reaction kinetics(3)

35
 1 Reaction Kinetics (3) Xuan Cheng Xiamen University Physical Chemistry

Upload: ahmadhelmiase7621

Post on 30-May-2018

251 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 1/35

  1

Reaction

Kinetics (3) Xuan Cheng

Xiamen University

PhysicalChemistry

Page 2: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 2/35

  2 

Determination of theRate Law

PhysicalChemistry

λ β α  ][][][ L B Ak r  =The rate law (17.48)

1. Half-life method

o A

n

 Ank n

t  ][log)1()1(

12loglog 10

1

102/110 −−−

−=

−(17.49)

[ ] Ano

n

k  Ant  1

1

2/1 )1(

12

= (17.29)For  n ≠ 1

o A

n

 Ank n

t  ][log)1()1(

12loglog 10

1

102/110 −+−

−=

−(17.49)

ReactionKinetics

Page 3: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 3/35

  3 

半衰期法确定反应级数

用半衰期法求除一级反应以外的其它反应的级数。

以 lnt 1/2 ~ ln[A]o 作图从直线斜率求 n 值。从多个实验数据

用作图法求出的 n 值更加准确。

 根据 n 级反应的半衰期通式: 取两个

不同起始浓度 [A]o , [A]o’ 作实验,分别测定半衰期为

t 1/2  和 ,因为同一反应,常数相同,所以:

1

1

2/1][

1

)1(

12−

−=

no A

n

 Ak nt 

1/ 2't 

PhysicalChemistry

1

2/1

2/1

][

'][

'

=

n

o

o

 A

 A

)]/[']ln([

)'/ln (1 2/12/1

oo A A

t t n +=

o An K t  ]ln [)1(lnln 2/1 −+=

ReactionKinetics

Page 4: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 4/35

  4 

PhysicalChemistryDetermination of the

Rate Law2. Powell-plot method

o A A ]/[][≡α 

n Ak r  ][=

(17.50)

the fraction of A unreacted

t  Ak  no A

1][ −≡φ 

[ ][ ]

[ ] t k n A A

 A A

no

n

o

)1(1 11−+=  

  

   −−

For  n ≠ 1 (17.28)

φ α  )1(11 −=−− nn For  n ≠ 1

(17.13)

[ ]

[ ]t k 

 A

 A A

o

−=ln

For  n = 1

φ α  −=ln For  n = 1 (17.51)

ReactionKinetics

Page 5: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 5/35

Page 6: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 6/35

  6 

PhysicalChemistry

Determination of theRate Law

3. Initial-rate method

λ β α  ][][][ L B Ak r  =The rate law (17.48)

The ratio of initial rates for runs 1 and 2

α 

=

1,0

2,01,02,0

][

][/ A

 Ar r 

Measure r 0 for two different initial concentrations [A]0,1 and [A]0,2  

while keeping [B]0, [C]0, …fixed.

α  can be found

The orders β  ,…λ  can be found similarly

ReactionKinetics

Page 7: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 7/35

  7 

PhysicalChemistry

Determination of theRate Law4. Isolation method

λ β α  ][][][ L B Ak r =The rate law (17.48)

Make initial concentrations of reactant A much less than the

concentrations of all other species

[B]0 >> [A]0, [C]0 >> [A]0, …

The rate law becomes

α λ β α  ][][][][ 00

A j L B Ak r  == (17.52)λ β 00 ][][ L Bk  jwhere ≡

Where j is essentially constant.

The reaction has the pseudo-order α  .

The orders β  ,…λ  can be found

similarly.

ReactionKinetics

Page 8: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 8/35

Page 9: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 9/35

  9 

PhysicalChemistryRate Laws and EquilibriumConstants for Elementary Reactions

 DC  B A +⇔+

]][[]][[][

11 DC k  B Ak dt 

 Ad −+−= 

  

  

Show that for a reaction that takes place in a sequence of steps, the

overall equilibrium constant is a product of ratios of the rate

constants for each step.

