � de©ªJ ���¤'. ©ª± � �

�\ z�3 ýþJ �Q! T¬T ^��� ;<" pH! ��[S }

OD±� ê\3 �4 �P ê\�� ¹& ÀÀ 6.58±0.2 g/m3, 7.55±0.2

� �q3# �./# ^���" pH� ê\3 �8 �� � de

b<� ýþ� �½J �x� ZÀ '.

Fig. 23 5 g/m3� É TAN ;<3# ��[S }OD±� ê\3

ù� X� �� �� ��� ̈ �5" � ;< ê\A <D�¤'. �

�3# Ó! �" Æ% TAN ;<! ��[S }OD±% 0.05 hr3#

0.375 hr� =�.Y# e� ÅïSx� û��¤x9 � %Þ û��

% �£ æ/ ¼½x9 1.0 hr� ��[S }OD±3# 0.37 g/m3� ;

<A ]��½'. ���� ��� ;<! ��[S }OD±% =�ä

3 ùú =��M 0.25 hr3# 0.32 g/m3� �& ;<A ]�� Þ �£

û��¤x9 ��� ��� ;<! û� TAN ;<" =� ��

�� �� ;<� £%�� =��¤'.

�� �;<� û�! Nitrosomonas sp.� �� � deb<3 �

4 ,g./�9 ���� ��! �} z�� �±}�# Nitrosomonas

sp.3 �8 �� � deb<" Nitrobacter sp.3 �8 ��� �� Z

�b<� £3 �4 � ;<� ,g '. g::�3# 7 z��

z�b<! � z�b<Ó' Ô �� �! �x9 7 z�b

<� �� ÇJ�k �±}T ���� ��� ;<� ��P .9

7 z�% �} z�� b< ,g (V� '. �±}T ���

� ��� ;<� |P � op3! � z�% b< ,g (

V� '[21].

Fig. 33 ¦ �>3# ]�� ��[S }OD±� ê\3 ù� TAN

� deb<" ��� ��� Z�b<� ê\A ]��½'. ��3#

Ó!�" Æ% TANdeb<" ��� ��� Z�b<! ��[S }

OD±% �J�k �& ��[S }OD±% =�ä3 ùú �� û

��! �x� ]��'. TANdeb<" ��� ��� Z�b<� £

%! ��[S }OD±% û�ä3 ùú ¨� =� �¤x] � £%

! �� ¹� �x� ]��'.

���� ��3# ��� ��� �\.! z�� b<� �� �

� ���� ��� �\.! b<" e� i�& �±}T ���

� ��� �& ;<� 0.32 g/m3x� �} �� ��� 6.4%�J £�

�M �}Sx� '� ��� 5n3 54 {p � �x� � �}

ST �� � de3 0/ �} z�� b<A �à�! (V! �

z�%ú& � � 0'. ùú# N;< �� �� de3 �8 b

<C &�3 0/#! �õz�� � (VT �� �� ���� �

��� �\z�3 �8 b<C� &��Y '& ZÀ '.

3-2. � ����� ��(TAN)����

H� &g\ �\12§J %^8 ��\ z� � �� �� ��A

���� ��� �\DE! Nitrosomonas sp.� �\b<! Monod C

[14], 1£C[20], 1/2£C[13]x�  �� � 0'. Fig. 4! ¦ �>� ,

LA 1 �� b<C3 ùú ï�ì�8 ,LA ]�� �%'.

Monod C� ZGz�3# �m yzST ��� 'uL Æ%  � '.

(1)

M# −r� &g\ �\12§ }S � TANdeb<, −rmax� &

g\ �\12§ }S � �� TANdeb<, KS! zH\:�%9

r–rmax– C⋅KS C+

-------------------=

Fig. 2. Changes of compositions and concentrations of nitrogen com-pounds in effluent on different hydraulic residence time.

Fig. 3. Changes of total ammonia nitrogen(TAN) removal rate andnitrate nitrogen(NO3-N) formation rate on different hydraulicresidence time.

HWAHAK KONGHAK Vol. 40, No. 1, February, 2002

Page 4: Removal Kinetics of Low Concentration Ammonia by Immobilized … · 2001-03-05 · 93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (Journal of the Korean Institute of

96 ���������

C! TAN ;<%'.

