radu grosu suny at stony brook

59
Radu Grosu SUNY at Stony Brook Modeling and Analysis of Atrial Fibrillation Joint work with Ezio Bartocci, Flavio Fenton, Robert Gilmour, James Glimm and Scott A. Smolka

Upload: blaine

Post on 23-Feb-2016

69 views

Category:

Documents


0 download

DESCRIPTION

Modeling and Analysis of Atrial Fibrillation. Radu Grosu SUNY at Stony Brook. Joint work with Ezio Bartocci , Flavio Fenton, Robert Gilmour, James Glimm and Scott A. Smolka. Emergent Behavior in Heart Cells. EKG. Surface. Arrhythmia afflicts more than 3 million Americans alone. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Radu Grosu SUNY at Stony Brook

Radu Grosu SUNY at Stony Brook

Modeling and Analysis of Atrial Fibrillation

Joint work with

Ezio Bartocci, Flavio Fenton, Robert Gilmour, James Glimm and Scott A. Smolka

Page 2: Radu Grosu SUNY at Stony Brook

Emergent Behavior in Heart Cells

Arrhythmia afflicts more than 3 million Americans alone

EKG

Surface

Page 3: Radu Grosu SUNY at Stony Brook

Modeling

Page 4: Radu Grosu SUNY at Stony Brook

Tissue Modeling: Triangular Lattice CellExcite and Simulation

Communication by diffusion

Page 5: Radu Grosu SUNY at Stony Brook

Tissue Modeling: Square Lattice

CellExcite and Simulation

Communication by diffusion

Page 6: Radu Grosu SUNY at Stony Brook

Single Cell Reaction: Action Potential

Membrane’s AP depends on: • Stimulus (voltage or current):

– External / Neighboring cells • Cell’s state

time

volta

geSt

imul

us

failed initiation

Threshold

Resting potential

Schematic Action Potential

AP has nonlinear behavior!• Reaction diffusion system:

∂u∂t

= R(u) +∇(D∇u)

BehaviorIn time

Reaction Diffusion

Page 7: Radu Grosu SUNY at Stony Brook

Frequency Response

APD90: AP > 10% APm DI90: AP < 10% APm BCL: APD + DI

Page 8: Radu Grosu SUNY at Stony Brook

Frequency Response

APD90: AP > 10% APm DI90: AP < 10% APm BCL: APD + DI

S1-S2 Protocol: (i) obtain stable S1; (ii) deliver S2 with shorter DI

Page 9: Radu Grosu SUNY at Stony Brook

Frequency Response

APD90: AP > 10% APm DI90: AP < 10% APm BCL: APD + DI

S1S2 Protocol: (i) obtain stable S1; (ii) deliver S2 with shorter DIRestitution curve: plot APD90/DI90 relation for different BCLs

Page 10: Radu Grosu SUNY at Stony Brook

Existing Models

• Detailed ionic models: – Luo and Rudi: 14 variables– Tusher, Noble2 and Panfilov: 17 variables – Priebe and Beuckelman: 22 variables – Iyer, Mazhari and Winslow: 67 variables

• Approximate models:– Cornell: 3 or 4 variables – SUNYSB: 2 or 3 variable

Page 11: Radu Grosu SUNY at Stony Brook

Stony Brook’s Cycle-Linear Model

Page 12: Radu Grosu SUNY at Stony Brook

Objectives

• Learn a minimal mode-linear HA model:– This should facilitate analysis

• Learn the model directly from data:– Empirical rather than rational approach

• Use a well established model as the “myocyte”:– Luo-Rudi II dynamic cardiac model

Page 13: Radu Grosu SUNY at Stony Brook

• Training set: for simplicity 25 APs generated from the LRd– BCL1 + DI2: from 160ms to 400 ms in 10ms intervals

• Stimulus: step with amplitude -80μA/cm2, duration 0.6ms

• Error margin: within ±2mV of the Luo-Rudi model

• Test set: 25 APs from 165ms to 405ms in 10ms intervals

HA Identification for the Luo-Rudi Model(with P. Ye, E. Entcheva and S. Mitra)

Page 14: Radu Grosu SUNY at Stony Brook

Stimulated

Action Potential (AP) Phases

Page 15: Radu Grosu SUNY at Stony Brook

Stimulated

s

off∧u <θ

U son

u ≥θU

u ≥θE

u ≤θP

u ≤θR

u ≤θF

Identifying a Mode-Linear HA for One AP

Page 16: Radu Grosu SUNY at Stony Brook

Null Pts: discrete 1st Order deriv. Infl. Pts: discrete 2nd Order deriv. Thresholds: Null Pts and Infl. Pts Segments: Between Seg. Pts

Problem: too many Infl. Pts Problem: too many segments?

