refinement of some partition inequalities partitions, the partition counting function restricted...

Download Refinement of Some Partition Inequalities  Partitions, The Partition Counting Function Restricted Partition Functions Ferrers Diagram, Durfee Square Partition Generating Functions Partition Inequalities Partition Generating Functions that Track the Number of Parts

Post on 14-Mar-2018

214 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Refinement of Some Partition Inequalities

    James Mc Laughlin

    West Chester Universityjmclaughl@wcupa.edu

    http://math.wcupa.edu/mclaughlin/

    West Coast Number TheoryPacific Grove

    December 18, 2015

  • Outline

    q-series NotationInteger Partitions, The Partition Counting FunctionRestricted Partition FunctionsFerrers Diagram, Durfee SquarePartition Generating FunctionsPartition InequalitiesPartition Generating Functions that Track the Number ofPartsSome ExperimentationResultsConcluding Remarks

  • q-series Notation

    q-products: (a;q)0 := 1 and for n 1,

    (a;q)n := (1 a)(1 aq) (1 aqn1)(q;q)n := (1 q)(1 q2) (1 qn) ()

    (a1, . . . ,aj ;q)n := (a1;q)n (aj ;q)n(a;q) := (1 a)(1 aq)(1 aq2)

    (a1, . . . ,aj ;q) := (a1;q) (aj ;q)

    The q-binomial theorem: if |z|, |q| < 1, then

    n=0

    (a;q)n(q;q)n

    zn =(az;q)(z;q)

    . (1)

  • Special Cases of the q-binomial theorem

    Special Cases of the q-binomial theorem:

    n=0

    zn

    (q;q)n=

    1(z;q)

    , |z| < 1, |q| < 1. (2)

    n=0

    (a)nqn(n1)/2

    (q;q)n= (a;q), |q| < 1. (3)

  • Integer Partitions

    Definition: A partition of a positive integer n is a way of writingn as a sum of positive integers, where order does not matter.

    Example. The partitions of 5 are

    54 + 13 + 23 + 1 + 12 + 2 + 12 + 1 + 1 + 11 + 1 + 1 + 1 + 1

    The summands of a partition are called parts of the partition.

    The number of partitions of n is given by the partition functionp(n).For example, p(5) = 7.

  • Restricted Partition Functions, I

    Some well known examples of restricted partition functions arepO(n), the number of partitions of n into odd parts, and pD(n),the number of partitions of n into distinct parts.

    pO(5) = 3 (5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1),pD(5) = 3 (5, 4 + 1, 3 + 2).

    (PO(n) = PD(n), n N)

  • Restricted Partition Functions, IILet p2,3,5(n) denote the number of partitions of n into parts 2,3( mod 5), andP(n) denote the number of partitions of n where each partfrom 1 to the largest part occurs at least twice.

    p2,3,5(10) = 4 2 + 2 + 2 + 2 + 23 + 3 + 2 + 27 + 38 + 2

    P(10) = 4 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 12 + 2 + 1 + 1 + 1 + 1 + 1 + 12 + 2 + 2 + 1 + 1 + 1 + 12 + 2 + 2 + 2 + 1 + 1

    (P2,3,5(n) = P(n), n N)

  • Ferrers Diagram, Durfee Square

  • Partition Generating Functions, ILet S be any set of positive integers, finite or infinite. Then thegenerating function for pS(n), the number of partitions of thepositive integer n with parts from S is

    n=0

    pS(n)qn =1

    aiS 1 qai

    = (1 + qa1 + q2a1 + q3a1 + . . . )

    (1 + qa2 + q2a2 + q3a2 + . . . ) (1 + qa3 + q2a3 + q3a3 + . . . ) . . .

    The generating function for pS(n), the number of partitions ofthe positive integer n with distinct parts from S is

    n=0

    pS(n)qn =

    aiS

    1 + qai

    = (1 + qa1)(1 + qa2)(1 + qa3) . . .

  • Partition Generating Functions, II

    Recall that p(n) is the number of (unrestricted) partitions of n.

    n=0

    p(n)qn =1

    k=1 1 qk=

    1(q;q)

    =

    k=0

    qk

    (q;q)k

    =

    k=0

    qk2

    (q;q)2k

    = 1 +

    k=1

    qk

    (qk ;q)= 1 +

    1(q;q)

    k=1

    (q;q)k1qk

  • Partition Generating Functions, III

    Recall that pD(n) is the number of partitions of n into distinctpositive integers.

    n=0

    pD(n)qn =

    k=1

    (1 + qk ) = (q;q)

    = (1 + q)(1 + q2)(1 + q3) . . .

  • Partition Generating Functions, IV

    Recall that p2,3,5(n) denote the number of partitions of n intoparts 2,3( mod 5).

    n=0

    p2,3,5(n)qn

    =1

    (1 q2)(1 q3)(1 q7)(1 q8)(1 q12)(1 q13) . . .

    =1

    (q2;q5)(q3;q5)=

    1(q2,q3;q5)

  • Partition Inequalities, I

    Fact: For each positive integer n,

    p1,4,5(n) p2,3,5(n) 0.

    Alternatively, if the sequence {cn} is defined by

    n=0

    cnqn =1

    (q,q4;q5) 1

    (q2,q3;q5),

    then cn 0,n 0.

  • Partition Inequalities, II

    Proof.By the Rogers-Ramanujan identities,

    1(q,q4;q5)

    1(q2,q3;q5)

    =

    k=0

    qk2

    (q;q)k

    k=0

    qk2+k

    (q;q)k

    =

    k=1

    qk2(1 qk )(q;q)k

    =

    k=1

    qk2

    (q;q)k1

  • Partition Inequalities, Variations and Extensions, I

    Theorem (Berkovich and Garvan, 2005)

    Suppose L > 0, and 1 < r < m 1. If the sequence {en} isdefined by

    n=0

    enqn =1

    (q,qm1;qm)L 1

    (qr ,qmr ;qm)L,

    thenen 0, n 0 r - m r and m r - r .

  • Partition Inequalities, Variations and Extensions, II

    Theorem (Andrews, 2011)

    If L > 0, and the sequence {fn} is defined by

    n=0

    fnqn =1

    (q,q5,q6;q8)L 1

    (q2,q3,q7;q8)L,

    thenfn 0,n 0.

  • Partition Inequalities, Variations and Extensions, III

    Theorem (Berkovich and Grizzell, 2012)For any L > 0, and any odd y > 1, the q-series expansion of

    1(q,qy+2,q2y ;q2y+2)L

    1(q2,qy ,q2y+1;q2y+2)L

    =

    n=0

    a(L, y ,n)qn

    has only non-negative coefficients. Furthermore, the coefficienta(L, y ,n) is 0 if and only if either

    n {2,4,6, . . . , y + 1} {y} or (L, y ,n) = (1,3,9).

  • Partition Inequalities, Variations and Extensions, IV

    Theorem (Berkovich and Grizzell, 2012)For any L > 0, and any odd y > 1, and any x with1 < x y + 2, the q-series expansion of

    1(q,qx ,q2y ;q2y+2)L

    1(q2,qy ,q2y+1;q2y+2)L

    =

    n=0

    a(L, x , y ,n)qn

    has only non-negative coefficients. Furthermore, the coefficienta(L, y ,n) is 0 if and only if either . . . .

  • Partition Inequalities, Variations and Extensions, V

    Theorem (Berkovich and Grizzell, 2013)

    For any octuple of positive integers (L,m, x , y , z, r ,R, ), theq-series expansion of

    1(qx ,qy ,qz ,qrx+Ry+z ;qm)L

    1(qrx ,qRy ,qz ,qx+y+z ;qm)L

    =

    n=0

    a(L, x , y , z, r ,R, ,n)qn

    has only non-negative coefficients.

  • Partition Inequalities, Variations and Extensions, VI

    Theorem (Berkovich and Grizzell, 2013)

    For any positive integers m,n, y, and z, with gcd(n, y) = 1, andintegers K and L, with K L 0,

    1(qz ;qm)K (qnyz ;qnm)L

    1(qyz ;qm)K (qnz ;qnm)L

    =

    k=0

    a(K ,L, x , y , z,n,m, k)qk

    has only non-negative coefficients.

  • Partition Generating Functions that Track the Numberof Parts

    Let S be any set of positive integers, finite or infinite. Then thegenerating function for pS(m,n), the number of partitions of thepositive integer n with exactly m parts from S is

    n=0

    pS(m,n)smqn =1

    aiS 1 sqai

    = (1 + sqa1 + s2q2a1 + s3q3a1 + . . . )

    (1 + sqa2 + s2q2a2 + s3q3a2 + . . . ) (1 + sqa3 + s2q2a3 + s3q3a3 + . . . ) . . .

    The generating function for pS(n), the number of partitions ofthe positive integer n with distinct parts from S is

    n=0

    pS(n)qn =

    aiS

    1 + sqai

    = (1 + sqa1)(1 + sqa2)(1 + sqa3) . . .

  • Partition Inequalities that Track the Number of Parts

    Q. If the polynomials {fn(s)} are defined by

    n=0

    fn(s)qn =1

    (sq, sq4;q5) 1

    (sq2, sq3;q5),

    are there situations where the coefficients in fn(s) are allnon-negative?

  • Experimental Output

    n fn(s)1 s

    2 s + s2

    3 s + s3

    4 s s2 + s4

    5 s5

    6 s s2 + s6

    7 s + s2 s3 + s4 + s7

    8 s + s2 s4 + s5 + s8

    9 s s2 + s6 + s9

    10 s7 + s10

  • Experimental Output

    11 s s2 + s3 s4 + s6 + s8 + s11

    12 s + 2s2 s3 + s4 s5 + s7 + s9 + s12

    13 s + s2 + s5 s6 + s7 + s8 + s10 + s13

    14 s 2s2 + s3 + s6 s7 + s8 + s9 + s11 + s14

    15 s7 + s9 + s10 + s12 + s15

    16 s 2s2 + 2s3 s4 + s6 + s8 + s10 + s11 + s13 + s16

    17 s + 2s2 3s3 + 3s4 s5 + s7 + 2s9 + s11 + s12

    + s14 + s17

    18 s + 2s2 s3 + 2s5 2s6 + s7 + s8 + 2s10 + s12

    + s13 + s15 + s18

    19 s 2s2 + 2s3 s4 + 2s6 s7 + s8 + s9 + s10 + 2s11

    + s13 + s14 + s16 + s19

    20 s5 + s7 + s9 + s10 + s11 + 2s12 + s14 + s15 + s17 + s20

  • Experimentation, II

    5 s5

    10 s10 + s7

    15 s15 + s12 + s10 + s9 + s7

    20 s20 + s17 + s15 + s14 + 2s12 + s11 + s10 + s9 + s7 + s5

    25 s25 + s22 + s20 + s19 + 2s17 + s16 + 2s15 + 2s14 + s13

    + 3s12 + s11 + 2s10 + 2s9 + 2s7 + s5

    30 s30 + s27 + s25 + s24 + 2s22 + s21 + 2s20 + 2s19 + s18

    + 4s17 + 2s16 + 3s15 + 4s14 + s13 + 5s12 + 2s11 + 2s10

    + 3s9 + 3s7 + s5

    35 s35 + s32 + s30 + s29 + 2s27 + s26 + 2s25 + 2s24 + s23

    + 4s22 + 2s21 + 4s20 + 5s19 + 2s18 + 7s17 + 4s16 + 5s15

    + 7s14 + 2s13 + 7s12 + 4s11 + 3s10 + 5s9 + 4s7 + s5

  • First Theorem

    Theorem (Mc L. 2015)

    Let M 5 be a positive integer, and let a and b be integerssuch that 1 a < b < M/2 and gcd(a,M) = gcd(b,M) = 1.Define the integers c(m,n) by

    1(sqa, sqMa;qM)

    1(sqb, sqMb;qM)

    :=

    m,n0c(m,n)smqn. (4)

    (i) Then c(m,Mn) 0 for all integers m 0,n 0.(ii) If, in addition, M is even, then c(m,Mn + M/2) 0 for allintegers m 0,n 0.

  • Partitions Interpretation

    Corollary

    Let M, a and b be as in Theorem 7. Letpa,M,m(n) = # partitions of n into exactly m parts, each a( mod M),and letpb,M,m(n) = # partitions of n into exactly m parts, each b( mod M).Then

    (i) pa,M,m(nM) pb,M,m(nM) for all integers n 1, and allintegers m, 1 m Mn.(ii) If M is even, then pa,M,m(nM + M/2) pb,M,m(nM + M/2)for all integers n 0, and integers m with 1 m Mn + M/2.

  • Proof of First Theorem

    Proof.We recall a special case of the q-binomial theorem:

Recommended

View more >