H� &g\ �\12§J %^�! ZGz�3# z�� ��

�� �� deb<! &g\ �\12§� °L 5��`� C (1)

� 'uL Æ% � � 0'.

(2)

M# R� z� ¸} }S � TANdeb<, VB! z� �3

ãÉ8 &g\ �\12§� r BU%9 VR� z�� ̧ } }S%'.

VB/VRJ &g\ �\12§ ãÉ�, εú 7&, −rmax·εA z� ¸}

}S � �� TANdeb<, Rmax� 7Y C (2)! C (3)x� g� '.

(3)

C (3)� Rmax" KS! 'u� Lineweaver-Burk plot3 �4 >� �

0'[20]. Lineweaver-Burk plot� C (3)3 %� ö�A é8 ��� �

m �Sx� i^�! ��%'.

Lineweaver-Burk plotJ %^8 ï�ì� �· ,L :�V� r2�

0.993x� ]�] &g\ �\12§� TANdeb<C� Monod C

3 �4 �  �.½x9 �� TANdeb< Rmax! 640 g/m3 reactor ·

day, zH\:� Ks! 1.667 g/m3%½'. ¦ �>3# z�3 ãÉ8

&g\ �\12� °� z� }S� 10%%`� &g\ �\12

§ (q }S� �� TANdeb<! 6,400 g/m3 bead�day� �g '.

KS î� �ZG� �L� �\<A ]��! ±È� �# %^

� 0'[20]. Nitrosomonas europaeaA calcium alginate3 &g\8 &

g\ �ZG� KS� 30oC3# 5.95 g/m3%½'& �! van Ginkel �[14]

�> ,L3 54 ¦ �> ,L3# ]�� 1.667 g/m3� 1/3g<� |

� î%'. %�x� Ó� PVA� calcium alginateÓ' &g\ �} �

B�� �Nâ% Ô Ç� �x� ZÀ.9 �\12J &g\�! �

ë� Ô p��'& ZÀ '.

1£ b<C� z�b<A  ��! �m ±(8 �� �� �]�#

Monod C� op N;<3 �4# C (3)J 'uL  D� � 0'[20].

(5)

Rmax/KS! �]� b<:�� � � 0x`� C (5)! 'uL Æ% �

� 0'.

R = k1C (6)

M# k1� 1£ b<C� b<:�%'.

C (5)3 �8 1£ b<C� op z�G� ;<� KS3 54 {p |

� op3� �!8'. ¦ ©ª� ,L MonodC3 �8 1£ b<:�

! 384 day−1� {p �P ]��& ©ª,L"! 0.3 g/m3%�� ;<

3 �4#� B-.! �x� ]��'.

Monod C� &g\ �ZG3 �8 �� � deb<CJ �zSx

� �  �� �! 0x] ����� ;<âJ �¬" ��3 �7 H

ä�& 0/ fgJ �"#�!$ 0/ %��'. %A (¯\� q

�M N;<3# 1£ b<C, &;<3#! 0£ b<Cx� ]&/ S

^�< �] % t8 ^%�� ¹& 1£ b<C3# ýö 0£ b<C

ýöi%� �% ýö3 �4#! S^% %�'�'[20].

Nijoh[13]! N;<" ¥�M: ZGË fgJ %^8 ��\ z�3

0/ 1/2£ b<CJ %^� op N;<" �%ýö3 �4 � S^

� 0'& �¤& � %:� ;<3 �4#! 0£ b<CJ dD�¤'.

¦ �>3# (Sx� �! N;< �� �� op TANdeb<�

��;<3 <Ï�� ¹& �%ýö3 )*+`� 1/2£ b<CJ i^

� op Ó' ^%�P %^� � 0'. �ZG3 �8 �� � de

z�3 0/ H�w3 �4 &g\ �ZG� deb< � ZG

Ë fgL �P '+� ¹x`� 'uL Æ� 1/2£ b<CJ S^D,

� 0'.

(7)

M# k1/2! 1/2£ b<C� b<:�%'.