Identifying the Switching for one AP

Page 17: Radu Grosu SUNY at Stony Brook

Solution: use a low-pass filter- Moving average and spline LPF: not satisfactory- Designed our own: remove pts within trains of inflection points

Null Pts: discrete 1st Order deriv. Infl. Pts: discrete 2nd Order deriv. Thresholds: Null Pts and Infl. Pts Segments: Between Seg. Pts

Problem: too many Infl. Pts Problem: too many segments?

Identifying the Switching for one AP

Page 18: Radu Grosu SUNY at Stony Brook

Problem: somewhat different inflection points

Identifying the Switching for all AP

Page 19: Radu Grosu SUNY at Stony Brook

Solution: align, move up/down and remove inflection points- Confirmed by higher resolution samples

Identifying the Switching for all AP

Page 20: Radu Grosu SUNY at Stony Brook

Stimulated

s

off∧u <θ

Uons

u ≥θU

u ≥θE

Pv V

u ≤θR

Fv V

&u=&xi + &xo + Is&xi =bixi

&xo =boxo

u ≥θP /

xi =ai

xo =ao

Identifying the HA Dynamics for One APM

odifi

ed P

rony

Met

hod

Page 21: Radu Grosu SUNY at Stony Brook

Stimulated

s

off∧u <θ

U(d

i) son

/ di=t

u ≥θU(d

i)

u ≥θE(d

i)

u ≤θ

R(d

i)

/t =0

u ≤θP(d

i)

u ≤θF(d

i)

Summarizing all HA

&u=&xi + &xo + Is&xi =bi(di )xi

&xo =bo(di )xo

u ≥θP(di ) /

xi =ai(di )

xo =ao(di )

Page 22: Radu Grosu SUNY at Stony Brook

Finding Parameter Dependence on DI

Solution: apply mProny once again on each of the 25 points

Page 23: Radu Grosu SUNY at Stony Brook

Stimulated

s

off∧u <θ

U(d

i) son

/ di=t

u ≥θU(d

i)

u ≥θE(d

i)

u ≤θ

R(d

i)

/t =0

u ≤θP(d

i)

u ≤θF(d

i)

Summarizing all HA

&u=&xi + &xo + Is&xi =bi(di)xi

&xo =bo(di)xo

u ≥θP(di ) /

xi =ai(di )

xo =ao(di )

bi (di ) =a i1ebi1di + a i2e

bi2di

bo(di)=ao1ebo1di + ao2e

bo2di

Cyc

le L

inea

r

Page 24: Radu Grosu SUNY at Stony Brook

Frequency Response on Test Set

AP on test set: still within the accepted error margin Restitution on test set: follows very well the nonlinear trend

Page 25: Radu Grosu SUNY at Stony Brook

Cornell’s Nonlinear Minimal Model

Page 26: Radu Grosu SUNY at Stony Brook

Objectives

• Learn a minimal nonlinear model:– This should facilitate analysis

• Approximate the detailed ionic models:– Rational rather than empirical approach

• Identify the parameters based on: – Data generated by a detailed ionic model– Experimental, in-vivo data

Page 27: Radu Grosu SUNY at Stony Brook

us =0.5

ks =16

Switching Control

S(ks (u−us))=1

1+ e−ks (u−us )

H (u−us)=0 u < us

1 u≥us

⎧⎨⎪⎩⎪

R(u,us1,us2 ) =

0 u < us1

u−us1

us2 −us1

else

1 u≥us2

⎨⎪⎪

⎩⎪⎪

Page 28: Radu Grosu SUNY at Stony Brook

&u =∇(D∇u)−(Jfi + Jsi + Jso)

