computational lower bounds for statistical...

30
Computational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas (USC) (joint with Daniel Kane (UCSD) and Alistair Stewart (USC)) Workshop on Local Algorithms, MIT, June 2018

Upload: others

Post on 22-May-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

ComputationalLowerBoundsforStatisticalEstimationProblems

IliasDiakonikolas(USC)

(jointwithDanielKane(UCSD)andAlistairStewart(USC))

WorkshoponLocalAlgorithms,MIT,June2018

Page 2: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

THISTALK

GeneralTechniqueforStatisticalQueryLowerBounds:LeadstoTightLowerBounds

forarangeofHigh-dimensionalEstimationTasks

ConcreteApplicationsofourTechnique:

• LearningGaussianMixtureModels(GMMs)

• RobustlyLearningaGaussian

• RobustlyTestingaGaussian

• Statistical-ComputationalTradeoffs

Page 3: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

STATISTICALQUERIES[KEARNS’93]

𝑥", 𝑥$, … , 𝑥& ∼ 𝐷 over𝑋

Page 4: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

STATISTICALQUERIES[KEARNS’93]

𝑣" − 𝐄-∼. 𝜙" 𝑥 ≤ 𝜏𝜏 istoleranceofthequery;𝜏 = 1/ 𝑚�

𝜙7

𝑣"𝜙$𝑣$

𝑣7SQalgorithmSTAT.(𝜏) oracle

𝐷

𝜙": 𝑋 → −1,1

Problem𝑃 ∈ SQCompl 𝑞,𝑚 :IfexistsaSQalgorithmthatsolves𝑃 using𝑞 queriestoSTAT.(𝜏 = 1/ 𝑚� )

Page 5: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

POWEROFSQ ALGORITHMSRestrictedModel:Hopetoproveunconditionalcomputationallowerbounds.

PowerfulModel:WiderangeofalgorithmictechniquesinMLareimplementableusingSQs*:

• PACLearning:AC0,decisiontrees,linearseparators,boosting.

• UnsupervisedLearning:stochasticconvexoptimization,moment-basedmethods,k-meansclustering,EM,…[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

Onlyknownexception:Gaussianeliminationoverfinitefields(e.g.,learningparities).

Forallproblemsinthistalk,strongestknownalgorithmsareSQ.

Page 6: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

METHODOLOGYFORSQ LOWERBOUNDSStatisticalQueryDimension:

• Fixed-distributionPACLearning[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95;…]

• GeneralStatisticalProblems[Feldman-Grigorescu-Reyzin-Vempala-Xiao’13,…,Feldman’16]

PairwisecorrelationbetweenD1 andD2 withrespecttoD:

Fact:Sufficestoconstructalargesetofdistributionsthatarenearlyuncorrelated.

Page 7: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

THISTALK

GeneralTechniqueforStatisticalQueryLowerBounds:LeadstoTightLowerBounds

forarangeofHigh-dimensionalEstimationTasks

ConcreteApplicationsofourTechnique:

• LearningGaussianMixtureModels(GMMs)

• RobustlyLearningaGaussian

• RobustlyTestingaGaussian

• Statistical-ComputationalTradeoffs

Page 8: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

GAUSSIANMIXTUREMODEL(GMM)

• GMM:Distributiononwithprobabilitydensityfunction

• ExtensivelystudiedinstatisticsandTCS

KarlPearson(1894)

Page 9: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

LEARNINGGMMS- PRIORWORK(I)

TwoRelatedLearningProblemsParameterEstimation:Recovermodelparameters.

• SeparationAssumptions:Clustering-basedTechniques[Dasgupta’99,Dasgupta-Schulman’00,Arora-Kanan’01,Vempala-Wang’02,Achlioptas-McSherry’05,Brubaker-Vempala’08]

SampleComplexity:(BestKnown)Runtime:

• NoSeparation:MomentMethod[Kalai-Moitra-Valiant’10,Moitra-Valiant’10,Belkin-Sinha’10,Hardt-Price’15]

SampleComplexity:(BestKnown)Runtime:

Page 10: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

SEPARATIONASSUMPTIONS

• Clusteringispossibleonlywhenthecomponentshaveverylittleoverlap.

