radioactivity - institute for structure and nuclear ... · radioactivity lecture 4 the physics of...

21
Radioactivity Lecture 4 The Physics of radioactive Decay and Nuclear Reaction

Upload: others

Post on 17-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

  • Radioactivity

    Lecture 4 The Physics of radioactive Decay

    and Nuclear Reaction

  • Nature of Radiation

    • Deflection in electric field • α radiation is positively charged • β radiation is negatively charged • γ radiation is neutral • Stopping in material • α radiation has small range and

    large mass • β radiation has deep range and

    small mass • γ radiation has largest range and

    no mass – electromagnetic radiation

  • Origin of Radiation • Radioactive decay of unstable nucleus

    configuration (too many protons or too many neutrons) transitioning into a more stable form.

    • What represents a stable or unstable isotope configuration

    • Too many protons deflective Coulomb forces • Too many Neutrons reduce the strong binding

    force • Too many nucleons cannot be bound together

    by strong force • Too much deformation increases instability of

    nucleus. • Heavy deformed nuclei will spontaneously

    fission

  • Radiation as Energy Release A nucleus emits radiation of certain energy (E=hν for gammas and E=Ekin for particles) to reach the lowest possible energy configuration!

    2

    21 mvEkin =

    Energy release in gravitational potential

    Energy release in nuclear potential

    Particle decay to excited states with subsequent de-excitation by emission of gamma radiation

    β-decay

    γ-decay

    γ-spectrum

  • β- decay n ⇒ p+e-+ν

    β+ decay p ⇒ n+e++ν

    _

  • Alpha Decay of the Nucleus

    Occurs mainly for very heavy nuclei which are not stable against alpha emission

    Alpha particle α = 4He

    88226

    86222

    24Ra Rn He⇒ +

  • Nucleus conversion through α-decay

    Determine the end-product of the ‘yellow’ a-emitter: ZA

    N ZA

    NX X⇒ +−−

    −24

    2 α

    Z

    N

  • Beta Decay of the Nucleus

    β decay is the emission of an electron e- or positron e+ to convert a neutron to a proton or a proton to a neutron inside the nucleus 6 · e+ 7 · e+ +1 · e-

    The β decay always converts along isobars

    Too many neutrons

    Too many protons

  • Gamma Decay of Nucleus

    excited states in nucleus

    Excitation of nucleus with subsequent characteristic γ emission

    Excited states correspond to vibration, rotation or quantum state excitation

    Ex

    γ emission l< 10-15 m

  • Nucleus conversion through β+,--decay

    ZA

    N ZA

    N

    ZA

    N ZA

    N

    X XX X

    ⇒ +

    ⇒ +− +

    +

    + −−

    1 1

    1 1

    β

    βDetermine the end-product of the β+-emitter:

    Determine the end-product of the β--emitter:

    Z

    N

  • Energy in Nuclei According to Einstein’s formula, each nucleus with a certain mass m stores energy: E=mc2

    Proton mp = 1.007596 · 1.66·10-24 g = 1.672·10-24 g Neutron mn = 1.008486 · 1.66·10-24 g = 1.674·10-24 g Carbon m12C = 12.00000 · 1.66·10-24 g = 1.992·10-23 g Lead m208Pb = 207.797665 · 1.66·10-24 g = 3.449·10-22 g Uranium m238U = 238.050783 · 1.66·10-24 g = 3.952·10-22 g

    1 amu=1/12(m12C)=1.66 · 10-24 g Breaking up nuclei into their constituents requires energy

    www.nndc.bnl.gov/chart/reCenter.jsp?z=42&n=53

    http://amdc.impcas.ac.cn/web/masseval.html

    http://amdc.impcas.ac.cn/evaluation/data2012/data/mass.mas12http://www.nndc.bnl.gov/chart/reCenter.jsp?z=42&n=53http://amdc.impcas.ac.cn/web/masseval.html

  • Some unavoidable unit considerations

    227

    23

    19

    2

    2

    /49.9311066.11/300000

    10022.6106022.11

    11

    cMeVkgamuskmc

    particlesgAJeV

    smkgJ

    =⋅=

    =⋅≡

    ⋅=

    ⋅=

    http://en.wikipedia.org/wiki/Electronvolt

    http://en.wikipedia.org/wiki/Electronvolthttp://en.wikipedia.org/wiki/Electronvolthttp://en.wikipedia.org/wiki/Electronvolthttp://en.wikipedia.org/wiki/Electronvolthttp://en.wikipedia.org/wiki/Electronvolt

  • Nuclear binding energy

    M · c2 < Z mp · c2 + N mn · c2

    The mass difference is the binding energy B

    The binding energy is the energy that needed to dissociate a nucleus into its single constituents. It is released when N neutrons and Z protons fusion together to form a nucleus with the mass number A!

    The mass M of the nucleus is smaller than the mass of its proton and neutron constituents!