Jfi =−H(u−θv)(u−θv)(uu −u)v/ t fi

Cornell’s Minimal Model

Fast inputcurrent

DiffusionLaplacia

nvoltage Slow input

currentSlow output

current

Page 29: Radu Grosu SUNY at Stony Brook

&v = (1−H(u−θv)) (v∞ −v) / tv−−H(u−θv)v / tv

+

&w = (1−H(u−θw ))(w∞ −w) / tw−−H(u−θw)w / tw

+

&s = (S(2ks(u−us))−s) / t s

Jfi =−H(u−θv)(u−θv)(uu −u)v/ t fi

&u =∇(D∇u)−(Jfi + Jsi + Jso)

Jfi =−H(u−θv)(u−θv)(uu −u)v/ t fiJ fi = −H(u−θv) (u−θv)(uu −u)v/ t fi

Jsi = −H(u−θw) ws/ t si

Jso = (1−H(u−θw)) (u−uo) / t o + H(u−θw) / t so

Cornell’s Minimal Model

PiecewiseNonlinear

Heaviside(step)

Sigmoid(s-step)

PiecewiseNonlinear

PiecewiseBilinear

PiecewiseLinear

Nonlinear

ActivationThreshol

d

Fast inputGateSlow Input

GateSlow Output

GateResistanceTime Cst

Page 30: Radu Grosu SUNY at Stony Brook

t v− = (1 − H (u −θv

− )) τ v1− + H (u −θv

− ) τ v2−

τ s = (1 − H (u −θw )) τ s1 + H (u −θw ) τ s2τ o = (1 − H (u −θo )) τ o1 + H (u −θo ) τ o2

w∞tw

− = τ w1− + (τ w2

− − τ w1− ) S(2kw

− (u − uw− ))

τ so = τ so1 + (τ so2 − τ so1) S(2kso(u − uso ))

w∞

Time Constants and Infinity Values

PiecewiseConstant

Sigmoidal

v∞ = (1−H(u−θv−))

w∞ = (1−H(u−θo)) (1−u / tw∞) + H(u−θo) w∞*

t so = (1−H(u−θo)) t o1 + H(u−θo) t o2

PiecewiseLinear

Page 31: Radu Grosu SUNY at Stony Brook

Single Cell Action Potential

Page 32: Radu Grosu SUNY at Stony Brook

u ≥θo

u ≥θv

u ≥θw

θo ≤ u < θw&u = ∇(D∇u) − u / τ o2

&v = −v / τ v2−

&w = (w∞* − w) / τ w1

&s = (S(2ks (u − us )) − s) / τ s

θw ≤ u < θ v&u = ∇(D∇u) + ws / τ si −1 / τ so&v = −v / τ v2

&w = −w / τ w+

&s = (S(2ks (u − us )) − s) / τ s2

u < θo =θv− =0.006

u < θw =0. 13

u < θv =0.3

Cornell’s Minimal Model

u < θo

&u =∇(D∇u)−u / t o1

&v = (1−v) / tv1−

&w = (1−u / tw∞ −w) / tw−

&s = (S(2ks(u−us))−s) / t s

θv ≤ u

&u =∇(D∇u)+ (u−θv)(uu −u)v/ t fi +ws/ t fi −1 / t so

&v =−v/tv+

&w =−w / tw+

&s = (S(2ks(u−us))−s) / t s2

Page 33: Radu Grosu SUNY at Stony Brook

u ≥θo

u ≥θv

u ≥θw

u < θo =θv− =0.006

u < θw =0. 13

u < θv =0.3

v < vc

Partition with Respect to v

Page 34: Radu Grosu SUNY at Stony Brook

u ≥θo

u ≥θv

u ≥θw

u < θo =θv− =0.006

u < θw =0. 13

u < θv =0.3

v < vc

θv ≤ u

&u =∇(D∇u)+ (u−θv)(uu −u)v/ t fi +ws/ t fi −1 /t so

&v =−v/tv+

&w =−w /tw+

&s = (S(2ks(u−us))−s) / t s2

(θv ≤ u) ∧ (v < vc)