It is sufficient to consider a reasonably general but simple two-stepreaction sequence, such as

 F  E C  +⇔

 F  E  D B A ++⇔+

(second-order in each direction, k 1, k -1)

(first-order forwarded, second-order reverse, k 2, k -2)

(overall)

]][[][][

22 F  E k C k dt 

C d −+−= 

  

  

ReactionKinetics

Page 10: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 10/35

Page 11: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 11/35

  11 

PhysicalChemistry Reaction Mechanisms

 p r o d u c t s A →

The Rate-Determining-Step Approximation

The reaction mechanism is assumed to consist of one or morereversible reactions that stay close to equilibrium during most of the

reaction, followed by a relatively slow rate-determining step, which

in turn is followed by one or more rapid reactions.

 products B A →+ products A →2

 productsC  B A →++ products B A →+2 products A →3

unimolecular 

The number of molecules that react in an elementary stepThe molecularity of the elementary reaction

 bimolecular 

trimolecular (termolecular)

ReactionKinetics

Page 12: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 12/35

  12 

PhysicalChemistry

12 k k  >>

Reaction Mechanisms

C  B Ak k   →   →   21

t k t k ee 12 −− << 212 k k k  ≈−

Suppose now that

Then whenever a B molecule is formed it decays rapidly into C.

   

  

 −

+−

−= −− t k t k o e

k k 

k e

k k 

k  AC  21

12

1

12

21][][ (17.41)

reduces to ( )t k o e AC  11][][ −−=

The formation of C depends on only the smaller of the two rate constants

 B Ak  →  1 is called the rate-determining step of the

reaction.

For the consecutive unimolecular reactions

ReactionKinetics

Page 13: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 13/35

  13 

PhysicalChemistry

The Steady-State Approximation

Assumes that during the major part of the reaction, the rates of 

change of concentrations of all reaction intermediates are

negligibly small

0][ ≈dt 

te Intermediad 

Reaction Mechanisms

Reactants

Products

Intermediates

Time

Conce

ntration

C  B Ak k   →   →   21 (17.35)

0][][][

21 =−=   

  

 Bk  Ak dt 

 Bd 

][][

2

1  A

k  B = ][][

][12 Ak  Bk 

dt 

C d == 

 

 

 

 

ReactionKinetics

Page 14: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 14/35

  14 

PhysicalChemistry Reaction Mechanisms

0001 ])[1(][][ 11  Aee Ak C t k t  t k  −− −=∫ =

C is formed by a first-order decay of A, with a rate constant k 1,

the rate constant of the slower, rate-determining step.

][][][

12 Ak  Bk dt 

C d == 

  

  

[ ] [ ]t k 

o e A A 1−

= (17.38)

( )t k o e AC  11][][ −−=

The same result as before, butobtained much more quickly.

ReactionKinetics

Page 15: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 15/35

  15 

PhysicalChemistry

C  B →

21 k k  >>−

 A B →

(the rate-

determining step)

Reaction Mechanisms

 DC  B A k k k   →   →   →   321

    ←−1k 

    ←−2k 

    ←−3k 

Consider the following mechanism composed of unimolecular reactions

is slower than

 B A ⇔ remains close to equilibrium

23 k k  >> 23 −>> k k 

C  B ⇔ is not in equilibrium

D is rapidly formed

from C

ReactionKinetics

Page 16: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 16/35

  16 

PhysicalChemistry Reaction Mechanisms

O H  N  H C  NH  H C  HNO H Br 

22562562 2+    →  ++ ++ −

]][][[ 2−+= Br  HNO H k r 

Example 17.4

is observed to be

A proposed mechanism is

(17.55)

The rate law for the Br --catalyzed aqueous reaction

O H ONBr  Br  HNOk 

222 + →  + −

−+ ++ →  + Br O H  N  H C  NH  H C ONBr k 

22562563

++  →  + 2221  NO H  HNO H 

    ←−1k 

rapid equilib.

