refinement of some partition inequalities partitions, the partition counting function restricted...

Click here to load reader

Post on 14-Mar-2018

224 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Refinement of Some Partition Inequalities

    James Mc Laughlin

    West Chester [email protected]

    http://math.wcupa.edu/mclaughlin/

    West Coast Number TheoryPacific Grove

    December 18, 2015

  • Outline

    q-series NotationInteger Partitions, The Partition Counting FunctionRestricted Partition FunctionsFerrers Diagram, Durfee SquarePartition Generating FunctionsPartition InequalitiesPartition Generating Functions that Track the Number ofPartsSome ExperimentationResultsConcluding Remarks

  • q-series Notation

    q-products: (a;q)0 := 1 and for n 1,

    (a;q)n := (1 a)(1 aq) (1 aqn1)(q;q)n := (1 q)(1 q2) (1 qn) ()

    (a1, . . . ,aj ;q)n := (a1;q)n (aj ;q)n(a;q) := (1 a)(1 aq)(1 aq2)

    (a1, . . . ,aj ;q) := (a1;q) (aj ;q)

    The q-binomial theorem: if |z|, |q| < 1, then

    n=0

    (a;q)n(q;q)n

    zn =(az;q)(z;q)

    . (1)

  • Special Cases of the q-binomial theorem

    Special Cases of the q-binomial theorem:

    n=0

    zn

    (q;q)n=

    1(z;q)

    , |z| < 1, |q| < 1. (2)

    n=0

    (a)nqn(n1)/2

    (q;q)n= (a;q), |q| < 1. (3)

  • Integer Partitions

    Definition: A partition of a positive integer n is a way of writingn as a sum of positive integers, where order does not matter.

    Example. The partitions of 5 are

    54 + 13 + 23 + 1 + 12 + 2 + 12 + 1 + 1 + 11 + 1 + 1 + 1 + 1

    The summands of a partition are called parts of the partition.

    The number of partitions of n is given by the partition functionp(n).For example, p(5) = 7.

  • Restricted Partition Functions, I

    Some well known examples of restricted partition functions arepO(n), the number of partitions of n into odd parts, and pD(n),the number of partitions of n into distinct parts.

    pO(5) = 3 (5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1),pD(5) = 3 (5, 4 + 1, 3 + 2).

    (PO(n) = PD(n), n N)

  • Restricted Partition Functions, IILet p2,3,5(n) denote the number of partitions of n into parts 2,3( mod 5), andP(n) denote the number of partitions of n where each partfrom 1 to the largest part occurs at least twice.

    p2,3,5(10) = 4 2 + 2 + 2 + 2 + 23 + 3 + 2 + 27 + 38 + 2

    P(10) = 4 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 12 + 2 + 1 + 1 + 1 + 1 + 1 + 12 + 2 + 2 + 1 + 1 + 1 + 12 + 2 + 2 + 2 + 1 + 1

    (P2,3,5(n) = P(n), n N)

  • Ferrers Diagram, Durfee Square

  • Partition Generating Functions, ILet S be any set of positive integers, finite or infinite. Then thegenerating function for pS(n), the number of partitions of thepositive integer n with parts from S is

    n=0

    pS(n)qn =1

    aiS 1 qai

    = (1 + qa1 + q2a1 + q3a1 + . . . )

    (1 + qa2 + q2a2 + q3a2 + . . . ) (1 + qa3 + q2a3 + q3a3 + . . . ) . . .

    The generating function for pS(n), the number of partitions ofthe positive integer n with distinct parts from S is

    n=0

    pS(n)qn =

    aiS

    1 + qai

    = (1 + qa1)(1 + qa2)(1 + qa3) . . .

  • Partition Generating Functions, II

    Recall that p(n) is the number of (unrestricted) partitions of n.

    n=0

    p(n)qn =1

    k=1 1 qk=

    1(q;q)

    =

    k=0

    qk

    (q;q)k

    =

    k=0

    qk2

    (q;q)2k

    = 1 +

    k=1

    qk

    (qk ;q)= 1 +

    1(q;q)

    k=1

    (q;q)k1qk

  • Partition Generating Functions, III

    Recall that pD(n) is the number of partitions of n into distinctpositive integers.

    n=0

    pD(n)qn =

    k=1

    (1 + qk ) = (q;q)

    = (1 + q)(1 + q2)(1 + q3) . . .