&u =∇(D∇u)+ ws/ t fi −1 /t so

&v =−v/tv+

&w =−w /tw+

&s = (S(2ks(u−us))−s) / t s2

Partition with Respect to v

Page 35: Radu Grosu SUNY at Stony Brook

Superposed Action Potentials

Page 36: Radu Grosu SUNY at Stony Brook

u ≥θo

u ≥θw

θw ≤ u < θ v&u = ∇(D∇u) + ws / τ si −1 / τ so&v = −v / τ v2

&w = −w / τ w+

&s = (S(2ks (u − us )) − s) / τ s2

u < θo

u < θw

u < θv

HA for the Model

(θv ≤ u) ∧ (v ≥ vc)

&u =∇(D∇u)+ (u−θv)(uu −u)v/ t fi +ws/ t fi −1 /t so

&v =−v/tv+

&w =−w / tw+

&s = (S(2ks(u−us))−s) / t s2

u < θo

&u =∇(D∇u)−u / t o1

&v = (1−v) / tv1−

&w = (1−u / tw∞ −w) / tw−

&s = (S(2ks(u−us))−s) / t s

u ≥θv

∧v< vc

(θv ≤ u) ∧ (v < vc)

&u =∇(D∇u)+ ws/ t fi −1 / t so

&v =−v/tv+

&w =−w / tw+

&s = (S(2ks(u−us))−s) / t s2

θo ≤ u < θw&u = ∇(D∇u) − u / τ o2

&v = −v / τ v2−

&w = (w∞* − w) / τ w1

&s = (S(2ks (u − us )) − s) / τ s

u ≥θv

∧v≥vc

Page 37: Radu Grosu SUNY at Stony Brook

tw− = τ w1

− + (τ w2− − τ w1

− ) S(2kw− (u − uw

− ))

τ so = τ so1 + (τ so2 − τ so1)S(2kso(u − uso ))&s = (S(2ks (u − us )) − s) / τ s

Analysis of Sigmoidal Switching

tw− = (1 − H (u − uw

− ))τ w1− + H (u − uw

− )τ w2−

&s = (rsR(u,θv)−s) / t s

Page 38: Radu Grosu SUNY at Stony Brook

Superposed Action Potentials

Page 39: Radu Grosu SUNY at Stony Brook

u ≥uw−

u ≥θw

θw ≤ u < θ v&u = ∇(D∇u) + ws / τ si −1 / τ so&v = −v / τ v2

&w = −w / τ w+

&s = −s / τ s2 u < uw−

u < θw

u < θv

Current HA of Cornell’s Model

(θv ≤ u) ∧ (v ≥ vc)

&u =∇(D∇u)+ (u−θv)(uu −u)v/ t fi +ws/ t fi −1 / t so

&v =−v/tv+

&w =−w /tw+

&s = ((u−θv) / (2rsus)−s) / t s2

u ≥θv

∧v< vc

(θv ≤ u) ∧ (v < vc)

&u =∇(D∇u)+ ws/ t fi −1 / t so

&v =−v/tv+

&w =−w /tw+

&s = ((u−θv) / (2rsus)−s) / t s2

uw− ≤ u < θw

&u =∇(D∇u)−u / t o2

&v =−v/tv2−

&w = (w∞* −w) / tw2

&s =−s/t s1

u ≥θv

∧v≥vc

θo ≤ u < uw−

&u =∇(D∇u)−u / t o1

&v = (1−v) / tv1−

&w = (w∞* −w) / tw1

&s =−s/ t s1

u < θo

&u =∇(D∇u)−u / t o1

&v = (1−v) / tv1−

&w = (1−u / tw∞ −w) / tw1−

&s =−s/t s1u ≥θo

u < θo

Page 40: Radu Grosu SUNY at Stony Brook

Analysis of 1/τso ?

t so = τ so1 + (τ so2 − τ so1)S(2kso(u − uso ))

Jso = (1 − H (u −θw ))(u − uo ) + H (u −θw ) / τ so

Page 41: Radu Grosu SUNY at Stony Brook

Cubic Approximation of 1/τso ?

t so = τ so1 + (τ so2 − τ so1)S(2kso(u − uso ))

Jso = (1 − H (u −θw ))(u − uo ) + H (u −θw ) / τ so

Page 42: Radu Grosu SUNY at Stony Brook

Superposed Action Potentials

Very sensitive!