• Formally,wewantthetotalvariationdistancebetweencomponentstobecloseto1.

• AlgorithmsforlearningsphericalGMMSworkunderthisassumption.

• Fornon-sphericalGMMs,knownalgorithmsrequirestrongerassumptions.

Page 11: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

LEARNINGGMMS- PRIORWORK(II)

DensityEstimation:Recoverunderlyingdistribution(withinstatisticaldistance).

[Feldman-O’Donnell-Servedio’05,Moitra-Valiant’10,Suresh-Orlitsky-Acharya-Jafarpour’14,Hardt-Price’15,Li-Schmidt’15]

SampleComplexity:

(BestKnown)Runtime:

Fact:ForseparatedGMMs,densityestimationandparameterestimationareequivalent.

Page 12: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

LEARNINGGMMS– OPENQUESTION

Summary:Thesamplecomplexityofdensityestimationfork-GMMsis.Thesamplecomplexityofparameterestimationforseparated k-GMMsis.

Question:Isthereatime learningalgorithm?

Page 13: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

STATISTICALQUERYLOWERBOUNDFORLEARNINGGMMS

Theorem:Supposethat.AnySQalgorithmthatlearnsseparatedk-GMMsovertoconstanterrorrequireseither:• SQqueriesofaccuracy

or• Atleast

manySQqueries.

Take-away: ComputationalcomplexityoflearningGMMsisinherentlyexponentialindimensionoflatentspace.

Page 14: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

GENERALRECIPEFOR(SQ)LOWERBOUNDS

OurgenerictechniqueforprovingSQLowerBounds:

� Step#1:ConstructdistributionthatisstandardGaussianinalldirectionsexcept.

� Step#2:Constructtheunivariateprojectioninthedirectionsothatitmatchesthefirstm momentsof

� Step#3:Considerthefamilyofinstances

Page 15: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

HIDDENDIRECTIONDISTRIBUTION

Definition: Foraunitvectorv andaunivariatedistributionwithdensityA,considerthehigh-dimensionaldistribution

Example:

Page 16: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

GENERICSQLOWERBOUND

Definition: Foraunitvectorv andaunivariatedistributionwithdensityA,considerthehigh-dimensionaldistribution

Proposition:Supposethat:• A matchesthefirstm momentsof• Wehaveaslongasv, v’ arenearly

orthogonal.

ThenanySQalgorithmthatlearnsanunknownwithinerrorrequireseitherqueriesofaccuracyormanyqueries.

Page 17: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

WHYISFINDINGAHIDDENDIRECTIONHARD?

Observation:Low-DegreeMomentsdonothelp.

• A matchesthefirstm momentsof• Thefirstm momentsofareidenticaltothoseof• Degree-(m+1) moment tensor has entries.

Claim:Randomprojectionsdonothelp.

• Todistinguishbetweenand,wouldneedexponentiallymanyrandomprojections.

Page 18: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

ONE-DIMENSIONALPROJECTIONSAREALMOSTGAUSSIAN

KeyLemma:LetQ bethedistributionof,where.Then,wehavethat:

Page 19: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

PROOFOFKEYLEMMA(I)

Page 20: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

PROOFOFKEYLEMMA(I)

Page 21: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

PROOFOFKEYLEMMA(II)

where istheoperatorover

GaussianNoise(Ornstein-Uhlenbeck)Operator

Page 22: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

EIGENFUNCTIONS OFORNSTEIN-UHLENBECK OPERATOR

LinearOperator actingonfunctions

Fact(Mehler’66):

• denotesthedegree-i Hermite polynomial.• Notethatareorthonormalwithrespect

totheinnerproduct

Page 23: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

GENERICSQLOWERBOUND

Definition: Foraunitvectorv andaunivariatedistributionwithdensityA,considerthehigh-dimensionaldistribution

Proposition:Supposethat:• A matchesthefirstm momentsof• Wehaveaslongasv, v’ arenearly

orthogonal.

