References - Springer 978-94-007-6383-8/1.pdfBendat, J., Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., Piersol, A. (1980). Engineering

Download References - Springer 978-94-007-6383-8/1.pdfBendat, J.,  Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J.,  Piersol, A. (1980). Engineering

Post on 09-May-2018




5 download

Embed Size (px)


<ul><li><p>References</p><p>1. Asami, T., Nishihara, O., &amp; Baz, A. M. (2002, April). Analytical solutions to H1 and H2optimization of dynamic vibration absorbers attached to damped linear systems. ASMEJournal of Vibration and Acoustics, 124, 284295.</p><p>2. Bathe, K. J., &amp; Wilson, E. L. (1976). Numerical methods in finite element analysis.Englewood Cliffs: Prentice-Hall.</p><p>3. Bendat, J., &amp; Piersol, A. (1971). Random data: Analysis and measurement procedures. NewYork: Wiley-Interscience.</p><p>4. Bendat, J., &amp; Piersol, A. (1980). Engineering applications of correlation and spectralanalysis. New York: Wiley-Interscience.</p><p>5. Blevins, R. D. (1979). Formulas for natural frequency and mode shape. New York: VanNostrand Reinhold.</p><p>6. Bourcier de Carbon, Ch. (1947). Perfectionnement la suspension des vhicules routiers.Amortisseur relaxation. Comptes Rendus de lAcadmie des Sciences de Paris, 225, 722724(Juillet-Dc).</p><p>7. Bracewell, R. N. (1978). The Fourier transform and its applications. New York: McGraw-Hill.</p><p>8. Cannon, R. H. (1967). Dynamics of physical systems. New York: McGraw-Hill.9. Cartwright, D. E., &amp; Longuet-Higgins, M. S. (1956). The statistical distribution of the</p><p>maxima of a random function. Proceedings of the Royal Society of London Series A.Mathematical and Physical Sciences, 237, 212232.</p><p>10. Chalasani, R. M. (1984, Dec.). Ride performance potential of active suspension systems, Part1: Simplified analysis based on a quarter-car model. Anaheim, CA: ASME Symposium onSimulation and Control of Ground Vehicles and Transportation Systems.</p><p>11. Clough, R. W., &amp; Penzien, J. (1975). Dynamics of structures. New York: McGraw-Hill.12. Craig, R. R. (1981). Structural dynamics. New York: Wiley.13. Craig, R. R., &amp; Bampton, M. C. C. (1968). Coupling of substructures for dynamic analyses.</p><p>AIAA Journal, 6(7), 13131319.14. Crandall, S. H., &amp; Mark, W. D. (1963). Random vibration in mechanical systems. New York:</p><p>Academic Press.15. Crandall, S. H., Karnopp, D. C., Kurtz, E. F, Jr, &amp; Pridmore-Brown, D. C. (1968). Dynamics</p><p>of mechanical and electromechanical systems. New York: McGraw-Hill.16. Crandall, S. H. (1970). The role of damping in vibration theory. Journal of Sound and</p><p>Vibration, 11(1), 318.17. Davenport, A. G. (1961, August). The application of statistical concepts to the wind loading</p><p>of structures. In ICE Proceedings (Vol. 19, No. 4, pp. 449472).18. Davenport, A.G. (1964). Note on the distribution of the largest value of a random function</p><p>with application to gust loading. In ICE Proceedings (Vol. 28, No. 2, pp. 187196).</p><p>A. Preumont, Twelve Lectures on Structural Dynamics,Solid Mechanics and Its Applications 198, DOI: 10.1007/978-94-007-6383-8, Springer Science+Business Media Dordrecht 2013</p><p>297</p></li><li><p>19. Davenport, A. G. (1966). The treatment of wind loading on tall buildings: Proceedings of thesymposium on Tall Buildings: University of Southampton. London: Pergamon Press.</p><p>20. Den Hartog, J. P. (1985). Mechanical vibrations (4th ed.). New York: Dover.21. Denman, H. H. (1992). Tautochronic bifilar pendulum torsion absorbers for reciprocating</p><p>engines. Journal of Sound and Vibration, 159(2), 251277.22. Elishakoff, I. (1982). Probabilistic methods in the theory of structures. New York: Wiley.23. Ewins, D. J. (1984). Modal testing: Theory and practice. New York: Wiley.24. Fung, Y. C. (1969). An introduction to the theory of aeroelasticity. New York: Dover.25. Gawronski, W. K. (2004). Advanced structural dynamics and active control of structures.