1/2£ b<C� b<:�A >� q8 ï�ì� �·� ,L :�

V� r2% 0.972� �� :��J Ó¤x9 %Ä >4� b<:� k1/2

! 235(g/m3)0.5�day¤'. ¦ ©ª3# ��8 �q3 �4# ©ª,L

" � B-.! �x� ]�] C (7)� N;<�% � ú �% ýö3

�4#< S^D, � 0! �x� ]��x9, Monod C3 54 ±(

8 ��� N;< �� �3 �8 deb<Cx� %^� � 0! �

x� ië '.

3-3. TAN���� � !"

����3 0/ �m �+8 �� ���� ��%9 z�� de

b<CJ ÿY X�� ��J -ò� � 0'.

¦ �>3# i^8 fB:C z�! »-×Ø z�%`� z

� �B� TAN ;<" X�� TAN ;<! Fy�'& �g�Y,

z� �ê� TAN3 �8 g::� G���C� 'uL Æ'.

QCO = QC + RVR (8)

M# Q! ��� É �%9 CO" C! É�" X�� TAN

;<%'.

%Ä z�� deb<, R% Monod CJ ù�'Y C (8)3 C (3)

J �É�Y C (9)" Æ% � � 0x9 %A X� ;<, C3 �4

g��Y C (10)J ´J � 0'.

(9)

(10)

M# τ! ��[S }OD±(VR/Q)%'.

z�� deb<� 1£ b<CL 1/2£ b<CJ ù�'& �g� o

R rVB

VR

------⋅–=

Rrmax– C⋅KS C+

-------------------VB

VR

------⋅= rmax– ε CKS C+---------------

Rmax C⋅KS C+------------------=⋅ ⋅=

1R---- 1

Rmax

-----------KS

Rmax

----------- 1C----⋅+=

RRmax

KS

-----------C=

R k1 2⁄ C1 2⁄=

CO C τRmaxC

K s C+---------------+=

C 12--- CO τRmax– KS CO τRmax– KS–( )2 4COKS++–

=

Fig. 4. The comparison between the experimental data and the threedifferent kinetic models.

���� �40� �1� 2002� 2�

Page 5: Removal Kinetics of Low Concentration Ammonia by Immobilized … · 2001-03-05 · 93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (Journal of the Korean Institute of

��� ���� ���� ����� 97

p %" Fy�P C (8)3 (6)L (7)J �É�M C3 �4 g��Y 1£ b

<C� C (11)[21], 1/2£ b<C3 �4#! C (12)A ´J � 0'.

(11)

(12)

Fig. 5! ¦ �>3# ´/� À b<C� {.ê�A %^�M É

�� TAN ;<� 5.0 g/m3y Ä ��[S }OD±� ê\3 ù�

X�� TAN ;<ê\A -ò�M ©ª,L" 5Î8 �%'.

Fig. 53# Ó! �" Æ% Monod C� ¦ �>3# ��8 Dªý

ö �z3 /0 ©ª,L3 � B-.! �x� ]��& 1/2£ b<

C� op3< �zSx� ©ª,L" � yQ�¤'. ��] 1/2£

b<C� op ��[S }OD±% ÷/1 X�� TAN ;<� |

���k Monod C3 54 |� TAN ;<A  ��! �x� ]�

�'.

©ª,L3 �8 1£ b<C� �� ��[S }OD±3#, Monod

C3 �8 1£ b<C� X�� ;<� |��! 2 }OD±� ý

ö3#� ©ª,L3 B-.! �x� ]��'. 3 1£ b<C� b<

:�A >� q8 Åï� 4� ©d 5ï� 4" B-.!

ýö3 �4#� S^D, � 0½'. %�8 %� 1£ b<C� o

p b<C% ±(�& b<:�A >� ^%8 �� m�% 0x]

6� �q3 �4#! S^DE� 78�¤'. ��] X�� ��

% 9� �q3#� ê\�! g� ��mL Æ� fg3 �4#! 6

� �q3 �8 b< ê\� �x`� (¯\ b<Cx� �^� �

0J �x� ZÀ '.