    E=m·c2 N=3 neutrons

    Z=3 protons

  • Calculating the Nuclear Binding Energy

    B = (Z · mp+ N · mn- M) · c2 Binding energy B of nucleus ( ) ( )( ) ( )

    ( )

    ( )nucleon

    JA

    CB

    Jsmkg

    smgsmg

    smggg

    cmmmCB Cnp

    1212

    112

    112

    821625

    28232424

    212

    1017.1

    10404.110404.110404.1/1091056.1

    /10310992.110674.1610672.16

    66 12

    −−−−

    −−−

    ⋅=

    ⋅=

    ⋅=

    ⋅=⋅⋅⋅=

    =⋅⋅⋅−⋅⋅+⋅⋅=

    ⋅−⋅+⋅=

    ( ) ( )( ) ( )

    ( )

    ( )nucleon

    JA

    UB

    Jsmkg

    smgsmg

    smggg

    cmmmUB Unp

    12238

    102

    102

    721624

    28222424

    2238

    10145.1

    10725.210725.210725.2/1091003.3

    /10310952.310674.114610672.192

    14692 238

    −−−−

    −−−

    ⋅=

    ⋅=

    ⋅=

    ⋅=⋅⋅⋅=

    =⋅⋅⋅−⋅⋅+⋅⋅=

    ⋅−⋅+⋅=

  • Nuclear Potential and internal forces

    ( ) ( )

    MeVaMeVaMeVaMeVaMeVaoddNZAoddNZAaevenNZAa

    AZAaAZZaAaAaB

    psymcsv

    pp

    symcsv

    34;23;72.0;8.16;5.15

    );(0);,();,(

    21

    3/43/4

    23/13/2

    =====

    +==⋅−=⋅+=

    +−

    ⋅−⋅−⋅⋅−⋅−⋅=

    −−

    δδδ

    δ

    http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2 1 MeV = 1.602·10-13 J

    http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/liqdrop.html#c2

  • Nuclear Binding Energy Components

    Mass number

    1 MeV = 1.602·10-13 J

    Binding energy normalized to mass number B/A B/A

    (MeV

    /nuc

    leon

    )

  • Example: What is the binding energy of the oxygen isotope 18O?

    mp= 1.007596 · 1.66 · 10-24 g mn= 1.008486 · 1.66 · 10-24 g

    M(18O) = 17.99916 · 1.66 · 10-24 g

    Z=8, N=10, A=18

    Atomic Mass Unit: 1 amu=1/12(M12C)=1.66 · 10-24 g

    B = (Z · mp+ N · mn- M) · c2 B(18O) = 1.382 · 105 keV = 2.21·10-11 J B(18O)/A=1.23·10-12 J

    1g 18O contains 7.41·1011 J (W·s)

  • Nuclear Decay Processes

    A ⇒ B+b A(b)B

    14C(β-ν)14N 234U(α)230Th

    Decay energy is released in kinetic energy of emitted particles or in electromagnetic gamma radiation energy

    ( )

    JeVMeVQ

    MeVMeVMeVMeVQ

    BBBQBBBQcmcmmQ

    U

    U

    ThHeUUAbBd

    AbBd

    127

    22

    104.81025.55.52

    5.52128.12755296.28325.1779

    234

    234

    2304234234

    −⋅=⋅==

    =−+=

    −+=−+=⋅−⋅+= JeV 19106.11 −⋅=

  • Nuclear Reactions and Energy Release

    a

    A

    Frederic Joliot and Irene Curie at Paris had observed the first nuclear reaction. Enrico Fermi showed the existence of neutron induced reactions, which produce artificial radioactivity.

    Nuclear reactions can produce energy Q > 0 exothermic or need energy Q < 0 endothermic

    A(a,b)B Q = (mA+ ma- mB- mb)·c2

    Q = BB+ Bb- BA-BB

    Nobel Prize 1938

    Difference of masses in entrance and exit channel determines Q

  • Q value of nuclear reaction process

    a

    A

    b

    B

    A+a ⇒ B+b

    A(a,b)B

    projectile

    target

    product

    recoil ( ) ( )( ) ( )

    reactioncendothermi0reactionexothermic0

    22

    <>

    +−+=⋅+−⋅+=

    QQ

    BBBBQcmmcmmQ

    aAbB

    aAbB

  • Example: Nuclear Reaction energy budget

    isotope B (J)

    2H 3.34131·10-13

    4He 4.53297·10-12 12C 1.47643·10-11

    119Pd 1.59643·10-10

    238U 2.88631·10-10

    ( )

    JJJQUBPdBPdBQ

    QPdU

    JJJQHBHBHeBQ

    QHeHH

    111010146

    2389273

    1194673

    11946

    7311946146

    23892

    121213

    2242

    421

    211

    21

    1006542.31059633.121088631.2

    )()()(

    2

    108647.31053295.41034131.32)()(2)(

    −−−

    −−−

    ⋅=⋅⋅−⋅=

    −+=

    +⇒

    ⋅=⋅−⋅⋅=

    +⋅−=

    +⇒+

    Conversion of nuclei through fusion or fission leads to release of energy!

    http://www.nndc.bnl.gov/exfor/endf00.jsp http://www.nndc.bnl.gov/exfor/exfor.htm

    http://www.nndc.bnl.gov/exfor/endf00.jsphttp://www.nndc.bnl.gov/exfor/endf00.jsphttp://www.nndc.bnl.gov/exfor/exfor.htmhttp://www.nndc.bnl.gov/exfor/exfor.htmhttp://www.nndc.bnl.gov/exfor/exfor.htm

    RadioactivityNature of RadiationOrigin of RadiationRadiation as Energy ReleaseSlide Number 5Alpha Decay of the NucleusNucleus conversion through α-decaySlide Number 8Slide Number 9Slide Number 10Energy in NucleiSome unavoidable unit considerationsNuclear binding energyCalculating the Nuclear Binding EnergyNuclear Potential and internal forcesNuclear Binding Energy ComponentsSlide Number 17Nuclear Decay ProcessesNuclear Reactions and Energy ReleaseQ value of nuclear reaction processExample: Nuclear Reaction energy budget