ThenanySQalgorithmthatlearnsanunknownwithinerrorrequireseitherqueriesofaccuracyormanyqueries.

Page 24: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

PROOFOFGENERICSQ LOWERBOUND• Sufficestoconstructalargesetofdistributionsthatare

nearly uncorrelated.• PairwisecorrelationbetweenD1 andD2 withrespectto

D:

TwoMainIngredients:

CorrelationLemma:

PackingArgument:ThereexistsasetS ofunitvectorsonwithpairwiseinnerproduct

Page 25: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

Theorem:AnySQalgorithmthatlearnsseparatedk-GMMsovertoconstanterrorrequireseitherSQqueriesofaccuracyoratleastmanySQqueries.

APPLICATION:SQ LOWERBOUNDFORGMMS (I)

Wanttoshow:

byusingourgenericproposition:

Proposition:Supposethat:• A matchesthefirstm momentsof• Wehaveaslongasv, v’ arenearly

orthogonal.

ThenanySQalgorithmthatlearnsanunknownwithinerrorrequireseitherqueriesofaccuracyormanyqueries.

Page 26: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

APPLICATION:SQ LOWERBOUNDFORGMMS (II)Lemma:ThereexistsaunivariatedistributionA thatisak-GMMwithcomponentsAi such that:• A agreeswithonthefirst2k-1 moments.• Eachpairofcomponentsareseparated.• Wheneverv andv’ arenearlyorthogonal

Page 27: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

APPLICATION:SQ LOWERBOUNDFORGMMS (III)High-DimensionalDistributionslooklike“parallelpancakes”:

Efficientlylearnablefork=2. [Brubaker-Vempala’08]

Page 28: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

FURTHERRESULTS

SQLowerBounds:• LearningGMMs• RobustlyLearningaGaussian

“Errorguaranteeof[DKK+16]areoptimalforallpolytimealgorithms.”• RobustCovarianceEstimationinSpectralNorm:

“AnyefficientSQalgorithmrequiressamples.”• Robustk-SparseMeanEstimation:

“AnyefficientSQalgorithmrequiressamples.”

SampleComplexityLowerBounds• RobustGaussianMeanTesting• TestingSpherical2-GMMs:“Distinguishingbetweenandrequiressamples.”• SparseMeanTesting

Unifiedtechniqueyieldingarangeofapplications.

Page 29: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

SAMPLECOMPLEXITYOFROBUSTTESTINGHigh-DimensionalHypothesisTesting

GaussianMeanTestingDistinguishbetween:• Completeness:• Soundness:with

Simplemean-basedalgorithmwithsamples.

Supposeweaddcorruptionstosoundnesscaseatrate.

TheoremSamplecomplexityofrobustGaussianmeantestingis.

Take-away: Robustnesscandramaticallyincreasethesamplecomplexityofanestimationtask.

Page 30: Computational Lower Bounds for Statistical …people.csail.mit.edu/joanne/WOLA18-slides/Diakonikolas.pdfComputational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas

SUMMARYANDFUTUREDIRECTIONS

• GeneralTechniquetoProveSQLowerBounds

• ImplicationsforaRangeofUnsupervisedEstimationProblems

FutureDirections:

• FurtherApplicationsofourFrameworkDiscreteSetting[D-Kane-Stewart’18],RobustRegression[D-Kong-Stewart’18],AdversarialExamples[Bubeck-Price- Razenshteyn’18]…

• AlternativeEvidenceofComputationalHardness?

Thanks!AnyQuestions?