Fig. 6� 5ÎS 6� ýö3# Monod CL � B-.! 1/2£ b<

C� S^�qA &�� q�M 1-6 g/m3� É TAN ;<3 �4

��[S }OD±� ê\3 ù� :� TAN ;<5(C/CO)� ê\A ]

�� �%'.

��3# ]�� �" Æ% 1/2£ b<C3 �4 ´/� :� TAN

;< -ò ,L! É�� ;<� û��&, ��[S }OD±% ÷

/1 :� TAN ;<� |���k Monod CL� £%� ��! �x

� ]��'. É TAN ;<� 1-5 g/m3T op �� ;<3#! Monod

CL � yQ�¤x9 0.6g/m3%�� :� TAN ;<3 �4#! Monod

CÓ' |� :� ;<A  D�¤'. 6 g/m3T É TAN ;<3 �4

# 4.8 g/m3%:, 0.6 g/m3%�� :� ;<3# Monod CÓ' |� ;

<A ]��½'. %�x� Ó� 1/2£ b<C% � S^ � 0! ;

< �q! 0.6-4.8 g/m3x� ZÀ '.

3-4. #� $�� %&

3-4-1. g��� D� S^D ��[S }OD±� -ò

H� &g\ �\12§J %^8 ZGz�3 �8 TANde! �

�[S }OD±� ýþJ �P ;!'. ��[S }OD±� z��

deb<" denJ ,g�! �+8 �� T¬%9 z� ̂ �J ,

g�! �VT¬%'.

g��� D�� N;<� <=GJ �� � %�� û�DE! D

��# :� ;<� {p |� �� de�nJ +>8'. ùú# É

�� ��3 ùú h+8 :� ;<A ´J � 0! ��[S }OD±

� -ò� {p �+�'.

Monod CJ ù+! »-×Ø z�3# yg8 X ;<A ´

q4 h+8 ��[S }OD±� C (9)A 'u� C (13)L Æ% ��

[S }OD±3 �4 g�äx�> >� � 0'.

CCO

1 τk1+----------------=

C 12---{2CO τ2k1 2⁄

2 τ2k1 2⁄2 4CO τ2k1 2⁄

2–( )}+–=

Fig. 5. The comparison of total ammonia nitrogen concentration ofeffluent between the experimental data and estimated results bythree kinetics.

Fig. 6. Changes of estimated total ammonia nitrogen remain by Monodkinetics and 1/2th order kinetics on different hydraulic residence time.

HWAHAK KONGHAK Vol. 40, No. 1, February, 2002

Page 6: Removal Kinetics of Low Concentration Ammonia by Immobilized … · 2001-03-05 · 93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (Journal of the Korean Institute of

98 ���������

(13)

X ;< C! �\n, xA i^�M 'uL Æ% ]�? � 0'.

(14)

Fig. 7� 1-6 g/m3� É TAN ;<3 �4# 95-99.6%� denJ

´ q4 h+8 ��[S }OD±� ê\" @� u^� �� �

T 0.5 g/m3L � 10%T 0.05 g/m3� TAN ;<A ´ q4 h+8 �

�[S }OD±� ê\A <D8 �%'.

��3# Ó! �" Æ% À den� É ;<� ê\3 ù� h+

��[S }OD±� £%! �� ¹� �x� ]��x9 den% =

�ä3 ùú +>.! ��[S }OD±� ÔA =�.½'. u^�

�T 0.5 g/m3� TAN ;<A ´ q8 ��[S }OD±� 6 g/m3

� É ;<3 �4 0.9 hrJ h+� �! �x� ]��x9 u^�

�� 10%T 0.05 g/m3� TAN ;<A ́ q4#! 7.7 hr� ��[

S }OD±J h+� �! �x� -ò.½'.

3-4-2. ̄ ÛC fg S^D ��[S }OD±

¯ÛMLC °/m� ̄ Û� �� D�� ij¨ �� �� �� �

�� ;<A |P ��! �J (Sx� 8'. ¯ÛMLC °/m�

��� fg� yzST ���� fgL! Ï� ��� fg3# à

X X�� ij¨A e0 'D ��� mQ� É.! �¯Û f

g%'[22]. �¯Û fg� op z�A 8 KL� Ä� den<

�+��� 1ì� ×ØJ K4 de �� �� ��� den% Ç

'& �Ôú< X�A �¯ÛDEY ²�! denJ ´J � 0x

`� z� 1ì KL D �� denJ ��! �Ó'! deb<

A �P ��! �% Ô �+�'[20].