</p><p>Berlin: Springer.26. Gawronski, W. K. (1998). Dynamics and control of structures-A modal approach. Berlin:</p><p>Springer.27. Genta, G. (2005). Dynamics of rotating systems. Berlin: Springer.28. Geradin, M., &amp; Rixen, D. (1997). Mechanical vibrations, theory and application to structural</p><p>dynamics (2nd ed.). New York: Wiley.29. Goldstein, H. (1980). Classical mechanics (2nd ed.). Reading: Addison-Wesley.30. Hagedorn, P. (1981). Non-linear oscillations. Oxford: Clarendon Press.31. Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control</p><p>applications. Automatica, 33(10), 17811817.32. Hughes, P. C. (1974, March). Dynamics of flexible space vehicles with active attitude control.</p><p>Celestial Mechanics Journal, 9, 2139.33. Hughes, P. C. (1987). Space structure vibration modes: how many exist? which ones are</p><p>important? IEEE Control Systems Magazine, 7(1), 2228.34. Hughes, T. J. R. (1987). The finite element method: Linear static and dynamic finite element</p><p>analysis. Englewood Cliffs: Prentice-Hall.35. Ikegami, R. &amp; Johnson, D. W. (1986). The design of viscoelastic passive damping treatments</p><p>for satellite equipment support structures: Proceedings of DAMPING86, AFWAL-TR-86-3059.</p><p>36. Inman, D. J. (1989). Vibration, with control, measurement, and stability. Englewood Cliffs:Prentice-Hall.</p><p>37. Inman, D. J. (2006). Vibration with control. New York: Wiley.38. Jeffcott, H. H. (1919). The lateral vibration of loaded shafts in the neighborhood of a whirling</p><p>speed. Philosophical Magazine, 6(37), 304314.39. Jones, D. I. G. (2001). Handbook of viscoelastic vibration damping. New York: Wiley.40. Junkins, J. L., &amp; Kim, Y. (1993). Introduction to dynamics and control of flexible structures.</p><p>AIAA Education Series.41. Kailath, T. (1980). Linear systems. Englewood Cliffs: Prentice-Hall.42. Karnopp, D. C., &amp; Trikha, A. K. (1969). Comparative study of optimization techniques for</p><p>shock and vibration isolation. Transaction of the ASME, Journal of Engineering for Industry,Series B, 91, 11281132.</p><p>43. Krenk, S. (2005). Frequency analysis of the tuned mass damper. Journal of AppliedMechanics, 72, 936942.</p><p>44. Krysinski, T. &amp; Malburet, F. (2003). Origine et contrle des vibrations mcaniques, mthodespassives et actives, Hermes-science, 2003.</p><p>45. Lalanne, M. &amp; Ferraris, G. (1998). Rotordynamics prediction in engineering (2nd ed.). NewYork: Wiley.</p><p>46. Leissa, A. W. (1969). Vibration of Plates, NASA SP-160.47. Lin, Y. K. (1967). Probabilistic theory of structural dynamics. New York: McGraw-Hill.48. Meirovitch, L. (1980). Computational methods in structural dynamics. Alphena/d Rijd:</p><p>Sijthoff &amp; Noordhoff.49. Meirovitch, L. (1990). Dynamics and control of structures. New York: Wiley.50. Meirovitch, L. (1970). Methods of analytical dynamics. New York: McGraw-Hill.</p><p>298 References</p></li><li><p>51. Miu, D. K. (1991). Physical interpretation of transfer function zeros for simple controlsystems with mechanical flexibilities. ASME Journal Dynamic Systems Measurement andControl, 113, 419424.</p><p>52. Miu, D. K. (1993). MechatronicsElectromechanics and contromechanics. Berlin: Springer.53. Miles, J. W. (1954). On structural fatigue under random loading. Journal of Aeronautical</p><p>Sciences, 21, 753762.54. Nayfeh, A. H., &amp; Mook, D. T. (1979). Nonlinear oscillations. New York: Wiley.55. Nelson, F. C. (2003). A brief history of early rotor dynamics. Sound and Vibration, 37(6),</p><p>811.56. Newmark, N. M., &amp; Rosenblueth, E. (1971). Fundamental of earthquake engineering.</p><p>Englewood Cliffs: Prentice Hall.57. Papoulis, A. (1962). The Fourier integral and its applications. New York: McGraw-Hill.58. Ormondroyd, J., &amp; Den Hartog, J. P. (1928). The theory of the damped vibration absorber.