  • Partition Generating Functions, IV

    Recall that p2,3,5(n) denote the number of partitions of n intoparts 2,3( mod 5).

    n=0

    p2,3,5(n)qn

    =1

    (1 q2)(1 q3)(1 q7)(1 q8)(1 q12)(1 q13) . . .

    =1

    (q2;q5)(q3;q5)=

    1(q2,q3;q5)

  • Partition Inequalities, I

    Fact: For each positive integer n,

    p1,4,5(n) p2,3,5(n) 0.

    Alternatively, if the sequence {cn} is defined by

    n=0

    cnqn =1

    (q,q4;q5) 1

    (q2,q3;q5),

    then cn 0,n 0.

  • Partition Inequalities, II

    Proof.By the Rogers-Ramanujan identities,

    1(q,q4;q5)

    1(q2,q3;q5)

    =

    k=0

    qk2

    (q;q)k

    k=0

    qk2+k

    (q;q)k

    =

    k=1

    qk2(1 qk )(q;q)k

    =

    k=1

    qk2

    (q;q)k1

  • Partition Inequalities, Variations and Extensions, I

    Theorem (Berkovich and Garvan, 2005)

    Suppose L > 0, and 1 < r < m 1. If the sequence {en} isdefined by

    n=0

    enqn =1

    (q,qm1;qm)L 1

    (qr ,qmr ;qm)L,

    thenen 0, n 0 r - m r and m r - r .

  • Partition Inequalities, Variations and Extensions, II

    Theorem (Andrews, 2011)

    If L > 0, and the sequence {fn} is defined by

    n=0

    fnqn =1

    (q,q5,q6;q8)L 1

    (q2,q3,q7;q8)L,

    thenfn 0,n 0.

  • Partition Inequalities, Variations and Extensions, III

    Theorem (Berkovich and Grizzell, 2012)For any L > 0, and any odd y > 1, the q-series expansion of

    1(q,qy+2,q2y ;q2y+2)L

    1(q2,qy ,q2y+1;q2y+2)L

    =

    n=0

    a(L, y ,n)qn

    has only non-negative coefficients. Furthermore, the coefficienta(L, y ,n) is 0 if and only if either

    n {2,4,6, . . . , y + 1} {y} or (L, y ,n) = (1,3,9).

  • Partition Inequalities, Variations and Extensions, IV

    Theorem (Berkovich and Grizzell, 2012)For any L > 0, and any odd y > 1, and any x with1 < x y + 2, the q-series expansion of

    1(q,qx ,q2y ;q2y+2)L

    1(q2,qy ,q2y+1;q2y+2)L

    =

    n=0

    a(L, x , y ,n)qn

    has only non-negative coefficients. Furthermore, the coefficienta(L, y ,n) is 0 if and only if either . . . .

  • Partition Inequalities, Variations and Extensions, V

    Theorem (Berkovich and Grizzell, 2013)

    For any octuple of positive integers (L,m, x , y , z, r ,R, ), theq-series expansion of

    1(qx ,qy ,qz ,qrx+Ry+z ;qm)L

    1(qrx ,qRy ,qz ,qx+y+z ;qm)L

    =

    n=0

    a(L, x , y , z, r ,R, ,n)qn

    has only non-negative coefficients.

  • Partition Inequalities, Variations and Extensions, VI

    Theorem (Berkovich and Grizzell, 2013)

    For any positive integers m,n, y, and z, with gcd(n, y) = 1, andintegers K and L, with K L 0,

    1(qz ;qm)K (qnyz ;qnm)L

    1(qyz ;qm)K (qnz ;qnm)L

    =

    k=0

    a(K ,L, x , y , z,n,m, k)qk

    has only non-negative coefficients.

  • Partition Generating Functions that Track the Numberof Parts

    Let S be any set of positive integers, finite or infinite. Then thegenerating function for pS(m,n), the number of partitions of thepositive integer n with exactly m parts from S is

    n=0

    pS(m,n)smqn =1

    aiS 1 sqai

    = (1 + sqa1 + s2q2a1 + s3q3a1 + . . . )

    (1 + sqa2 + s2q2a2 + s3q3a2 + . . . ) (1 + sqa3 + s2q2a3 + s3q3a3 + . . . ) . . .