Monod CJ ù+! »-×Ø z�3# É ;<" ��[S }O

D±� ê\3 ùú ´/�! TANdeb<� Ïú�`� yg8 X

;<A ́ q4 h+8 ��[S }OD±� C (10)J C (3)3 �É

�M -ò� � 0'.

Fig. 8� 1-6 g/m3� É TAN ;<3 �4# ��[S }OD±�

ê\3 ùú ´/�! z�� TANdeb<� ê\A ]�� �%'.

��3# Ó! �" Æ% É ;<� |���k z�� deb<<

|��9 ��[S }OD±� =�ä3 ùú deb<� û�8'.

ùú# ¯ÛC fg� op �� deb<A ´ q4# z��

��[S }OD±J �P ��Ms �] %! �� =�! F�

5� =�A Fz�`� od� 5ÎA K4 ��[S }OD±J ,

g�Ms � �x� ZÀ '.

4.� �

PVA3 &g\8 �\12§J %^8 fB:C ZGz�A %^

�M 5 g/m3� N;< �� � -� ��� de ©ªJ ���M &

g\ �\12§� �� � deb<CJ <X�& %A %^�M �

S� �� � de fgJ �V� q8 ¨«J dD�&¬ �¤'.

��[S }OD±� =�3 ùú X TAN ;<! û��¤x9 �

��� ��� ;<! ��[S }OD±% =�ä3 ùú =��M

0.25 hr3# 0.32 g/m3� �& ;<A ]�� Þ �£ û��¤'. ��

� ��� ;<! û� TAN ;<" =� ���� �� ;<� £

%�� =��¤'.

TANdeb<! ��[S }OD±% �J�k �& �% û��

M ��[S }OD±% =�ä3 ùú �� û��! �x� ]��

'. ��� �� Z�b<! ��[S }OD±% 0.1 hry Ä �� Z

� b<A Ó¤x9 0.05 hr3#! û�.! �x� ]��'.

H� &g\ �\12§J %^8 �� �� ��� deb<!

Monod CL � B-�¤x9 �� TANdeb<! 640 g/m3 reactor · day,

zH\:� Ks! 1.667 g/m3%½'. Monod C3 �8 z�� X

;< �gC� 'uL Æ'.

τCO C–RmC

Ks C+---------------

--------------------=

τxCO K s 1 x–( )CO+{ }

Rm 1 x–( )CO

--------------------------------------------------=

C 12---{CO τRmax– KS CO τRmax– KS–( )2 4COKS+ }+–=

Fig. 7. The changes of required hydraulic residence time on influenttotal ammonia nitrogen for various removal efficiency.

Fig. 8. The changes of total ammonia nitrogen removal rate on hydraulicresidence time for various influent total ammonia nitrogen con-centration.

���� �40� �1� 2002� 2�

Page 7: Removal Kinetics of Low Concentration Ammonia by Immobilized … · 2001-03-05 · 93 HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 93-99 (Journal of the Korean Institute of

��� ���� ���� ����� 99

al

n,

k,

rea

n

n-

nd

sign

r,

0.6-4.8 g/m3� TAN ;< �q3#! 1/2£ b<C< ©ª,L" �

B-�¤x9 b<:� k1/2! 235 (g/m3)0.5 · day¤'. 1/2£ b<C3

�8 z�� X ;< �gC� 'uL Æ'.

g��� D�3 ¦ fgJ %^� op @� u^� �� �T 0.5 g/

m3� TAN ;<A ´ q8 ��[S }OD±� 6 g/m3� É ;<

3 �4 0.9 hrJ h+� �! �x� ]��'.

�� deb<A +>�! ¯ÛC fg3 S^D, op z�� �

�[S }OD±J �P ��k �� deb<A ´J � 0! �x�

]��'.