(17.56)slow

fast

ReactionKinetics

h i l

Page 17: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 17/35

  17 

PhysicalChemistry Reaction MechanismsExample 17.4

]][][[ 2−+= Br  HNO H k r  (17.55)

Deduce the rate law for this mechanism and relate the observed rate

constant k in (17.55) to the rate constants in the assumed mechanism(17.56)

++  →  + 2221  NO H  HNO H 

    ← −1k 

rapid equilib.

(17.56)O H ONBr  Br  HNOk 

222 + →  + − slow

−+ ++ →  + Br O H  N  H C  NH  H C ONBr k 

22562563 fast

the rate-determiningstep

(1)

(2)

(3)

The formation of ONBr in (2) ]][[ 222−+= Br  NO H k r  (17.57)

Step (1) is near equilibrium. Equation (17.53) gives

ReactionKinetics

Ph i l

Page 18: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 18/35

  18 

PhysicalChemistry Reaction MechanismsExample 17.4

b

 f  

c k 

 K  = elementary reaction (17.53)*

]][[

][

2

22

1

11,

 HNO H 

 NO H 

k  K c +

+

−== ]][[][ 2

1

122 HNO H 

k  NO H  +

+ =

]][[ 222−+= Br  NO H k r  (17.57)

]][][)[/( 2121−+

−= Br  HNO H k k k r 

21,121 )/( k  K k k k k  c== −

]][][[ 2−+= Br  HNO H k r  (17.55)

Example 17.5

ReactionKinetics

Ph i l

Page 19: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 19/35

  19 

PhysicalChemistry Reaction Mechanisms

More examples in using the steady-state approximation

)()(4)(2 2252 g O g  NO g O N  +→ ][ 52O N k r  =

on the basis of the following mechanism:

Account for the rate law for the decomposition of N2O5

3252 NO NOO N  ak  + →  

5232

'

O N  NO NO ak  →  +

 NOO NO NO NO bk  ++ →  +2232

252 3 NOO N  NO ck  →  +

First identify the intermediates NO and NO3

ReactionKinetics

Ph i l

Page 20: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 20/35

  20 

PhysicalChemistryReaction Mechanisms

]][[]][[][

5232 O N  NOk  NO NOk dt 

 NOd cb −=

]][[]][[][][

3232'

523  NO NOk  NO NOk O N k 

dt 

 NOd baa −−=

3252 NO NOO N 

ak 

+ →  

5232

'

O N  NO NO ak  →  +

 NOO NO NO NO bk  ++ →  + 2232

252 3 NOO N  NO ck  →  +

]][[]][[][][

5232'

5252 O N  NOk  NO NOk O N k 

dt 

O N d caa −+−=

ReactionKinetics

Ph i l

Page 21: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 21/35

  21 

PhysicalChemistry Reaction Mechanisms

0]][[]][[ 5232 =− O N  NOk  NO NOk  cb

][

][

)(][][

]][[

2

52

'32

52

 NO

O N 

k k 

 NO NO

O N  NO

ba

a

b

c

+==

According to the steady-state approximation, set both rates equal

to zero 0][ =dt  NOd  0][ 3 =

dt  NOd 

)(][ 'bac

ba

k k k 

k k 

 NO +=

][

]][[][

2

523

 NO

O N  NO

k  NO

b

c=

0]][[]][[][ 3232

'

52 =−− NO NOk  NO NOk O N k  baa

][

][

)(][

][

)(][

2

52'

2

52'3

 NO

O N 

k k 

 NO

O N 

k k k 

k k 

k  NO

ba

a

bac

ba

b

c

+=

+=

ReactionKinetics

Ph i l

Page 22: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 22/35

  22 

PhysicalChemistry Reaction Mechanisms

]][[]][[][][

5232'

5252 O N  NOk  NO NOk O N k 

dt 

O N d caa −+−=

The net rate of change of concentration of N2

O5

is

][

)(][

][

)(

][][][

52'2

52

'2

'52

52 O N 

k k k 

k k k 

 NO

O N 

k k 

k  NOk O N k 

dt 

O N d 

bac

bac

ba

aaa

+−

++−=

)(

]['

bac

ba

k k k 

k k  NO

+

=

][

][

)(][

][

)(][

2

52'

2

52'3

 NO

O N 

k k 

 NO

O N 

k k k 

k k 

k  NO

ba

a

bac

ba

b

c

+=

+=

][)(

][)(

][52'52'

''52 O N 

k k 

k k O N 

k k 

k k k k k k 

dt 

O N d 

ba

ba

ba

aabaaa

+−

+

+−−=

ReactionKinetics

Ph i l

Page 23: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 23/35

  23 

PhysicalChemistry Reaction Mechanisms

][

2][

52'

52

O N k k 

k k 

dt 

O N d 

ba

ba

+−=

 because 2][ 52−=O N υ 

][][ 5252' O N k O N k k 

k k r 

baba =+=

][ 52O N k r =

ba

ba

k k 

k k k 

+=

'

It follows that the reaction rate is

where

ReactionKinetics

Ph sical

Page 24: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 24/35

  24 

PhysicalChemistry Reaction MechanismsPre-equilibria

From a simple sequence of consecutive reactions we now turn to a

slightly more complicated mechanism:

Where C denote the intermediate.

 P C  B A ba k k   →   →  +  ←

'ak 

This scheme involves a pre-equilibrium, in which an intermediates

is in equilibrium with the reactants.

A pre-equilibrium arises when the rates of formation of the

intermediate and its decay back into reactants are much faster than

its rate of formation of products; thus, the condition is possible

when k’ a>>k b but not when k b >>k’ a. Because we assume that A, B,

and C are in equilibrium.

ReactionKinetics

Physical i

Page 25: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 25/35

  25 

PhysicalChemistry Reaction MechanismsPre-equilibria

We can write:

c K  B A

C  =]][[

][ 'a

ack 

k  K  =

In writing these equations, we are presuming that the rate of 

reaction of C to form P is too slow to affect the maintenance of the

 pre-equilibrium (see the following example). The rate of formation

of P may now be written:

]][[][][

 B A K k C k dt 

 P d cbb ==

This rate law has the form of a second-order rate law with a

composite rate constant:]][[

][ B Ak 

dt 

 P d = '

a

bacb

k k  K k k  ==where

ReactionKinetics

Physical R i

Page 26: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 26/35

  26 

PhysicalChemistry Reaction MechanismsPre-equilibria

Example: Analyzing a pre-equilibrium

Repeat the pre-equilibrium calculation but without ignoring the

fact that C is slowly leaking away as it forms P.

][][ C k dt  P d  b=

The net rates of change of P and C are

0][][]][[][ ' =−−= C k C k  B Ak 

dt 

C d baa

ba

a

k k 

 B Ak C 

+=

'

]][[][

where

 P C  B A ba k k   →   →  +

  ← 'ak 

]][[][

 B Ak dt 

 P d =

ba

ba

k k 

k k k 

+=

'

ReactionKinetics

Physical R ti

Page 27: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 27/35

  27 

PhysicalChemistry Reaction Mechanisms

Pre-equilibria

where]][[][

 B Ak dt 

 P d =

ba

ba

k k 

k k k 

+=

'