    The generating function for pS(n), the number of partitions ofthe positive integer n with distinct parts from S is

    n=0

    pS(n)qn =

    aiS

    1 + sqai

    = (1 + sqa1)(1 + sqa2)(1 + sqa3) . . .

  • Partition Inequalities that Track the Number of Parts

    Q. If the polynomials {fn(s)} are defined by

    n=0

    fn(s)qn =1

    (sq, sq4;q5) 1

    (sq2, sq3;q5),

    are there situations where the coefficients in fn(s) are allnon-negative?

  • Experimental Output

    n fn(s)1 s

    2 s + s2

    3 s + s3

    4 s s2 + s4

    5 s5

    6 s s2 + s6

    7 s + s2 s3 + s4 + s7

    8 s + s2 s4 + s5 + s8

    9 s s2 + s6 + s9

    10 s7 + s10

  • Experimental Output

    11 s s2 + s3 s4 + s6 + s8 + s11

    12 s + 2s2 s3 + s4 s5 + s7 + s9 + s12

    13 s + s2 + s5 s6 + s7 + s8 + s10 + s13

    14 s 2s2 + s3 + s6 s7 + s8 + s9 + s11 + s14

    15 s7 + s9 + s10 + s12 + s15

    16 s 2s2 + 2s3 s4 + s6 + s8 + s10 + s11 + s13 + s16

    17 s + 2s2 3s3 + 3s4 s5 + s7 + 2s9 + s11 + s12

    + s14 + s17

    18 s + 2s2 s3 + 2s5 2s6 + s7 + s8 + 2s10 + s12

    + s13 + s15 + s18

    19 s 2s2 + 2s3 s4 + 2s6 s7 + s8 + s9 + s10 + 2s11

    + s13 + s14 + s16 + s19

    20 s5 + s7 + s9 + s10 + s11 + 2s12 + s14 + s15 + s17 + s20

  • Experimentation, II

    5 s5

    10 s10 + s7

    15 s15 + s12 + s10 + s9 + s7

    20 s20 + s17 + s15 + s14 + 2s12 + s11 + s10 + s9 + s7 + s5

    25 s25 + s22 + s20 + s19 + 2s17 + s16 + 2s15 + 2s14 + s13

    + 3s12 + s11 + 2s10 + 2s9 + 2s7 + s5

    30 s30 + s27 + s25 + s24 + 2s22 + s21 + 2s20 + 2s19 + s18

    + 4s17 + 2s16 + 3s15 + 4s14 + s13 + 5s12 + 2s11 + 2s10

    + 3s9 + 3s7 + s5

    35 s35 + s32 + s30 + s29 + 2s27 + s26 + 2s25 + 2s24 + s23

    + 4s22 + 2s21 + 4s20 + 5s19 + 2s18 + 7s17 + 4s16 + 5s15

    + 7s14 + 2s13 + 7s12 + 4s11 + 3s10 + 5s9 + 4s7 + s5

  • First Theorem

    Theorem (Mc L. 2015)

    Let M 5 be a positive integer, and let a and b be integerssuch that 1 a < b < M/2 and gcd(a,M) = gcd(b,M) = 1.Define the integers c(m,n) by

    1(sqa, sqMa;qM)

    1(sqb, sqMb;qM)

    :=

    m,n0c(m,n)smqn. (4)

    (i) Then c(m,Mn) 0 for all integers m 0,n 0.(ii) If, in addition, M is even, then c(m,Mn + M/2) 0 for allintegers m 0,n 0.

  • Partitions Interpretation

    Corollary

    Let M, a and b be as in Theorem 7. Letpa,M,m(n) = # partitions of n into exactly m parts, each a( mod M),and letpb,M,m(n) = # partitions of n into exactly m parts, each b( mod M).Then

    (i) pa,M,m(nM) pb,M,m(nM) for all integers n 1, and allintegers m, 1 m Mn.(ii) If M is even, then pa,M,m(nM + M/2) pb,M,m(nM + M/2)for all integers n 0, and integers m with 1 m Mn + M/2.

  • Proof of First Theorem

    Proof.We recall a special case of the q-binomial theorem: