References - Springer 978-94-007-6383-8/1.pdfBendat, J., Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., Piersol, A. (1980). Engineering ...

Download References - Springer 978-94-007-6383-8/1.pdfBendat, J.,  Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J.,  Piersol, A. (1980). Engineering ...

Post on 09-May-2018




5 download


References1. Asami, T., Nishihara, O., & Baz, A. M. (2002, April). Analytical solutions to H1 and H2optimization of dynamic vibration absorbers attached to damped linear systems. ASMEJournal of Vibration and Acoustics, 124, 284295.2. Bathe, K. J., & Wilson, E. L. (1976). Numerical methods in finite element analysis.Englewood Cliffs: Prentice-Hall.3. Bendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. NewYork: Wiley-Interscience.4. Bendat, J., & Piersol, A. (1980). Engineering applications of correlation and spectralanalysis. New York: Wiley-Interscience.5. Blevins, R. D. (1979). Formulas for natural frequency and mode shape. New York: VanNostrand Reinhold.6. Bourcier de Carbon, Ch. (1947). Perfectionnement la suspension des vhicules routiers.Amortisseur relaxation. Comptes Rendus de lAcadmie des Sciences de Paris, 225, 722724(Juillet-Dc).7. Bracewell, R. N. (1978). The Fourier transform and its applications. New York: McGraw-Hill.8. Cannon, R. H. (1967). Dynamics of physical systems. New York: McGraw-Hill.9. Cartwright, D. E., & Longuet-Higgins, M. S. (1956). The statistical distribution of themaxima of a random function. Proceedings of the Royal Society of London Series A.Mathematical and Physical Sciences, 237, 212232.10. Chalasani, R. M. (1984, Dec.). Ride performance potential of active suspension systems, Part1: Simplified analysis based on a quarter-car model. Anaheim, CA: ASME Symposium onSimulation and Control of Ground Vehicles and Transportation Systems.11. Clough, R. W., & Penzien, J. (1975). Dynamics of structures. New York: McGraw-Hill.12. Craig, R. R. (1981). Structural dynamics. New York: Wiley.13. Craig, R. R., & Bampton, M. C. C. (1968). Coupling of substructures for dynamic analyses.AIAA Journal, 6(7), 13131319.14. Crandall, S. H., & Mark, W. D. (1963). Random vibration in mechanical systems. New York:Academic Press.15. Crandall, S. H., Karnopp, D. C., Kurtz, E. F, Jr, & Pridmore-Brown, D. C. (1968). Dynamicsof mechanical and electromechanical systems. New York: McGraw-Hill.16. Crandall, S. H. (1970). The role of damping in vibration theory. Journal of Sound andVibration, 11(1), 318.17. Davenport, A. G. (1961, August). The application of statistical concepts to the wind loadingof structures. In ICE Proceedings (Vol. 19, No. 4, pp. 449472).18. Davenport, A.G. (1964). Note on the distribution of the largest value of a random functionwith application to gust loading. In ICE Proceedings (Vol. 28, No. 2, pp. 187196).A. Preumont, Twelve Lectures on Structural Dynamics,Solid Mechanics and Its Applications 198, DOI: 10.1007/978-94-007-6383-8, Springer Science+Business Media Dordrecht 201329719. Davenport, A. G. (1966). The treatment of wind loading on tall buildings: Proceedings of thesymposium on Tall Buildings: University of Southampton. London: Pergamon Press.20. Den Hartog, J. P. (1985). Mechanical vibrations (4th ed.). New York: Dover.21. Denman, H. H. (1992). Tautochronic bifilar pendulum torsion absorbers for reciprocatingengines. Journal of Sound and Vibration, 159(2), 251277.22. Elishakoff, I. (1982). Probabilistic methods in the theory of structures. New York: Wiley.23. Ewins, D. J. (1984). Modal testing: Theory and practice. New York: Wiley.24. Fung, Y. C. (1969). An introduction to the theory of aeroelasticity. New York: Dover.25. Gawronski, W. K. (2004). Advanced structural dynamics and active control of structures.Berlin: Springer.26. Gawronski, W. K. (1998). Dynamics and control of structures-A modal approach. Berlin:Springer.27. Genta, G. (2005). Dynamics of rotating systems. Berlin: Springer.28. Geradin, M., & Rixen, D. (1997). Mechanical vibrations, theory and application to structuraldynamics (2nd ed.). New York: Wiley.29. Goldstein, H. (1980). Classical mechanics (2nd ed.). Reading: Addison-Wesley.30. Hagedorn, P. (1981). Non-linear oscillations. Oxford: Clarendon Press.31. Hrovat, D. (1997). Survey of advanced suspension developments and related optimal controlapplications. Automatica, 33(10), 17811817.32. Hughes, P. C. (1974, March). Dynamics of flexible space vehicles with active attitude control.Celestial Mechanics Journal, 9, 2139.33. Hughes, P. C. (1987). Space structure vibration modes: how many exist? which ones areimportant? IEEE Control Systems Magazine, 7(1), 2228.34. Hughes, T. J. R. (1987). The finite element method: Linear static and dynamic finite elementanalysis. Englewood Cliffs: Prentice-Hall.35. Ikegami, R. & Johnson, D. W. (1986). The design of viscoelastic passive damping treatmentsfor satellite equipment support structures: Proceedings of DAMPING86, AFWAL-TR-86-3059.36. Inman, D. J. (1989). Vibration, with control, measurement, and stability. Englewood Cliffs:Prentice-Hall.37. Inman, D. J. (2006). Vibration with control. New York: Wiley.38. Jeffcott, H. H. (1919). The lateral vibration of loaded shafts in the neighborhood of a whirlingspeed. Philosophical Magazine, 6(37), 304314.39. Jones, D. I. G. (2001). Handbook of viscoelastic vibration damping. New York: Wiley.40. Junkins, J. L., & Kim, Y. (1993). Introduction to dynamics and control of flexible structures.AIAA Education Series.41. Kailath, T. (1980). Linear systems. Englewood Cliffs: Prentice-Hall.42. Karnopp, D. C., & Trikha, A. K. (1969). Comparative study of optimization techniques forshock and vibration isolation. Transaction of the ASME, Journal of Engineering for Industry,Series B, 91, 11281132.43. Krenk, S. (2005). Frequency analysis of the tuned mass damper. Journal of AppliedMechanics, 72, 936942.44. Krysinski, T. & Malburet, F. (2003). Origine et contrle des vibrations mcaniques, mthodespassives et actives, Hermes-science, 2003.45. Lalanne, M. & Ferraris, G. (1998). Rotordynamics prediction in engineering (2nd ed.). NewYork: Wiley.46. Leissa, A. W. (1969). Vibration of Plates, NASA SP-160.47. Lin, Y. K. (1967). Probabilistic theory of structural dynamics. New York: McGraw-Hill.48. Meirovitch, L. (1980). Computational methods in structural dynamics. Alphena/d Rijd:Sijthoff & Noordhoff.49. Meirovitch, L. (1990). Dynamics and control of structures. New York: Wiley.50. Meirovitch, L. (1970). Methods of analytical dynamics. New York: McGraw-Hill.298 References51. Miu, D. K. (1991). Physical interpretation of transfer function zeros for simple controlsystems with mechanical flexibilities. ASME Journal Dynamic Systems Measurement andControl, 113, 419424.52. Miu, D. K. (1993). MechatronicsElectromechanics and contromechanics. Berlin: Springer.53. Miles, J. W. (1954). On structural fatigue under random loading. Journal of AeronauticalSciences, 21, 753762.54. Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillations. New York: Wiley.55. Nelson, F. C. (2003). A brief history of early rotor dynamics. Sound and Vibration, 37(6),811.56. Newmark, N. M., & Rosenblueth, E. (1971). Fundamental of earthquake engineering.Englewood Cliffs: Prentice Hall.57. Papoulis, A. (1962). The Fourier integral and its applications. New York: McGraw-Hill.58. Ormondroyd, J., & Den Hartog, J. P. (1928). The theory of the damped vibration absorber.Transactions of the ASME, Journal of Applied Mechanics, 50, 7.59. Preumont, A. (1994). Random vibration and spectral analysis. Dordrecht: Kluwer.60. Preumont, A. (2006). Mechatronics, dynamics of electromechanical and Piezoelectricsystems. Berlin: Springer.61. Preumont, A. (2011). Vibration control of active structures, an introduction (3rd ed.). Berlin:Springer.62. Preumont, A., & Seto, K. (2008). Active control of structures. New York: Wiley.63. Reddy, J. N. (1984). Energy and variational methods in applied mechanics. New York:Wiley.64. Shaker, F. J. (1975, Dec.). Effect of axial load on mode shapes and frequencies of beams,NASA Technical Note TN D-8109.65. Spector, V. A., & Flashner, H. (1989). Sensitivity of structural models for noncollocatedcontrol systems. ASME, Transactions, Journal of Dynamic Systems, Measurement, andControl, 111(4), 646655.66. Strang, G. (1988). Linear algebra and its applications (3rd ed.). San Diego: Harcourt BraceJovanovich.67. Swanson, E., Powell, C. D., & Weissman, S. (2005, May). A practical review of rotatingmachinery critical speeds and modes. Sound and Vibration, 1017.68. von Karman, Th, & Biot, M. (1940). Mathematical methods in engineering. New York:McGraw-Hill.69. Wang, Y. Z., & Cheng, S. H. (1989). The optimal design of dynamic absorber in the timedomain and the frequency domain. Applied Acoustics, 28, 6787.70. Wiberg, D. M. (1971). State space and linear systems McGraw-Hill Schaums Outline Seriesin Engineering.71. Wildheim, S. J. (1979, Dec.). Excitation of rotationally periodic structures. Transaction of theASME, Journal of Applied Mechanics, 46, 878882.72. Williams, J. H, Jr. (1996). Fundamentals of applied dynamics. New York: Wiley.73. Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method (4th ed.,). New York:McGraw-Hill.References 299IndexAAccelerated fatigue test, 215Accelerogram, 206Active damping, 290Active mass damper (AMD), 281Active strut, 287Active suspension, 280Active truss, 286Active vibration control, 275Angular rate sensor, 243Anisotropic shaft, 238stability, 241unbalance response, 240Anisotropic support (rotor), 236Anti-resonance, 32, 251, 276Assembly, 138Assumed modes method, 114, 135Asymptotic method, 88Asynchronous force, 232Autocorrelation, 170Autocovariance, 170BBackward whirl, 221, 229, 234Bar, 94, 116finite element, 137BeamEuler-Bernoulli, 78, 119finite element, 140free-free, 87free vibration, 83prestress, 82, 122simply supported, 85Beat phenomenon, 10Bending stiffness, 79Beta controller, 293Bode plots, 7, 34Boundary layer noise, 188Buckling, 72beam, 96clamped-free beam, 98critical load, 97simply supported beam, 97CCampbell diagram, 62, 229, 235Cantilever rotor, 245Car on a random road, 191Car suspensionactive, 280passive, 271Cascade analysis, 167Causality, 184Central frequency, 179Central limit theorem, 174Centrifugal pendulum, 76, 271Centrifugal Pendulum Vibration Absorber, 76,270Co-spectrum, 188Coherence function, 182Collocated control, 276, 278Collocated system, 32Complex coordinates, 220Conical mode, 234Conservation laws, 64Conservation of energy, 50, 66Conservative force, 49Consistent mass matrix, 142Constitutive equationactive strut, 287linear elastic material, 70plane stress, 100A. Preumont, Twelve Lectures on Structural Dynamics,Solid Mechanics and Its Applications 198, DOI: 10.1007/978-94-007-6383-8, Springer Science+Business Media Dordrecht 2013301Constrained system, 34, 149, 153, 277Convection velocity, 189Convergence, 145Convolution integral, 5, 175Coriolis force, 243Correlationfunction, 170, 188integral, 175matrix, 185, 187Covariance matrix, 214Craig-Bampton reduction, 153Critical speed, 220, 230, 231Cross-correlation, 170role of-, 193Cumulative mean square response, 173DDAlembert principle, 49Damping, 23, 24, 121modal, 23Rayleigh, 24rotating, 221, 224Davenport spectrum, 190Degree of freedom (d.o.f.), 45, 114Den Hartog, 251Difference equation, 36Discretization, 113Disk, 232Dissipation function, 55Dynamic amplification, 7, 26Dynamic flexibility matrix, 25Dynamic mass, 159, 166Dynamic Vibration Absorber (DVA), 248EEffective force, 49Effective modal mass, 160Elastic support, 232Envelope (narrow band process), 181Epicycloid, 271Equal peak design (DVA), 251ESP, 243EulerBernoulli beam, 78critical buckling load, 97, 123theorem on homogeneous functions, 65FFast Fourier Transform (FFT), 172Fatigue, 202random-, 211Feedthrough, 12, 27Finite elements, 135First-crossing problem, 203Flexural rigidity (plate), 100Forward whirl, 219, 221, 229, 234Fourier transform, 9Fraction of critical damping, 2Fraction of modal strain energy, 290Frahm, 248Frequency ResponseFunction (FRF), 8FRF estimation, 182GGaussian process, 174Generalized coordinates, 44, 53, 136Generalized momentum, 66Geometric stiffness matrix, 72, 122planar beam element, 147Geometric strain energy, 68, 71Gradient height, 190Gradient velocity, 190Gravity loads, 128Green strain tensor, 68Guyanmass matrix, 154, 165reduction, 147stiffness matrix, 154Gyroscopic effect, 53, 60, 224Gyroscopic forces, 61HHalf power bandwidth, 177Hamiltons principle, 50High-cycle fatigue, 202Holonomic constraint, 45, 64Homogeneous (random field), 187Homogeneous functions, 65IIgnorable coordinate, 66Impulse response, 3Integral force feedback, 290Interlacing, 33, 276, 291Isolatorby kinematic coupling, 268corner frequency, 266linear-, 260passive-, 261relaxation-, 263six-axis-, 266302 IndexJJacobi integral, 64Jeffcott rotor, 60, 218Jitter, 265KKanai-Tajimi spectrum, 179, 199Kinematic constraint, 44Kirchhoff plate, 99Kronecker delta, 21LLagrange multipliers, 63Lagranges equation, 53with constraints, 63Lagrangian, 51, 52Lagrangian dynamics, 44Laplacian DCartesian coordinates, 101polar coordinates, 104Laval, 220Lead compensator, 277Linear damage theory, 211Linear oscillatorBode plots, 7dynamic amplification, 7free response, 1impulse response, 3Nyquist plot, 8quality factor, 8random response, 176state space form, 11Localization matrix, 139Long rotor, 232Lumped mass matrix, 142MMass matrixbar, 117bar element, 138beam, 119lumped, 142planar beam element, 141Master-slave (d.o.f.), 148Maxwell unit, 263Mean square (MS), 170, 171, 192mass averaged-, 193Memory, 4Modaldamping, 23decomposition, 23, 91mass, 21, 91participation factor, 159participation matrix, 164truncation, 24Modal density, 104Modal spread, 268Mode shape, 19Moment-curvature relationship, 100Multi-axis excitation, 162Multiple natural frequencies, 21NN-storey building, 36, 167AMD, 281DVA design, 256random response, 195random response with DVA, 258seismic response, 155Nabla rCartesian coordinates, 101Narrow band process, 181Natural boundary conditions, 82Natural frequency, 19Nodalcircles, 107, 108diameters, 107, 108lines, 104Non-conservative force, 51Non-holonomicconstraint, 45, 64Normal modes, 21Nyquist plot, 8, 34OOperating Basis Earthquake, 208Orthogonal functions, 115Orthogonality, 20, 89PPainlev integral, 66Palmgren-Miner criterion, 211Parsevals theorem, 9Participation factor, 159Peak factor, 202, 206Periodic structures, 108Index 303Phase plane, 181Plane truss, 136Platecircular, 104Kirchhoff, 99rectangular, 102Pole-zero pattern, 33, 276, 291Power spectral density, see PSDPrestress, 68, 82, 96, 122Principle of stationarity, 125Principle of virtual work, 47Projection matrix, 39PSDdefinition, 171estimation, 172input-output (MIMO), 185input-output (SISO), 175matrix, 185, 187one sided-, 173Pseudo-acceleration spectrum, 206Pseudo-velocity spectrum, 206QQuality factor, 8, 26, 252Quarter-car model, 271Quasi-static correction, 27, 160RRainflow, 212Random fatigue, 211Random vibration, 169Rankines model, 220Rayleighdamping, 24distribution, 181Quotient, 21, 91, 124Rayleigh-Ritz method, 113, 224ReductionCraig-Bampton, 153Guyan, 147Relaxation isolator, see IsolatorReliability, 203Residual mode, 27Resonancefrequency, 19linear oscillator, 2rotating force, 109, 110Response spectrum, 206Rice formulae, 179Rigid body mode, 21, 28Root locus, 264, 277, 285, 291Rotating force, 108Rotating mode, 107Rotor dynamics, 217Routh-Hurwitz stability, 224SS-N curve, 211Safe Shut-downEarthquake, 208Scleronomic constraint, 45Seismic excitation, 156Self-centering, 220Semi-positive definite (matrix), 16Shape function, 114, 135, 141Signal to noise ratio, 184Single axis excitation, 156Sky-hook damper, 280Slave (d.o.f.), 148Spatial coherence, 188Spectral moments, 179SRSS rule, 193, 209Stability, 224Standard deviation, 170State feedback, 281State variables, 12, 271, 280, 284Stationary process, 170Stiffness matrixbar, 94bar element, 138beam, 120geometric, 122planar beam element, 142Stodola-Green rotor, 245Strain energy density, 70, 100String, 92Strouhal number, 188Supercritical velocity, 220Support reaction, 159, 165TTaipei 101, 253Tautochronic problem, 271Threshold crossing, 202Torsional stiffnessTransmissibility, 261, 264Traveling wave, 107, 109, 110Tuned Mass Damper (TMD), 248UUnbalance response, 219, 231304 IndexVVariance, 170Vibration isolation, 259Virtual displacement, 46Virtual work, 47von Mises stress, 213WWhirl, 221, 229White noiseapproximation, 177, 210band limited-, 178process, 174Wind response, 189Whler curve, 211ZZero (transmission-), 34, 250, 268, 276Zero-period acceleration (ZPA), 207Index 305ReferencesIndex


View more >