]][[][

 B Ak dt 

 P d =

'a

bacb

k k  K k k  ==where

When the rate constant for the decay of C into products is muchsmaller than that for its decay into reactants '

ab k k  <<

ReactionKinetics

Physical R ti

Page 28: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 28/35

  28 

Homework Physical

Chemistry

Page 592

Prob. 17.28

Prob. 17.29

Prob. 17.33

Page 593

Prob. 17.39

Prob. 17.52

ReactionKinetics

Physical

Page 29: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 29/35

  29 

速率决定步骤

  在连续反应中,如果有某步很慢,该步

的速率基本上等于整个反应的速率,则该慢步骤称为速率决定步骤,简称速决步或速

控步。利用速决步近似,可以使复杂反应的

动力学方程推导步骤简化。

PhysicalChemistry

Physical

Page 30: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 30/35

  30 

速率决定步骤

A][B][1k r  ≈慢步骤后面的快步骤可以不考虑。

只需用平衡态近似法求出第 1 , 2 步的速

率。虽然第二步是速决步,但中间产物 C

的浓度要从第一步快平衡求。

例 1. 慢 快 快A B C D E+ → → →

PhysicalChemistry

例 2.

  快   慢   快 快 F  E  DC  B A →→→→+

Physical

Page 31: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 31/35

  31 

稳态近似

  从反应机理导出速率方程必须作适当近似,

 稳态近似是方法之一。

  假定反应进行一段时间后,体系基本上处于稳态,这时,各中间产物的浓度可认为保持不

变,这种近似处理的方法称为稳态近似,一般

活泼的中间产物可以采用稳态近似。

PhysicalChemistry

Physical

Page 32: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 32/35

  32 

氢与碘的反应

2 2

2 2

H I 2HI

1 d[HI][H ][I ]

2 dtr k 

+ →= =

  总包反应

实验测定的速率方程

分别用稳态近似和平衡假设来求中间产物 [I]

的表达式,并比较两种方法的适用范围。

2

2 2 [I]1 d[HI]

[H ]2 dt k =

PhysicalChemistry

2

2

(1) I M 2I M

(2) H 2I 2HI

+ +

+ →

 

反应机理:

快平衡

M  I M  I  +→+ 22

Physical

Page 33: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 33/35

  33 

用稳态近似法求碘原子浓度

因为 (1) 是快平衡, k-1 很大; (2) 是慢反应, k2 很小,

分母中略去 2k2[H2] 项,得:1 2

2 22 2

1

[H ][ [H ]I [] I ]r k k k 

k −= =

与实验测定的速率方程一致。

2 2

1 2 -1 2 2

1 d[I]

[I ][M]- [I] [M]- [H ][I] 02 dk k k 

t = =

2 1 2

1 2 2

[I ][M][I]

[M] 2 [H ]

k k −

=+

2 1 2 2 22 2

1 2 2

[H ][I ][M][H ][I]

[M] 2 [H ]

k k r k 

k k −

= = +

PhysicalChemistry

2

2

(1) I M 2I M

(2) H 2I 2HI

+ +

+ →

 

反应机理:

快平衡慢

M  I M  I  +→+ 22

Physical

Page 34: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 34/35

  34 

显然这个方法简单,但这个方法只适用于快平衡下面是慢反应的机理 , 即 k -1>>k 2 。

反应 (1) 达到平衡时:2

1 2 -1[I ][M] [I] [M]k k =

2 1

21

[I] [I ]k 

k −=

2 1 22 2 2 2 2 2

1

[H ][I] [H ][I ] [H ][I ]k k 

r k k k 

= = =

用平衡假设法求碘原子浓度Physical

Chemistry

2

2

(1) I M 2I M

(2) H 2I 2HI

+ ++ →

反应机理:

快平衡

  M  I M  I  +→+ 22

Physical

Page 35: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 35/35

稳态近似法与平衡态近似法的比

稳态近似法 — 优点:所得最终动力学方程中包含了复合

  反应中的全部动力学参数 ( 如 k 1 , k -1 ,

k 2)优缺点

—平衡态近似法 缺点:所得最终动力学方程中只有一个

  动力学参数(k 2)

,而且包含在k 2 K c

乘积中

  优点:所得动力学方程的形式简单

缺点:所得动力学方程的形式复杂

PhysicalChemistry