¦ �>! 8@L[�(� �ö�[p�L[¬�²iB(LdC:

2000-1-30700-005)3 ��M �� ,L� yB%9, �²3 ûiD!

'.

���

−r : TAN removal rate based on bead volume [g/m3 · day]

−rmax : maximum TAN removal rate based on bead volume [g/m3 · day]

C : TAN concentration [g/m3]

CO : TAN concentration of influent [g/m3]

k1 : first order rate constant [day−1]

k1/2 : 1/2th order rate constant [(g/m3)1/2 · day]

Ks : half saturation constant [g/m3]

Q : flowrate [m3/day]

R : TAN removal rate based on reactor volume [g/m3 · day]

Rmax : maximum TAN removal rate based on reactor volume [g/m3 · day]

VB : total volume of bead in reactor [m3]

VR : working volume of reactor [m3]

x : conversion, 1-C/CO [-]

'()* +,

ε : ratio of entrapped microorganisms volume to reactor volume [-]

τ : hydraulic residence time [hr or day]

���

1. Environmental Protection Agent: “Process Design Manual for Nitro-

gen Control,” Office of technology transfer(1975).

2. Sedlak, R. I.: “Phosphorus and Nitrogen Removal from Municip

Wastewater,” Lewis publishers(1991).

3. Dean, R. B. and Lund, E.: “Water Reuse: Problems and Solutio”

Academic(1981).

4. Liao, P. B. and Mayo, R. D.: Aquaculture, 3, 61(1974).

5. Bitton, G.: “Wastewater Microbiology,” John wiley & Sons, 88(1994).

6. Green, M., Ruskol, Y., Lahav, O. and Tarre, S.: Water Research, 35,

284(2001).

7. Ng, W. J., Kho, K., Ong, D. L., Sim, T. S. and Ho, J. M.: Aquaculture,

139, 55(1996).

8. Kim, S. K., Seo, J. K., Lee, J. S., Kong, I. S. and Suh, K. H.: J. Korean

Fish. Soc., 30, 816(1997).

9. Myoga, H., Asano, H., Nomura Y. and Yoshida, H.: Water Sci. Tech.,

23, 1117(1991).

10. Suh, K. H., Kim, Y. H. and Kim B. J.: HWAHAK KONGHAK, 37,

487(1999).

11. Sharma B. and Ahlert, R. C.: Water Research, 11, 897(1977).

12. Jung, W. C., Kim, H. G. and Lee, B. Y.: HWAHAK KONGHAK, 24,

381(1986).

13. Nijohf, M.: Aquaculture, 134, 49(1995).

14. van Ginkel, C. G., Tramper, J., Luyben, K. Ch. A. M. and Klapwij

A.: Enzyme Microb. Technol., 5, 297(1983).

15. Hashimoto, S. and Furukawa, K.: Biotech. & Bioeng., 30, 52(1987).

16. Chisti, M. Y.: “Airlift Bioreactors,” Elsevier Applied Science, Lon-

don and New York, 96(1989).

17. Liu, Y. and Capdevelle, B.: Environ. Techn., 15, 1001(1994).

18. Cho, J. K.: Ph.M. Dissertation, Pukyong National Univ., Pusan, Ko

(1999).

19. APHA, AWWA and WEF: “Standard Methods for the Examinatio

of Water and Wastewater,” 18th ed., EPS Group(1992).

20. Shuler, M. L. and Kargi, F.: “Bioprocess Engineering - Basic Co

cepts,” Prentice-Hall, New Jersey, 84(1992).

21. Levenspiel, O.: “Chemical Reaction Engineering,” 2nd ed., John Wiley

& Sons, New York(1972).

22. Losordo, T. M. and Westers, H.: “System Carrying Capacity a

Flow Estimation, Aquaculture Water Reuse System: Engineering De

and Management,” Timmons, M.B. and Losordo, T.M. eds., Elsevie

Amsterdam, 14(1994).

C 12---{2CO τ2k1 2⁄

2 τ2k1 2⁄2 4CO τ2k1 2⁄

2–( )}+–=

HWAHAK KONGHAK Vol. 40, No. 1, February, 2002