Page 43: Radu Grosu SUNY at Stony Brook

Summary of Models

• Both models are nonlinear– Stony Brook’s: Linear in each cycle– Cornell’s: Nonlinear in specific modes

• Both models are deterministic

• Both models require identification– Stony Brook’s: On a mode-linear basis– Cornell’s: On an adiabatically approximated model

Page 44: Radu Grosu SUNY at Stony Brook

Modeling Challenges

• Identification of atrial models– Preliminary work: Already started at Cornell

• Dealing with nonlinearity– Analysis: New nonlinear techniques? Linear approx?

• Parameter mapping to physiological entities– Diagnosis and therapy: To be done later on

Page 45: Radu Grosu SUNY at Stony Brook

Analysis

Page 46: Radu Grosu SUNY at Stony Brook

Atrial Fibrillation (Afib)

• A spatial-temporal property– Has duration: it has to last for at least 8s– Has space: it is chaotic spiral breakup

• Formally capturing Afib– Multidisciplinary: CAV, Computer Vision, Fluid Dynamics– Techniques: Scale space, curvature, curl, entropy, logic

Page 47: Radu Grosu SUNY at Stony Brook

Spatial Superposition

• Detection problem: – Does a simulated tissue

contain a spiral ?

• Specification problem:– Encode above property as a

logical formula?– Can we learn the formula?

How? Use Spatial Abstraction

Page 48: Radu Grosu SUNY at Stony Brook

Superposition Quadtrees (SQTs)

4

i ij jj=1

1p (m) = p (m )4l!m {s,u,p,r}. p (m) = 1

Abstract position and compute PMF p(m) ≡ P[D=m]

Page 49: Radu Grosu SUNY at Stony Brook

Linear Spatial-Superposition Logic

Syntax

Semantics

Page 50: Radu Grosu SUNY at Stony Brook

The Path to the Core of a Spiral

Root

21 3 4

21 3 4

21 3 4

21 3 4

21 3 4

Click the core to determine the quadtree

Page 51: Radu Grosu SUNY at Stony Brook

Overview of Our Approach

Page 52: Radu Grosu SUNY at Stony Brook

Emerald: Learning LSSL Formula

Emerald: Bounded Model Checking

Page 53: Radu Grosu SUNY at Stony Brook

Curvature Analysis

• Some properties of the curvature:– The curvature of a straight line is identical to 0– The curvature of a circle of radius R is constant– Where the curve undergoes a tight turn, the curvature is large

• Measuring the curvature:– Adapting Frontier Tool [Glimm et.al]: MPI code on Blue Gene– Also corrects topological errors

N - NormalT - TangentdT - Curvature

T

T

N N

dT

Page 54: Radu Grosu SUNY at Stony Brook

Edge Detection

Scalar field Front waveCanny algorithm

Page 55: Radu Grosu SUNY at Stony Brook

Normal Vectors Computation

Compute the Gradient

Page 56: Radu Grosu SUNY at Stony Brook

Tangent Vectors Computation

Based on the Gradient

Page 57: Radu Grosu SUNY at Stony Brook

The Curl of the Tangent Field

Curl = infinitesimal rotation of a vector field (circulation density of a fluid)

Page 58: Radu Grosu SUNY at Stony Brook

Verification Setup

• Models are deterministic with one initial state:– A spiral: induced with a specific protocol

• Verification becomes parameter estimation/synthesis: – In normal tissue: no fibrillation possible– Diseased tissue: brute force gives parameter bounds– Parameter space search: increases accuracy

• Parameters are mapped to the ionic entities:– Obtained mapping: used for diagnosis and therapy

Page 59: Radu Grosu SUNY at Stony Brook

Possible Collaborations

• Pancreatic cancer group:– Spatial properties: also a reaction diffusion system– Nonlinear models: approximation, diff. invariants, statistical MC– Parameter estimation: information theory, statistical MC

• Aerospace / Automotive groups: – Monitoring & Control: low energy defibrillation, stochastic HA – Machine learning: of spatial temporal patterns