</p><p>Transactions of the ASME, Journal of Applied Mechanics, 50, 7.59. Preumont, A. (1994). Random vibration and spectral analysis. Dordrecht: Kluwer.60. Preumont, A. (2006). Mechatronics, dynamics of electromechanical and Piezoelectric</p><p>systems. Berlin: Springer.61. Preumont, A. (2011). Vibration control of active structures, an introduction (3rd ed.). Berlin:</p><p>Springer.62. Preumont, A., &amp; Seto, K. (2008). Active control of structures. New York: Wiley.63. Reddy, J. N. (1984). Energy and variational methods in applied mechanics. New York:</p><p>Wiley.64. Shaker, F. J. (1975, Dec.). Effect of axial load on mode shapes and frequencies of beams,</p><p>NASA Technical Note TN D-8109.65. Spector, V. A., &amp; Flashner, H. (1989). Sensitivity of structural models for noncollocated</p><p>control systems. ASME, Transactions, Journal of Dynamic Systems, Measurement, andControl, 111(4), 646655.</p><p>66. Strang, G. (1988). Linear algebra and its applications (3rd ed.). San Diego: Harcourt BraceJovanovich.</p><p>67. Swanson, E., Powell, C. D., &amp; Weissman, S. (2005, May). A practical review of rotatingmachinery critical speeds and modes. Sound and Vibration, 1017.</p><p>68. von Karman, Th, &amp; Biot, M. (1940). Mathematical methods in engineering. New York:McGraw-Hill.</p><p>69. Wang, Y. Z., &amp; Cheng, S. H. (1989). The optimal design of dynamic absorber in the timedomain and the frequency domain. Applied Acoustics, 28, 6787.</p><p>70. Wiberg, D. M. (1971). State space and linear systems McGraw-Hill Schaums Outline Seriesin Engineering.</p><p>71. Wildheim, S. J. (1979, Dec.). Excitation of rotationally periodic structures. Transaction of theASME, Journal of Applied Mechanics, 46, 878882.</p><p>72. Williams, J. H, Jr. (1996). Fundamentals of applied dynamics. New York: Wiley.73. Zienkiewicz, O. C., &amp; Taylor, R. L. (1989). The finite element method (4th ed.,). New York:</p><p>McGraw-Hill.</p><p>References 299</p></li><li><p>Index</p><p>AAccelerated fatigue test, 215Accelerogram, 206Active damping, 290Active mass damper (AMD), 281Active strut, 287Active suspension, 280Active truss, 286Active vibration control, 275Angular rate sensor, 243Anisotropic shaft, 238</p><p>stability, 241unbalance response, 240</p><p>Anisotropic support (rotor), 236Anti-resonance, 32, 251, 276Assembly, 138Assumed modes method, 114, 135Asymptotic method, 88Asynchronous force, 232Autocorrelation, 170Autocovariance, 170</p><p>BBackward whirl, 221, 229, 234Bar, 94, 116</p><p>finite element, 137Beam</p><p>Euler-Bernoulli, 78, 119finite element, 140free-free, 87free vibration, 83prestress, 82, 122simply supported, 85</p><p>Beat phenomenon, 10Bending stiffness, 79Beta controller, 293</p><p>Bode plots, 7, 34Boundary layer noise, 188Buckling, 72</p><p>beam, 96clamped-free beam, 98critical load, 97simply supported beam, 97</p><p>CCampbell diagram, 62, 229, 235Cantilever rotor, 245Car on a random road, 191Car suspension</p><p>active, 280passive, 271</p><p>Cascade analysis, 167Causality, 184Central frequency, 179Central limit theorem, 174Centrifugal pendulum, 76, 271Centrifugal Pendulum Vibration Absorber, 76,</p><p>270Co-spectrum, 188Coherence function, 182Collocated control, 276, 278Collocated system, 32Complex coordinates, 220Conical mode, 234Conservation laws, 64Conservation of energy, 50, 66Conservative force, 49Consistent mass matrix, 142Constitutive equation</p><p>active strut, 287linear elastic material, 70plane stress, 100</p><p>A. Preumont, Twelve Lectures on Structural Dynamics,Solid Mechanics and Its Applications 198, DOI: 10.1007/978-94-007-6383-8, Springer Science+Business Media Dordrecht 2013</p><p>301</p></li><li><p>Constrained system, 34, 149, 153, 277Convection velocity, 189Convergence, 145Convolution integral, 5, 175Coriolis force, 243Correlation</p><p>function, 170, 188integral, 175matrix, 185, 187</p><p>Covariance matrix, 214Craig-Bampton reduction, 153Critical speed, 220, 230, 231Cross-correlation, 170</p><p>role of-, 193Cumulative mean square response, 173</p><p>DDAlembert principle, 49Damping, 23, 24, 121</p><p>modal, 23Rayleigh, 24rotating, 221, 224</p><p>Davenport spectrum, 190Degree of freedom (d.o.f.), 45, 114Den Hartog, 251Difference equation, 36Discretization, 113Disk, 232Dissipation function, 55Dynamic amplification, 7, 26Dynamic flexibility matrix, 25Dynamic mass, 159, 166Dynamic Vibration Absorber (DVA), 248</p><p>EEffective force, 49Effective modal mass, 160Elastic support, 232Envelope (narrow band process), 181Epicycloid, 271Equal peak design (DVA), 251ESP, 243Euler</p><p>Bernoulli beam, 78critical buckling load, 97, 123theorem on homogeneous functions, 65</p><p>FFast Fourier Transform (FFT), 172Fatigue, 202</p><p>random-, 211</p><p>Feedthrough, 12, 27Finite elements, 135First-crossing problem, 203Flexural rigidity (plate), 100Forward whirl, 219, 221, 229, 234Fourier transform, 9Fraction of critical damping, 2Fraction of modal strain energy, 290Frahm, 248Frequency Response</p><p>Function (FRF), 8FRF estimation, 182</p><p>GGaussian process, 174Generalized coordinates, 44, 53, 136Generalized momentum, 66Geometric stiffness matrix, 72, 122</p><p>planar beam element, 147Geometric strain energy, 68, 71Gradient height, 190Gradient velocity, 190Gravity loads, 128Green strain tensor, 68Guyan</p><p>mass matrix, 154, 165reduction, 147stiffness matrix, 154</p><p>Gyroscopic effect, 53, 60, 224Gyroscopic forces, 61</p><p>HHalf power bandwidth, 177Hamiltons principle, 50High-cycle fatigue, 202Holonomic constraint, 45, 64Homogeneous (random field), 187Homogeneous functions, 65</p><p>IIgnorable coordinate, 66Impulse response, 3Integral force feedback, 290Interlacing, 33, 276, 291Isolator</p><p>by kinematic coupling, 268corner frequency, 266linear-, 260passive-, 261relaxation-, 263six-axis-, 266</p><p>302 Index</p></li><li><p>JJacobi integral, 64Jeffcott rotor, 60, 218Jitter, 265</p><p>KKanai-Tajimi spectrum, 179, 199Kinematic constraint, 44Kirchhoff plate, 99Kronecker delta, 21</p><p>LLagrange multipliers, 63Lagranges equation, 53</p><p>with constraints, 63Lagrangian, 51, 52Lagrangian dynamics, 44Laplacian D</p><p>Cartesian coordinates, 101polar coordinates, 104</p><p>Laval, 220Lead compensator, 277Linear damage theory, 211Linear oscillator</p><p>Bode plots, 7dynamic amplification, 7free response, 1impulse response, 3Nyquist plot, 8quality factor, 8random response, 176state space form, 11</p><p>Localization matrix, 139Long rotor, 232Lumped mass matrix, 142</p><p>MMass matrix</p><p>bar, 117bar element, 138beam, 119lumped, 142planar beam element, 141</p><p>Master-slave (d.o.f.), 148Maxwell unit, 263Mean square (MS), 170, 171, 192</p><p>mass averaged-, 193Memory, 4</p><p>Modaldamping, 23decomposition, 23, 91mass, 21, 91participation factor, 159participation matrix, 164truncation, 24</p><p>Modal density, 104Modal spread, 268Mode shape, 19Moment-curvature relationship, 100Multi-axis excitation, 162Multiple natural frequencies, 21</p><p>NN-storey building, 36, 167</p><p>AMD, 281DVA design, 256random response, 195random response with DVA, 258seismic response, 155</p><p>Nabla rCartesian coordinates, 101</p><p>Narrow band process, 181Natural boundary conditions, 82Natural frequency, 19Nodal</p><p>circles, 107, 108diameters, 107, 108lines, 104</p><p>Non-conservative force, 51Non-holonomic</p><p>constraint, 45, 64Normal modes, 21Nyquist plot, 8, 34</p><p>OOperating Basis Earthquake, 208Orthogonal functions, 115Orthogonality, 20, 89</p><p>PPainlev integral, 66Palmgren-Miner criterion, 211Parsevals theorem, 9Participation factor, 159Peak factor, 202, 206Periodic structures, 108</p><p>Index 303</p></li><li><p>Phase plane, 181Plane truss, 136Plate</p><p>circular, 104Kirchhoff, 99rectangular, 102</p><p>Pole-zero pattern, 33, 276, 291Power spectral density, see PSDPrestress, 68, 82, 96, 122Principle of stationarity, 125Principle of virtual work, 47Projection matrix, 39PSD</p><p>definition, 171estimation, 172input-output (MIMO), 185input-output (SISO), 175matrix, 185, 187one sided-, 173</p><p>Pseudo-acceleration spectrum, 206Pseudo-velocity spectrum, 206</p><p>QQuality factor, 8, 26, 252Quarter-car model, 271Quasi-static correction, 27, 160</p><p>RRainflow, 212Random fatigue, 211Random vibration, 169Rankines model, 220Rayleigh</p><p>damping, 24distribution, 181Quotient, 21, 91, 124</p><p>Rayleigh-Ritz method, 113, 224Reduction</p><p>Craig-Bampton, 153Guyan, 147</p><p>Relaxation isolator, see IsolatorReliabilit...</p></li></ul>